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Summary. Transient temperature, displacement, stress and electric field intensities in a finite circular 
piezothermoelastic disk undergoing axisymmetric surface beating are examined. Exact solutions to the 
equations of equilibrium and electrostatics are obtained using a potential function approach based upon two 
piezothermoelastic potential functions, three piezoelastic potential functions and a piezoelectric potential 
function. The disk under consideration is assumed to exhibit hexagonal material symmetry of class 6 mm. 
The initial temperature of the disk is zero; thereafter one face is subjected to linear heat transfer from an 
adjacent medium (Newton's law of cooling), while the temperature of the other face remains constant. Both 
faces are taken to be free of traction. The cylindrical boundary of the disk is thermally insulated, electrically 
charge-free, and constrained against radial deformation. Numerical results are obtained for the stress and the 
electric potential distributions in a cadmium selenide disk. 

1 Introduction 

Piezoelectric materials have attracted considerable attention recently, due mainly to their 
potential for use in smart structural systems. Owing to the coupling that exists between the 

thermoelastic and electric fields in piezoelectric materials, thermomechanical disturbances can 

be determined from measurement of the induced electric potential, and the ensuing response can 
be controlled through application of an appropriate electric field. For successful and efficient 
utilization of piezoelectrics as sensors and actuators in intelligent systems, further research on 

piezothermoelastic behavior is needed. 
Among the important earlier studies on piezothermoelastic response is the work of Tiersten 

[1] who derived nonlinear equations of thermoelectroelasticity, and Chandrasekharaiah [2] who 
presented a generalized linear piezothermoelastic formulation. Nowacki [3] considered steady- 

state problems involving thermopiezoelectric infinite and bounded bodies. Maysel's influence- 

function approach to thermoelasticity was generalized for static thermopiezoelectricity in [3], 
and was later generalized for piezoelectric vibration problems by Irschik and Ziegler [4]. Other 
investigations dealing with piezothermoelastic response of beams, plates and adaptive structural 
systems include the works of Dube et al. [5], Jonnalagadda et al. [6], Lee and Saravanos [7], Rao 
and Sunar [81, Shen and Weng [9], Tzou and Ye [10], and Xu and Noor [11]. 

The present authors proposed a general solution procedure for three-dimensional problems 
of piezothermoelastic solids of class 6mm in Cartesian coordinates [12], for a two-dimensional 
problem of an infinite plate of class mm2 [13], and for axisymmetric problems in cylindrical 
coordinates [14], [15]. More recently they examined the response of a finite circular disk, one face 
of which is in contact with a heated body [16]. The inverse problem was solved to determine the 
surface temperature when the electric potential difference between the faces of the disk is known, 
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assuming a stationary temperature field. The possibility of utilizing piezoelectric elements as 

temperature sensors was thus demonstrated. In the present paper we extend the previous 

investigation [16] to include transient piezothermoelastic response of the disk. 

2 Governing equations 

Consider the axisymmetric response of a piezothermoelastic solid of crystal class 6mm. 

Constitutive equations for the elastic field are 

Gr = c ~ e r r  + c~2eoo + c~3e= - e~Ez - fi~ T 

aoo = c~2err + claeoo + c13e= - e lE~  - t i l T  

a =  = c13e~ + c13e00 + c33e= - eaEz  - f l 3 T  

azr = C4r --  e4Er 

(1) 

where a u represent the stress components, e u are the strain components, E~ are the electric field 

intensities, T denotes the temperature rise, c u are elastic stiffnesses, e~ are piezoelectric constants, 

and /3~ are stress-temperature coefficients. The corresponding strains are related to the 
displacements ui as 

1 
er~= u . . . . .  ~oo = - u ~ ,  ~= = u . . . .  ~= = u=,, + u~,=. (2) 

r 

For  the electric field, the constitutive relations are 

Dr = e4ez~ + r h E r ,  Dz = eae~r + eleoo + e3ezz + rl3E= + p 3 T  (3) 

where Di are the electric displacement components, t h are dielectric permittivities and P3 is the 

pyroelectric constant. 

The temperature is assumed to satisfy the Fourier heat conduction equation 

A ~ T +  2 2 T =  = T t (4) 

where 

02 1 0 22 2z ~T 
A1 = j + . . . .  Tt (5) 

r dr '  L '  ' = & -  

in which 2i are coefficients of heat conduction, and z denotes thermal diffusivity. For  the problem 
considered here it is convenient to represent the temperature as the sum of two functions, namely 

T(r, z,  t) = To(z, t) + r l ( r ,  z, t). 

The equations of equilibrium are 

1 1 
a .... + a  .... + - - ( a r r - -Cr00 )=0 ,  a .... +O- .... + - - ~ z r = 0 ,  (6) 

r r 

and the equation of electrostatics is 

1 
D~,~ + D=,~ + D r = O. (7) 

r 
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3 S o l u t i o n  p r o c e d u r e  

Solutions to the equations of equilibrium (6) and electrostatics (7) are obtained using the 
potential function method introduced in [14] and [16]. In particular, the displacement and electric 
field intensities are expressed, respectively, in terms of potential functions as 

u, = (7' 1 + ~2),,, uz = (7% + klgJi + jkg2),z (8) 

Er = - (~ i ) , r ,  Ez = - ( ~ o  + ~i),z (9) 

where 

~TII -- ~i jr ~DI jr ~02 jr  1])3 (10) 

lit2 = ~2 31- L l l P l  j r  L21P2 + L31/)3 (11) 

7to,zz = )T1To (12) 

~1 = Z -I- (nllPl + H21~2 Jr n31~3), z (13) 

@o.z = ff2To. (14) 

As indicated in the following Section, the piezothermoelastic potential qS1 and the three 
piezoelastic potentials ~Pi (i = 1, 2, 3) are governed by uncoupled differential equations; the 
piezothermoelastic potential q~2 is expressed in terms of ~b~ and T~; and the piezoelectric function 
Z depends on ~b2 and T~. The various coefficients appearing in Eqs. (8)-(14) are given by [14] 

s  - -  C44 k i v 2 c i i  eli(e3 -- t/e4) t/a 
k l -  , j = ki - -  + , ~ = -  

C13 jr  C44 C44 (el + e4) (c44 ~- e42/t/1) t/1 

f13q3 - e3p3 e33P3 + f13e3 
- ~72 - (15) 

'7i c33r/3 + e32' c33t13 + %2 

v t --  #i mi --  k l ( v i - -  ~ l i )  (1)2 - -  #i) 
L i = E i --  1 . . . .  ni = 

~1 J ' ~1~2 

~ l = ( c l a + c 4 4 )  F h k 2  e3=q_e4  ] e l + e 4  
[_ C44 (el + e4) (C44 j r  e42/t/i).] ' ~2 --  Cl l  

where v~ (i = 1, 2) are roots of the equation 

Cll C44 ~- V 2 Jr C23 Jr 2C13C44 CllC33 -] (C13 j r  c44) (el  j r  e4) e4 - c i i e 3 e 4  - c44e42 
- v 

t/1 

( e3e4) = 0 (16) j r  C44 C33 -[- /~l ,/ 

and #i (i = 1, 2, 3) are roots of 

#3 _ (vl  + vz + 11 - a2~a) #2 + [ h  vz + ~ ( h  + v2) - (ha2 + b2) G - a~1~2]/~ 

- -  t/VlV2 Jr Vlb2~2 Jr b:t(l~2 : 0 (17) 
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in which 

el + (1 + kl) e4 kle3 el + (1 + j) e4 je3 
ai = , b l  - , a2 - , b 2 = - - .  (18) 

The equations of equilibrium (6) and electrostatics (7) are then satisfied, provided the 

potential functions ~b~, )~ and ~p~ satisfy the equations [14] 

A1 + # i  ~-z2 Ai  + #2 ~-z2 A1 + # 3 ~ z  2 dp,=d2A1A1Ta+d,A,T, ,=+doT1 . . . . .  (19) 

1 
~2 ,=  = v -  (A ,01  + v1~1,= - 01T,) (20) 

gi 

1 
Z,= = : - ( A 1 r  + v2~2,= - 02T,) (21) 

g2 

A iWi + #iWi,zz = 0 (i = 1 to 3) (22) 

in which 

fll 
Cll 

(el + e,) [klv2(c,~,, + e,2/qi) fii - c4~(fl3 - pser 

Cli[(c,4 + e42/ql)(el + e4) kiv2 - -  c44(e3 - qe4)] 

do = q(v20i + ~i~2) - b2~201 -}- - -  

P3~1~2 (23) 
ql 

dl = v261 + ~i62 + q0i - -  a2~201, d2 = 31. 

4 Application 

Consider a circular disk (0 _< r _< a, 0 -< z -< b) of piezothermoelastic material, initially at zero 

temperature. One face (z = b) of the disk is subject to linear heat transfer from an adjacent 

medium at temperature O(r) (Fig. 1). The temperature of the other face remains constant, while 
the cylindrical boundary is thermally insulated. In this case the initial and boundary conditions 
are expressed as 

T = 0  at t = 0  (24) 

T = 0  on z = 0  (25) 

T , z + h r = h O ( r )  on z = b  (26) 

T , , = 0  on r = a  (27) 

where h = HI;b, in which H is the coefficient of surface heat transfer. It is convenient here to 
express the temperature of the contacting medium as 

O(r) = Oo + i O flo(~nr) (28) 
n--J .  
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Z 

H Ia 
id'ring L piezoelectric disk r Fig. 1. Circular piezoelectric disk 

where 
a a 2f 2 f  = - rO(r) Jo(~znr) dr. Oo ~ rO(r) dr, O, aZJoZ(~,a) (29) 

2h O , 22h? mO ,e _~% 2 + y ~ ) t  

2h + e, coth (a,b/2)' Anm = (c~, z + 7~) [(1 + hb) cos (~mb/2) - ( '~mb/~)  sin (Tmb/2)] 

hbOo 22hO0e - ~ '  
Aoo - - -  Aom = 

1 + hb' ~m[(1 + hb) cos (7,.b/2) - (?,.b/2) sin (ymb/J , )]  

where 

A n o  

and e, and Ym are, respectively, the roots of the equations 

Ji(~,a) = 0 

Ym COS (ymb/2) + 2h sin (Tmb/2) = 0. 

(33) 

(34) 

We next examine the induced elastic and electric fields, assuming the faces of the disk are free 
of both traction and electric charge, while the cylindrical edge is constrained against radial 
deformation (e.g., by a rigid ring as shown in Fig. 1) and is charge free; i.e., 

a r z = a = = D z = 0  on z = 0 ,  b (35) 

u r = D r = 0  on r = a .  (36) 

The piezothermoelastic potential function q51 in Eq. (19) is represented in a form similar to the 
expression for temperature T1 in Eq. (31), namely 

i [ sinh (e,z/2) 
qh = Jo(e,r) B.o 

, = i sinh (c~,b/2) 
(37) 

(32) 

0 0 

The solution to the heat conduction equation (4) satisfying conditions (24)-(27) has been ob- 
tained using the Laplace transform technique. The resulting temperature T= To + T1 is given by 

To = Aoo ~ + Aom sin (30) 
m = l  

Ti = ,=ii Jo(e,r) k ,o sinh (~,b/2) + m=li A,,, sin (31) 
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By substituting Eqs. (31) and (37) into (19), the coefficients Bno and Bnm are found to be 

~.2(d2,~4 - d122 + do) Ano 
Bno = ~ . : ( m  - ,z 2) ( m  - , ~ ) ( m  - ,~:) 

~2(d2A4C~n'* q- dp)~20{n2y2m + do7~) A . . ,  

Bnm = (22c~n 2 +/~72) (22c~, 2 + #272 ) (22en2 + #372 ). (38) 

The piezothermoelastic potential ~b2 is then found by integrating Eq. (20), with the result 

I- sinh (~nz/2) . [y,,z'~] 
(/~2: n = l  f J~ kG~ + ,,,=,_ ~ c'" slnt, T)J (39) 

where 

(vl - 22) c~,2Bno - ~122Ano (v172 + 22c~n 2) Bnm+ 6122An,, 
Cno = ~10{n2 , C,~ - g,72 (40) 

Likewise, integration of Eq. (21) for the piezoelectric potential Z gives 

f [ e, cosh (c~nz/2) 
7. = Yo(o:nr) Dno 2 sinh (anb/2) 

n = l  

with 

(v2 - 2 z) c~nZC, o - fi222Ano 
Dno --  ~20{n2 , 
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I//2 

The piezoelastic potentials *Pl, which represent solutions to Eqs. (22), are 

I sinh (a , z / ]~ i )  cosh ( e , z / ~ / ) l  
~i = n=l f~ Jo(~,r) Ein sinh ( ~ , b / G )  + Fin c~176 (i = 1 to 3) (43) 

where E~n and Fin are unknown coefficients. The displacement function gq, obtained by 
substituting Eqs. (37) and (43) into (10), then becomes 

(P27 2 -}- 220{n 2) Cnm~- ~521~2Anm 
Dnm = ~2~;~ (42) 

while 

f { sinh (~,z/2) 
Ta = do(c~.r) B,o sinh (c~,b/2) n=[ 

sinh (o:.z/]~i) 
+ i=* ~ El. sinh ( G b / G )  + 

Fin 
cosh (~~ 

substitution of Eqs. (39) and 

f { sinh (0~,z/2) 
. = 1 J~176 Cno sinh (c~,b/2) 

sinh (o:.z/]/-~i) 

+ ci sinh 

(43) into (11) gives 

cosh (~.z/l/~,)-]; 
+ Fin 

cosh ~ J ] '  

and substitution of To given by Eq. (30) into (12) leads to 

Wo=:?l A ~ 1 7 6  m=l f A ~  

(44) 

(45) 

(46) 

+ Dnm ~- cos (41) 
m=l  A 
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The electric potential ~ ,  found by introducing Eqs. (41) and (43) into (13), is 

{ ~ " D . o s ~ n h ~  + z.. ; q~ i = J o(~.r) - f  
n = l  m = i  .o 

A[_ i = i  ~ "i~i L sinh (a.b/]/#,) cosh (a.b/]/-~i)J.)' 
(47) 

and substitution of To into Eq. (14) gives 

4)o = :2 Aoo ~ - - -  Aom cos 
=1 ~)m 

(48) 

Finally, inserting the expressions for (P0, 7q, 7J2, @o and ~l into (8), (2), (1), (9) and (3) yields, 
respectively, the following relations for the displacements, stresses and electric displacements: 

{ sinh ( ~ . z / 2 ) ~  ( ~ )  
Ur = -- a.Jl(a.r) (B.o + C.o) + (B.m + C.,.) sin 

i sinh (~nb/2) t/= m=l  

sinh ( ~ . z / ~ )  cosh ( a . z / ~ )  ] ;  

,:1 L s i n h  cosb( .b/V  )J) 

u~ ~ Jo(a.r) {:(-ff (klB.o = + j C . o )  
n = l  

cosh (a.z/2) 
sinh (e.b/2) m = 1 --2 (klB,.. + jCnm) c o s  

~. [ eosh (a.z/~/~) sinh (a.z/~/-~)]~ 
+ i=i ~ m , -  ~ Ei. sinh (a.b/]/-~i) + Fi. cosh (a.b/]/~i)JJ 

[ -- Aom COS + ~i Aoo ~ ?m 
m = l  

Jl(~nr) ) s i n h  (~:/;) 
- -  ( e l i  - -  ci2) (B.o + C.o)~ 

~.r J sinh (c@/2) 

e~77,, D ciaTm :I. ~ + jC.m) + + A.m + ~ Jo(~Z.r) Cll(Bnm -[- Cnm) -[- /~2(~n 2 L~l~nm ~2~n 2 ~nm 
m = l  

Jl(~.r) 
( q l  - q 2 )  

~n r 
(Bnm + C.m)} sin (?.,z/2) 

3{( 
-}-t~=l.= Cll~i -- C13 -- _ 

m, .,) el Jo(o~.r) - (cii -- clz) Ei Jl(~z.r) 

sinh (~.z/V~i) cosh (~.z/[/%i)~] 
x El. sinh (a.b/~-~i) + Fi. cosh (~.b/V/-~i)JJ 

} + (Cia•i + elF2 - ill) Aoo -~ + Ao,. sin (7mz/2) 

(49) 

(50) 

(51) 
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(700 = --  ~ ~n 2 So(0~n y) c12(B.0 + C . o ) - ~ - [  1 .0 +jC.o)-~2D.o + A.o 
n = l  

+ (cll - clj  d,(ct.r)(B.o + C.o); sinh (e.z/'2) 
~.r J sinh (c@/2) 

J l (o:nr) 
§ (C11 --  r 

any 
(B.m + C.m)} sin (Tmz/2) 

+ ~ {(c12di -- c13 - -  -- 
i=1 

m, .i) el do(o:nr) -- (Cll -- Clz) dl Jl(~nr) 

{ sinh (~.z/]ff~) cosh (e.z/]ff~)~ 
X Ein sinh (et.b/G) + Fi. c ~ s h ~ ] ]  

} + (C13~71 § e1~72 -- ill) Aoo ~ § Aom sin (ymZ/2) 
m=l  

sinh (~.z/2) 
sinh (7.b/2) 

F C33~21 
+ 2. lc,3(B.., + C.m) + (klB.,. + jC.m) 

m = 1 L ~2~n2 

e37~, D + A.m sin (Vmz/2) 
§ .~2~n2 nm 

(52) 

i = l  

Grz : - -  

n:l 

( ni) I sinh (~.z/]~i) Gosh (c~.z/~/)q; 
m, _ e3; sinh (~nb/~) c~sh ~ J J  C13(i -- C33 ~ /  Ein + Fin 

{ U  

(53) 

co 

+~=1 ~ .  [c44{(1 + kJ  B.., + (1 +j)  C,,,.} + e4D.m] cos (7mZ/2) 

i=1 G Ein sinh (a.b/G) + Fi. cosh (~ .b /G) . JJ  

.:, 
//1 D.o- ]cosh (c~.z/2) 
2 J sinh (~.b/2) 

(54) 

c~ 

+5=1 ~ [e4{(1 + k j  B.m + (1 +j)  C.m} -- qiD.m] cos (TmZ/2) 

- - Gosh (~.z/]/~) sinh (:~.z/]/~)~ + ~ e~(&+ m,) n ~ n ' ~ L , . - - ~ +  Y,. 
i=1 ~ L s i n h  (o~nb/V[Ai) Gosh (cznb/]//~i)dJ 

(55) 
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[[ e. D~ = - -  O~n2Jo(o~n r)  el(B.o + Cno) - ~ (klB,,o + jCno) + ~2 nO 

n = l  

37m . r/3y2 D.,. P3 A.m 
• sinh (c@/2) + ,.=1 ~" el(B.,. + C.,.) + ~ (klB." + JC,,m) - )jo~'---- 5 - 0:~ 

x sin (~,"z/2) + ,~1 e l f l  - -  e3 - -  + 1"]3 E l  n {- Fin  
'= #, ~ sinh (~.b/L/~) cosh (a.b/L/~)JJ" 

(56) 

The 6n unknown coefficients E,. and F~. (i = 1, 2, 3; n = 1 to oo) in these equations are 
determined through application of the boundary conditions. Conditions (36) are satisfied 
identically by expressions (49) and (55). Conditions (35) governing the stresses a,z and azz and 
electric displacement Dz imply, respectively, 

~, c4.(di + mi) + e4n, Ei. + c4,,[(1 + kl) B.o + (1 + j)C.o] + e. D.o] 

i=1 ~ sinh (e.b/]//~i) 2 sinh (:r 

co ~ m  

+"=~ ~ {c44[(1 + kl) B."  + (1 + j) C.,.] + e,D.m} = 0 (57) 
- 1  

~ c,4(t~i + mi) + e4ni r 
i=1 ~ [Ein  coth (e.b/]~i) + Fin  tanh (a.b/]/-~i)] 

c44[(1 + kl) B.o + (1 + j) C.o] + e4 Dno 
+ 2 coth (~.b/2) 

co 

: 1 ~ {c44[(1 + kl) B.,. + (1 + j) C".l + e4D.,.} cos (?,.b/2) = 0 (58) 

~ V  m, nl] 1 L[ C 1 3 ~ i  C33 - -  - - e 3  - - I  - ~ F i .  = 0 ( 5 9 )  
 ,/cosh 

~ [ c 1 3 f , - -  m, n~l 
C33 - -  - -  e3 (Ei,, + Fin)  

i= 1 #1 

+ c13(B.o + C.o) c33 (klB.o + jC.o) - ~} D.o + ~ A.o = 0 (60) 
- -  ~ -  O~ n 

elf~ - ea - -  + t/3 - i. = 0 (61) 
#, cosh (a.b/]/~) 

elEi - -  e3  - -  + r13 (Ei. + Fi.) 
i =  1 # i  

e3 q3 P3 A.o 0. (62) + el(B.o + C.o) - ~ (klB.o + jC.o) + 2~ D.o - o~  = 

Equations (57)-(62) are sufficient for the determination of E~. and F~.. 
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5 Numerical example 

As an illustrative example, the temperature  of the contacting medium is presumed to have 

a distr ibution described by 

( r2 r~)  
O ( r ) = T M  1 - - 2 f ~ + f ~  (63) 

in which T~ is a constant  and f is a specified parameter.  

The disk mater ial  is considered to be cadmium selenide, with the following propert ies  [17]: 

ci 1 = 74.1 x 109Nm- 2, cl 2 = 45.2 x 109Nm- 2, cl 3 = 39.3 x 109Nm- 2, 

c33 = 83.6 x 109Nm -2 ,  c,4 = 13.2 x 109Nm -2 ,  

fll = 0.621 x 1 0 6 N K - l m  -2 ,  f13 = 0.551 x 1 0 6 N K - l m - Z ,  

el = -0 .160Cm -2 ,  ea = 0.347Cm -2 ,  e4 = -0 .138Cm -2 ,  (64) 

th = 82.6 x 1 0 - 1 2 C 2 N - l m  -2 ,  t/a = 90.3 x IO-~2C2N-~m -2 ,  

P3 = - 2.94 x 10- 6CK - l m -  2, Y~ = 42.8 x 109Nm - 2, 

~ = 4 .4x 10-6K -~ ,  dl = - 3 . 9 2 x  10 -1 ZC N  -1 

where Y~ is Young's modulus,  c~, is the coefficient of linear thermal  expansion, and dl is the 

piezoelectric coefficient. Since the values of the coefficients of heat  conduct ion for cadmium 

selenide could not  be found in the literature, the value 22 = 2z/2~ = 1.5 is assumed. 

The following dimensionless quantities are introduced for convenience in the presentat ion of 

the numerical  results: 

b r z ~t T 
5 = --, F = --, Z = --, f = - -  B i = ah, T =  - -  

a a a a 2 '  r M 

ui alj Idll 45 Di 
(65) 

Response quantities were calculated by retaining the first 50 terms in each of the 

corresponding infinite series. Figure 2 shows the nondimensional  surface temperature  distribu- 

tion at various times f for a disk of thickness 6 = 0.2, in the case of a Biot number  B~ = 1 and 

parameter  f =  1. The resulting radial  distr ibutions of electric potent ial  difference 

[45]z= ~ - [45]~=o, stresses [6~r, a00]~-~ and radial  electric displacement [/Sr]e=o,6 are given in 

Figs. 3 - 5, respectively. The maximum (absolute) value of each response quant i ty  is seen to occur 

when the temperature  reaches its steady-state value (at f = oo). 

Figures 6 - 9  show the influence of the parameter  f u p o n  the distr ibutions of temperature,  

electric potent ial  difference and stresses, again for the case o f b  = 0.2 and Bi = 1. Note  that  in the 

case of a uniform temperature  O = TM of the contacting medium (described by the c u r v e f  -- 0 in 

Fig. 6), the induced electric potent ial  difference and stresses are independent  of f for all times r. 

The influence of disk thickness/~on the temperature,  potent ial  difference and stresses at f = 0 

is i l lustrated in Figs. 1 0 -  12 for the c a s e f  = 1 and B~ = 1. Fo r  very small time f, the thickness 

6 has little effect on the response quantities; however for larger time f, the greater the disk 

thickness, the greater the (absolute) value of the response quantities. 
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Fig. 2. Distributions of surface temperature at various times. Fig. 3. Distributions of electric potential 
difference at various times. Fig. 4. Distributions of radial and circumferential surface stresses at various times. 
Fig. 5. Distributions of radial electric displacements at various times. Fig. 6. Influence of p a r a m e t e r f  on 
surface temperature. Fig. 7. Influence of parameter  f on electric potential difference 
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Fig. 8. Influence of parameter f on radial stress. Fig. 9. Influence of parameter f o r t  circumferential stress. 
Fig. 10. Influence of disk thickness on temperature. Fig. 11. Influence of disk thickness on electric potential 
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Fig. 14. Influence of Biot number on electric potential difference. Fig. 15. Influence of Biot number on radial 
and circumferential stresses 

Figures 13 - 15 show the effect of the Biot number  Bi upon the surface temperature,  electric 

potent ia l  and stresses at f = 0. The special case Bi = oo corresponds to the case where the 

temperature  is prescribed on the top surface of the disk; Bi = 0 implies zero heat flux into the 

disk, in which case all response quantit ies are zero. 
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