A LATTICE OF NORMAL MODAL LOGICS

L. L, Maksimova and V. V. Rybakov UDC 517.11

In this paper we study a family of modal propositional logics that contain the Lewis logic 84. An es-
sential role in this study is played by the mapping of an intuitionistic logic into the logic 54 constructed in
[14]. The mapping 7 of the formulas of propositional calculus into the formulas of modal logic used in this
case makes it also possible to reduce the study of superintuitionistic logics [5] to the study of corresponding
modal logics. A number of results in this field were obtained in [10].

In the present article we obtain further relationships between a lattice & of superintuitionistic logics
and a family A4 of normal modal logics containing S4 which is also a complete distributive lattice. First
of all we shall prove that the mapping of &£ into # considered in [10] is a lattice isomorphism. On the
other hand, it is possible to assign to any modal logic Me # a superintuitionistic logic (M) consisting of
all the formulas of propositional calculus whose mappings are deducible in M, The logic § constructed in
[17] differs from S4 and is such that p(5) = p(54). Let us note that the family p-’ (4) is infinite for any
superintuitionistic logic Z and that it has a minimal and a maximal element. Thus we have two monotonic
mappings 7 and & from 2 into M and a monotonic mapping p from M into &£ such that 7z is a lattice
isomorphism, P is a homomorphism, and the following conditions are satisfied:

PT = po=idy , Zﬁéédﬂéd_p-

The obtained relationships between ¥ and £ make it possible to apply the results relating to the
lattice &£ in a study of the lattice # of normal modal logiecs. Let us note that the family £ of superin-
tuitionistic logics was studied by numerous investigators, for example, in [1, 2], [4-6], and [12, 13]. With
regard to the family # , it has been mainly studied up to now with respect to its individual representatives
and some of its subfamilies. In the last section of this paper we shall consider tabular modal logics, i.e.,
sets of formulas that are valid in a certain finite topological Boolean algebra (TBA). In particular, we
shall prove that all of them are finitely axiomatizable and that logics directly preceding tabular logics are
tabular. As a corollary we obtain an algorithm that makes it possible to ascertain on the basis of a finite
TBA &% whether a given formula is an axiomatization of the TBA logic % .

The methods used in this paper are primarily algebraic. We shall extensively use a theorem on com-
pleteness of modal logics with respect to appropriate varieties of topological Boolean algebras. The results
of §§1, 2, and 4 were obtained by Rybakov, and those of §3 by Maksimova.

§0. Definitions and Preliminary Remarks

The set of formulas of propositional calculus & is a set of formulas constructed with the aid of the
propositional variables p,,p,,... and the logical connectives &,V,2,1,

A=B = (A2B8)4 (B2 A).

The set of modal propositional formulas & y is a set of formulas constructed with the aid of the

propositional variables p,, 2, ,... and the logical connectives &, v,—~,~, o (where O is a unary logical
connective denoting "necessity"). )

trpe(e=p)&(p—x), Ox=~0O~.
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In the following, the letters «, /a,y,é‘ s+.. will denote formulas belonging to g’bM » whereas the letters
A,B,C . denote formulas belonging to & g
A normal modal logic is defined as a set M& 97'7M such that M contains all the axioms of the logic S4

. . . oo x
and is closed under the following deduction rules: 1) substitution, 2) eC,ocp—-v— B, and 3) T *

If e @’M reC € ‘(’Z’M , then /"= « signifies that from / we can deduce « with the aid of the deduc-

tion rules 1, 2, 3 and the axioms of 84, whereas / F« signifies that from / we can deduce « with the aid
of the deduction rules 2 and 3 and the axioms of S4;

[/']»F—-‘ fe/xed, | /"l=ec}

i A= ¢J . A€ @'J, then F}=]A will signify that from /° we can deduce A with the aid of the substitu-
tion rule, modus ponens, and the axioms of the intuitionistic propositional calculus J , whereas 7 =y A

signifies that from - /7 we can deduce A with the aid of modus ponens and the axioms of intuitionistic
propositional calculus;

L7, = {A/he P, T, A}

The set of all normal modal logics # is ordered by inclusion and it forms a complete lattice with the
operations

V= U MY A M =0, (#) s S K).

ied ied

The def_initions relating to superintuitionistic logics and their semantics, i.e., to pseudo-Boolean al-
gebras (PBA), can be found in [1, 2, 5, 7].

In the following we shall denote a PBA by the letter & (if necessary, with subscripts), superin-
tuitionistic logics will be denoted by the letter 4 (if necessary, with subscripts), a lattice of superin-
tuitionistic logics will be denoted by £ , and the PBA logic ¢l will be denoted by L & . We shall stipulate
that the fact that formula A takes the value1 for all the interpretations on the PBA ¥ will be expressed
by the relation ¢t = 4.

A PBA Oh=<4£:;&.¥?,7,1> is said to be completely connected if from ace#, fe £,and avd =7 it
follows that either a=7 or =1/ .

A topological Boolean algebra (TBA) is an algebra % =< /3; &,Y,—, ~, 0 1> such that < B; &,v,
—~,~; > is a Boolean algebra, and the operation g (the interior) satisfies the following condition: for any

a,be B,

Da<a,0DD0 =02, O@&f)=0a& o , ai1=1.

We shall denote a TBA by the symbol % (with subscripts, if necessary). & is said to be completely con-
nected if from q,fe B and gaVo =1 it follows that a =/ or £=/ . The power of the TBA % will be
denoted by &, '

A formula < (p,,-.., P ) is said to be true on & (S« ) if on & wehaveatrueidentity (Vz)... (Vx,)
KA Dyserer Ty ) = 4.

The TBA & is defined by the set
ML) = {«/xe ¢M,.¢"rl=o£}.

1t is evident that M{$) e 4. It is well known ([14], Theorem 3.6) that for any Me M there exists a & such
that M= MEB). M is said to be tabular if there exists a finite & such that M=M (%), and nontabular other-
wise. Logics that are maximal in the class of nontabular logics are said to be pretabular. A logic M is
said to be finitely approximable if it can be represented by an intersection of tabular logics.
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Between the lattice M of modal logics and the lattice of all TBA varieties there exists a dual isomor-
phism, i.e., to any Me M we assign a variety defined by the identities {ec=1/ceM}.
SECTION 1

Our next aim is to prove that M is a distributive lattice. But at first we have to prove a number of
special results that are,however, also of intrinsic interest.

LEMMA 1,1, (Deduction theorem for S4). If /"¢ ¢M’ Fec b p,then /7 = 0O L.
The proof is based on induction on the length of the deduction. The following lemma is easy fo prove.

LEMMA 1.2, If «,,...,;, k= ¢, then there exist ... Sag o0 1%y o g,

such that any s, can

be obtained from % (1ej= /) by a substitution and «,, Ty g reiey XpmgyoeeXpm [l

LEMMA 1.3, If «,,...,x, k= j and«,,...,«, do not have common propositional variables with g ,
then

Do, VA,...,0, V= JVp.

Proof. At first we shall consider the case:
Loy 0, — § , Le., y is deducible from «,...,«, without the substitution rule.

It then follows from Lemma 1.1 that F (0o~ (T, ... (Do~ )., ). Moreover, — (§,— (4, —

. (4, —~ Pl = (& vp~..~ (9, vp*ﬂyv/ﬁ (which is a formula deducible in classical calculus). Then
F (o<, vp— .o (O, VB —=yvp)...) , and hence

Do, VB,.-., DX, VB YV .

Now let us consider the case:

200,y =Y s and use in the deduction the substitution rule. It then follows from Lemma 1.2
that there exist ,, .. oc,K 1ee gy e gy such that «;; can be obtained from o by substitutions and «,,,
...,uc”(’ reeosSlp L., I—X By using the proof for case 1, we have

O, vp,---,Doc,,(1 VB ., 0%y, VE,. . .,u«cm(n -t -2

But O Vg b= Do . Vp (since p does not have common propositional variables with & ); then D, vp,...
O, va l=y vp. Th1s completes the proof of the lemma.

Let us prove a theorem on the structure of axioms of intersection of modal logics,

Similarly to [1] and [2] we shall define the concept of unrepeated disjunction v/, For any formulas
E,F, F’ es’zb or £, Feﬂ’ ) we have PVF Fy F where F is obtained from F, by increasing the
numbers of propos1t10nal varlables that have an occurrence in 7 by the maximal number of propositional
variables that have an occurrence in 7 . :

THEOREM 1. If M, M,e & and M,=L[ 7], M,=L7,]; then M,A M, =[{0xV'Dp/e e}, per,1].

Proof. It is evident that M,AM,2[{ox v'opkel, pel}]

Let us prove the inverse inclusion. We shall assume that y€ M, AM, . Then there exist o, .0, €
7y s PyreeesPm€ /7, suchthat o, . ecpb= § Bscpmb= f. Let A be the maximal number of propositional
variables that have occurrences in at least one of the formulas «,,...,«,.j . For any « (1< k€ m)let us
denote by p,é the formula obtained from B, by renaming of variables, more precisely, by replacing any
variables p, by p;n

Then ﬁ,’,.'..,p,’n = J (since p; = p,) . It follows from Lemma 1.3 thatxvu/a;,,,,,yvup,; =y vy
It also follows from Lemma 1.3 that:

107



/ ! 7 7
DY O By O, VOB b= JVOp ;s O, VAR, ., D,V ap! =y VI,
Hence

! ! . ! . 4
O, Vag,,.,, 0, VOB, ,..., 0%, ViOPpy e 0%, VOR, = !
since yvy = . But e v’upzba«jvupg; hence
4
0,V T py ey Doty ¥V 0y, O, VOB, ., O VT g =

4
ie., je [{oxVap/cer,, p€ 7, ) ]. This completes the proof of the theorem.
COROLLARY, A family of finitely axiomatizable logics is a sublattice of the lattice 4 .

It is evident that a union of finitely axiomatizable logics is finitely axiomatizable. The intersection
of finitely axiomatizable logics is finitely axiomatizable by virtue of Theorem 1.

Let us prove the principal result of this section.
THEOREM 2. The lattice M is a pseudo-Boolean algebra.

Proof. It is evident that we must prove only the existence of a relative pseudocomplement. Let
M, M,e M and M =[7]. Let us define a set D& S%M:

De{p/pe By, (YeM(oxvape 1)},

Let us write ¥=C2] and prove that M,2M,= M . We shall prove that M,AM S M, . Indeed, by virtue of
Theorem 1, ,

M, A M-[{tlec vioy /«<e 7, /'e@}] .

For any « & ,we have /’e@ and 0« Vv'D J€ Mz by virtue of the definition of 2. We have proved that all
the axioms of the logic M; A M are contained in M, and hence M,AM < H,.

Now let us prove that M is a maximal element of the set

(M, /M, e, MAM, <M.

Let M,e #, M,AM, € M, and M,=[4] . It follows from Theorem 1 that M, A M, =Hu«: v'D 8/&.6 7, ée
Aj:} . For any «e/’, wehave deAn«V 0de M,. It then follows that for any e 4 we have Se D by vir-
tue of the definition of &@. Hence M,,"I:AJ c [&]. Therefore M, o Mz = M. This completes the proof of
the theorem.

COROLLARY. The lattice A is distributive.

It is well known (see, for example, [7]) that any PBA is a distributive lattice.

SECTION 2

This section is devoted to problems of embedding various lattices and partially ordered sets in 4 ,
and to other structural problems. Hosoi [13] has infroduced the mapping 7 : gz‘ly ——-»-g'bM which is defined in-
ductively:

1) If p is a propositional variable, then 7(p)=np ;
2) T (A&B)=T(A) & T(B); '
3T (AVB) TAYYT(B),

Y7 (AdB) =0 (I (A)=T(B);

5YT(TA) = o (~ T(A).

i
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LEMMA 2.1, Let Ae ¢&_ ; then
t— aT{A)==T(A).

The proof is carried out by induction on the 1ength of A.

For any 7'< &,,we have 7(")% {T(4)/AeT}. Let us define the mapping cit-M o(L) = [TL)].
LEMMA 2.2, 1. ©:&£ — M is one-to-one.

2, If Aﬂ.?’g ,red , then V

TE A<= T(T)=T(A).

The proof follows directly‘ from Theorem 1 of [10].

COROLLARY. & ‘has the power of the continuum.

It is well known [8] that & has the power of the continuum,

THEOREM 3. The mapping 7: £ — M is a lattice isomorphism » § - that preserves infinite unions,

Proof, By virtue of Lemma 2.2 it is only necessary to prove that ¢ preserves operations. At first
we shall prove that '

) v{L, AL = 7 (L) 0 T(L,).
v (Laly) =T (L2, )], ©(,)AT (L) =7 (2,)3407 (2,1

It is evident that [7 (4,4 4,)1 € [7(4,)3 AL 7(4,)]. Let us prove the inverse inclusion, By virtue of
Theorem 1,

[7([,‘)] /\[7'([:2)] ——-[{Dmv'n/s/ece?’(z,,), pe 7'([,2)}].

If weT(L,), peT(L,), then < =T7(A), p=T(B), where A€/, Bel, . Then AV'Bes, and AV'Bel,. ie.,
AY'Bei,AL, . Hence T(AV/'B)=T(AV'T(B)e T(L,AL,) - But it follows from Lemma 2.1 that o7 (1)~
~~T(A)s +DT{B)=+7(B), Therefore o7 (A o7(B)el7{4)v/7(8)], and hence also Oxv'Oope [f(A,A[,Z 3.

Thus all the axioms of the logic L7 (£,)1 A L7 (£,)] are contained in the logic [7 (4,2 L,)], and
hence (7 (4,01 ALT (¢, dclT (LA L, §. We have proved that z preserves intersections. Let us prove that ¢
preserves infinite unions.

2. T(Kl/xé,{) =/<e\/xZ(L")' ‘
We have ‘
T (V1) =7 (v 201= 17 (Y, 4, )],

x\e/ﬂl’ E (LK ) =[/<lé/$ ¢ (AK)]=]:ké/.76' L7 (LK )]: )

It is evident that [xlé/ p L7, )J:l clr ([KIE/% L1, )]. Let us prove the inverse inclusion, 7 (le, <) isa set
K¢

(f)(fré;xioms of the logic | 7 ([K(C/WLKJJ )| by virtue of Lemma 2.2, But 7 (Kgﬂf [,\K) ;[x(e/x[f (/“x )]] , and there-

7 U / ‘C_‘ U LT .
L ( keX KT ) ket X )
This completes the proof of the lemma.

COROLLARY. a) In % it is possible to isomorphically embed any finite distributive lattice,
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b) In M it is possible to isomorphically embed any countable partially ordered set.
¢) In M it is possible to isomorphically embed a free distributive lattice of countable rank.

This follows from similar results for V.Z [1, 2]. A set of formulas ~,,,,,,...,%,,... is said to be
superindependent if for any natural numbers Ty 1y lyyeennyg s fyaee s Jm SUCH that {L,,.-., ',l} n {j,,...,”mi = ¢ ,
we do not have «; & &oc = oo V.. VD« im . Such a definition of superindependent modal formulas

is similar to the defmltlon of supermdependent formulas of intuitionistic propositional calculus [1, 2].
in [1], it is possible to show that a set «;,%,,... is superindependent if and only if the logics (o, Eocz], ...
generate in J a free distributive sublattice in which they constitute free generatrices.

LEMMA 2.3, There exists an infinite set of superindependent formulas {ocn } neN c ébM'

Proof. There exists an infinite set of superindependent formulas |A /z} iy 7 [2, 1]. Gerchiu [1]

neN
has shown that {A,},.y S &, is superindependent if and only if [A,] 7 (n€N) generate in £ a free dis-

tributive sublattice F in whlch they are free generatrices. It then follows from Theorem 3 that = (F) is
a free distributive sublattice of the lattice A& with free generatrices z ([A,] ) (reN). @ ([A,] P ) =

[r (EA ] )] . By virtue of Lemma 2.2 we have [ 7 (A, 1, H=[7 (A, )] . Hence the [7 (A,)] (neN) are
free generatrlces in z(F). It hence follows from the remark preceding the lemma that | 7 (A )} neN is
a superindependent set of formulas. This completes the proof of the lemma.

COROLLARY. There exists a continuum of modal logics with axiomatization from an infinite set of
superindependent formulas that are not finitely axiomatizable.

It suffices to take logics generated by infinite subsets {«,} ey . It is evident that they will be dis-
tinet and not finitely axiomatizable.

LEMMA 2.4. Let M, M, ¢ M and M, 7+ 84 . M4 4 ;then M, AM, + 84 .
The proof follows directly from Theorem 1 and the assertion XI. 9.5 of [7].
THEOREM 4. The lattice # does not have atoms.
Proof. Suppose there exists an atom M, M £~ 84 .

We shall consider the class
K=[ &, / %; is a finite TBA}.

It is well known [11] that M (&) # 84, M(%;) =2 $4

Let us prove that M (&;) 2 M. We have MAM(4;)c M and by virtue of Lemma 2.4 we have
MAM(%;) # 84 shence M (S )AM=M. le., M(..Yf-)DM We have proved that for any 4; € X we have
ML) =2 M; hencej/\KM(&é):—‘z M. On the other hand, _” P /V(.z"/ = 84 by virtue of XI. 9.1 of [7]. Hence

€
/3
M = §4; we have arrived at a contradiction. This completes the proof of the theorem.
SECTION 3

In this section we shall study in detail the connection between superintuitionistic and modal logics
expressed by the relation

(YAe 8,)(LI= ;Ae> M= T (A) (T)

For this purpose we shall examine certain relationships between PBA characterizing the superin-
tuitionistic logic / and TBA characterizing # if . and M are connected by the relation (T).

Let us recall ([7], IV, 1.4) that to any TBA % =<43:&,V,>,~,0;/> there corresponds a PBA

G(L) = <&6(B); &,v,2,1;: 41>, (1)
defined as follows:
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G (B) is the set of all open elements of the algebra %, i.e., ((B) =3z/xe 8, 0x=2};
LG(B); &,v; 1> is a subalgebraof < B; &, v;71>;

.Z'Dy = D(Nxvy)-,

Tx =0~ ).
The relationship between truth in % and in & (%) can be expressed by the following:
LEMMA 3.1, For any TBA £ and any formula A€ 555 we have the equivalence

e T(A) = G(F)= A.

LEMMA 3.2, Let $=<%;&,v,~~,0;7> beaTBA,let &t =<#£;&,v,>,7;7/> beasub-

algebra of the PBA G(%), andlet b, =< B, ; &,V,~,~, O; /> be a subalgebra of the TBA & generated
by the set £, . Then: ’

a) .537 is the set of all elements of the form
z=(~vavE)&...&(~a,vE,, (*)

where a,,...,a,_ ,6,....,6,€ %

n n

b e(s,) =a,.

Proof. It is evident that <., ;&,v;7> is a sublattice of the lattice < B:4&.v; 1> . Therefore the set
.ﬁ of all elements of the form (*) constltutes by virtue of ([7], P. 2.2) a subalgebra of the algebra < %; &,
v-> ~; 1> generated by the set .75 with the aid of &,v,~, . Now let us note that for « of the form (%)
we have

Dx:ﬂ(~a7v£)&,,,_& D(rvanvﬂ;z)=(a,6(§”l§)& (a 61310)

and hence 0 x e £ . Therefore 5, will be closed under the operation p and hence it coincides with B, .
whereas G (B,)= %,

Now we shall assign to each PBA (¥ a topological Boolean algebra 4 ((f) constructed as follows. Let
S o Pe the Stone space of all simple filters in (¥ and let the sets

50(a)={¢’/'ae¢€8a} (2)

for ae(l, form a basis of this space. The mapping ¢ is an isomorphism into the algebra & (P (S,)) .
where

\{J(Sw)=< 'D(Sa)1&vva_’9N)D;1> (3)

is a topological Boolean algebra of all the subsets of the space S,. the operations &,V, ™ are defined as
intersection, union, and completion respectively, X—Y = ~ X V V,7=§ - and p is the operation of taking
the interior.

Let us denote by
AQ)=<A(A);&,V,>,~,0:;1> (4)
a subalgebra of the algebra 2( Sa) generated by the set ¢ (/). By virtue of Lemma 3.2 we have
G(d(e)) = . (5)

It is evident that if (¢ >~ ¢f,, then 4(¥) ~ 4 (1, ).
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LEMMA 3.3. Let & be a TBA, let &, be a subalgebra of % generated by the set & (%), and let 4
be a homomorphism from (&) into ¢ . Then there exists a homomorphism 4, from X%, into 4(Ct).

Proof. By virtue of Lemma 3.2, all the elements of &%, can be represented in the form
z = (va, vE)&...&(va,vE,), (%)
where a,,...,a,, !,,. .8, € 6(5). Let us write
hy(X) = (~vPh@IVPAE) &...8 (v Pha,) v PR (G,)), (x)

where g is a Stone isomorphism (2) from ¢ into & (P(s a))» and &, Y , and ~ are operations in the al-
gebra #(S,). Then 4, (x)e 3 (a) for zed,.

Let us show that for «, Ye L,

lLrey = h,(x) < 4, (7.

Let x&y and

2. 4= (vevd,) &...8 (~e,vd,),

where ¢,....,Cp , &,,...;d,, € & (&). By virtue of distributivity, #,(z) can be expressed as a disjunction

of all possible conjunctions of the form

5. & ~ ¢hia;) &,-‘fy ph(8) , where TUJ={1...n}, In] = &.

Let us show that for any such I , J, and any « (/< x< ) we have in 4 (¢f) the inequality
4. & ~ph(ch;) & phb;)e~ph(c IV PAd).

zeIP(“je]so / P “
From (*) and 2 it follows that in the algebra &,

. & & & vd,
s ey G S Y

or, in equivalent form,

1‘3‘7 5; &e, <d, viéa‘; .

Since gf is a homomorphism from & (&) into G(#P(S,) . we have in the algebra G(P(8,)), and
hence in .P(&a)

& ¢h(f e )< ph(d ) vV ¢ha,).
& ¢ (])&q)ﬁ( AEXLICH e | )
Therefore we have in P ( 8y ):
b;zc_r ~ goA(aé)v&jgcJ ph (8) =~ phic,) v ohid,).
Since all p4 (q;) . Pk ( tg ), Phic.), ¥4 (&, ) belong to 4(C), we have proved the inequality 4. Hence fol-
lows directly that .4’, (z).éé, (¢). In particular, we find that 4,(x) does not depend on the adopted repre-
sentation of « in the form (*).

Since by virtue of Lemma 3.2 any element X € 4(¢t) can be represented in the form

X = (N‘sa(u,) VP (5) &8 (v PV 9 (g )
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where «,,.. ,u”, 0,....0, ¢ O ,there existelements q,,.. aﬂ,f, ,fe G ($)such that «,= 4 (a,),... a,l=/é'(ar,, )

G=h(8), s Oy = /z(g ), ‘and hence X = 4, (x), where £=(~ q, v/ ) &.. &(mavf)e &, . Thus /z, ‘maps
‘0‘6’, into 4(0!) 1t is evident that
5. h (x& ¢) = h, (=) & y(g)-
Next, . .
b (v(& (va vE D)) = 4, (‘,v, (q,4~E )=
=1 = ,
o (B o2 (8 )= B bV 2y oA )
where ]
Ing=4¢, 1uj={su..a}.
n } ‘
-V (ph@)&~ph(8))= f-‘((z‘e/_rf’“”b'»v”(i%z’oé(é)»'
Hence

6. A, (~vx) = ~ k().

From 5 and 6 we obtain
Tk (zvy)=h (v(~vzby) = 4 (x)VE (Y),
8. h, (x — y)=4, (~xv_y)=é,(.z:)—-—- hy(g).
Let us show that
9. h,(ax)=n4,(z).

In fact, for an « of the form (¥) we have
Q4 (z) = O(vph@)v PhE)&...& (v ph(a,) vk (8) =

= (¢h (a,) = ;ﬂﬁ(f)& & (ph(a,) @k (8)) =

(C!)

=gﬂ/z((a, ID f)& & (a, D f))-—;ﬂé(ua:)—é(u:t‘)
LEMMA 3.4. Let (0= (%) . Then the subalgebra 4, of the algebra r generated by the set & will
be isomorphic to the algebra 4.(). ,

Proof. By taking 4 in Lemma 3.3 in the form of an identity isomorphism of & (&) into ¢, we find
that the mapping (*#) is a homomorphism of &, into 4(¢Y) . Let us show that A, is an isomorphism.

Suppose that « has the form (*), ¢ has the form 2 and 1‘;{ . Then there exist Z,7, and x such that

IuJ={4..,n} . INJ=8, /<x<m and & ~ a & & gﬁ ~e, va/ It hence follows that in the al-
el o!éJ
gebra ¢,

c&&f%V a, vd, .
jej 7= et

Then there exists ([7], I 9.2) asimple filter @e§, such that ¢, & &t e, v a,vd, ¢ b . Hence
i€7 ce
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Pepic), ¢€z§§7 p&), PEold), PLY 9a).
In ¢(ct) we therefore have
' : v .
P ) &jgz p &) ’éaez pla) v e @,
and hence in 4 (ar): & ~ ¢ (%]&'8:; gﬁ(t?}% v ¢(c,)Vyd,), and consequently, 4, (<) £ 4, (y). This com-
el J : :
pletes the proof of the lemma.

Now let us construct a mapping of the lattice J#/ into & . To any modal logic A/ we shall assign a set

P(M)={A/Ae¢7:fandMi= T(A)}. (6)

From Lemma 3.1 we directly obtain
LEMMA 3.5. % = M(&) = p(M=L6(%).
In fact, if M= M(®), then

AG_JD M) = ME TAE & = TA)S GO =A.
Since for any logic M the Lindenbaum algebra &y is a characteristic TBA, i.e., M = 4 (%,): it fol-

lows that p(# ) is a superintuitionistic logic. Thus p will be a mapping from M into £ .

‘LEMMA 3.6. For any logic MeM and any PBA £/ all the formulas belonging to P M) will be true
_in ¢¢ if and only if there exists a TBA & such that M{$) 2 Mand & = G (% ).

Proof, Let us recall [4] that any superintuitionistic logic / is complete with respect to the variety
a, of all PBA in which all the formulas belonging to / are true. Now let us consider the class

K={a/3L (MB) 2 Mandd 2 6(25)} .

At first we shall show that pPM } is complete with respect to the class K, i.e., p(M)= ALct-
aek
If ke K, then L 2 p(M) by virtue of Lemma 3.1 and the definition of p (M) . Next, if p(#)% A, then
7

M¥TH) and hence i?k T{A) for a TBA & such that M($) 2 M. Then (%) e K and G (L)% A by virtue

of Lemma 3.1. Hence p (M) = A LKOZ , and therefore the class K generates the variety BT py»
de .

Now let us note that

16(%,) =67 %),
iel LeT

and therefore the Cartesian product of systems belonging to K will likewise belong to K . It follows from
Lemma 3.2 that any subalgebra of the algebra &(¥%) can be represented in the form & (&, ) for a suitable

subalgebra &, of the algebra &. If M(L) 2M, then M(5;)2M and therefore K is closed under the
operation of taking subalgebras. '

It follows from Lemma 3.3 and (5) that if #/(&)2M and ¢ is a homomorphism image of & (£ ), then
MG @) 2M and o = & (4 (1), i.e., K is closed with respect to homomorphic images.

It hence follows from Birkhoff's theorem [3] that the family K forms a variety, and hence K= 777 p M)
This completes the proof of the lemma.

‘ Let us construct yet another mapping 6: £ — 4 . Let Ze L. By 6 (L) we shall denote a subset of
P, defined as follows: ‘
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()=l / Vo)l 2L = 4@ <)} . (7)

Tt is evident that & (L) e 4.

THEOREM 5. For any superintuitionistic logic L, 6(Z) will be a maximal modal logic M possessing
the property

(VAe P )(LE jA < M= T(4) v (T)
Proof. First of all let us note that from Lemma 3.1 and formula (5) it follows that

A= A & A= T(A) (8)

for anyA‘é@g. Therefore
Le A= (Va)(laal=akF 4)e
S Vallo 246 = 4@ =TA)=6(L)= T(4),

i.e., (T) holds for M=06(,).

Now suppose that the logic M has the property (T). Then /4 =f)(M}. Let us assume that & 2 4 .
By virtue of Lemma 3.6 there exists a TBA % such that M(#)2M and & & & (&%), From Lemma 3.4 it

follows directly that M (4 (at) 2M (&) 2 M. By virtue of the definition of &(4) this signifies thatM < (%),
which completes the proof.

COROLLARY. If L = /¢ , then s(L) = M (4 ().

Proof. Let /= /o¢. From the definition of 6(Z) it follows directly that 6 (4) < M(4(a)). On the
other hand it follows from (8) that

L= A &= ak A il T ME(A)= T(A)

and by virtue of the theorem we have M (4 () < &(.).

Thus we have a mapping & M — & and two mappings ¢ and ¢ from £ into X, with

Py M, = M, = p(M) < pM,),
(P2) T (L, ALy) = 5(L) AT (L),
T(é\e/f['”') =Lev_7 €(4;),
(P} L, S L, => 6(L,) e 6(L,).
From the definition of p and z it follows directly that
(P&y Tp(M) S M,

since all the axioms of 7p (M) belong to M . It follows from Lemma 2.2 that for any /e £ the logic
M=17 (L) has the property (T); hence

(P5) pT(L)=1L.
It follows from Theorem 5 that

(P8) /Js(‘é) = /,
(PTy M cop(M).
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From (P6) it is evident that o is one-to-one and that p (#)= £.
Now let us find some more relations characterizing P and 6.

THEOREM 6. a) P is a homomorphism of M into £ that preserves infinite unions and intersections,

b) o (A L) = A o(s).

Proof, a) It follows directly from (P1) that P (A M‘ )Q AI /"(Mb }. On the other hand, by successively
el [13
using (P5), (P2), and (P1), P(4), and (P1), we obtain

ApiM) =pt(p pM)cp(AepM)Sp(h M)

3
Hence p (Lé\—/_ M;) = LQIP(ML-).

Next, by successively using (P7) and (P1), (P3), (P6), and (P1), we obtain

PV M) ep(V ephheps(y pM D=V ptiSp(y ),

pLY M) = Yy p M)
b) by using (P3), (P7), (P1), and (P6), we obtain

o(AL,) (;52\16 (L;)cep gélo(éb-))g "Q’!I/"’ U= (A L;)-

cel

Hence
¢ (L/e\_TL") =£él' 6(4;)-

COROLLARY. a) If M is tabular, then Vs (M) is also tabular;

b) if M is finitely approximable, then p (M) is also finitely approximable;
c)if p (M) is tabular, then M is finitely approximable;

d) if L is tabular, then &(4) is tabular and 7 (4)is finitely approximable;
e) if L is finitely approximable, then & (/) is also finitely approximable.

Proof. a) follows from Lemma 3.5; b). follows from a) and Theorem 6a; ¢) is the assertion of Lemma
4.9; d) follows from the corollary of Theorem 5 and from c), since pz (L) = /: e) follows from d) and Theo~-
rem 6b.

In concluding this section, let us recall that Grzegorczyk [17] has constructed a logic & € M that dif-
fers from S4 andis suchthat p (¢) =p(84)=17. This logic can be obtained by adjoining to S4 the axiom
() (0(D(x—+gg)—0p)& 0(0(~vee —+08)— op)—-0p.

1t follows from (PT) that 6 € ¢ (7). In [17] it is shown that $5 326 . For any consistent Lylel
we thevefore obtain ¢ (L, ) ¥ 7 (L,), since §5 = ¢ (K), where K is a classical logic. It hence follows that
¢ (L) differs from 7 (4) for any consistent / . Moreover, we have the following

ASSERTION. For any consistent logic 4 the set o™’ (4) contains an infinitely descending chain,

For the proof let us recall [16] that consistent logics that contain S5 form a strictly descending chain
M, > My> M, > ...; each of these logics can be axiomatized by one formula 8y» ices, My =7 J. Now let
us consider for any 4e£ the chain M, 2 M 2 M, 2 ... where M]=0(L] A Mn. We have y€ ¢ =6(T)c
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6 (4 ); therefore Ué‘ v ny eEM, ! (see Theorem 1). By using characteristic TBA for M,,, [16], it is easy
to showthat ¢ M,H_, [17]andn3 v'o JEM H,henceM & M”H Next, K = Ja(Sb) cp (Mn ); therefore
p(M )= K and p (M ) = ps (L)Ap (Mn )=LAK= L This completes the proof of the assertion.

SECTION 4
LEMMA 4.1, a) If {&;} ;g is a family of TBA, then
m(n ;)= /\ M(8,);
e ie]
b) if &, is a subalgebra of the algebra &, then

M(L,) « M(S5);
c) if .,Z’r, is a homomorphic image of &, then
M(s,) € ML)

All this follows directly from the definitions.

LEMMA 4.2, a) Let M=M(%); then there exists for any « ¢ M a subdirectly mdecomposable TBA
8, such that < ¢ M(5;) M(&,) oM, andé& < %

by if 7 :.§7 and o¢ [ /7] ,then there exists a subdirectly indecomposable TBA & such that
M{(&)2(7"] and eZYN ~.

Proof. a) From Birkhoff's representation theorem [3, 9] it follows that & = /'7; :(rb , Where the .bl; are
~190%. P
subdirectly indecomposable [3], and 7 &, is a subdirect product. M (/7:&0- 2M(711%;) , since 7% isa
iey i€y ey ¢ wj b
subalgebra of the algebra /7 éfrb . x¢ M(%),and hence « d M(ﬂxrb-). It then follows from Lemma 4.1
ie]

that there exists a 4; such that g M (B, ); M) 2 M, since o; is a homomorphic image of & (by the

definition of a subdirect product). It is ev1dent that .Zr < %. As & we then take .17 This completes the
proof of a).

b) follows from a) if we take 4 in the form of Lindenbaum's algebra for { r1. This completes the
proof of the lemma.

LEMMA 4.3, Let M= M(%) ;then M= M(/7 B)= A M (%), where {&£;} ;e 7 1s the family of all
S e ] ey ¢ i) ie]

subdirectly indecomposable pairwise-nonisomorphic TBA such that ¥ ($;) 2 M and Ei < Z.
Proof. It follows from Lemma 4.1 that M(ﬂ }6< ) 2 M . Let us prove the inverse inclusion. Let

«¢ M, By virtue of Lemma 4.2 there exists a %, that is subdirectly indecomposable and such that < ¢
M($,), M($,)2M),and B, < %. Hence &, is isomorphic to an algebra belonging to .‘(x }»ej It then
follows from Lemmcl 4.1 that o ¢ M(/7,$) ThlS completes the proof of the lemma.

For any n>1/ let us define the following formula:

«(m =V o (p«p).
Iﬁa<1sn+/

LEMMA 4.4. Let % be a completely connected (CC) TBA; then
<(n)e M($) = F<nr.
Proof. If $=< 2 , then evidently «m)eM(4). If &> n, it is possible to interpret all the variables
« (1) as distinct elements of & . Then every disjunctive term of the formula « () will differ from 1, and

by virtue of the completely connected & the () will not be equal to 1 in this interpretation, i.e., «(n )¢
M{&£) . This completes the proof of the lemma.
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Remark. Any subdirectly indecomposable TBA is completely connected [9].
LEMMA 4.5, A logic M will be tabular if and only if there exists an 7 such that «(7)e M,

Proof, Let M be tabular; then there evidently exists an n such that «(n) e M. Now let «(nje M.
It follows from Lemma 4.3 that M= M ('/77 &%, ), where the &; are subdirectly indecomposable and pairwise

"nonisomorphic. Since «fn)e M, it follows (by virtue of Lemma 4.1) that «(n) € M (%) for any ieJ. From
Lemma 4.4 it follows that the &; are finite and ,Yr < n. Since there are finitely many such pairwise-non-

isomorphic &, , it follows thatM M(%, x..x%b, ), where &; < n (ie {#,...,«}). This completes the
proof of the lemma '

THEOREM 7, Let 4 be a finite TBA. Then:
1)if M 2 M(%), then M will be a tabular logic;
2) there exist only finitely many extensions of M (%) .

Proof, 1) folloWs directly from Lemma 4.5 and 2) follows directly from Lemmas 4.3 and 4.4.
THEOREM 8.* Let 4 be a finite TBA; then M (%) will be finitely axiomatizable,

Proof. By virtue of Lemma 4.5 there exists an 7: «(n)e M($), Let M (%) = ”} ey Letus define
a set of formulas {ﬁn}ne/\/ PPy s (n)be b, .. B, It is evident that [ {/5,,},,”/] M%), If
M(¢) is not finitely axiomatizable, then there exists for any A, a p,px such that B X S, +x* Letus
inductively construct { ¢, }, .y : /,= f35if J,-, hasbeen constructed, then J,_, = 5, and there exists
a By suchthat g e 8, ;then we takey, = 5,, ...

By virtue of Lemma 4.2 there exists for any /, a subdirectly indecomposable &, such that f, e #
($,), fnis & M(&,) . If n>m , then &, is not isomorphic to &,,, since 4, e M($,) and J, EMg ).
Hence there exists an infinite set of nonisomorphic subdirectly indecomposable TBA such that «(n) is true

_on them. But according to Lemma 4.4 there exist only finitely many such TBA. This is a contradiction, and
it completes the proof of the theorem.

Now let us strengthen this theorem by explicitly writing out the axiomatization of the logic of finite
TBA by using Hosoi's method {12].

THEOREM 9. Let % be a finite TBA; then it is possible to effectively construct a formula 6(%)
such that

[0(%)]=ML).

Proof, Let i&|={s..,4). By $ & &, we shall denote a set of formulas all whose variables are
contained in the set /= {p, yeessPrl e Let us erte F={3l p”, it is evident that F is finite. Let us fix an
fe F and denote by ,t an interpretation of formulas from ¢> into 4 that continues f. # &,— 15| .

It is evident that 7" (4’ ) is a subalgebra of the algebra & that coincides with the subalgebra of the algebra
& generated by the set £(7,/.

Let us introduce a function that maps 7?(‘?5 ) into @ as follows. For any ¢ f’_(qb ), x4 7 letus

specify at first a formula .133‘{ (p,... py) € P, such that fﬁrf(/’v )=z Forany zef (®,) let us now
define a «7{ f(P,)—&,:

ﬁr‘f (/Dji"Pﬂ) ’ if ‘r#/,

() =
ki (p,—p,) » if. x=1,

*It was shown by D. M. Smirnov that this theorem follows also from the theorem on finite bases of a finite
algebra that lies in a variety of algebras with distributive congruence lattices [18].
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We have
‘77(57: (x) = T . (%)
Let us define the following formulas:

“f = :/?,-8:/%, Cop (£ Py =)

Hf (_—Jefmf’) V(@ gy (V)
<o T b, (9 (3 o gp (2],

T 1C a_gef@)if (w&y) =g (=184, (),

Xf = D(ocf(=)&°<f(~)&“f(u)&“f(&))’
o) == (f\E/F Jg) &ec(n),

Let us prove that [8($)] € M(#), i.e., #(8) e M) . Let ¢ be an interpretation on % ; then cp/¢ =f,
‘where fe 7. In this case f(/f)=l by virtue of (*), and hence 5p(jf )= 1. Thus, ¢ V /f ) = ¢ for any in-

terpretation ¢ on %, i.e. > V )’f eMg). Ttis ev1dent that < (n) € M ($); therefore 3‘ ($)e M($). Let

us prove that M (&) < [J (.‘6)_1 , i.e., for any formula «<e M (%) we have J($)=«. At first let us consider
the case (a). All the variables belongmg to « occur in lg .

LEMMA, For any fe 7 and any formula 2 (p--.py) belonging to 9"’0 we have

Jg 1= (plprp) =8 (pf oy fig))

Proof. At first we shall assume that g (p, ..., ) does not contain logical connectives other than
~,&, 0. For such g(p,...p,) it is easy to prove the lemma by induction on the length of 4 by using the
substitution theorem for 54, the relation (¥), and the form of the formula J; . It remains to note that any
formula is equivalent in 54 fo a formula that contains only the connectives &,~, o . This completes the
proof of the lemma.

In particular, we obtain Jlf = < (p, "‘/’/z)“"}f (o¢ (f(/o’),../%)). But «< (B ..-pal€ M (&), and hence

X (f(p,) - of (BN=13 but in this case, g (oc(f‘ (p,). f (L) = p, —p, We obtain: /f - ec(,o,...g)#
= (p, —-p,), l.e., ’)’f = <(p--,) - By virtue of Lemma 1.1 we obtain — u(/f. —x (P, .. G Le,
B Jp <P Py) (since |- DX{-‘ <Y ). Hence we have: {7-: V= (p...p,): and hence
<(p...p)e [é\ (£)]. Thus we have proved the assertion for the case (a).

Now suppose that « depends on the variables Gpore Gyt L= (7,--'% ). We shall define the following
set of mappings: _G={9/5: {y,...gx}-—» {p,. Pn }‘], it is finite. For any ge & let us define ﬁ ==
< (g(9,)..- 9(g,). X (g g = ﬁy , and hence « ’;uaés.\.@?. Let us write B (p,... 7, —92366‘6
B(p,... p) € M(S); hence by using the proof for the case (a), we obtain J(8)= B(p,.., P,). Let us prove-
that «(n), B(p,...5,) Fx@g..9). Suppose that this is not the case; then there exists by virtue of Lemma

4.2b a subdirectly indecomposable TBA &, such that M (%,) 2 [x(r), B(g,...,2, )],e((g, €M,
Hence there exists an interpretation ¢ on £ such that «( 90(5, <p(gK # /. By v1rtue of Lemma 4.4
we have .,25 =n,ie,lg,| ={g, ..U}, ¢<n . Letus define g,c & as follows:

9., = £ o 1 pGp=
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Let us take an interpretation ¢, of #, into &, defined as follows:

%(Pﬂ={”ﬂ' SIS AT ZURT 2

J, otherwise.

Then 50,/35,, = ¢lx (71'7' 9k N#£ A1, e, fa’$¢ M%) is a contradiction to B (p,...p,) € M(%,). Hence « (n),
Bp, ... pYELG..q), but in this case 8(%) = «(g,...g,). This completes the proof of the theorem.

LEMMA 4.6. For any nontabular logic M there exists a pretabular logic M, such that = M, .

Proof, Let us use Zorn's lemma. Let {M} e g be a chain in which all M; are nontabular logics,
M;2 M. Then )e/glvﬂ':égg% (since {M;},cg is a chain). &E\{7 M, is not tabular, since otherwise there

exists by virtue of Lemma 4.5 an 7 such that «x (22} e“\/‘7 M&'; but in this case there exists an i such that
«(r) € M; ,which contradicts Lemma 4.5.

LEMMA 4,7. Let M be a pretabular logic, M= M (%), where &% is a subdirectly indecomposable TBA
that has an infinite set & (%) . Then p (M) will be pretabular.

Proof, p(M)=[,G (%) (Lemma 3.5). Letus prove that L& (%) is pretabular,

1, L@ (%) is not tabular. Indeed, &% is subdirectly indecomposable; hence [9] it is completely con-
nected; but in this case ¢ (%) will be completely connected and have an infinite number of elements. If
LG (&) would be tabular, there would exist [12] an m such that

Am) =V (g=p)elt(s).

1&(< l'e miyd

Hence A(m) = { on G(&) for any interpretation. But &(&$) is infinite, and hence all the variables A (m)
can be interpreted as distinct elements of &(&): but since & (&) is completely connected, it follows that
A(rm) = 1, which is a contradiction. Hence 4§ (&7 is not tabular,

2. LG (&) 1is pretabular. Kuznetsov has proved that any nontabular superintuitionistic logic is con~
tained in a pretabular superintuitionistic logic; therefore L& (%) < L, where / is pretabular. It follows
from Theorem 6 that p is a homomorphism "onto," and hence there exists an M, e X : p(M,) = L and
P MYM,)=p (M)vp (M, )=L68)vL=L. Hence MVM, is not tabular [if ¥ is tabular, then p (M) will be like~
wise]. We have: MV M, is not tabular and MVM, 2 M ; hence MvM, = M; but in this case pM)=
pMy M,)= L, where L is pretabular, This completes the proof of the lemma,

LEMMA 4.8. I # is a pretabular logic, M= M (%), where 4 is subdirectly indecomposable and & (%)
is infinite, then there exists an infinite set of tabular logics containing M .

Proof, It follows from Lemma 4.8 that p(M) is a pretabular logic. Hence according to [6] there
exists a countable set {.,} ,.n of tabular logics containing o(#). Then the logics s (L,) will be distinct
by virtue of Theorem 5. ¢(L,) 2 ¢(p(M)) by virtue of (P3),83,and & (p (M) 2 M by virtue of (P7),
§3; hence g ({Ly)2 s(p(M)2 M, and by virtue of Theorem 5 we have & (4, ) #* G (p(M) 3 hence all 5 (4,) are
‘tabular and distinct, and they contain # . This completes the proof of the lemma.

LEMMA 4.9, If Me# and p(M) is tabular, then M will be finitely approximable.

Proof, Let <cd M, x=o (5, ... ); it then follows from Lemma 4.2 that there exists a subdirectly
indecomposable TBA % such that M (%) 2 M and <& M (&%) - By virtue of Theorem 6, p is a homorphism,

and hence p(M) = p (M (%)), '/9 (M) 1is tabular: hence [12] there exists an A(r) = V (p,=p;) such
’ . 1si<jentl 1

that A(n)e p(M). In this case A(n)ep(M4)) and from Lemma 3.5 it follows that p (M ($) = LG(B) . %
is completely connected, and hence £(%) is also completely connected. Since A(we LG (%) and G (%)
is completely connected, it follows (as in Lemma 4.7) that G(%)en . <€ M($), and hence there exists a

p: {pﬂ_,,,pﬂ}—*‘ & such that « (qpk,o,)...;o(pﬂ ))7é 1o {9(p) ., ¥ (5, NJubls) = %, and by taking the closure
of this subset under Boolean operations, we obtain a finite Boolean algebra &, ([7], P. 2.3). Let us note
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that &, is closed also under o, and hence it will be a subalgebra of the TBA & generated by the set
{9(0)n PP} UG (). Hence M($) 2 M($) 2 M,x(p...p,) § M(L,), since < (¢(p,)... pip)F 1.
This completes the proof of the lemma.

COROLLARY. If M= M(%) and G (%) is finite, then M will be finitely approximable.

By virtue of Lemma 3.5 we have p(M/= ,( (%), and hence p (M] is tabular; in this case it follows
from Lemma 4.9 that M is finitely approximable,

THEOREM 10, Pretabular modal logics are finitely approximable.
Proof. Let M be pretabular. It follows from Lemma 4.3 that ¥ = /\J M (%;), where the &d are sub-
E— i€

directly indecomposable and M(%;) 2 M for any ;e J. If there are no such &; sothat & (&) is infinite,
it follows from the corollary of Lemma 4.9 that all M (%;) are finitely approximable, In this case M will
also be finitely approximable. Let us assume that there exists a &, such that & (&;) is infinite. Then
M(,‘éb.) 2 M and from Lemmas 4.4 and 4.5 it follows that M (%;) is not tabular, and hence M(&; )=/, i.e.,
M (&) is pretabular. It then follows from Lemma 4.8 that there exist infinitely many tabular logics con-
taining it, i.e., {Mn}, .y .ne/l” Mn 2 M(%;) and ”é\ﬂ Mn is not a tabular logic according to Lemma 4.5

and Lemma 4.3, Hence M(:{}L)=”AN Mn , i.e., M(&;) is finitely approximable. But M($,)=M. This com-
€
pletes the proof of the theorem.

We shall say that a logic is an immediate predecessor of a logic M if it is maximal in the set {MD/
M,e M, MEM, MH%M}.

LEMMA 4,10, If M is a finitely axiomatizable logic, M, M, M,# M, then o, will be contained in a
logic which is an immediate predecessor of M .

The proof is based on the use of Zorn's lemma.

COROLLARY. If M is a tabular logic, M, # M, M, M, then M, will be contained in a logic
which is an immediate predecessor of M.

It follows from Theorem 8 that M is finitely axiomatizable.
Now let us prove the following theorem:

THEOREM 11, Modal logics that are immediate predecessors of a tabular modal logic are tabular
logics.

Proof. Let M be a tabular logic other than &, , and let M, be an immediate predecessor of this
logic. We shall assume that M, is not tabular; it then follows from Lemma 4.7 thatthereexistsa pretabular
logic M, suchthat M,c M, . Hence M, cMaM,cM. Tt follows from Theorem 10 that W, is finitely ap-

. proximable; hence M’ié\gM(i’@)' where the .,955 are finite TBA. By virtue of Lemma 4.5 there exists an ~

such that «(7) ¢ M ; since M, 1is not tabular, it follows from Lemma 4.5 that «~7) ¢ M,. Hence there
exists a B, suchthat «(7)¢ M'(&l;). In this case M, < M($,)AM < M, but MG )aM# M, since <(me M
and «<(n)¢ M($;) AM. M, is an immediate predecessor of the logic M ; hence M (L )IAM = M,, l.e.,, M,
is tabular. This completes the proof of the theorem.

COROLLARY. There exists an algorithm which recognizes according to any finite TBA % and a
finite system of formulas «;,,...,x, -whether or not the equation [x,,....«,] = M(#) holds.

Let % be a finite TBA and let «,.. ..,x, be a system of formulas, «x = ~, &...& «,. Let us check

whether the formula # istrueon o« . If S I o, then Coc] = M ($). Otherwise we shall proceed as fol-
lows. Let &,.4,.... be finite TBA, By virtue of Theorem 9 we can effectively write down their axioma-
tizations J(%,), ¢ (4,),... and the axiomatization of % , namely J(4). Let us apply an algorithm which
derives from « all possible corollaries and an algorithm which checks: a) Sk & (1}5) , b) ;(r‘,;|= 8(8),

and ¢) &k «. It follows from Theorem 11 that either we find at some step of the first algorithm that 5§}
_is deducible from « , or we find at some step of the second algorithm that &= §(£), £, 5(%), & =«

In the first case we have [«I=M(%), and in the second case C[«wl+ M (%) . This completes the proof of the
corollary.
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, The maximal logic in the lattice M is é‘;, » which is an absolutely inconsistent logic whose only im-
mediate predecessor is the logic K o=[p>0p]. Let us examine how many immediate predecessors the
logic K, has, and which logics they are. We shall consider two TBA:

6b,=<B; &, ~,~,0,: 1> and £,=<B;&.V,~, ~,0,; 1>, where B=~{0,a,6,1}; <B;&, VvV,
~;¢> is a Boolean algebra;

= f,oe=1
,x =1 ,
1:\1:c= / sz= a,r=a
0,1 g,x =0 or &=

It is evident that M (5,)# Ky . M (L)% Ky

Now we shall prove that M(%,) and M( &,) are precisely all the immediate predecessors of the logic
Kn ;. moreover:

THEOREM 12, Any element of the lattice /£ other than &, and &, is contained in at least one of
the logics M (%,) and M (5,),and M($,) £ M(SL,).

Proof, Let MeM , M# K, ,M#&, . We shall consider pM) X P (M) is a classical logic  ,
then M 2 Tp(M)=2(K)=85. Since Mc Ky, M + Kp » it follows [16] that M = M ($,) . Let us assume that
yat M} does not coincide with K ; it then follows from the relation P\M) £ B g that ja(M) S 48, where the
PBA Sz=<5;,&,v,:,1; 1> is a three-element linearly ordered PBA. Hence & < ap Mce U‘Sz J=M{4 (‘Sz))=
M (,‘52). The inclusions follow from (P7) and (P3) of 83 and from the corollary of Theorem 5. Now we note
that M(b,)+ M($,).Indeed, ©p—~0op is true in .5, but not in B, whereas <©o(p —pp) is true'in
.,2’52, but not in ,Zv‘ . This completes the proof of the theorem.
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