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Summary. A numerical analysis has been performed to investigate turbulent compressible flow over 
a hemisphere-cylinder body at zero incidence in the Mach number range of 0.8-2.0. The numerical code 
solves the Navier-Stokes equations using finite volume technique in conjunction with multistage 
Runge-Kutta time-stepping method. Comparisons have been made with the available experimental data 
such as shadowgraph pictures, shock stand-off distance, shock position and surface pressure distribution. 
They axe found in good agreement. A separated flow on the hemisphere-cylinder junction is noticed between 
Math numbers 0.8 and 0.9. It is observed from the velocity vector plots that the flow appears to become 
parallel to the body in the vicinity of the stagnation point of the hemisphere at supersonic Mach number. 
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1 Introduction 

The design process for aerospace application has been improved significantly by the use of 
computational fluid dynamics. Numerical solutions of the Navier-Stokes equations have been 
used to obtain a better understanding of the qualitative and quantitative physical phenomena in 
steady viscous flows. The application of a hemisphere-cylinder is one of the basic nose 
configurations for blunt nose bodies of revolution. A detailed analysis of the phenomena of 
viscous flow will reveal the physical features of transonic and supersonic flow over nose-bodies in 
general. 

Hsieh [1] has conducted wind-tunnel tests of a hemisphere-cylinder model at zero incidence 
and Mach number range of 0.7-1.3 in order to investigate viscous-inviscid interaction of flow 
field. Hsieh [2] has solved the full potential equation to analyse experimental data and found that 
the inviscid analysis is unable to predict the external flow field satisfactorily. This is due to the fact 
that the shock wave-boundary layer interaction causes a separated flow between Mach number 
0.8-0.9 on the junction of hemisphere-cylinder. 

In the present paper, the Reynolds-averaged turbulent compressible Navier-Stokes equa- 
tions are solved using finite volume discretization in conjunction with multistage Runge-Kutta 
time-marching method. Turbulence closure is achieved using an algebraic turbulence model. The 
numerical results of the present analysis are compared with the available experimental data. An 
interesting flow field phenomenon is observed in the vicinity of the stagnation point of the 
hemisphere and is discussed. 

2 Numerical analysis 

2.1 Govern ing  equat ions  

The time-dependent axisymmetric Reynolds-averaged Navier-Stokes equations can be written 

in integral form as 

f ; W d V  + Q . n d S  + H d V = O  (1) 

v S V 

where W = r[Q, Qu, ~v, ~e] r, Q = (F. i  + G.j~, His  a source term, and S surrounds the volume V. 

The vectors F, G, and H are given by 

F = r[Qu, ~u z + p - axx, ~uv - ~xr, (~e + p - axx) u - vaxr + qx] T (2.1) 

G : -  r[Ql), o~ul) - -  a x r  , o~13 2 + t3 - -  (Trr , (o~e + p - ar~) v - Uax~ + q~]r (2.2) 

H = [0, O, - p  + aoo, 0] r (2.3) 

where axx, axr, a,~, aoo are components of the stress vectors, while qx and qr are components of heat 
flux vectors. Reynolds stresses and turbulent heat fluxes in the mean flow equations are modeled 
by introducing an isotropic eddy viscosity #t and turbulent Prandtl number Prt. Thus, the viscous 
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terms in Eqs. (2) can be written as 

o-~ = (# + #t) Ox 3 ~r + 

I ~u 3v I 

a . = ( ~ + ~ )  0r 3 \ ~ x  ; ) d  

a ~ 1 7 6  + #t) E 4 v r 2 t/~qu 3 ~ + ~ ) J  e&-I 

+ 
q•= - - C ,  Prr Pr,J ~-x 

q,, = - C r ~rr + ~r " 

The temperature is obtained from the equation of state, 

p = (~ - 1) eT, (3) 

and 

p 1 
0e = (~ _ 1) + 2- e(u2 + v2)" (4) 

For the turbulent flow situation, the closure of the system of equations is achieved by introducing 
the turbulence model of Baldwin-Lomax [3]. 

2.2 Numerical algorithm 

The code uses the finite-volume discretization procedure. The computational domain is divided 
into a number of quadrilateral cells. Flow variables are stored at cell centres, and the flux 
balancing reduces to a contour integral around the perimeter of each cell. This essentially gives 
a conservative central differencing scheme that is second-order accurate on smoothly varying 
grids. First derivatives are required at the centre of the cell sides to evaluate the stress and heat 
flux terms. 

Artificial dissipation is added to Eq. (1) to eliminate undamped modes and to capture 
shocks without pre-shock oscillations. Following Jamesons et al. [4], a combination of second 
and fourth differences is employed, with the second difference being controlled by a pressure 
sensor. 

Temporal integration is performed by the three-stage method of Jamesons et al. [4] based on 
the Runge-Kutta scheme. The numerical scheme is stable for a Courant number < 2. Local time 
steps are used to accelerate convergence to a steady state solution by advancing the time step at 
each grid point with the maximum permissible able time step allowed by the local CFL 
condition. 
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2.3 Boundary conditions 

Four types of boundary conditions are required for the computation of the flow field, i.e., inflow, 
wall, outflow and symmetric conditions. They are described as follows: 

At the inflow, all flow variables are prescribed at fi'ee stream conditions. On the impermeable 
wall, the no-slip condition for the velocity is taken as 

uw = vw = 0 (5) 

together with the adiabatic wall condition. 
For the subsonic flow, non-reflecting far field boundary conditions are applied at the outer 

boundary of the computational domain. For supersonic case, all the flow variables are 
extrapolated at the outflow from the vector of conserved variables W as 

W, xj = W , x - l , j -  W,x-2,; (6.1) 

W i , . r  = W i , . r -  1 - -  W i , . r -  2 ( 6 . 2 )  

where the subscripts nx and nr represent the last grid points on the boundaries. 
For the symmetric condition, the centre-line requires the following conditions: 

~v = 0 (7.1) 

c~u OT c3p 
- - 0 .  ( 7 . 2 )  

~ r -  Or 0r 

2.4 Computational grid 

The physical space is discretized into a number of nonuniformly spaced grid points. The body 
oriented grids are generated by a homotopy scheme [5]. The hemisphere-cylinder space is defined 
by a number of grid points in cylindrical polar coordinates. Using these surface points as 
reference mesh points, the normal coordinates are then obtained by exponentially stretched grid 
points extending outwards upto an outer boundary. 

Fig. 1. Enlarged view of grid 
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The grid independent test cases are carried out taking into consideration the effect of the 
computational domain, stretching factor to control the grid intensity near the wall, number of 
grid points in the axial and normal directions. The dimension of the hemisphere-cylinder model 
[1] is taken as 2.54 x 10-2m diameter and 25.4 x 10-2m length. The outer boundary of the 
computational domain is varied from 5 to 12 times the cylinder diameter. The blockage ratio is 
found in the range of 4 to 0.7%, which is defined as the ratio of cross-sectional area of the model 
to the computational domain. The stretching factor is varied from 1.5 to 5. 

The computation used 120 x 52 grid points in the axial and radial directions, respectively. 
The stretching factor is selected 4.5, and the computational domain is kept 12 times the cylinder 
diameter. This grid arrangement is found to yield a grid independent result. Figure 1 depicts 
a close-up view of the grid employed in the numerical simulation. 

3 Results and discussion 

The numerical procedure described in the previous Section is applied here to compute the flow 
field over a hemisphere-cylinder. Figure 2 depicts the velocity field on the hemisphere-cylinder at 
free stream Mach number of 0.8 and 0.9. A separation bubble can be seen on the junction of 

- c c _ ~ ;  

M =0.80 

N =0,90 Fig. 2. Vector plots over hemisphere-cylinder 
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Fig. 3. Flow past hemisphere- 
cylinder 

hemisphere-cylinder. The point of separation and reattachment is indicated in the figure using 
the symbols S and R, respectively. The formation of the separation bubble due to normal shock 
wave-turbulent boundary layer interaction on a curved wall is also observed experimentally by 
Doerffer and Zierep [6]. The application of the Zierep theory on the shock wave-turbulent 
boundary layer interaction at transonic Mach number is discussed in detail in [7]. Thus, the 
formation of the separated bubble may be attributed to the shock wave-turbulent boundary layer 
interaction. 

Figure 3 shows the comparison between the density contour plots with the shadowgraph 
pictures [1] for the Mach number range of 0.9 - 2.0. It can be visualized from the density contours 
plots that all the essential flow field features of the transonic Mach number such as normal shock 
and supersonic pocket, and for the supersonic Mach number such as bow shock and system of 
the oblique shock are very well captured and also compare fairly well with the shadowgraph 
pictures. 

The bow shock standoff distance is calculated employing the following asymptotic formula of 
Frank and Zierep [8]: 

A 2(b) 2/3 
= 

L(~ + I) M~ ]  

- 1 ( 8 )  
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where the value of b is taken as 0.14 [8]. The bow shock stand-off distance A/R is depicted in 
Fig. 4. It can be seen from the figure that the comparison of the present numerical result is in 
agreement with the experimental data [1], [9], asymptotic formula of Frank and Zierep [8] and 
with the theoretical results of Van Dyke and Gordon [10]. 

The comparison between numerically computed shock position with the experimental data 
[1], [11] is depicted in Fig. 5. The agreement between them is satisfactorily. Figure 6 displays an 
enlarged view of the computed velocity field at supersonic mach number range of 1 . 4 -  2.0. It can 
be easily seen that the bow shock moves close to the body with increasing Mach number which is 
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Fig. 6. Computed velocity field and shock posi- 
tion 
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Fig. 7. Schematic sketch of the flow 

also coinciding with the shock position as depicted in Fig. 5. It appears from the velocity field 
that the flow becomes parallel to the body after crossing a line which is perpendicular to 
the model axis. This line is m the vicinity of the stagnation point of the hemisphere. 
A schematic sketch of the flow pattern is delineated in Fig. 7 which is constructed based on 
this observation. 

The surface pressure coefficient Cp along the nondimensionalised length x/R of the model is 
depicted in Fig. 8. In the figures, comparisons are made with the experimental data [1], [12]. 
A disagreement between numerical and experimental results is found near the hemisphere- 
cylinder junction at Moo = 0 . 8 -  1.0 as can be seen in Fig. 8a. This discrepancy may be 
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Fig. 8. a Variation of pressure coefficient along the body. b Variation of pressure coefficient along the body 

attributed to a recompression shock following an over expansion zone, and the final local flow 
resembles a supersonic flow over a compression corner. A satisfactory agreement is observed for 
all other cases. 

4 Conc lus ions  

Viscous flow over the hemisphere-cylinder body has been numerically simulated. All the essential 
flow field features of the transonic and supersonic Mach number are very well captured and 
compare satisfactorily with the available shadowgraph pictures. A separation bubble is found to 
exist on the hemisphere-cylinder in the mach number range of 0.8 -0.9.  Comparisons have been 
made with shock stand-off distance, shock position and pressure distribution and are found in 
good agreement with the available data. It is observed from the velocity vector plots that the flow 
appears to become parallel to the model after passing through a line which is perpendicular to the 
axis and very close to the stagnation point. 
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