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Summary. The flow of a viscous ferrofluid over a stretching sheet in the presence of a magnetic dipole is 
considered. The fluid momentum and thermal energy equations are formulated as a five-parameter problem, 
and the influence of the magneto-thermomechanical coupling is explored numerically. It is concluded that 
the primary effect of the magnetic field is to decelerate the fluid motion as compared to the hydrodynamic 
case, thereby increasing the skin friction and reducing the heat transfer rate at the sheet. 
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distance 
constant 
specific heat at constant pressure 
wall friction coefficient 
2.71828 ... 
dimensionless stream function 
magnetic field 
thermal conductivity 
constant 
magnetization 
local Nusselt number 
pressure 
dimensionless pressure 
Prandtl number, #cv/k 
local Reynolds number, Ocx2/# 
temperature 
velocity component along the sheet 
velocity component normal to the sheet 
coordinate along the sheet 
coordinate normal to the sheet 
dimensionless distance 
ferrohydrodynamic interaction parameter 
constant 
dimensionless Curie temperature 
dimensionless coordinate 
dimensionless temperature 
viscous dissipation parameter 
dynamic viscosity 
permeability 
dimensionless coordinate 
density 
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shear stress 
magnetic potential 
stream function 

1 Introduction 

Ferrofluids are artificially synthesized and consist of highly concentrated colloid suspensions of 
fine magnetic particles in a non-conducting carrier fluid. The resulting fluid behaves like 
a normal fluid except that it experiences a force due to the magnetization. A particularly 
attractive feature of the ferrofluids is the dependence of the magnetization upon the temperature, 
and this thermomagnetic coupling makes ferrofluids useful in various practical applications, see 
e.g. [1] -- [4]. 

On the basis of electromagnetic theory, Neuringer and Rosensweig [1] demonstrated that the 
magnetic force per unit volume #o(M' V) H becomes #o M V H  if the following assumptions are 
made: (i) the direction of the magnetization M of a fluid element is always in the direction of the 
local magnetic field H, (ii) the fluid is electrically non-conducting and (iii) the displacement 
current is negligible. Thus, unlike magnetohydrodynamics, ferrohydrodynamics require the 
existence of a spatially varying field. The further assumption of a linear ferromagnetic equation of 
state enabled Neuringer [5] to treat the ferromagnetic extension of two classical problems in fluid 
mechanics, namely the Blasius boundary layer flow along a flat plate and the stagnation point 
flow. 

The objective of the present study is to consider the ferrohydromagnetic analogue to another 
fundamental flow problem: the flow of a viscous fluid past a linearly stretching surface in 
otherwise quiescent surroundings. This problem was first considered by Crane [6] for 
a Newtonian fluid and subsequently extended to fluids obeying non-Newtonian constitutive 
equations like viscoelastic [7], micropolar [8] and inelastic power-law [9] fluids. Some of these 
cases were later extended to include the effect of a uniform transverse magnetic field on the 
motion of an electrically conducting fluid driven by the stretching sheet [10]-[12]. 

In this paper the influence of the magnetic field due to a magnetic dipole on the shear-driven 
motion of a viscous and non-conducting ferrofluid shall be explored. The focus of attention shall 
be on the magneto-thermomechanical interaction and its effect on skin friction and heat transfer 
at the stretching sheet. 

2 Formulation of the problem 

Let us consider the steady two-dimensional flow past a flat and impermeable elastic sheet shown 
schematically in Fig. 1. By applying two equal and opposite forces along the x-axis, the sheet is 
being stretched with a speed proportional to the distance from the fixed origin x = 0. The 
resulting motion of the otherwise quiescent fluid is thus caused solely by the moving sheet. The 
incompressible, viscous and electrically non-conducting ferrofluid is confined to the half space 
y > 0 above the sheet, whereas a magnetic dipole is located some distance below the sheet. The 
dipole, whose center lies on the y-axis a distance a below the x-axis and whose magnetic field 
points in the positive x-direction, gives rise to a magnetic field of sufficient strength to saturate the 
ferrofluid. The stretching sheet is kept at a fixed temperature T,, below the Curie temperature T~, 
while the fluid elements far away from the sheet are assumed to be at temperature T = T~ and, 
hence, incapable of being magnetized until they begin to cool upon entering the thermal 
boundary layer adjacent to the sheet. 
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Fig. 1. Schematic representation of flow configuration. The broken lines represent the magnetic field 
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2.1 Ferrohydrodynamic and thermal energy equations 

For the steady two-dimensional problem the equations governing mass conservation, fluid 
momentum and thermal energy are 

= 0 (1) 

"U~ + v Uy = - ? ~  + ~oM ~ -  + # \ax2 + ~yV (2) 

U ~x + v yy  = - y y  + poM + It \Ox2 + @2] (3) 

Qcp u-~-~x + ~y ] + # o V ~  U -~x + V ~-~y 

=k\ox 2 +7~-y2j+# 2\8x/ +2\8y] + ~xx + 8y] J (4) 

where u and v are the components of the velocity vector v = [u, v, 0], p denotes the pressure field, 
and the constant fluid properties 5, It, Ito, cp and k are defined in the Nomenclature. Here, the 
second terms on the right-hand side of the ferrohydromagnetic momentum equations (2) and (3) 
represent the magnetic body force per unit volume t~oMVH, and the second term on the left-hand 
side of the thermal energy equation (4) accounts for heating due to adiabatic magnetization. The 
relevant boundary conditions at the sheet y = 0 are those of no-slip and prescribed temperature, 

u = cx, v = O, r = Tw, (5) 

whereas the boundary conditions infinitely far away from the sheet, i.e. as y ~ o% are 

1 
u = O, r = To, p + ~ ~ (u z + v 2) = constant (6) 

where the latter requirement stems from the application of the Bernoulli equation outside the 
region affected by viscosity. 
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2.2 The magnetic f ie ld 

The flow of the ferrofluid is affected by the magnetic field due to the magnetic dipole (cf. Fig. 1), 
whose magnetic scalar potential is given by 

x 
~b - 2n x 2 + (y + a) 2' (7) 

and the corresponding magnetic field H has the components 

30 7 x g - - ( Y  + a) z 
Hx - 0x - 2n [x 2 + (y + a)Z] 2 (8) 

Od? y 2x(y  + a) 
Hr - Oy - 2n [x 2 + (y + a)2] 2' (9) 

Since the magnetic body force is proportional to the gradient of the magnitude of H, cf. Eqs. (2), 
(3), we obtain from H = [(&b/Ox) 2 + (c3~/0y)2] ~/2 that 

OH ;) 2x 
~?x 2n (y + a) 4 

(10) 

0H ~ [  2 4x 2 ] (11) 
~y - 27z (y + a) 3 + (y + a) ~ 

after having expanded in powers of x and retained terms up to order x 2. 
Assuming that the applied field H is sufficiently strong to saturate the ferrofluid and the 

variation of magnetization M with temperature can be approximated by a linear equation of 
state, 

M = K(Tc - T),  (12) 

the magneto-thermomechanical coupling is completely described. It is readily seen, however, 
that the manifestation of the ferrohydrodynamic interaction requires: (i) that the fluid is at 
a temperature T different from the Curie temperature T~ and (ii) the applied magnetic field is 
inhomogeneous. 

3 S o l u t i o n  p r o c e d u r e  

Let us now introduce the nondimensional variables 

~p(r r/)= ( ~ ) ~  .f(r/) (13) 

P(~, r/) = p - Pl(r/) - ~2P2ff/) (14) 
c,u 

r c  m T 
0 ( ~ ,  n )  - - -  - 0 1 ( . )  + ~ 2 0 2 ( ~ )  ( 1 5 )  

T c -  Tw 
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and the dimensionless coordinates 

= (co~#) 1/2 y 

= (c~/#)  ~/2 x .  
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(16) 

(17) 

The velocity components u and v are related to the physical stream function ~ according to 

u = a~p/Oy = c x  "f'(~l) (18) 

v = - OW/Ox = - (c#/Q) i/2 "f(tl) (19) 

where the prime signifies differentiation with respect to t/. The mass conservation equation (1) is 
thus automatically satisfied, whereas the moment equations (2) and (3) and the thermal energy 
equation (4) transform into a set of ordinary differential equations (ODEs) 

2fl0i 
f , , ,  + f f , ,  _ (f,)2 + 2P2 ( t /+  c04 - 0 (20) 

2fl0i 
P l ' - - f " - - f f '  ( t /+  a) 3 - 0 (21) 

2fl02 4flO1 - 0 
P z '  (q + a)3 + ( t /+  a)s - (22) 

22fl(0i - ~) f 
0~" + P r  fO~ '  -f (tl + a) 3 + 202 - 42(f') 2 = 0 (23) 

2 2 f l f 0 2  2 f l ( 0 1 - e ) [  2f'_ + ( t / 4 f  ] 02" - Pr(2f'02 - f O 2 ' )  + (~ + ~)~ L(q + a)4 ~ - 2(f")  2 = 0 (24) 

where we have equated coefficients of equal powers of ~ up to 42. The boundary conditions (5) 
and (6) become 

f = 0 ,  f ' = l ,  0 1 = 1 ,  0 2 = 0 ,  at t / = 0  (25) 

f ' ~ 0 ,  0 1 ~ 0 ,  0 2 ~ 0 ,  P 1 - - r - P o ~ ,  P 2 ~ 0  as q ~  (26) 

at the stretching sheet and at infinity, respectively. 
The five dimensionless parameters, which appear explicitly in the transformed problem, are 

the Prandtl number Pr, the viscous dissipation parameter 2, the dimensionless Curie temperature 
a, the ferrohydrodynamic interaction parameter fl, and the dimensionless distance a from the 
origin to the center of the magnetic dipole, defined respectively as 

Pr = # c p / k  (27) 

2 = c#2/Qk(Tc  - rw)  (28) 

= T c / ( T c -  Tw) (29) 

fl = (7/2~) # o K ( T o  - Tw) Q/#2 (30) 

= (cQ/#) 1/2 a.  (31) 
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Here, the product of 2 and the local Reynolds number Rex = ~CX2/]2 can be recognized as the 

Brinkman number (i.e. the product of the Prandtl and Eckert numbers). Thus, 2 is a measure of 
the relative importance of the viscous dissipation. 

The five coupled differential equations (20) -  (24) subject to the boundary conditions (25), (26) 

constitute a non-linear two-point boundary-value problem, which can be solved by means of 
a standard shooting method. The higher-order ODEs are formulated as first-order equations, 

and the resulting set of nine first-order equations can be integrated as an initial value problem 

using a fourth-order Runge-Kutta scheme. Since P1 appears only in (20), this equation was not 

solved in the present study. Trial values off"(0), 01'(0), 02'(0) and P2(0) were adjusted iteratively 

by Newton's method to assure a quadratic convergence of the iterations required in order to fulfil 
the outer boundary conditions (26). 

4 Results and discussion 

It is interesting to notice that when the ferrohydromagnetic interaction parameter fi = 0, 

Pz becomes a constant equal to its value zero at infinity. The flow problem is thereby decoupled 

from the thermal energy problem, and the streamwise momentum equation (20) reduces to the 
hydrodynamic case, for which Crane [6] deduced the analytical solution 

f(r/) = 1 - exp ( - t / ) .  (32) 

Since Crane's analysis was based on conventional boundary layer theory, it was implicitly 
assumed that the pressure is constant across the boundary layer. Within the present framework, 

i.e. the Navier-Stokes equations, the pressure distribution can readily be obtained from the 

momentum balance (21) normal to the sheet as 

1 
Pl(t/) = ~ exp (-2r/)  - Poo. (33) 

Since P2 = 0 in this particular case, the explicit solution (33) shows that the pressure 

P increases monotonically with the distance 11 from the sheet. Furthermore, if viscous energy 

dissipation can be neglected so that 2 = 0, Eq. (24) gives the trivial solution 02 = 0 and 
Eq. (23) reduces to the more familiar 01" + Prf01' = 0, for which Crane [6] found the explicit 

solution 

01(t/) = {1 - exp [--exp(--t/)]} e/(e - 1) (34) 

for the particular parameter value Pr = 1. 
In the general case f l r  0 the five-parameter problem defined in Eqs. (20)-(24) was solved 

numerically for interaction parameters fl in the range from 0 to 5 and Prandtl number Pr = 1 and 
Pr = 7. The three remaining parameters were fixed as 2 -- 0.01, e = 2.0 and e = 1.0, i.e. in 

accordance with the parameter values adopted by Neuringer [5] for the stagnation point flow. As 
pointed out in [5], 2 = 0.01 corresponds to a situation in which the source terms due to viscous 
dissipation in the energy equations (23) and (24) are of marginal importance compared to the 

conduction and convection terms. 
In order to give an impression of the effect of the magneto-thermomechanical interaction, 

some characteristic profiles for velocityf'(q), pressure P2(r/), and temperature 01(t/) are presented 
in Figs. 2 - 4 ,  respectively. The numerical results for fl = 0 are also compared with the exact 
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Fig. 2. Dimensionless velocity profiles for Pr = 7.0. Solid and 
broken lines represent fl = 0 and fl = 5, respectively. The sym- 
bols denote the exact analytical solution due to Crane [6] 
Fig. 3. Dimensionless pressure profiles for Pr = 7.0. The sym- 
bols denote the exact solution P2 = 0 for fl = 0. Broken and 
dotted lines represent fl = 1 and fl = 5, respectively 
Fig. 4. Dimensionless temperature profiles for Pr = 7.0. The 
symbols denote the results for fl = 0 and the broken and dotted 
lines represent fl = 1 and fl = 5, respectively 

analyt ical  solutionf ' ( t / )  = exp ( -  r/) in Fig. 2 and P2(t/) = 0 in Fig. 3 to demonstra te  the accuracy 

of the numerical  integration. The ferrohydromagnet ic  interaction tends to r e d u c e f '  and increase 

01 and P2 in the vicinity of the stretching sheet, thereby implying a reduction not  only in the 

velocity component  u along the sheet but  also in the pressure p and the temperature  T. 

The var ia t ion of some impor tan t  flow and heat  transfer characteristics with fl is shown in 

Figs. 5 - 7  for Pr  = 1 and Pr  = 7. Here, the local skin friction coefficient Cy, which is 

a dimensionless form of the shear stress z at the sheet, is defined as 

- 2 z w  1/2 (35) 
Cy - O(cx)2 = - 2 f  "(0) Rex-  

whereas the local heat  transfer rate is expressed in dimensionless form as the local Nusselt  

number  

x ~T = - - [01 ' (0 )  -~- ~202/(0)]-  Re,, lie (36) Nux=-Tc-T+ ~ y = o  

where 0'(0) is the dimensionless temperature  gradient  evaluated at the sheet. It is readily observed 

that, for a given Prandt l  number,  the skin friction - f " ( 0 )  and the wall pressure P2(0) both  
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Fig. 5. Wall shear stress for Pr = 1.0 (---) and Pr = 7.0 
(--) 
Fig. 6. Wall pressure for Pr = 1.0 (---) and Pr = 7.0 (--) 
Fig. 7. Heat transfer rate at the sheet for Pr = 1.0 (---) 
a n d P r = 7 . 0 (  ) 

increase approximately linearly with fl, whereas the heat transfer rate -01'(0)  decreases linearly 
with increasing ferromagnetic interaction. Since for the small parameter value 2 = 0.01 
considered here, 02 is typically small compared to 0t, and the dominance of the last term in 
Eq. (22) makes P2' < 0 and thus P2(0) > 0, cf. Fig. 3. The effect of  increasing the Prandtl number 
is to reduce the thickness of  the thermal boundary layer, across which the temperature adjusts 
from Tc to Tw, thereby reducing the effect of the last term in Eq. (22). This explains why the 
influence of the ferromagnetic interaction is reduced at the higher Prandtl number in Fig. 6. 

The flow field is affected by fi through the two last terms in Eq. (20), which are responsible for 
any departure from the analytical solution (32) for fl = 0. Of these two terms the last one due to 
the magnetic body force is the greatest and tends to reduce the velocity componentsf ' ( f l )  andf(tl), 
cf. Fig. 2, thereby increasing the wall friction - f" (0 ) ,  as shown in Fig. 5. As the Prandtl number is 
increased from 1 to 7, however,  the reduced effect of the magnetic body force is more than 
outweighed by the reduction in the pressure term Pz. The net effect of increasing Pr is therefore to 
enhance the influence of fi on the wall friction, as observed from Fig. 5. 

The thermal energy budget (23) is essentially a balance between diffusion of thermal energy 
towards the stretching sheet (01") and convective transport - P r f 0 1 '  away from the sheet, while 
the other terms are relatively small for the present set of parameter values. The ferromagnetic 
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interaction has thus essentially an indirect effect on the heat transfer through its influence on the 

velocity field. The reduction inf(r/) for increasing/~-values tends to reduce the convective heat 
transport and consequently also the heat transfer rate at the sheet, cf. Fig. 7. However, the greater 

reduction in f a t  higher Pr  is more than compensated by the proportionality of the convective 

term Prf01' with the Prandtl  number. This is why the ferromagnetic interaction has receding 
impact on the heat transfer rate as Pr  increases. 

It can be concluded that the primary effect of the magneto-thermomechanical  interaction, 

which couples the ferrohydromagnetic momentum equations and the thermal energy equation, is 
to decelerate the flow along the stretching sheet, thereby increasing the skin friction Cs and 

reducing the heat transfer rate Nu~ at the sheet. It is noteworthy that the imposition of the 
magnetic field has receding influence on Nux as the Prandtl number is increased, whereas the 

impact on C I is enhanced. 
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