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composite cylinder 

Summary. A new model is derived for winding of a composite thick-walled cylinder with finite strains. 
Continuous growth of a cylinder is treated as a limit of successive accretion of built-up portions (thin-walled 
shells) consisting of a fiber bundles and resin. Due to preload of fibers, a gradient of pressure arises in the 
cylinder which causes resin flow. Nonlinear partial differential equations are developed which permit stresses 
and displacements in a wound cylinder to be determined with account for the material accretion and resin 
flow. At infinitesimal strains, these equations are reduced to a linear Volterra integral equation for pressure 
on mandrel. This equation is solved numerically to analyze the effect of material and structural parameters 
on stresses in a wound cylinder. 

1 Introduction 

The paper is concerned with axi-symmetrical accretion of an elastic cylinder with finite strains. 
Continuous accretion is treated as a limit of the process when successive layers (thin-walled 

shells) are wound around the cylinder and immediately merge with it. Any built-up portion 
consists of fiber bundles and molten resin. When preloaded fibers are wound around the 

composite cylinder, some gradient of pressure arises in resin which causes its flow. The fluid flow 

leads to consolidation of fibers, which, in turn, reduces stress intensity. The objective of the 

present study is to derive a mathematical model for continuous accretion with account for the 
resin flow and to analyze the effect of material and structural parameters on stress distribution in 

a wound cylinder. 

Estimation of residual stresses built-up in wound composite structures (composite pressure 

vessels and pipes) has been the focus of attention in the past three decades because of its 
applications in polymer engineering, see [1]. Filament winding consists of wrapping rovings of 

fibers over a mandrel with a given helical wind angle/3 (which serves to increase the load-bearing 

capacity of a pressure vessel) and with a suitable pretension (which controls the fiber position and 
provides a pressure necessary for compaction of the fiber network). The mandrel serves to resist 
sag due to the winding tension and the weight of a manufactured structure. 

At the helical (chord) winding with/3 ~ 0, the filament is placed along straight lines on the 
lateral surface of a wound structure, and the slope angle/3 can change from layer to layer. The 

effect of the winding angle is accounted for by replacing the filament stress (in the direction of the 
fiber) a ,  by the circumferential component  of the stress [2] 

S = a .  sin 2/3. 

The winding process consists of three main stages [3], [4], [5]: 

(i) winding, when resin-impregnated fiber bundles are wounded around a rotating mandrel; 
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(ii) curing, when the assembly is placed into an oven, where it is subsequently heated, cured and 
cooled to consolidate the fiber network and to cure the resin; 

(iii) removal from the mandrel. 

Two types of the winding processes are distinguished: dry winding, when preimpregrated 
tows are wound consisting of fibers and partially cured resin, and wet winding, when the fiber is 
saturated with low-viscosity uncured resin during winding onto the mandrel. 

Most of the works concerned with wound composite structures concentrate on the dry 
winding, when consolidation of wound layers and resin flow may be neglected, see [2]. For 
a survey of mathematical models for dry winding of composite structures, see [6], [7], [8]. 

The works [9], [10], [11] are concentrated on the measurement and calculation of residual 
stresses arisen in filament-wound composite structures when the material behavior obeys the 
constitutive equations of a linear orthotropic elastic medium. 

A model of a nonlinear orthotropic elastic material with infinitesimal strains was used in [12], 
[13] to calculate stresses built-up in a wound cylinder under the action of fiber pretensioning and 
external pressure. 

Recently, several new technological processes have been proposed, where the model of wet 
winding should be employed to adequately describe mechanical stresses, see [14], [15], [16] and 
the bibliography therein. 

The first model accounting for changes in stresses due to preloading of fibers, thermal 
deformations of the wound structure, resin flow through the porous medium, consoldidation of 
fiber bundles, rheokinetics of curing, and shrinkage of resin was suggested in [17]. Similar models 
were derived recently in [2], [3], [7], [18]. 

In these models, winding is treated as successive accretion of thin-walled elements 
(curvilinear beams or shells) on a part of the boundary of a growing body. As a result, 
a complicated discrete system is derived for stresses and displacements which can be analyzed 
only numerically. An alternative approach consists in modeling winding as a continuous process 
when within an infinitesimal time interval [t, t + &], a thin layer with thickness proportional to & 
merges with a growing solid [19], [20]. This method permits the accretion process to be described 
by partial differential or integro-differential equations, which may be solved explicitly. 

A model for continuous accretion of linear elastic solids with application to mechanics of 

dams and embankments was derived in [21], [22], [23], [24], see also [25]. Similar approaches were 
developed later in [26], [27], [28]. 

An extension of the model of continuous accretion to linear viscoelastic solids subjected to 
aging was proposed in [29]. This model was extended to nonlinear viscoelasticity with finite 
strains in [30], [31], [32], and to viscoelasto-plasticity with finite strains in [33]. 

The above cited works on continuous accretion deal with dry winding, when resin flow and 
consolidation of fiber bundless are neglected. The objective of the present paper is to derive a new 
mathematical model for stresses arising in a wound composite cylinder with account for resin flow. 
We concentrate on continuous accretion with finite strains and analyze the effect of preloading and 
the resin viscosity on stresses and displacements built-up in a growing elastic body. 

The exposition is as follows. Section 2 is concerned with kinematics of continuous accretion. 
in Section 3, we derive governing equations for stresses and displacements in a growing cylinder. 
These equations are solved explicitly under some additional assumptions in Section 4. Section 5 
deals with continuous accretion with infinitesimal strains, where the governing equations are 
reduced to a linear Volterra integral equation. The latter equation is solved numerically to 
analyze the effect of material and structural parameters on the pressure on mandrel. Finally, 
some concluding remarks are formulated in Section 6. 
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2 Kinematics of deformation 

This section is concerned with kinematics of the accretion process with finite strains. For 
convenience, we begin with some remarks regarding the main configurations for a growing 

medium, see [20]. 
For a body with a fixed mass, two basic configurations are employed: the reference 

configuration, where Lagrangian coordinates ~ = {~i} are introduced, and the actual configura- 
tion occupied by the medium under the action of external loads. As common practice, the 
reference configuration is assumed to coincide with the natural (stress-free) configuration. 

For a growing medium, three basic configurations are introduced. The first is the reference 
configuration, where we fix Lagrangian coordinates and postulate a plan (schedule) of accretion. 
This plan determines which points on boundaries of built-up portions and on the accretion 
surface merge with each other at any instant t. 

The second is the natural (stress-free) configuration of a built-up portion. For the initial body 
(existed at the instant t = 0), the reference configuration coincides with the natural configuration, 
whereas for built-up portions these configurations may differ from each other. 

The third is the actual configuration occupied by a deformed medium at the current instant t. 
When the natural configuration of a built-up portion differs from the actual configuration of 
a growing body at instant z*(~) when they merge, the built-up portion should be deformed to join 
the growing body. Preload in an accreted layer is determined as the stress necessary to transform 
the built-up portion from its natural configuration to the actual configuration of the accretion 

surface. 
We now apply this concept to describe winding of a composite elastic cylinder on a mandrel. 

The mandrel is modeled as an elastic cylinder with length I and external radius at. Winding of 
layers begins on its external surface at the instant t = 0 and occurs in the interval [0, T]. Accretion 
of material is treated as a continuous process. At instant t e [0, 7], the wound composite cylinder 
occupies in the reference configuration the domain 

~2(t) = {al  < r < a(t), 0 < 0 < 2~ ,  0 < z <- t } ,  

where {r, O, z} are cylindrical coordinates with unit vectors g,, ~0, and g~. Within the interval 
[t, t + dt], a cylindrical shell which occupies in the reference configuration the domain 

df2(t) = {a(t) < r <= a(t + dt),  0 < 0 < 2~ ,  0 <- z < t } ,  

is wound around the accreted cylinder and immediately merges with it. The law of material 

supply 

a = a(t), a(O) = a l ,  a (T)  = a2, 

is assumed to be given. The rate of accretion v(t) is defined as volume of the material which joins 

the growing body per unit time 

da 
v(t) = 2Ma(t) ~ (t). (1) 

Denote by z*(r) the instant when a built-up portion with polar radius r joins the growing cylinder. 
The function z*(r) is inverse to the function a(t): 

"c*(a(t)) = t,  a(z*(r)) = r. (2) 
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Differentiation of the first equality in Eq. (2) implies that 

a~- (r) = (~*(r)  . (3) 

Continuous growth of a cylinder is treated as a limit of the following process of successive 
accretion of thin shells (layers). We divide the interval [0, T] by N + 1 points t, = hA, where 
A = T / N a n d n = 0 , 1  . . . . .  N. 

At instant t,, the accreted cylinder occupies in the reference configuration the domain 

g2(t.) = {a~ < r < a(t.), 0 < 0 < 2~z, 0 < z < 1}. 

At instant t. + 1, a thin-walled cylindrical shell which occupies in the reference configuration the 
domain 

Ag2(t.) = {a(t.) < r _-< a(t.+l),  0 < 0 < 2~r, 0 <- z < l} ,  

merges with the cylinder ~(t.). 
Any built-up port ion consists of a fiber bundle impregnated by a molten resin. For 

definiteness, we assume that in the layer A (2(t.) fibers occupy the domain 

As~(% ) = {a(t.) < r < b(t.), 0 < 0 < 2~, 0 < z <_ 1}, 

and resin occupies the domain 

d~f2(t,) = {b(t,) < r <= a(t,+ ~), 0 < 0 < 2~z, 0 <_ z <- l}. 

Points of the wound cylinder in the actual configuration refer to cylindrical coordinates {R, 
O, Z} with unit vectors ~R, go, and Yz. We suppose that deformation of successive layers for 
transition from the reference to actual configuration is described by the formulas 

R = qb,(t, r), 0 = O, Z = z,  a(t,) < r < b(t,), (4) 

where ~b,(t, r) is a function to be found. 
The radius-vectors in the reference and actual configurations equal 

fo = rgr + zgz, f = RgR + Zgz .  (5) 

Differentiating Eqs. (5), we obtain tangent vectors in the reference and actual configurations 

04 .  
g01 = er, go2 = rYo, r = G, r = ~ (t, r) ca, Ca = q~,(t, r) go, r = ez. (6) 

It follows from Eq. (6) that dual vectors are calculated as 

= - -  d O ,  g0 3 ~- ez, = (t, r) eR, g2 _ 1 g3 go 1 = or, go: r L 3 r  go.(t ,  r~) go, = ez.  

(7) 

Substituting expressions (6) and (7) into the formula for the deformation gradient for transition 
from the reference to actual configuration 
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we find that  

~q,,  ~ , ( t ,  r) 
Vof(t) = ~-r (t, r) ereg + r e o e o +  ezez ,  a(t.)  <_ r < b(t ,) .  (8) 

The Finger tensor P for transition from the reference to actual configuration equals 

= (17o~r �9 ~Vof , (9) 

where Tstands  for transpose. Combining Eqs. (8) and (9), we find that  

F(t, r) = L ~ -  r (t, r) eReR + e o e o +  e z e z ,  a(t ,)  <_ r <_ b(t ,) .  (10) 

We assume that both fibers and resin are incompressible 

I 3 r  = 1. 

It  follows from this condition and Eq. (10) that  the funciton ~.(t, r) satisfies the equation 

~ "  (t, r) - r a(t,)  < r < b(t ,) .  (11) 
~r ~,(t, r) '  - - 

Integrat ion of Eq. (11) implies that  

~.2(t, r) = r 2 + C(t,  t , ) ,  a(t ,)  <_ r <_ b(t , ) ,  (12) 

where C(t, t ,)  is an arbitrary function of time t. Bearing in mind Eq. (11), we present Eq. (8) as 

follows: 

r ~.(t, r) _ _ 
Vof(t) - - -  greR + eoeo + ezez ,  a(t,)  <_ r <_ b(t ,) .  (13) 

�9 ,(t, r) r 

We suppose that  transition of a built-up port ion from its reference to natural  (stress-free) 

configuration is determined by the formulas similar to Eq. (4) 

r* = O,(r),  O* = O, z* = z ,  a(t .)  < r < b(t .) .  (14) 

Here {r*, 0", z*} are cylindrical coordinates in the natural  configuration with unit vectors er*, e0*, 
~z*, and 0,(r) is a function to be determined. Using the incompressibility condition, it is easy to 
show that  the function O,(r) satisfies Eq. (11), and, therefore, can be presented in the form 

0 n 2 ( r )  = r 2 + C(tn), a(t ,)  < r < b(t . ) ,  (15) 

where c(t,)  is an arbitrary constant. According to Eq. (15), the deformation gradient for transition 
from the reference to natural  configuration equals 

~ o f .  _ r YrY~* + O"(r~) CoCo* + gzgz*, a(t.)  <_ r <_ b(t ,) .  
O .(r) r 

The inverse tensor is calculated as 

r - , -  
( V o f * ) -  1 _ O r )  ~ , ~  + _ _  eo eo + ~ * ~ ,  a(t , )  < r < b( t . ) .  (16) 

r  - - 
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We substitute expressions (13) and (16) into the formula for the deformation gradient ff*f at 
transition from the natural  to actual configuration 

ff,~ = ( g j , ) -  1. ffo~ 

and obtain 

~dt,  r) _ . -  
V*f(t) - q~,(r) G*eR + - - e o  eo + G*gz, a(t,) < r < b(t,). (17) 

�9 ,(t, r) qS,(r) - - 

According to Eq. (17), the Finger tensor at transition from the natural  to actual configuration 

/~~ = (~*r3 ~.  ~*e 

is calculated as follows: 

F 4~(r) 3 _f~ r) = ! ,2  eaeR + eoeo + ezez, a(t,) < r < b(t,). (18) 
kr  r)J L ,r J - - 

3 Governing equations 

Let us suppose that the response of fibers is governed by the constitutive equation of an is otropic 
elastic medium with strain energy density W(I1 ~ Ie~ where Ik ~ is the kth principal invariant of 
the Finger tensor/~o. We employ the Finger formula for the Cauchy stress tensor, see e.g. [34], 

O = - p [  + 2[~h/~~ + tp2(-F~ (19) 

where p is pressure, [ is the unit tensor, and the scalar functions ~x and ~P2 equal 

~W 0W ~?W 
~Pl = ol l  v ~  + 11~ ~ I 2  ~ ' ( 7  ~D 2 --  t~i2 0 . (20) 

Substituting expression (18) into Eq. (19), we find the following non-zero components  of the 
stress tensor: [ ,]2{ G( ) ~ eRR(t, r) = --p(t, r) + 2 ~ ~l(t, r) 

�9 o(t, r)] 2 { 
c o o ( t , r ) = - p ( t , r ) + 2 L  4,(r) J ~ l ( t , r )  

azz(t, r) = --p(t, r) + 2[~dt,  r) + ~2(t, r)], 

L,~~ r)J J 

, F,~o(t, r t ] q  

+ LGS-J ; '  

a(t~) _< r _< bG) ,  

(21) 

where 

G(t, r) = ~k(P(t, r), I %  r)), 
L ~,~(rt J + L ~ J  + 1. 

(22) 

Let P(t, t~) denote pressure in resin in the domain A,f2(t,,). The equilibrium equation for the 
layer Aff2(t,) reads 

c~cRg 1 
c~R /- ~ (car - Coo) = 0. (23) 
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Integration of Eq. (23) with the boundary conditions 

aRRl,=,(t.) = - P ( t ,  t,-1), a~Rl,=b(t.) = - -P ( t ,  to), 

implies that 

~n(b(tn)) 

P(t,  t . _  1) --  P(t ,  t .)  + ~ (aRR -- aoo) R - 1  dR  = O. 
On(a(tn)) 

According to Eqs. (4) and (11), 

d R  •q5 dr r dr 

R - 3r (t, r) ~ , ( t ,  r~) - ~b.2(t, r)" 

Substitution of this expression and Eqs. (21) into Eq. (24) yields 

b(tn) 

,(t. t . ) -  P(t, t,-1) = 2 f {t~.(t. r)L\@,(t. I-I/" @o(r)r)) ~ - \(@~162 r)']~-]) j 
a(t~) 

123 

(24) 

L\~.(t, r)J  - \ ~ - ]  JJ ~.2(t, r)" 

Denote by t/(t.) concentration of resin in a built-up portion which merges with the wound 
cylinder at instant t. 

a2(G + 1) -- b2(t,) 
tt(G) -= a2(t,  + 1) a2(G)" 

It follows from this equality that 

b(t.) = a(t.) ~ l  + [1-  t/(t.)] L\[(a(t'+l)~2-a(t,) ] 1]. (26) 

Up to the second order terms compared with A, 

da 
a(t,+ 1) -- a(t,) + )-/(t,,)A. (27) 

Substituting expression (27) into Eq. (26) and neglecting terms of the second order compared 
with A, we obtain 

da 
b(t,) = a(t,) + [1 - t/(t,)] )-~ (t,) A. (28) 

Combining Eqs. (25) and (28), we arrive at the formula 

1 
In(t,  t ,)  - n( t ,  G-1)]  

= 2[1-17(t,,)]a(t.)da~y(~, a-(~.)) &(t") {?,(t,a't "J7 L!t~, a(7~.))Jr ,~2 --\(~"(t'a(t"))'~z ] J 

[(+,(a(,,)) V 
+ 72(t, a(G)) Lt@.(t ' a(t.))]  - \ ~ - ]  _JJ' 
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Continuous accretion is determined by a function of two variables P(t, r*) which equals the 
pressure at instant t in resin in a built-up portion manufactured at instant z*, and a function of 
one variable rl(z*(r)) which equals the concentration of the liquid phase at the instant of accretion 
at point with polar radius r: 

P(t, z*(r)) = P(t, t,), t/(z*(r)) = t/(G) , a(t,) < r <_ a(G+ 1). 

Approaching the limit as N ~ oo in Eq. (29), we find that 

&*OP (r,z,(r)) 2r[1-rl(z*(r))] da.  ~) ~-~ (z (r))'{~l(t, r) [(~b(r) ~2 _ 14p(t,r))2 ~ 
k\~(t, r)] \ - ~ - )  J 

Lye(t, r)y \ 4(r) } JJ' 

The functions ~b(r) and q~(t, r) are determined by analogy with Eqs. (12) and (15) 

cb2(r) = r z + c(z*(r)), 4>2(t, r) = r; + C(t, z*(r)), (31) 

where C(t, z*) and c(r*) are limits of the step-wise functions C(t, t,) and c(t,). To transform 
Eq. (30), we set 

H(t, r) = P(t, r*(r)). 

It follows from Eq. (3) that 

~Fl(t ,r)= CgP (t, z .(r))[da ] -1  
~--7 0~--; Z (~*(r)) . 

Combining this equality with Eq. (30), we find that 

+ ~,(t, r> [ (  4)(r> ~" ( ~ ( t , r ) ~ ' ~ .  (32) 
L\~(t, r)/ \ q~(r) / JJ 

Let us now return to successive accretion of thin layers and calculate volume A V(t, t.) of a part 
of the built-up portion Af2(t.) occupied by resin at instant t 

A V(t, G)= n/[~2+ l(t, a(t, + x)) - @,2(t, b(G))]. 

Substitution of expression (12) into this equality implies that 

A i/(t, G) = ~l{[a2(t,+ l) + C(t, tn+l)] -- [b2(t,) + C(t, t,)]}. 

Up to the second order terms compared with &, the increment DV(t, t,) of the volume A V(t, t,,) in 
the interval [t, t + &] equals 

6V(r, t.) = 7cl ~ [C(t, t.+ ,) - C(t, t.)] &. (33) 

The volume 6 V(t, t.) equals the difference between the amount of resin 6Q.(t) which enters the 
portion AO(t.) through the surface r = a(t.) and the amount of resin 6Q.+ fit) which leaves this 
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portion through the surface r = b(t.) 

6V(t, t.) = 6Q.(t) - 6Q.+ l(t). (34) 

The resin flow is assumed to obey the Darcy law, which states that volume of a fluid which 
passes through a porous wall (per unit area and unit time) is proportional  to the difference of 
pressure and is inversely proport ional  to the thickness of the wall 

P(t, t ._  i) - P(t, tn) 
q.(t) = x(t, t.) q~.(t, b(t.)) - q~.(t, a(tn))' 

P(t, t.) - P(t, G+i) 
q.+l(t) = x(t, tn+i) ~.+i( t ,  b(t.+l)) - 4~.+i(t, a(t.+a))' 

(35) 

where x(t, t.) is a coefficient, which depends on permeability of the fiber bundle manufactured at 
instant t. and on the fluid viscosity at instant t. It follows from Eqs. (35) that 

[P(t, tn- i) - P(t, t.)] ~.( t ,  a(t.)) 
6Qn(t) = 2rex(t, t.) lbt r  b(tn)) - q~.(t, a(t.)) 

[P(t, t.) - P(t, t.+ 1)] q~n+ l(t, a(t.+ 1)) 
bQ.+l(t) = 27cx(t, t .+a) fa t  ~.+l( t ,  b(t.+l)) - 4~.+i(t, a(t.+i)) " 

(36) 

Substitution of expression (33) and (36) into Eq. (34) implies tat 

~ [ C ( t ,  t .+i)  - C(t, t.)] = 2 x(t, t . )[P(t ,  t . - i )  - P(t, t.)] ]~ . ( t ,  a(t.)) 

[O .+ i ( t , b ( t .+ i ) )  l - i }  
- -  x ( t ,  t .  + l ) [ P ( t ,  t . )  - P ( t ,  tn + i)] L ~ "  + i ( t ,  a ( t .  + 1)) - 1 . (37) 

Up to the second order terms compared with A, the left-hand side of Eq. (37) is presented as 

a [C(t,t.+i)_C(t,t.) ] 82C at = ~ (t, t.) A. (38) 

To transform the right-hand side of Eq. (37), we use the equalities 

aP 1 aP 
P(t, tn_ l) - P(t, t.) = - az ~ (t, t.) A + ~ ~-g:7.~ (t, t.) A 2, 

o[ ~"V- 

8P 1 8P 
P(t, tn) -- P(t, tn+ i) = -- ~,C~" ~ (t, tn) A 2 a. . .~( ) (t, t.) A2, 

(39) 

which are satisfied up to the third order terms compared with A. Eqs. (12) and (28) imply that up 
to the second order terms compared with A 

q~.(t, b(t.)) 
�9 .(t, a(t.)) 

/bZ(t.) + C(t, t.) 
1 = V + c(t,  t.) 

- 1  

2a(tn) [1 -- t/(tn)] da A 1 a(tn) [1 - t/(tn)] da 
= 1 + a2(t.) + C(t, t.) dt (t.) - = a2(t.) + C(t, tn) dt (t.) A.  (40) 
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It follows from Eqs. (39) and (40) that up to the second order terms compared with A the 
right-hand side of Eq. (37) equals 

da 2 (t, t.) --- gC+ 

da x(t, tn) [a2(tn) + C(t, tn)j [_~(t.)] 1} 

a2p ]- '  
+ ~ ( t , t . ) A (  a(t,,+ 1) [1 - r/(t.+,)] dt (t"+ ~) 

da 

With the above level of accuracy, this expression reads 

a2p In(t, ~*) (a2(z *) + C(t, r*)) i/da, , , ~ - ' 7 )  

= 2A ~ La~7 (t' ~*)z(t' ~ - ~  (i 2 ~-(r dt(**) (41) 

Substituting expressions (38) and (41) into Eq. (37), we obtain 

8 [-SP ~(t,~*)(a2(~*)+C(t,~*))(da , ) - ~ ]  a2C (t, "c*) = 2 ~ L~T~ " (t, g*) -, & &* ~ ~ t/(v*)) -&- (z") " (42) 

Combining Eqs. (30) and (42) and using Eq. (31), we find that 

\\#(t, r)) \ #(r) ) )JJ" 

Finally, employing Eq. (31), we present this equation as follows: 

at a2Ca'c* - 4 a.c--ga {z(t' z* ) [ ~jl (t' a('c* ) ) r aa(~c* ) + c(~* + -C~, ~ * ) - aZ('c* ) + C(t' ~* ) -+- c~)  -/I 

( (  a2(~ *) + c(r*) "~e (a~(z,) + C(t, r,))2-]~ (43) 
+ - \ a i+-iT;  ) i J" 

For a given function a(t), which determines the accretion process, and for a given function 
c(z*), which characterizes preloading, Eq. (43) is a nonlinear partial differential equation for the 
function of two variables C(t, ~*). 

Denote by 27(t.) preloading in a built-up portion AT2(t.) which is wound around the growing 
cylinder at instant t.. The stress Z(t.) equals tangential stress aoo in the built-up portion at instant 
t. when this portion merges with the cylinder, i.e, when its configuration coincides with the actual 
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configuration of the growing cylinder. Neglecting radial stress ORR (which is proportional to 
thickness of a built-up portion), and equating Oso to ~(t,), we obtain from Eq. (21) a nonlinear 
algebraic equation for the function c(t,) 

. . ,  [-a2(t,) + C(t,, t,) a2(tn) + C(tn) 
2 ~Pt(t., a(tn~) L ~ ~ t  5 +-~'~.~ -- a~(t.) + C(t., t.) 

F(aZ(t,) + C(t,, tn)~ 2 (. aZ(t,) +c(t,! ~21~ = 2~(t,). 
+ .(t.)) L\ / - \a2(t,) + C(t,, t,)] J) 

Calculating the limit as A ~ 0, we find that 

+ 3,) +_c(z,l_ ] 
~/~1 (Z'*, a(T*)) L a - ~ 5  AV C(T*) -- a2('c *) d- C(3", 3")] 

Fda2(z *) + C(z*, z*)) 2 ( a2(z *) + c(z*) ~2~ = 1 N(z*). (44) 

4 Filament winding on a rigid mandrel 

In applications, rigidity of a mandrel essentially exceeds rigidity of polymer fibers, which implies 
that the mandrel may be treated as a rigid body. It follows from this assumption and the 
incompressibility condition for polymer fibers and resin that displacements for transition from 
the reference to actual configuration equal zero on the interface between the mandrel and the 
composite cylinder and on the outer boundary of the cylinder 

C(t, 0) = 0, C(v*, z*) = 0. (45) 

For definiteness, we confine ourselves to a neo-Hookean elastic medium with 

P ' I  o W = ~ (  ~ - 3 ) ,  (46) 

where # is the generalized shear modulus. Substitution of expression (46) into Eq. (20) yields 

# 
~Pl = 2 '  P2 = 0. (47) 

Combining equalities (45) and (47) with Eq. (44), we find that 

1 + g(3*) 

where 

[1 + ~(z*)] = ~o(3"), (48) 

g(z*) - c(z*) No(Z*) = 2(3") (49) a2(z*) ' # 

Introducing the notation ~ = 1 + g, we transform Eq. (48) into the quadratic equation 

~2 _~ ~0(3. ) ( -- 1 = 0, 

which has the only positive root 

1 
~(z*) = ~ [1/4 + 27o2(Z *) - 2;0(3*)]. (50) 
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Returning to the initial notation, we obtain from Eqsl (49) and (50) 

C('C*) : a2('c*) {~- I~/4 + ( ~ )  2 Z~*)] -- 1}. 
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We substitute expressions (47) and (49) into Eq. (43) and integrate the obtained equality from 0 to 
z*. Bearing in mind Eqs. (45), we arrive at the formula 

~ (t, r,) = ~ ( t , z , ) l + C ( t , z , )  i - + - ~ . ] - ~ ( t , 0 )  1 + 4 0 )  

where 

C(t, "c*) (52) 
12(t, "c*) - a2(.c, ) . 

Eq. (51) together with Eq. (48) implies that 

aCt I ~(~*) 1 + C(~, ~*)~ a2(~ *) ~- (, z*) = 2px(t, z*) 1 + c(t,  z*) ~ : )  ] + 2s(0) x(t, 0). (53) 

As common practice, temperature in the winding chamber is not sufficient for curing of resin. 
Neglecting changes in the resin viscosity caused by the polymerization process, we set 

x(t, ~*) = Zo, (54) 

where ~r is a constant. It follows from Eqs. (53) and (54) that 

8t ~(~*) 1 + C(t, ~*) " 
(55) 

Eqs. (45) and (50) imply that at instant z* the right-hand side of Eq. (55) equals 

2#Xo 
a2(~,) [Zo(O) - 1:o(~*)1. 

Therefore, differential equation (55) with the second boundary condition in Eq. (45) has 
a non-zero solution if and only if the dimensionless preload intensity No(~*) is not constant. For 
a constant preload, X(v*) = Z(0), fiber bundles do not move with respect to resin. This rather 
surprising result is obtained under the assumption that the mandrel is rigid. 

For a monotonically increasing preload intensity, we integrate Eq. (55) from v* to t, utilize the 
second boundary condition in Eq. (45) and find that 

?:(t#*) 
f 2.0 

L ?~*) 1 + CJJ  dC - a20:,) 
0 

- - -  ( t  - r * ) .  ( 5 6 )  

The integral in the left-hand side of Eq. (56) is calculated in elementary functions, but we do not 
dwell on this question. 
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t 

Po(t) = 2# f 
0 

5 A c c r e t i o n  with in f in i te s imal  s tra ins  

We now concentrate on infinitesimal strains when the dimensionless ratios (49) and (52) are small 
compared with unity. Bearing in mind Eq. (47), we find from Eq. (44) that 

1 , 
C(r*, ~*) - 5(z*) = ~ Zo(~ ). (57) 

Linearization of Eq. (43) with the use of Eq. (57) implies that 

1 [- 2 . 0C z*)] -4#0-  ~ 

Integrating Eq. (58) from 0 to r*, we obtain 

0C t, a2('c *) ~ -  ("C*) + 4#n(t, z*) [C(t, z*) -- C(z*, z*)] 

O C t o  = al 2 ~ -  ( , )  + 4#n(t, 0) [C(t, 0) - C(0, 0)] + 2#[~(t, 0) 220(0) - n(t, z*) Zo(z*)]. (59) 

Substitution of expressions (49), (52), and (57) into Eq. (30) yields 

~P 2#[1-q(~*)]da  I 1 ] &* (t, z*) = a(z*) dt (z*) C(t, z*) - 0(z*, z*) + 22o(Z*) �9 (60) 

We integrate Eq. (60) from 0 to t and employ the boundary condition 

P(t, t) = O. 

As a result, we find the pressure on mandrel Po(t) = P(t, O) 

1 - t/(z*) da I 1 ] 
a(~*) dt (z*) C(t, v*) - C(z*,z*) + ~22o(Z*) &* 

where 

i 
0 

1- r / ( z* )da  , I 1 ] a(z*) dt ( z )  M(t, z*) + ~ Zo(Z* ) d'c*, (61) 

M(t, v*) = &t, z*) - &z*, ~*). (62) 

Equation (62) implies that 

M(z*, z*) = 0. (63) 

Let K be rigidity of the mandrel and 

C(t, O) - Po(t) (64) 
K 
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The constant K may be easily expressed in terms of elastic moduli and internal and external radii 
of the mandrel, provided that it is modeled as a linear elastic cylinder. To avoid tedious 
calculations, we assume K to be given. 

It follows from Eqs. (61) and (64) that C(0, 0 )=  0. Accounting for this equality and 
substituting expressions (62) and (64) into Eq. (59), we find that 

~M 4#x(t, r*) 
~ - ( t ,  z*) + a2(z,) M(t, z*) = F(t, z*), (65) 

where 

2 1 ~(a(O) ~2 dPo 4ktz<(t, 0) Po(t) -t- [~(t, 0 )Z(0 ) -  ~z(t, z*)N(z*)] (66) 
e(t ,  ~*) = - ~ E \ a ( ~ * ) /  dt (t) + aa(z,--~ ~- ~ 

Neglecting curing of resin, see Eq. (54), we integrate Eq. (65) with the boundary condition (63) 
and obtain 

M,t qds ,67, 
Equations (66) and (67) imply that 

_ ~ (~(01 ? i d~o M(t,r*)= K\a(r*)] -&(s )exp[ -~( (~~  ds 

a2(z *) g Po(s) exp - a / z  ~ 

i expE 
We integrate by parts the first term in the right-hand side of this equality and calculate the third 
term. As a result, we arrive at the formula 

- l ( a ( O ) ~ 2 {  [ 4#z~  
M(t, z*) = K \a(z*)] Po(t) - Po(z*) exp - a2(.c, ~ 

t 

4#Zo I1 (a(0) ~2~ 

+ 1 [No(0) - Zo(Z*)] {1 -- exp [ -  a4-~@,~ (t - z*)l}. (68) 

Substitution of expression (68) into Eq. (61) leads to the linear Volterra integral equation 

H(t) Po(t) + i L(t, s) Po(s) ds = G(t) (69) 
0 
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with 

2p i 1 -t/(r)(~(0)~ 2 da H(t) = 1 + ~- a(z) \c~(z)] &- (v) dz, 
0 

i 1 -q ( r )  d a , , {  [ {_4#z0 )1} G(t)= ~ ~ t ~  X(r)+[27(0)-27(~)] 1 - e x p \  aa(r ) ( t - r )  dr, 
0 

/ 4 t ,  s) = e l ( t ,  s) - c2 ( t ,  s) ,  

Ll(t,s) 2#1 ~q(r,(a(0)~ 2 expE_   (t_s)]da = ~2 a(r) \a('c)J ~- (s), 

L2(t, s)-2#K 4p~Oa2(s) f 1-a(~t/(s)\a~,/{a(0)~2 [ i  (a(0))2]j ~da' [ ~4/~~ 1 - \ a ~ J  (r) exp - ( t - s )  dr. 
0 

Assuming the parameters ~/and 27 to be independent of r*, we introduce the dimensionless 
variables and parameters 

t a Po vT #(1 - t/) 4#~oT 
t, = ~-, a,  = a(0)' Po, - S(1 - q)' v, ~a2(O) l' ~ - ~ ,  ~2 - aZ(O ) . 

In the new notation, Eqs. (1) and (69) are presented as follows (asterisks are omitted): 

dA 
(t)  = v ( t ) ,  

H(t) Po(t) + ~ i [Ll(t, s) - Lz(t, s)] Po(s) ds = G(t), (70) 
0 

where A(t) = aZ(t) and 

H(t)= l + ~ 1 -  , 

1 
G(t) -- ~ In A(t), (71) 

~(s) -~A(~ Ll(t, s) = ~ exp 

Lz(t,s)= t _~1  s {I1 -- A--~I exp ( - ~  ~ )  + ~ Iexp (-ff(,  - s)) - exp ( - ~  ~ ) 3 } .  

To study the effect of material and structural parameters on the pressure on mandrel Po, we 
solve numerically Eqs. (70) for accretion with a constant rate of material supply v. Results of 
numerical simulation are presented in Figs. 1 -  4. 

Figure 1 demonstrates that the pressure Po decreases with the growth of ~. This result is 
quite natural, since g is proportional to the shear modulus of fibers #. With an increase in #, 
any built-up layer effectively resists its deformation, and the influence of mandrel decreases. 
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0.0 

A. D. Drozdov  

Fig. 1. The  d imensionless  pressure  on mandre l  

Po versus the  d imens ion less  t ime t for a growing 

cylinder with a2 = 1.5a~, v(t)= 1.25t, and  ~ = 0.5. 
Curve  1 : / i  = 0.1, curve 2:/~ = 0.5, curve 3: fi = 1.0, 

curve 4:/2 = 5.0 

0.4 

P0 

0.0 

Fig. 2. The  d imensionless  pressure  on mandre l  

Po versus the d imensionless  t ime t for a g rowing  

cylinder with a2 = 1.5aa, v(t)= 1.25t, and  /i = 1.0. 
Curve  1: Y = 0.01, curve 2 : 2  = 1.0, curve 3: ~ = 10.0, 

curve 4: ~" = 50.0 

0.15 

P0 

0.0 

Fig. 3. The  d imensionless  pressure  on mandre l  

Po versus the  d imensionless  t ime t for a growing 
cylinder with/~ = 10.0, 'Y = 500.0 and  a t ime- indepen-  
dent  rate of  accret ion v. Curve  1 :a2  = 1.2al, curve 2: 

a2 = 1.5a> curve 3 : a2  = 2.5al 
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Fig. 4. The dimensionless pressure on mandrel 
Po versus the dimensionless time t for a growing 
cylinder with /i = 10.0, ~ = 0.1 and a time-indepen- 
dent rate of accretion v. Curve 1:a2 = 1.2aa, curve 2: 
a2 = 1.5al, curve 3: az = 2.5al 

Figure 2 shows that  the pressure Po increases with the growth of 2. Since :g is inversely 
proport ional  to the fluid viscosity, the latter means that an increase in the resin viscosity (e.g. due 
to its polymerization) leads to a decrease in the pressure on mandrel. This effect follows from 

Eqs. (71), since for small 

L z ( t ,  s) - -  L 2 ( t ,  s) - A2(s ) ~ ~(- -~4-5-(~ + 1 + A ~  " 

Combining this equality with Eq. (70), we find that  the function Po( t )  increases in 2, at least for 

sufficiently small 2 values. 
Figures 3 and 4 demonstrate that  the pressure Po increases with the growth in the accretion 

rate v. This effect is rather strong for large ff values, when the resin viscosity is small, and it is 

essentially less pronounced for small 2 values. 

6 Concluding remarks 

A new model is derived for accretion of a composite cylinder with finite strains when resin flow is 
taken into account. Continuous material  supply is treated as a limit of the process of successive 
merging thin-walled shells (built-up portions) with a growing body, when thicknesses of the shells 
tend to zero. Preloading of fibers leads to some stresses in built-up layers and to a gradient of 
pressure in resin. This gradient implies resin flow through the fiber bundles, which is governed by 

the Darcy law. 
The nonlinear partial differential equation (43) is derived for finite radial displacements of 

fibers when the accretion rate and preload intensity are given. A solution of this equation is 
developed under the assumption that  the mandrel  rigidity essentially exceeds rigidity of fibers. 

At infinitesimal strains, two linear integro-differential equations (58) and (60) are derived for 
radial displacements of fibers and pressure on the mandrel. These equations are reduced to 
a linear Volterra equation (69), which is solved numerically. At any instant t, the pressure on 
mandrel  Po is determined by three dimensionless parameters  /~, 2, and v. It is shown that  
P0 decreases with the growth of the shear modulus of fibers k7 and with the growth of the resin 
viscosity 2-1,  and it increases with an increase in the rate of accretion v. 
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