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Summary. An orthotropic semi-infinite strip under arbitrary boundary conditions is considered. By means 
of Fourier transforms, boundary integral relations of special type with moving and motionless singularities of 
the Cauchy type are obtained. These relations lead to a system of singular integral equations corresponding 
to the various mixed boundary value problem. The power of singularities at the corner points, stresses and 
stress intensity factors are calculated for different loads and various material properties. 

1 Introduction 

The problem of the isotropic semi-infinite strip has received considerable attention in the 
literature. Specifically, in [1] - [3] by means of singular integral equations an isotropic one has 
been studied and in [4] an orthotropic material  was discussed. However,  the method used in these 
papers allowed to consider only prescribed boundary  conditions, particularly only first mode 
conditions on the longitudinal sides and homogeneous conditions on the strip end. In this paper  
boundary  integral relations of a special type are derived. These relations give the possibility to 
formulate the system of singular integral equations for any boundary  conditions on the strip 
edges. 

2 Formulation of boundary integral relations 

Consider the orthotropic semi-infinite strip shown in Fig. 1. Let in the points x = 4, Y = _+ t/ 
concentrated forces ( +  Fx, Fy) be symmetrically applied, and boundary  conditions are arbi trary 
for a time. 

Assuming a state of plane strain, the stress-displacement relations are 

8u 8v 3v 8u 

cgu Ov 
az = A13 ~xx + A23 --~y' 
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0 /1 , X Fig. 1. The orthotropic semi-infinite strip 

and the corresponding displacement equations of equilibrium become [5] 

~2 u ~2 u ~2 v 
A l l ' x 2  + A66--022 + (A12 + A66) ~x 8y 

~2 v ~2 v ~2 R 
A 2 2 - -  + A66 + (A12 + A66) ~y2 ~ Ox ~y 

- a ( x  - ~) 6 ( y  - ~)  F ~ ,  

- a ( x  - r 6 ( y  - . )  r , ,  

(1) 

where A~ s denote the stiffness coefficients for the orthotropic materials. Results for the 
corresponding problem of plane stress can be obtained from the present formulation by a simple 
rearrangement of the elastic constants, namely A l l ,  AI2,  A22 should be replaced by 

A l l  - Az3/A33,  A12 - A13Az3/A33,  A22 - A23/A33 respectively. 
We introduce the following functions: 

v(x, O) = Q(x),  "c:,,(x, 0) = ql(x); 

u(+_h, y) = +_F(y), rxy(++_h, y) =A(y) .  
(2) 

In order to solve the differential Eq. (1) we introduce the finite Fourier transforms 

h h 
(t(p, y) = ~ u(x, y) sin (oopx) dx ,  f(p, y) = ~ v(x, y) cos (copx) dx ,  co = rc/h 

0 0 

in which case ~7 and f are governed by the ordinary differential equations 

d2/i dg 
A66 --dy 2 - cop(A12 + A66) ~yy - co2pZAllu = - 6 ( Y  - rl) sin (cop~) Fx + ( -  1) p Al lcopF(y)  

dZf  d~ 
A22 - -  + ~op(A12 + A66) 092p2A66/7 

dy 2 dy  

du(h, y) 
= - -6 (y  -- tl) cos (cop~) F r -- (-- 1)Pfl(y) -- (-- 1)PAle d ~ -  

(3) 

(we have taken into account that due to symmetry u(0, y) = 0 and ~v(0, y)/Ox = 0). Applying next 
Fourier transforms with respect to the y-coordinate, 

oo co 

fl(p, t) = j ~i(p, y) cos (ty) dy,  6(p, t) = S v(P, Y) sin (ty) dy,  
0 0 
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to Eq. (3), we arrive at the following algebraic system with respect to ~ and ~: 

(Ail~o2p 2 + A66 t2) ~ + (Ala + A66) copt~ 

= cos (Ul)sin ((np~)F~ + A 1 2 o o p O ( p  ) - -  qi(P)-- (--1)PAlioJPff(t), 
(4) 

(-'412 + A66) copt~ + (A66r 2 + Az2t 2) 

= sin (tt/) cos (cop~) Fy + Az2tQ(p) + ( -  1)Pfi(t) - ( -  1)VA12tlf(t), 

where 

h h 
Q(P) = ~ Q(x) cos (copx) dx, qi(P) = ~ q,(x) sin (o~px) dx, 

0 0 

oa oo 

if(t) = ~ F(y) cos(ty) dy, fl(t) = ~f~(y) sin(ty) dy. 
0 0 

The determinant of the system (4) results in 

D = AllA66(to4p 4 + 2ai2ooZp2t z + a24t4), 

where 

0~12 = (AiiA22 -- 2AizA66 -- AZz)/(2AliA66), 0~2 2 = A2z/Al l .  

Next we assume that  ~12 > ~22, i.e. we consider the most  general type of orthotropic material  
classified as type I [6]. 

Solution of the system (4) and use of inverse Fourier  transforms lead to the following 
expressions: 

ti ; } ~u 1 ~ O~ 
e--x (x, y) = ~ Z Sj{x, y, t) qj(t) dt + Ej(x, y, t)f~(t) dt + ~x (x, y), 

j = l  
0 

2 ~g 
8v (x, y) -- ~ Lj(x, y, t) qj(t) dt + Rj(x, y, t) fi(t) dt ~ + -~y (x, y), 

~Y J:*( ~-h o 
where 

q2(t) = Q'(t), fz(t) = F'(t). 

The formulas for S j, E j, Lj, Rj and other expressions needed for their calculation are given in the 
Appendix. 

The following values are defined by the external load: 

~t~ 1 2 
- -  - - - -  ~ {FxsjlX~(x, y; 4, ~) - Frejl Yj{x, y; ~, q)}, 
Ox (x, y) = 16h j=l  

~g 1 2 
(x, y) = 16h j~l  {Fflj1Xj(x, y; ~, ~) - Fyrjl Yj(x, y; ~, ~l)}, Oy 

where Xj and Yj are given in the Appendix. 
Extracting in (5) singular components  of the integrands we obtain the following formulas for 

strains and stresses on the strip edges: 

u'(x, 0) = t?,(x) + if(x, 0), (6) 
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,~,(x, o) = e~(x)  + ,~,(x, o), (7) 

r y) = o~(y) + e'(h, y), (8) 

ax(h, y) = s + gx(h, y),  (9) 

where 

fly(X, 0) = A221Y(x, 0) 4- A12~'(x , 0), 

6x(h, y) = A , l f f (h ,  y) + A~2g'(h, y),  

s = ~ iy [B(x, t) + ~Mij(x, t)] qj(t) dt + 2 [Co(x , t) + ~Mi,j+ 2(x, t)] f i t )  dt 
j=l - o 

~Qi+e(Y) = ~ j~=l  [Dij(y, t) 4- ~4Mi+2,j(y, t)] qa{t) at 

+ f [# i+2dG(y ,  t) + ~Mi+2d+2(Y, t)] fj(t) dt i , j  = 1, 2. 

0 

Singular components of the kernels in the expressions (6) - (9)  are the following: 

1 1 1 
B(x, t) . . . .  

2 h - x - t  t - x  2 h + x + t ;  

1 1 
G(y, t) - + - - ;  

t - y  t + y  

[ t t 1 
Gj(x ,  t) = u,j t2 + [(h - x) /k l l  2 + t 2 + [(h + x ) / k d  ~ 

[ t t ] 
4-/zid+2 t 2 4 - [ ( h - x ) / k z ]  2 + t e + [(h + x)/k2] 2 ; 

I h - t  h + t  1 
Dij(Y, t) = 71+2d (h - t )  2 71--(lqy) 2 - (h 4- 02 4- (kly) 2 

h - t  h + t  
+ 7i + 2,j +2 ih _ t~- 2 ~_ ik2y)2 - (h + t~  7k -(k2y)iJ ' 

and the regular ones can be written in the form 

2 2 
+ - - + - ,  O = ~o(t - x) ,  Mij(x,  t) = - c t g  2~ - ~ 2n + Q ~o 

Mhj+ 2(x , t) = # i jk lHl(x ,  t) + #i,j+ 2k2Hz(x, t), 

M/+ 2,j(y, t) = 7 /+2 , jNI (y ,  t) + 7/+ 2,j+ 2N2(y,  t), 

M3,j+ z(Y, 0 = rljI ' l(Y,  t) + r2jI'z(y, t), 

M4,j+2(y , t) = (A l l e l j  + A12rl j ) / ' I (Y,  t) + (Al le2j  + A12r2j )/ '2(Y, t), i , j  = 1, 2 
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where expressions for H~, N~, F~ and values needed for their calculations are given in the 
Appendix. In the last expressions functions Mi.i(x, t)~ H (i, j = 1, 4), and H is the class of H61der 
functions [7]. 

Formulas (6)-(9)  can be called boundary integral relations (BIR) for any orthotropic 
semi-infinite strip. They are very convenient for systems of singular integral equations 
formulation corresponding to prescribed, especially mixed boundary conditions at the strip 
edges. 

3 Solution for fixed end conditions 

To illustrate the correctness of BIR, we consider the problem in question under the previously 
reported boundary conditions [1], [2], [4]: 

v(x,O)=O, u(x,O)=O, [ x l < h ,  (10) 

Crx(+h,y)=O, z~r(_+h, y) = 0, y > O ,  (11.1,2) 

i.e. the end of the strip is fixed and the longitudinal sides are traction free. 
It follows from (10), (11) that q2(x) = O, f1(Y) - O, and from relation u'(x, 0) = 0 and Eq. (11.1) 

we obtain the following system of singular integral equations: 

h 

711 ~ [B(x, t) + xMl l (x ,  t)] qa(t) dt + 2 S [C12(x, t) + ~M14(x, t)lf2(t) dt + 47rtT'(x, 0) = 0, 
-h  0 

x~( - -h ,h ) ,  

h (12) oo 

[D21(y, t) + ~M41(Y, t)] qa(t) dt + ~ [#42G(y, t) + ~M44(y, t)]f2(t) dt + 47rSx(h , y) = 0, 
- h  0 

y~(0, ~). 

The solution of (12) has the form 

ql*(t) f2*(t) 
ql(t) - (h 2 _  t2),, f2(t) = t, , (13.1,2) 

where ql*(t), f2*(t)~H and 0 =< Re(a) < 1. 
Next we consider Eq. (13.1) for x -+ h - 0 and Eq. (13.2) for y -+ + 0  and use the method 

based upon Cauchy type integrals [7]. This yields the following relations: 

71111 + cos (rc~)] 
ql*(h) + (#12k1" + #1r ~) (e T M  --}- e (n/2)~i) f 2 * (0 )  = ~l~ (h - X)~]~-~h-0, 

(2h) = 

741k,-~ + y43k2 -= (e_(3/2)~ + e_(=/2)=i) q**(h) + 2#4211 + cos(ha)] f2*(0) (14) 
(2h) ~ 

= ~2~ Y~Iy~ + o 

where 0~ ~ (i = 1, 2) can have weaker singularities than the functions (13). It follows from (14) that 
the non-zero solution of this system appears if a satisfies the following equation: 

d l [ c o s  (Tr0 0 + 1] - -  d20~ - d3 0 - ~  - d4 = 0, (15) 
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where 

k l  
0 = - - ,  d l  = 711#42, d2 = 743#12, d3 = 741#14, d4 = Y41#12 + 743#14- 

k2 

It is important to note that for any values of A u the solution of (15) coincides with the roots of 
the corresponding equation (47) of [4], which were obtained by using another approach. 

The numerical solution of the system (12) has been found under additional conditions, 

h 

J ay(X, O) dx = Py, 
0 

h 

ql(t)  dt  = O, 
- h  

and for various positions of applied forces. It turned out that for previously reported cases in [2], 
[4] the values of ay(x, 0) and zxr(x, 0) are in good agreement to each other. 

4 Mixed boundary conditions at the strip end 

We consider now the problem shown in Fig. 2, where a rigid stamp of width 2a is acted without 
friction to the strip end. Boundary conditions are the following: 

v'(x, 0) = 0 ,  0) = 0 ,  Ixl < a;  (16) 

ay(x, 0) = 0, zxy(x, 0) = 0, a < [xl < h; (17.1, 2) 

u( +_h, y) = O, v( +_h, y) = O, y > 0 .  (18) 

Taking into account that in this case ql(x) - O, f2(Y) = 0 and q 2 ( x )  = 0 for Ixl < a and using 
relations (6)-(9) we obtain from Eq. (17.1) and v'(h, y) = 0 (y > 0) the following system of 
singular integral equations: 

h 

722 ~ [B(x, t) --  B(x, - t) + x(M22(x,  t) - M22(x, - t))] q2(t) dt 
a 

c 

+ 2 ~ [C21(x, t) + zM23(x, t)] fl(t)  & = O, x ~ (a, h); 
0 

(19) 

/ 
/ 
/ 
/ '  
/ 
/ 
/ 

/ 
-h 

- o  0 Q 
0 0 0  0 0 0  

I / / / / / / / / A  

{2a 

/ 
/ 
/ 
/ 
/ 
/ 
/ 

5 
/ 
/ 
/ 

5 
5 
h Fig. 2. Orthotropic semi-infinite strip under frictionless 

action of a rigid stamp 
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h 
[D12(y, t) - D12(y, --t) + x(M32(Y, t) - M32(Y, - t ) ) ]  q2(t)dt 

a 

-[- f [P31G(y, t) + zM33(Y, t)] f~ (t) dt = O, y ~ (0, c). 
0 

(19) 

In the last relations, due to St. Venant's principle, we use c >> h instead of ~ .  
The solution of the system (19) we present in the form 

q2*(t) fl*(t) 
= , , q2*(t), f~*( t )~H.  (20) 

q2(t) / t  - a (h - t) ~ fl(t) - t ~ / c  - t 

The power of singularity a in this case has the same value as in (13). 
The additional conditions for the system (19) yield the equations of equilibrium and can be 

written in the form 

i a k ( t )  at = - Q,  ~ at(x, o) dx = - Q. (21) 
0 0 

For  the numerical solution of the system (19), (21), a numerical method based upon the 
Gauss-Jacobi  integration formula [8] 

I 
f ( z )  w(z) dr = ~ Akf(zk) (22) 

--1 k = l  

was used. In this formula w(~) = (1 - z)-~ (1 + z)-P; Ak are weight coefficients; zk are the zeros of 
Jacobi polynomials P,(-"-P)(z) .  To apply formula (22) to the singular integral evaluations we 
used the zeros z~ (m = 1, 2 . . . . .  n - 1) of the second kind Jacobi functions [9] 

1 
I PN (- ~'- P)(z) w(z) d'c 

QN (- ~'- P)(z) = - 3 z -----z 
-1 

as the points of collocations. Application of this method to the system (19), (21) yields the 
following algebraic equations: 

(2722 ~ Alk[B(xlm, tlk) -- B(xlm, --tlk) + ~(M22(Xlm, tlk) -- M22(Xlm, --tlk))] q2*(tlk) 
k=l 

+ 2z ~ A2k[C~(x,,., t2~) + ~M23(x~,., t20] ft*(t2k) = 0 
k = l  

~2 i A,k[D12(X2m, t,k) -- Dlz(x2m, --tlk) + n(M32(X2m, tlk) -- M32(X2m, --t , ,))] q2*(tlk) 
k = l  

+ Z ~ A2k[II31G(X2m, t2 , )  q- zM33(X2m, t2k)] fl*(t2k) = 0 
k = l  

where 

ttk = ~1 + ~2Zlk, tzk = Z( 1 + "rZt~), 

h + a  h - a  c 
~ -  2 ' ~2= 2 ' z -~. 

x2~ = Z(1 + z2~), 
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~0 

0,2 ~ 0,6 q8 X 

Fig. 3. Normal stresses under rigid stamp acting 
to the semi-infinite strip 
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Fig. 4. Delamination of rigid stamp from semi- 
infinite strip 

The solid line in Fig. 3 shows the variation of the normal  stress acting under the s tamp for nearly 
isotropic material with v = 0.3 and various relative stamp widths a/h. Dashed lines relate to the 
exact solution for a semi-infinite plane [10]. It  is clear from Fig. 3 that for relatively small s tamp 
widths these results almost coincide, but for stamp widths nearly equal to strip widths their 
differences are essential. 

Next we consider the bonded rigid stamp pull off the end of the strip (Fig. 4). To avoid the 
oscillating singularity we introduce two ffictionless contact zones [ - b ,  - a ]  and [a, b] at the 
stamp corners. In this case the boundary  conditions are the following: 

u(x, O) = O, v(x, O) = O, Ix[ < a; (23) 

v(x, O) = O, zxy(x, O) -- O, a < Ix] < b ; (24) 

zxr(x, O) = O, %(x, O) = O, b < Ix[ < h; (25) 

a:,(_+ h, y) = O, "cxy(_+ h, y) = O, y > O. (26) 

It follows from the last equations that  ql(x) = 0 for [xl > a, q2(x) = 0 for Ix[ < b and fz(Y) -- 0. By 
means of the remaining boundary  conditions satisfaction we arrive at the following system of 
singular integral equations (similarly to (19) we use here c > h instead of oo): 

h 

711 i [B(x, t) + xMll (x ,  t)] ql(t) dt + 712 ~ [B(x, t) -- B(x, - t )  + x(M12(x, t) -- Mla(x, - t ) ) ]  
--a b 

xq2(t) dt + 2 i [Cl l (x , t )  + zM13(x , t ) ] f t ( t )d t=O,  x e ( - a , a ) ;  
0 

h 
72a i [B(x, t) + ~M21(x, t)] ql(t)dt + 722~ [B(x, t) - B(x, --t) + ~(M22(x, t) -- M22(x, --t))] 

- , ,  b ( 2 7 )  
c 

x q2(t) dt + 2 ~ [C21(x, t) + zMz3(x, t)] fl(t) dt = O, x e (b, h); 
0 

h 

f [ D l l ( y ,  t) + ~ M 3 1 ( y  , t)] q l ( t )  dt  -I- ~ [ D 1 2 ( y ,  0 - D t 2 ( y ,  --t) + z(Ma2(y, t) - -  M 3 2 ( Y  , - 0 ) ]  
- a  b 

x q2(t) dt + i [#31G(y, t) -}- ~4M33(y, 0] fl(t) & = 0, ye(0,  c). 
0 
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Table 1. Stress intensity factors for interface crack between 
and semi-infinite strip 

rigid stamp 

a/hr 2 I(1 Kz I( 

0,2 10- 2 0,483 0,594 0,812 
10- 3 0,276 0,759 0,823 
10-4 0,180 0,802 0,828 

0,5 10- 2 0279 0,421 0,526 
10 -9 0,132 0,492 0,513 
10 -4 0,065 0,498 0,510 

0,7 10- 2 0,235 0,382 0,462 
10- 3 0,085 0,440 0,450 
10-* 0,016 0,443 0,449 

Unknown functions we present in the form 

ql*(t) q2*(t) fl*(t) 
ql(t) q2(t) , fl(t) - , ql*(t), q2*(t), f l*(t)6H 

~ '  V t - b  ( h - t )  ~ t ~ ] / c - t  
(28) 

and ~ is the same as earlier. Additional conditions are the following: 

i a i ft(t) dt = Q, ~ at(x, 0) dx = Q, q~(t) dt = 0. (29) 
o o -a 

Next we introduce the following stress intensity factors at the points a and b: 

Ks = lim ] / - ~ -  x)ay(x, 0) K 2  = l im 1 / ~ -  x)z~r(x, 0). 
x ~ b - O  x a - O  

(30) 

It  follows from (28) and (7) that 

[//2 y22qz*(b) K2 - ql*(a) 
K1 = 4(h - b) ~ ' 

A numerical solution of the system (27), (29) was obtained by the method outlined above. The 

values o f / s  = K1/(2Q ]//h), Is = K2/(2Q ]//-h) and 

_ _  4 (1  - v) z 
l / ~ K 1 2  + K2 2, co : 

/s = 2Q ]fh 3 - 4v 

for various a/h and 2 = ( b -  a)/(2b) are given in the Table. A nearly isotropic material  
with v = 0.02 has been used. It  can be easily seen from the results that in spite of 
/s and /(2 essentially depending on 2, parameter  /~ similarly to infinite domains [11] 
is quasi-invariant with respect to 2. 

5 C o n c l u s i o n s  

The method of orthotropic semi-infinite strip investigation under arbitrary boundary  conditions 
is described. It  is based upon boundary  integral relations of special type. Good  agreement with 
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previously reported results was found for a part icular  case of b o u n d a r y  condit ions and  external 

load. New results corresponding to the interaction of strip end with a rigid s tamp have been 

obta ined by approximate  solution of the b o u n d a r y  integral equations.  

A p p e n d i x  

sh( ogk ff ) ~.2 ooklt 
Hi(x ,  t) 2 

ch(a~klt) + cos (~ox) - Z~= [~kit]2 + [n + ( -  1)" ~x] 2 

Ni(y, t) = sin (cot) 2 n + ( -  1)" cot 
cos (cot) + ch (mk,y) + 2 y,  ( -  1)" [n + ( -  1)" mt] 2 + [~ok~y] 2 ; 

n = ] .  

~ I  s h [ c ~  2 1 1 .  
Ci(y, t) = .= t  ch[o~ki(t + ( -  1)" y)] - 1 - mk~[t + ( -  1)" y ' 

2 2 

Sj(x, y, t) = y,  sijZi(x, y, t), Es(x, y, t) = ~ ei~T,(x, y, t), 
i = l  i = 1  

2 2 
Lj(x, y, t) = ~ lljZi(x, y, t), Rj(x, y, t) = ~. ri~T~(x, y, t), 

i=l  i = 1  

sin [co(t - x)] 
Zi(x, y, t) = 

cos [co(t - x)] - ch(~okiy)' 

2 sh[coki(t + ( -  l)" y)] 
ri(x, y, t )  

y -  

o ~  ch[~ok,(t + ( -  1)"y)] + cos(o,x)' 

4 sin [m(~ + c,x)] 
X j(x, Y ;~, 7) 

V' 

,_2" 1 cos [0)(4 + c,x)] - ch[ookj(~ + ( -  1)" y)] '  

4 sh[eokj(tl + c.y)] 
~(x. Y ;~, ~/) 

.~=~ ch[e)kj(rl + c.y)] - cos [co(~ + ( -  1)" x)] '  

71i = sli + s21, 721 = A12(sll + s21) + A22(l,i +/2~), 73i = Ill, 73,/+2 = 121, 

~41 = A l l s l i  + A121li, 7<~+2 = Alls21 + A12121, I~11 = e l j k l ,  ~1,1+2 = e2i/k2, 

#2i = (Ax2eli + A22rli) /kl ,  #2,i+2 = (A12e2i + Az2r2i)/k2, #3i = rti /kl  + r2jk2,  

#4i = (Al le l i  + A12rti)/kl + (Al~e2i + A~2r2i)/k2, sir = a22mij, eij = m/+ad+2, 

= = = 1) i g ~ j + ,  lij k l m s - i , j +  2, rij k i m 3 - i , j ,  mi j  g j j  q- ( - -  , g l t  = [ ( A 1 1 ~ 2 2 )  - 1  + A6ff ]/e4, 

g 1 2  = [ ( A l l g 2 2 )  - t  - -  A6~1/~ gi2[A12/ (At lo~22)  - -  1 ] / ~ 4 ,  g33 = 0 ,  

g3~ = --(A~2 + A66)/(o~4~sAllA66), g44 = - -2 ,  g45 = ( A l i A 2 2  - -  A22)/(2c~acxsAt*A66), 

k l  = (~4  ~- ~5) /0~22,  k 2  ~--- (0{4 - -  0~5)/0~22, C 1 ~--- C 2 = 1 ,  

c a = c ~ = - l ,  z = c ~ / 2 ,  j = l ,  2. 
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