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In this paper we study a family of modal proposi t ional  logics that contain the Lewis logic $4. An es -  
sential ro le  in this study is played by the mapping of an intuitionistic logic into the logic $4 const ructed  in 
[14]. The mapping T of the formulas  of proposit ional  calculus into the formulas  of modal logic used in this 
case makes it also possible to reduce the study of superintuit ionistic logics [5] to the study of corresponding 
modal logics.  A number  of resu l t s  in this field were  obtained in [10]. 

In the present  ar t ic le  we obtain further  re lat ionships  between a latt ice ~ of superintuit ionist ic logics 
and a family A~ of normal  modal  logics containing $4 which is also a complete distributive lattice. F i r s t  
of all we shall prove that the mapping of Z into .~ considered in [10] is a lattice i somorphism.  On the 
other hand, it is possible to ass ign to any modal logic /ge J~ a superintuit ionistic logic fo(M) consist ing of 

all the formulas  of proposi t ional  calculus whose mappings are  deducible in M. The logic G const ructed  in 
[17] differs from S4 and is such that p ( & )  = p ( 3 ~ ) .  Let us note that the family jo -1 (L) is infinite for any 

superintuit ionist ic logic g and that it has a minimal  and a maximal  element. Thus we have two monotonic 
mappings Z" and e f rom Y., into J /  and a monotonic mapping p f rom Jg into ~5 such that z- is a latt ice 

i somorphism,  p is a homomorphism,  and the following conditions are  satisfied: 

°'c = 2e = ~ ~. z2 - ZZa . ,  ep .  

The obtained relat ionships  between Y~ and ~5 make it possible to apply the resu l t s  re la t ing to the 
lattice ~ in a study of the latt ice ./g of normal  modal  logics.  Let  us note that the family .~ of super in-  
tuitionistic logics was studied by numerous  invest igators ,  for  example, in [1, 2], [4-6], and [12, 13]. With 
r ega rd  to the family A~ , it has been mainly studied up to now with r e spec t  to its individual represen ta t ives  
and some of its subfamilies.  In the last  section of this paper we shall consider  tabular modal logics,  i.e., 
sets of formulas  that a re  valid in a cer ta in  finite topological Boolean a lgebra  (TBA). In par t icular ,  we 
shall prove that all  of them are  finitely axiomatizable and that logics direct ly  preceding tabular  logics a re  
tabular .  As a co ro l l a ry  we obtain an algori thm that makes it possible to ascer ta in  on the basis  of a finite 
TBA ~ whether a given formula  is an axiomatizat ion of the TBA logic .~r. 

The methods used in this paper are  p r imar i ly  a lgebraic .  We shall extensively use a theorem on com-  
pleteness of modal  logics with r e spec t  to appropr ia te  var ie t ies  of topological Boolean a lgebras .  The resul t s  
of §§1, 2, and 4 were obtained by Rybakov, and those of §3 by Maksimova.  

§ 0 .  D e f i n i t i o n s  a n d  P r e l i m i n a r y  R e m a r k s  

The set of formulas  of proposit ional  calculus ~ j  is a set of formulas  constructed with the aid of the 

proposi t ional  var iables  Pl 'Pz  . . . .  and the logical connectives &, v, ~ ,  ~. 

A -  B ,~- (A ~ B )  & ( 2  ~ A). 

The set of modal  proposi t ional  formulas  ~ M is a set  of formulas  const ructed  with the aid of the 

proposi t ional  var iables  P~.Pz , " "  and the logical connectives &, v , ~ ,  ~ ,  ~ (where o is a unary logical 
connective denoting "necess i ty") .  

, ~ . , - , p ~ ( ~ - . . p ) ~ ( p ~ . ¢ . . ) ,  ~ - - - . ~ ~ ~ ~ .  
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In the following, the le t ters  ¢,,/s,~,a ~ .... will denote formulas  belonging to ~ . . ,  whereas  the le t ters  

A,~,0 denote formulas belonging to g3 s .  
~ 7  

A normal  modal logic is defined as a set A/___ ~b M such that M contains all the axioms of the logic $4 

and is closed under the following deduction ru les :  1) substitution, 2) ~,cc ~ ~ and 3) 
' l : / ~  

If  / ~ - ~ M  , ~ e  ~ ¢ , t h e n  F ~  ~c signifies that from T we can deduce ~ with the aid of the deduc- 

tion rules  1, 2, 3 and the axioms of $4, whereas F~-~ signifies that from /" we can deduce ~ with the aid 
of the deduction ru les  2 and 3 and the axioms of $4; 

If : ' ~  ~y , A ~ ~ ,  then T ~ A will signify that from F we can deduce / with the aid of the substi tu- 

tion rule ,  modus ponens, and the axioms of the intuitionistic proposit ional calculus ff , whereas 7' I--~ A 

signifies that f rom P we can deduce ~ with the aid of modus ponens and the axioms of intuitionistic 
propositional calculus;  

The set  of all normal  modal logics ~ is ordered by inclusion and it fo rms  a complete  lattice with the 
operations 

v = = 
/,~.J 

The definitions re la t ing to superintuitionistic logic s and their  semantics ,  i.e., to pseudo-Boolean al-  
gebras  (PBA), can be found in [1, 2, 5, 7]. 

tn  the following we shall denote a PBA by the let ter  0/ (if necessary ,  with subscripts) ,  super in-  
tuitionistic logics will be denoted by the letter Z (if necessa ry ,  with subscripts) ,  a lat t ice of superin-  
tuitionistic logics will be denoted by ~ ,  and the PBA logic ~ will be denoted by L 0b . We shall stipulate 
that the fact that formula A takes the value I for all the interpretat ions on the PBA gZ will be expressed  
by the relat ion ~ ~ A. 

A PBA ~ =  <.~;&.V,m,-~; ~> is said to be completely connected if f rom a e ~ ,  bee .,~, and ~ v ~ =  ! it 
follows that either a = /  or ~ = ! . 

A topological Boolean algebra (TBA) is an algebra 26 = <  j~;  &, V,----, ~ ,  n ; ¢ > such that < ~ ;  &,v, 
~ , ,~ ; / )  is a Boolean algebra,  and the operation s (the interior) satisfies the following condition: for  any 
a, 'e 

n a ~ a . , D ~ z  = o~, [ : r ( a , & g ) ~ , o ~ z &  t a [  , o¢~¢, 

• We shall denote a TBA by the symbol dr- (with subscripts ,  if necessary) .  ~ is said to be completely con- 
nected if from a , ~ e  .~ and a , z V a ~ = ¢  it follows that a = ¢  or { = ¢  . The power of the TBA 25 w i l l be  
denoted by ~ .  

A formula ~ cPT,'.',/gn ) is said to be t rue on ,~ (26 ~ ) if on 26 we have a t rue identity ( V~ ) . . .  ~ Vxz ) 

The TBA .~ is defined by the set 

It is evident that ~4(~) ~.4~. It is well known ([14], Theorem 3.6) that for any Me~/ there  exists a .~ such 
that M = M[,.~) • M is said to be tabular if there  exists a finite ~ such that M=M(,.~),  and nontabular other-  
wise. Logics that are  maximal  in the class  of nontabular logics are  said to be pretabular .  A logic M is 
said to be finitely approximable if it can be represen ted  by an intersect ion of tabular logics.  
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Between the la t t ice  ~ of modal  logics  and the la t t ice  of all  TBA va r i e t i e s  there  exis ts  a dual i s o m o r -  
ph ism,  i .e. ,  to any ~ e  ~ we ass ign  a va r i e ty  defined by the identi t ies ~=~/~ ~/g}. 

S E C T I O N  1 

Our next a im is to p rove  that  ~ is a d is t r ibut ive  lat t ioe.  But at  f i r s t  we have to p rove  a number  of 
spec ia l  r e s u l t s  that  a r e , h o w e v e r ,  a l so  of in t r ins ic  in te res t .  

LEMMA 1.1. (Deduction theo rem for  $4). I f  ? - ~ 5  , ~' ,~ ~-- /~ , then  ]" ~- r ~ - ~ / ~ .  

The proof  is based  on induction on the length of the deduction. The following l e m m a  is ea sy  to prove.  

LEMMA 1.2. If ,c~ . . . .  ,~m ~ ] ,  then the re  ex is t  ~ y . . .  ~ . . . .  ,% ,~ . . .  ~rn~m such that  any ~g'i can 

be obtained f rom ~ ]  ( t ~ ] ~  m) by a subst i tut ion and ¢ ~ ,  . . . .  ~ %  .. . . .  , ~ r , ¢ , . . . , ~  ~-  0 ¢, 

LEMMA 1.3. If  ~ ,  ...,¢~a ~= ~ and % , . . . ,  ~ a  do not have common  proposi t ional  va r i ab l e s  with /~ , 
then 

s%v~ . . . . .  o ~ . v p  ~ -  ~'v~. 

Proof .  At f i r s t  we shal l  cons ider  the case :  

1. ~ ,  . . . .  ,¢~ ~ ~ , i .e. ,  ~ is deducible f rom ~ , . . . , ~  without the subst i tut ion rule .  

It  then follows f rom L e m m a  1.1 that  ~- ( ~ % - ~ ( ~ z  . . . .  ( ~ - - , - ~ )  . )). M o r e o v e r , ~ -  (~-~-  ( ~  

• .. (@n - - ~  )... ))-.- (~ v/~ ~- ..,-* (~ vp* ]~  (which is a fo rmula  deducible in c l a s s i ca l  calculus) .  Then 
~- (n~,v/~ . . . . .  ( ~ n V / ~  - - ~ v / ~ ) . , , )  , a n d h e n c e  

Now le t  us cons ider  the case :  

2. ~ , , . . . , ~ a  ~ ~ , and use  in the deduction the subst i tut ion ru le .  It then follows f rom L e m m a  1.2 
that  the re  exis t  ~ . . , ~  , - " , ~ ¢ ' " ~ a K  such that  ~].~ can be obtained f rom by subst i tut ions and ~ f f ,  
. . . .  . . . . . .  . . . . .  By using%e proof for case we have 

But ~ j  V/5 ~ D~j$ v/5 (since /5 does not have common  proposi t ional  va r i ab l e s  with ~j  ); then D~:IV,~ ..... 
n%~ vp mg v p. This  comple t e s  the proof  of the l emma .  

Let  us p rove  a t heo rem on the s t ruc tu re  of ax ioms  of in te rsec t ion  of modal  logics ,  

S imi la r ly  to [1] and [2] we shal l  define the concept  of unrepea ted  disjunction y l .  F o r  any fo rmulas  

~ , F  2 ( ~ , ~ e g ~ M  or  ~,~e~7~#) w e h a v e  r V t ~ = ~ Y F ~ ' , w h e r e  Fg t is obtained f rom FZ by inc reas ing  the 
number s  of proposi t ional  v a r i a b l e s  that  have an o c c u r r e n c e  in Ff by the m a x i m a l  number  of propos i t ional  
va r i ab l e s  that  have an o c c u r r e n c e  in ~ .  

THEOREM 1. If  Ml,~ze.]~ a n d M 1 = [ 6 ]  , M ~ = [ f  z ]  , then M,/~ M z = [ [ D ~ v ' D / ~ / ~ e ~ , / ~ e Q ] ] .  

P roof .  I t  is evident that  M T A M z ~ n ~  Vt~2p/~e~,pe~]~. 

Let us p rove  the  i nve r se  inclusion.  We shall  a s s u m e  that  ~ g M~ A A¢ z . Then the re  exis t  % , . . . , ~  e 

, /~ . . . .  ,/~m g Fz such that  % ..... ~n  ~ g,/% ..... Pm ~ g.  Let  N be the m a x i m a l  number  of proposi t ional  

va r i ab l e s  that  have o c c u r r e n c e s  in at l ea s t  one of the fo rmu la s  % .... ,~n,~ • Fo r  any K ( t ~  ~ ~- rn) let  us 

denote b y / ~  the fo rmula  obtained f rom / ~  by r enaming  of va r i ab les ,  m o r e  p rec i se ly ,  by rep lac ing  any 
va r i ab l e s  p~ by P~+N 

Then /3~, .  , / ~  ~ ~ (since /~  ~ ~K) " It follows f rom L e m m a  1.3 that  ~ Vm/~: ..... ~ V ~ / ~  ~--- t V ~. 
I t  a l so  follows f rom L e m m a  1.3 that:  
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Hence 

o '  ' . , '~ , . vo~>' . . * Ivo i" .  ~)vo~',...,~<,v~/~ ~lv A;.--; °%w~D,,'" 

s ince I v  1 ~ i "  But ,7~  V'Ofl~ ~Oa jvOp~;  hence 

V 1 i .e. ,  t ~ [ t ~ ~ ~ /~  ~ I",, ~ ~ r ~ ~ ] . This completes the proof of the theorem. 

COROLLARY. A family  of finitely axtomat izable  logics is a sublat t ice of the lat t ice .~ . 

It is evident that a union of finitely axiomat izable  logics is finitely axiomatizable° The in te rsec t ion  
of finitely ax iomat izab le  logics is finitely ax iomat izable  by vir tue  of Theo rem 1. 

Let  us prove  the pr incipal  r e su l t  of this section.  

THEOREM 2. The la t t ice  Y~ is a pseudo-Boolean  a lgebra .  

Proof .  It  is evident that we mus t  prove  only the exis tence of a r e l a t ive  pseudocomplement .  Let  
~,,M~ 7 ~ :rid M,::~'~. Let us daine a set ~ ~_ ~ :  

Let  us wri te  H--E.Z)3 and prove  that H, "~ M ~  H • We shall  p rove  that  M~A H ~ H~. Indeed, by vir tue  of 
T h e o r e m  1, 

For  any ~ / ' ,  we h a v e  ] e  ~ and o ~  v!o ] e b/z by vir tue  of the definition of ~ .  We have proved  that  all  

the a ~ i o m s  of the logic H~ A/~ a re  contained in Mz, and hence M~ A M ~ N2' 

Now let  us prove  that /d is a max ima l  e lement  of the set  

{M~/MoeJ~l , M, AMo ~ M z } .  

Let Moe ~ , M~A/~I~ a Me and M~=[A] . It follows f rom Theo rem l t h a t  IvI, AM o = ~ o , ~ V ' n 3 / . . < ~ Y ,  S e  
~ J ]  . For  any ¢¢e]', we have o~eZi.n~V ' ooze H 2. It then follows that  for  any 6~e/1 we have o ° e ~  by v i r -  

tue of the definition of ~D. Hence M~-[~3  ~ [ ~ 3 .  T h e r e f o r e  M~ m M e = M. This  comple tes  the proof  of 
the theorem.  

COROLLARY. The la t t ice  Jg is dis t r ibut ive.  

It  is well  known (see,  for  example ,  [7]) that any PBA is a dis t r ibut ive  lat t ice.  

S E C T I O N  2 

This  sec t ion  is devoted to p rob lems  of embedding var ious  la t t ices  and par t ia l ly  o rde red  se ts  in ~ ,  
and to other s t ruc tu ra l  p rob l ems .  Hosoi [13] has  introduced the mapping r : ~b  --.- ~M which is defined in- 
ductively: 

1) If  p is a proposi t ional  var iab le ,  then r (p)  = oF ; 

3) Y (A VB)  ---- T(A~ V r ( B ) ;  

4) r ( k  ~ )  --- n ( r ( k ) - ~ r ( ~ J ) ;  

5) r (7 A ) - -  n ( ~  r(A )). 
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LEMMA 2.1. Let  ~ e ~ j  ; t h e n  

t - -  z r (A) " - ' -  T(A) .  

The proof  is c a r r i e d  out by induction on the length of A • 

Fo r  any / ~  ~ ,  we have Y(Y}~ {T(~)/~eF}. Let  us define the mapping  ~-*A~ 

LEMMA 2.2. 1. ~:  ~ --~u~ is one- to-one .  

2. If A e ~  , F ~-~'~,then 

T ~ A  < > ;" (F ' )~= 7"(A). 

The proof  follows d i rec t ly  f rom T h e o r e m  1 of [10]. 

COROLLARY. ~g has  the power  of the continuum. 

I t  is  well  known [8] that  ~ has  the power of the continuum. 

THEOREM 3. The mapping ~ • J~ - - - , -~  is  a la t t ice  i s o m o r p h i s m  - ~ - that  p r e s e r v e s  infinite unions. 

Proof .  By vi r tue  of L e m m a  2.2 it is only n e c e s s a r y  to p rove  that  • p r e s e r v e s  opera t ions .  At f i r s t  

we shall  p rove  that  

r ( L , ^  L~ ) =  EF (d,,^L z )J , "~(/',)A'~ (Zz)= E T (L,)J ^ ET (G )]. 

It  is evident that  ~r (l,~/t L z )-] ~ ~r(z,)-] ~ E T(Lz ) J .  Let  us p rove  the inverse  inclusion. By vi r tue  of 

T h e o r e m  1, 

I f C e r G , ) ,  ~ e T ( ~ z ) , t h e n  ~ z  TfA), ~ T ( B ) , w h e r e  AeL~,  B e L  z . Then AVIBeL, and AV~B6L2, i .e. ,  

AV~Be/~,A L z . Hence T(AV~B; ---F(A)V~Tf2~)e T(L, A b z)  B u t i t f o l l o w s  f rom L e m m a  2 .1 tha t  FoT(~) ~-* 
• *-.-T(A), eo TOB) ~ T(,~). T h e r e f o r e  o T(A )VIOT(2~)e[TIA) VIT~)-J. and hence also o~..v~u/a ;._ ~T(L~ A Z,z )J . 

Thus all  the ax ioms  of the logic fir  (G) j  A E'7 (Z 2 )J a r e  contained in the logic F_T(L~ ̂  1~2 )j  , and 
hence [T(L~)J A ET(Lz)JC--[T(L~ALz~. We have proved  that  v p r e s e r v e s  in tersec t ions .  Let  us  prove  that  ~- 

p r e s e r v e s  infinite unions. 

2. ( VxL , ) (L,)  

We have 

Y 

ET{v E7 j)-], 

i t  is evident  that [ U X  ~T(L,)JJ  c - [ - T ( [ ~ L , J l ) J . _  Let  us  prove  the inve r se  inclusion. T(U,~,..,I::L,) is a se t  

of ax ioms  of the logic FT (~NZ,~J j  ~ by  vi r tue  of L e m m a  2.2. But T ( f ~  L5 - ) ~[Ue~[T (L•)Jj, and t h e r e -  

fo re  

Th i s  comple tes  the proof  of the l emma .  

COROLLARY. a) In Jg it is poss ib le  to i somorph ica l ly  embed any finite d is t r ibut ive  la t t ice .  
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b) In ~/ it is possible to i somorphical ly  embed any countable par t ia l ly  o rde red  set. 

c) In J~ it is possible to isomorphical ly  embed a f ree  distr ibutive lat t ice of countable rank. 

This follows from s imi lar  r esu l t s  for  Z [1, 2]. A set  of formulas  ~ , ~ 2 , ~ 3  . . . . .  ~a . . . .  is said to be 

superindependent if for  any natural  numbers  ~~, ~, ~, ..... ~,~,/ ,  , . . . ,J,-n such that tL~,...,~a} f) {]~ ..... ¢mi = ~ '  
we do not have ~ ~ . . .  &~i~ ~ ~ ~ ¢ '"  • Y ~d'~ " Such a defimtion of superindependent modal formulas  

is s imi lar  to .the definition of superindependent formulas  of intuitionistic proposi t ional  calculus [1, 2]. As 
in [1], it is possible to show that a set  %,~z .... is superindependent if and only if the logics [-c5] ~'E<z] . . . .  
generate  in ,~  a f ree  distr ibutive sublatt ice in which they constitute f ree  genera t r i ces .  

LEMMA 2.3. The re  exis ts  an infinite set  of superindependent formulas  { ~  } ~ eN ~ gal, 

Proof .  The re  exis ts  an infinite set of superindependent formulas  lAst hen  ~- ~,7 [2, 1]. Gerchiu [1] 

has shown that {An }aeN ~ gbff is superindependent if and only if [Aa] y (a e N) generate  in ~ a f ree  dis- 

tr ibutive sublatt ice ~ in which they a re  f ree  genera t r i ces .  It then follows from Theorem 3 that v (F) is 
a f ree  distributive sublatt ice of the latt ice ~ with f ree  gene ra t r i ces  ~ ([ ~z ]  ff ) fne N). Z IL-Aa] ~ ) 

IT ([A~] ~ ) ] . By vir tue of Lemma 2.2 we have L-r ( [ A ~ ] g ) ] - ~ [ ; "  (A~)] • Hence the [% (An)] (nell) are  

f ree  genera t r i ces  in v(~=). It hence follows from the r e m a r k  preceding the lemma that t 7 (At)} a e ~ is 

a superindependent set  of formulas .  This completes  the proof of the lemma.  

COROLLARY. There  exis ts  a continuum of modal logics with axiomatizat ion from an infinite set  of 
superindependent formulas  that a re  not finitely axiomatizable.  

It suff ices to take logics genera ted  by infinite subsets {O~n) a~.N • It is evident that they will be dis- 
t inct and not finitely axiomatizable.  

LEMMA 2.4. Let  ]~,M2¢ Jg and ~ t  3~ ,/14 z ~  3 ~ ; t h e n  M, A54z ~ 34 . 

The proof  follows di rec t ly  f rom Theorem 1 and the a s se r t ion  XL 9.5 of [7]. 

THEOREM 4. The lat t ice Jg does not have atoms.  

Proof .  Suppose there  exists  an atom M, hf ~= ~ . 

We shall consider  the c lass  

K --~-~{ .f~ / ~ i  is a finite TBA}.  

It is well known [111 that /5/( :h& ) ?~ S~, M (~g)  --~ 34. 

Let  us prove that M ( , ~ )  ~ 54. We have /14A Ad(,Z-i)~M and by vir tue of Lemma 2.4 we have 

MA M ( ~ i J  ?~ 84 ; hence M(,g" i ) A / d = / g ,  i .e. ,  M(,Z~)~M. We have proved that for  any .~g 6 K we have 

hence M. On the other hand, = by virtue of XL 9.1 of [71. Hence 

2J = S~ ; we have a r r ived  at a contradiction.  This completes  the proof  of the theorem.  

S E C T I O N  3 

In this section we shall study in detail the connection between superintuit ionist ic and modal logics 
expressed  by the re la t ion 

('~A £ ~,7 ) ( L  ~--- . T A ~  541=' T (A))~ (T) 

For  this purpose we shall examine cer ta in  re lat ionships  between PBA charac te r i z ing  the super in-  
tuit ionistic logic Z and TBA charac te r iz ing  54 if L and A~ a re  connected by the re la t ion  (T). 

Let  us r eca l l  ([7], IV, 1.4) that to any TBA $=<J~:  &, ~ , , , , , o ;  ,,> the re  cor responds  a PBA 

(1) 

defined as ~ l lows :  
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( ~ )  is the s e t  of all open elements  of the algebra .Z ~, i.e., G ( ~ )  = ~ x / x e  ~ ,  n x = x }  ; 
( 5 ( 2 ) ;  ,~, v;  ~> i s a s u b a l g e b r a o f  < ~ ; ~ .  v ; i > ;  

- ~ x  = ~ ('-' =) .  

The relat ionship between truth in .~ and in ~ ( ~ )  can be expressed  by the following: 

LEMMA 3.1. For  any TBA ~r and any formula  A ~ ~5 we have the equivalence 

LEIVIMA3.2. Let ~ = < ~ ; & , v , - - % " ~ , ~ r ;  f >  b e a T B A ,  let ~ = < . ~ , & , v , ~ , - ~ ; 4  > b e a s u b -  

algebra of the PBA ~ (~-), and let ~ ~ < ~, ; &, v ,-~, - , ,  ~ ; ~ > be a subalgebra of the TBA 2~r generated 

by the set  ~ . Then: 

a) S~ is the set of all e lements  of the form 

where a 7 . . . .  ,~n,6~ . . . .  ,6  a e - ~ :  

b) G C . ~ . )  = ~ , .  

Proof .  It is evident that <~r ;&,v;¢)  is a sublatt ice of the latt ice ~ /3 ;  & v ;  ¢> . Therefore  the set  
~2 of all e lements  of the form (*) const i tutes  by vir tue of ([7], P.  2.2) a subalgebra of the algebra < ~ ; & ,  
vT,  ~ ,  ¢ > generated by the set ~ with the aid of &. v,-~, ~ .  Now let us note that for ~c of the form (*) 
we have 

and hence D x • ~41 . There fo re  ~2 will be c losed under the operat ion D and hence it coincides with .~, , 
whereas  G (y3,) = .~ • 

Now we shall ass ign to each PBA ~ a topological Boolean algebra d (~) const ructed  as follows. Let 
S cZ be the Stone space of all s imple f i l ters  in ~ and let the sets  

 ca) = t /a¢¢eScz} (2) 

for a ¢ ~ ,  form a bas is  of this space.  The mapping ~ is an i somorphism into the a lgebra  G (./,"3 (S~ ) )  , 
where 

(S~)=< p ( s a ) , a , v , - ~ , ~ ,  ~ ;~ > (3) 

is a topological Boolean a lgebra  of all the subsets  of the space S~, the operat ions &, v, ~ a re  defined as 
intersect ion,  union, and completion respec t ive ly ,  X -.-Y = ~ X V Y,¢=$~. and D is the operation of taking 
the inter ior .  

Let us denote by 

(4) 

a subalgebra of the a lgebra  3 ( 3 . 5  ) generated by the set  ~ (~).  By virtue of Lemma 3.2 we have 

(5) 

It is evident that if g ~  C£,, then dCCZ) ~-- C(CZ 1) . 
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LEMMA 3.3. Le t  ~ b e  a TBA,  let  2~ be a s u b a l g e b r a  of  .~r g e n e r a t e d  by  the s e t  ~ ( ~ ) ,  and le t  /~ 
b e a  h o m o m o r p h i s m  f r o m  g(JG) into 0~ . Then  t h e r e  e x i s t s  a h o m o m o r p h i s m  ~, f r o m  .~r, into g(C£), 

P roo f .  By  v i r tue  of  L e m m a  3.2, al l  the e l e m e n t s  of  ~ ,  can  be  r e p r e s e n t e d  in the f o r m  

x = ( , , ,a ,v~)~. . .~("a,v~n) .  (*) 

w h e r e  a , , . . . , a  a ,  i f , ,  . . . .  ~ e ~ ( ~ ) .  Le t  us  wr i t e  

% ca,; - c.-, ¢~. ca,),, ~ ~ (~,~ a . . . a  (.,, ~,~ C,z,,) ,, cA c~',, ~), (**) 

w h e r e  p is a Stone i s o m o r p h i s m  (2) f r o m  ~ into G (~3($~)), and ~ ,  Y , and ~ a r e  o p e r a t i o n s  in the a l -  
g e b r a  ~ ( $ g ) .  Then  ~ ( x ; e ~ ( c z )  fo r  ~ c e ~ .  

Le t  us  show tha t  fo r  x,  ~ • .~r, : 

Le t  ac~.# and 

2. ~ --  ~,oc, v d , )  ~ , . . .&  (~  c,,vd,,),  
w h e r e  c~ . . . . .  c m , d ,  . . . . .  dn~ • G ( . ~ ) .  By v i r tue  of d i s t r i bu t iv i ty ,  ~,(~c) can  be  e x p r e s s e d  as  a d is junct ion 
of a l l  p o s s i b l e  conjunc t ions  of  the fo rm 

3. & ..,¢~(ag} & & eh(ff;I , where Zuaq-{¢, .... . ] , . r o ] =  ~.  
,¢ ~ :¢ " 

Let  us  show tha t  for  any such Z , if, and any ~ ( ¢ ~ K - - m )  we have  in 5 ( a )  the inequa l i ty  

F r o m  (*) and 2 it fo l lows tha t  in the  a l g e b r a  ~ ,  

o r ,  in equ iva len t  f o r m ,  

gl, ~ & c~ ~ d~ v ~ro ~ • 

Since f)~. is  a h o m o m o r p h i s m  f r o m  G ( ~ )  into G(~(3~) )  , we have  in the a l g e b r a  6(J'°(Sa) ), and 

hence  in ~ 0 ( ~ a  ) : 

j%7 ,'~Z 

T h e r e f o r e  we have  in ~ ( 8at ) : 

 hcb, 

Since a U ~,~ ~o~). ~,~ c~ ~, ~'h (c~ ~, V~ (d,~) belong to ~{~).  we have proved the inequali~ 4. Hence fol- 

lows d i r ec t l y  tha t  ~, (~)~/~,  ([/). In p a r t i c u l a r ,  we find tha t  /~,(x) does  not depend on the  adopted  r e p r e -  
sen ta t ion  of ~c in the fo rm (*). 

Since by  v i r tue  of L e m m a  3.2 any e l e m e n t  X e ~l(C%) can  be  r e p r e s e n t e d  in the fo rm 

X - (~  ~(u,) v ~(g))a,. . .& C"~(,, ,)  v ~ ( ~  )). 
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where  a , , . . . ,  ~n, @ ..... ~ • Cg , t he re  ex is t  e l emen t s  az,... ,  a,~. ~,..., ~ e @ (2~) such that  a, =/~ (a,) ..... ~--- 4(a# 3, 
@-~/~(~) . . . . .  ~ -  /~(dnl, and hence X =/~,(~c) .  where  z = ( ~ a , v ~ ,  ) ,~. . .&(, , ,~v~}6 ¢Yo", . Thus ~, maps  

~Z~ into ~.(0~}. It  is evident that  

Next,  a 

~m. l i= l 

where  
z n j  = , z u ]  = t"  . . . . .  

~, x " ~i 

Hence 

6. h, ( , - ,  x ) = ",.-' 4, Ca: ) .  

F r o m  5 and 6 we obtain 

8. ~, (= --~ y;=% (~xvy;=/,,cx;--.- 4,(y;. 
Let  us show that  

9. •, ( o  m) = D ~ , ( x ) .  

In fact ,  for  an m of the fo rm (*) we have 

a/,, (~) = z ((~,~,~ (o,)v 9;,(g)t~....~(',,~/~(,~,,) v¢£ (d~)1)= 

(¢~ (a,~ ~ )  ¢tcg,))a. ~ ( ¢ / , c = . )  ~ ¢t (6 . ; ) )=  --_ .. ¢{~2 

LEMMA 3.4. Let  O~- Gir.~) . Then the suba lgebra  .~, of the a lgebra  ~ genera ted  by the set  0Z will  
be i somorphic  to the a lgebra  &(~). 

Proof .  By taking ~ in L e m m a  3.3 in the fo rm of an identity i somorph i sm of G (~Y) into CZ, we find 
that  the mapping  (**) is a h o m o m o r p h i s m  of ~¢  into a{&[) . Let  us  show that  ,{, is an i somorph i sm.  

Suppose that  ~v has  the fo rm (*), ~ has  the form 2, and m~ y . Then the re  exis t  r ] ,  and K such that  
Z u ] ~ { {, .... ~} ,  i n ~ =  ~ ,  t ~  ~ ~ and~ ~,~I & "~ a.~ &d~y " ~. q~ ,~ c~ v d,~. It hence follows that  in the a l -  

gebra  ~ ,  

Then the re  ex i s t s  ([7], I. 9.2) a s imple  f i l t e r  ~c~Sa: such that  e~&i& ~ ~ e ¢ ,  Je_r ai" vd~ f2 c_~. Hence 
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In fp ( '~ )  we therefore  have 

f ,, 

and hence in ~ ~ ;: ~ ~ ~ ~,~ ~*~,~ ~ ~-  ) ¢ ,,-, ~ ~'~1 v f, ~',~1, a~d consequently, ,+, ~:~ + ~, ~,;. This com- 

pletes the proof  of the lemma. 

Now let us const ruct  a mapping of the lattice J~ into ~ . To any modal logic M we shall assign a set 

~(AZ)---{A//A ~ ~ a n d k 4  ~ T(A)}. (6) 

From Lemma 3.1 we directly obtain 

LEMMA 3.5. /k; = ~(~) ~> o(M} = /_.,5(,.~r). 

In fact,  if M =  M(~), then 

Since for any logic ?d the Lindenbaum algebra "~M is a charac te r i s t i c  TBA, i.e., A4 = M(,Zve), it fol- 

lows that p(A/) is a superintuit ionistic logic. Thus p will be a mapping from 2~ into ~ .  

LEMMA 3.6. For  any logic AIe~  and any PBA E~ all the formulas  belonging to jo (/V) will be true 

in ~ if and only if there  exists  a TBA ~ such that M{~-) --~ A4 and ~ ~ 0 (~6 }. 

Proof.  Let  us reca l l  [4] that any superintuitionistic logic L is complete with respec t  to the var ie ty  
~Z of all PBA in which all the formulas  belonging to ~ are  t rue.  New let us consider  the c lass  

K -- {C~/3oYr (M(,,~r) ~ MandLg~G(~Z, ' ) ) } .  

At f i rs t  we shall show that o(]V) is complete with r e spec t  to the c lass  K , i . e . ,  p ( M )  = AL&~. 
, OI'£K 

If (Z E K then ZC~ ~ p(M) by vir tue of Lemma 3.1 and the definition of jo (hi).  Next, if p(A¢) ~= A, then 

M'~?'(A) a n d h e n c e 2 " ~ T C A )  for a T B A  .~ such tha t  A4(~) ~ A¢. Then G ( , ~ ) 6 K a n d & ( , ~ ) ~ : A  by virtue 

of Lemma 3.1. Hence jo (M) = A L ~ ,  and therefore  the c lass  K generates  the var ie ty  Ird~2(~). 
cl~K 

Now let us note that 

/-7 ~(~) = G(n ~), 

and therefore  the Car tes ian  product of systems belonging to K will likewise belong to K • It follows from 
Lemma 3.2 that any subalgebra of the algebra G(~I can be represen ted  in the form G ( ~ ,  ) for a suitable 

subalgebra My I of the algebra =~)-. If M (Xr/m M, then A4 (~r~) ~/V and therefore  K is closed under the 

operat ion of taking subalgebras.  

It follows from Lemma 3.3 and (5} that if MC,.Yr)_~M and ~ is a homomorphism image of & (-~), then 
M(~i(C~))~M and C~ ~ ~ C~t (~)J, i.e., K is closed with respec t  to homomorphic  images.  

It hence follows from Birkhoff ' s  theorem [3] that the family K forms a variety,  and hence K =  Tb/pCt~ ~. 

This completes  the proof of the lemma.  

Let us cons t ruc t  yet  another mapping 6 : J~ --,- ./g . Let L e ~C, By ~ (L I we shall denote a subset of 

9 ~  defined as follows: 
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o(Z) -- {~/(Ve~)(Lcz=-L -----> ~i(o~)~ ~ ) }  . (7) 

It is evident that ~ (L) e ,~. 

THEOREM 5. 
the proper ty  

For  any superintuit ionist ic logic L ,  ~ (/~) will be a maximal  modal  logic N possess ing  

Proof .  F i r s t  of all let us note that f rom Lemma 3.1 and formula  (5) it follows that 

for any A e ~:~.7" There fo re  

(T) 

~ ~A ~ aCoZ)~ T(A) (8) 

L ~  ~A ~ (Vc~)(Lcz~L~----->c~.~ :~A)<----) 

(Yc~ )(//OY, ~ Z, ==> &(~) )== T(A)k~-~g(L)I= T(A), 

i.e,,  (T) holds for / g=  0 (L) . 

Now suppose that the logic N has the p roper ty  (T). Then L =p(M). Let us a ssume that LOt ~ L • 

By virtue of Lemma 3.6 there  exists  a TBA ,~r such that M(,,~) ~-- M and C$ ~ G (~ r ) .  F rom Lemma 3.4 it 
follows direct ly  that M (~(~)) mM(~} m M. By vir tue of the definition of 6(L)  this signifies that /V/~ dCL), 
which completes  the proof. 

COROLLARY. If L = L ~ ,  then d(/-,) = M(cl (r_g)). 

Proof.  Let L = L ~ .  From the definition of 6 ( L )  it follows direct ly  that ~ ( L J ~  M(:l(o~)}. On the 
other hand it follows from (8) that 

and by vir tue of the theorem we have M ( ~ (&~)) c c~ (L). 

Thus we have a mapping jo; J}{ ~ .~ and two mappings ~ and d from ~ into J~, with 

M, c M z  2(M2L 
(P2) Z'CL, AL 2) = '~(L,) A E (/~2}, 

 :¢vzL = v 

(P3) L, ~Z,z. ~ o ( / , , ) ~  6 ( / - , 2  )" 

From the definition of p and ~ it follows direct ly  that 

(P4) 'Ep(M) c_ M, 

since all the axioms of ~/o (M) belong to M " It follows from Lemma 2.2 that for any L e J6 the logic 
A,i= '~ (L) has the p roper ty  (T); hence 

(P~) p ~' (L ) = L . 

(P6) p ~ ( L )  = Z, 

(PT) M ~ ,~.p (,,v/). 

It follows from Theorem 5 that 
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From (P6) it is evident that  ~ is one- to-one  and that 2 (A{)= J~. 

Now let  us find some m o r e  re la t ions  cha rac t e r i z ing  p and ~. 

THEOREM 6. a) ~ is a homomorph i sm of A/ into .Z that  p r e s e r v e s  infinite unions and in te rsec t ions ,  

b) a (  h Li ) = A 6 ( L ~ ) .  
~I ~eI 

Proof .  a) It  follows d i rec t ly  f rom (P1) that  f (.4 ,4{;)~_Ap(/g; ). On the other hand, by success ive ly  

using (P5), (P2), and (Pl) ,  P(4), and (P1), we obtain 

Next,  by success ive ly  using (P7) and (Pl) ,  (P3), (P6), and (Pl) ,  we obtain 

g¢I ~ ' 

b) by using (P3), (P7), (Pl), and (P6), we obtain 

o(oC L~) c A o(~,~)~_~,(A o(Zz~)~_o(A ,o%))=~(j~,_ ~ z ). 
~eI ieI geI 

Hence 

COROLLARY. a) I f  M is tabular ,  then o (M} is a lso  tabular ;  

b) if M is finitely approximable ,  then f (M) is a lso  finitely approximable ;  

c) if jo (M) is tabular ,  then M is finitely approximable ;  

d) if L is tabular ,  then 6(L) is tabular  and r ( L ) i s  finitely approximable ;  

e) if L is finitely approximable ,  then ~ (L) is a lso finitely approximable .  

Proof .  a) follows f rom L e m m a  3.5; b) follows from a) and Theo rem 6a; c) is the a s s e r t i o n  of L e m m a  
4.9; d) follows f rom the c o r o l l a r y  of Theorem 5 and f rom c), sincecov (L) = Z; e) follows f rom d) and Theo-  
r e m  6b. 

In concluding this  section,  let  us r e ca l l  that Grzegorczyk  [17] has c o n s t r u c t e d a  logic & e A~ that dif- 
f e r s  f rom $4 and i s  suchthat¢o (G) = p ( ~ )  = ~. This  logic can be obtained by adjoining to $4 the axiom 

It follows f r o m  (P7) that G ~ ~ ( J )  . In [17] it is shown that  S5 ~ G  • For  any consis tent  L~,L~e~ 
we the re fo re  obtain 6 (L 1) ~ ~ (L 2), s ince $5 = ~ (K), where  K is a c lass ica l  logic. It hence follows that  

~L) differs  f rom ~ (L} for any consis tent  ~ . Moreove r ,  we have the following 

ASSERTION. For  any consis tent  logic L the se t  p - r  (L} contains an infinitely descending chain. 

For  the proof  let  us r eca l l  [16] that  consis tent  logics that  contain $5 fo rm a s t r i c t ly  descending chain 
~, ~ ~ ~ M~ ~ ...; each of these  log ics  can be a x i o ~ a t i z e d  by one formula  ~ ,  i .e . ,  ~ = E ~ J .  Now let  
us consider  for any Z ~ ~Z the cha in  M / ~  Mz ~ __m M~ ~ . . . .  where  M:-~ ~ (L) A M~. We have ~ ~ G ~ 6 ( ~)~_ 
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6 ( Z ) ;  t he re fo re  ~ V ' o ~  e Ma ~ (see T h e o r e m  1). By using c h a r a c t e r i s t i c  TBA for  h4,+, [161, it is easy  

t o s h o w t h a t  ]?t Ma+t[17]andn~ v'~ ]~ 24~+/;henceM'a ~ M~.," Next,  K = f l ( 5 6 )  c_~o(M~); therefore 
(M a ) = g and )o (M')  ~ fla(Z) Aft (Ma)-L~K=I,. This  comple tes  the proof  of the a s se r t i on .  

S E C T I O N  4 

LEMMA 4.1. a) I f  {.~ } ~a# is a fami ly  of TBA, then 

b) if ~ ,  is a suba lgebra  of the a lgeb ra  ~ ,  then 

 4(x,z) c__ 

c) if ~ is a homomorph ic  image  of 25 z , then 

All th is  follows d i rec t ly  f rom the definitions. 

LEMMA 4.2. a) Let  M= M(23) ; then the re  exis ts  for  any ~ ¢ 34 a subdirec t ly  indeeomposable  TBA 
such that  ~ 9( ~/(.Z~r ), M (~5~) ~ M, and 0~ --~ .~r ; 

b) if / ' ~  9b~/ and ~ 9( [ f '3 , then the re  ex i s t s  a subdirec t ly  indecomposable  TBA ~ such that 
M(~)~[f'~ and Mr'k= ~ .  

Proof .  a) F r o m  Bi rkhof f ' s  r e p r e s e n t a t i o n  theorem [3, 9] it follows that  25 ~,ff/Xr6 , where  the db~ a re  
[ t  

subdi rec t ly  indecomposable  [3], and ~e#ff 25 i is a subdi rec t  product .  M (~e~$)~_ M ~%7(/7~) , s ince i~- ~ is a 

suba lgebra  of the a lgebra  /7 ~ . ~ ~ M ( $ ] ,  and hence ~c ¢ 3i (/7Z~). It then follows f rom L e m m a  4.1 

that  the re  ex i s t s  a 2#~ such that  ,, 4 M ( . ~ ) ;  M(:~) D_ M, since ~ is a homomorphic  image of 0~ (by the 

definition of a subdi rec t  product) .  It is evident that  "~i ~ ~ • As ~ we then take ~5~. This  comple t e s  the 
proof  of a). 

b) follows f rom a) if we take 26- in the fo rm of L indenbaum's  a lgebra  for i t 3  • This  comple tes  the 
proof  of the l emma .  

LEMMA 4.3. Let  M = M(~) ; then M= M(/7 ~ ) = i A  2~¢ (26z) , where  {0~} i e ]  is the family  of all  

subd i rec t ly  indecomposable  pa i rwise -non i somorph ic  TBA such that M (.~r~) m /Y and . ~  ~ ~_r. 

Proof .  It  follows f rom L e m m a  4.1 that  M (/7 25~ ) ~ M . Let  us prove  the inve r se  inclusion. Let  

~ 5 i .  By v i r tue  of L e m m a  4.2 there  ex i s t s  a ~,  that  is subdi rec t ly  indecomposable  and such that  oc 9( 
M (~5~) , M(~ , )~M~) ,  and .~, ~ .~_r. Hence 25, is i somorph ic  to an a lgebra  belonging to {25i3~e ] • It then 
follows f rom L e m m a  4.1 that  o¢ ¢ M ( ~ ) .  This  comple t e s  the proof  of the l emma.  

For  any a ~ t le t  us  define the following formula :  

LEMMA 4,4. Let  2dr be a comple te ly  connected (CC) TBA; then 

Proof .  I f  . ~ / z  , then evidently oc(~)eM(.~). If  ~ > t , ,  it is poss ib le  to i n t e rp re t  all  the va r i ab l e s  
,~ (~) as dis t inct  e l ements  of .i9. Then eve ry  dis junct ive t e r m  of the fo rmula  ~ (a) will differ  f rom 1, and 
by v i r tue  of the comple te ly  connected ~ the ~(:~) will not be equal to 1 in this in te rpre ta t ion ,  i .e . ,  ~ (a )~  
N(X~) . T h i s  comple t e s  the proof  of the l emma .  
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Remark .  Any subdi rec t ly  indecomposable  TI3A is comple te ly  connected [9]. 

LEMMA 4.5, A logic M w i l l b e  tabular  if  and only if the re  ex is t s  an n such that ~(n~ e M. 

Proof .  Let  M be tabular ;  then the re  evidently exis ts  an n such that  <~(n/e N .  Now let  ~cn) ¢ td.  

It follows f rom L e m m a  4.3 that  M =  M (/?~-~ ~, where  the ~ a r e  subdirect ly  indecomposable  and pa i rwise  

• nonisomorphic .  Since ~(n~ e M, it follows (by vir tue  of L e m m a  4.1) that ~(~]  e M C ~  ) for  any ~e~. F rom 

L e m m a  4.4 it follows that the d~ a r e  finite and ~ ~ ~z ; Since there  a r e  finitely many  such pai rwise-non-  

i somorphic  ~ , it follows thatM--  M (.6~ x. . .x  ~ ), where  ~-i -.< a (~ ~ {¢ .. . . .  ~c}). This  comple tes  the 
proof  of the l emma.  

THEOREM 7. Let  2ff be a finite T]3A. Then: 

1) i f  24 ~ M ( ~ ) ,  then ?d will be a tabular  logic; 

2) there  exis t  only finitely many extensions of M (.~) . 

Proof .  1) follows d i rec t ly  f rom L e m m a  4.5 and 2) follows di rec t ly  f rom L e m m a s  4.3 and 4.4. 

THEOREM 8.* Let  2- be a finite T]3A; then M ( ~ )  will be finitely axiomat izable .  

Proof .  By v i r tue  of L e m m a  4.5 there  exis ts  an ~z. ~(n)e M(.~). Let  M (.~) = t~cz} ~e]¢ " Let  us define 

a set  of fo rmulas  {/~I.eN : P~ ~ ~ (~ )  &% & °cz ' "  "&~,~" It  is evident tha t~  I~r~},~"] ~ M(,.g.). I f  

M(~) is not f initely axiomat izable ,  then the re  ex i s t s  for  any /~a a /~n+~ such that / ~  ~ / 3 ~ + ~ ,  Let  us 

inductively cons t ruc t  t]a t n e N  : ]~ = P,;  if ]a_¢ has  been constructed,  then ]~,~ = /s~ and the re  exis ts  

a / ~ + t n  such that p~ ~-/S~+r~ ; then we take ]a  = / ~ + t n .  

By vir tue  of L e m m a  4.2 there  ex is t s  for  any ]a a subdirect ly  indecomposable  ~a such that ]~ e ~f 

( ~ ) ,  /~+, ~ ( ~ / ( . ~ )  . I f  ~ > ~  , then ~r n is not i somorphic  to ~ t n ,  since /,.,,eM(~,n) and ]a~.,'t'/(,.~t). 
Hence there  ex i s t s  an infinite set  of nonisomorphic  subdirect ly  indecomposable  T]3A such that  ~(a) is t rue  
on them. But accord ing  to L e m m a  4.4 there  exis t  only finitely many  such TBA. This  is a contradict ion,  and 
it comple tes  the proof  of the theorem.  

Now let  us s t rengthen this theorem by explici t ly wri t ing out the axiomat iza t ion  of the logic of finite 
T]3A by using Hoso i ' s  method [12]. 

THEOREM 9. Let  ~ be a finite T]3A; then it is poss ib le  to effect ively cons t ruc t  a fo rmula  c9(~) 

such that  

Proof ,  Let  lXr[-- ! ~  ..... ~ ) .  ]3y ~ ~ ~Mwe shall  denote a se t  of fo rmu la s  all  whose va r i ab les  a r e  

contained in the set  Po = t P, . . . . .  /on ) .  Let  us wr i te  ;: = I~1 ~ ;  it is evident that F is finite. Let  us fix an 
~/= and denote by ~-an in te rpre ta t ion  of fo rmulas  f rom ~ into d~ that  continues ~. ,$: q~o ~ f~51 • 

It  is evident that 7Y(@0) is a subalgebra  of the a lgebra  d~ that coincides with the suba lgebra  of the a lgebra  
genera ted  by the set  ye (Po). 

Le t  us  introduce a function that maps  ~-(@o) into ¢o as  follows. For  any are f ( c P  0 ) ,  x ~  ! let  us 

specify at f i r s t  a fo rmula  J~ _ ,  e cP o such that  ?Ty~,~ (p,..p,7)-x. For  any x e f ( q~o ) let  us  now 
define a ~¢ : ~-(cP o - - ' - ~ o  ;,7" (P,'"Pn) 

Y~ [ ( p l o P , )  i f  x~', 

*It was shown by D. M. Smirnov that this theorem follows also f rom the theorem on finite bases  of a finite 
a lgebra  that l ies  in a va r ie ty  of a lgeb ras  with dis t r ibut ive  congruence la t t ices  [18]. 
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We have  

(*) 

Let  us define the  fol lowing f o r m u l a s :  

& ( .o  (~c) (~vae)) 

---:- & /C ( a m ) -  • c ] ~  (ae)) 

L e t u s  p rove  tha t  [ ~ I ~ ) ]  ~ M ( ~ ) ,  i .e . ,  ~ ( ~ )  e g ( & )  . Le t  ~0 be an i n t e rp re t a t i on  on .~ ;  then 9 / ~ o = ~ ,  
w h e r e  f e ~=. In this  c a s e  ~(]~e 1 = 4 by v i r tue  of  (*), and hence  ~a ( ~ )  = t .  Thus ,  90 (~fz [~ ) = ) fo r  any in- 

t e r p r e t a t i o n  ~0 on ~ , i . e . ,  V t .  eM(gg).  I t i s  evident  tha t  ~ ( a J  e t d ( ~ ) ; t h e r e f o r e  ~ ( ~ ) e  ~ ( ~ ) .  Let  
~e F ~t 

us  p r o v e  that  M ( ~ )  ~- E3 (26)] ,  i .e . ,  fo r  any f o r m u l a  ~ e  g ( ~ )  we have  ~(a~)~<. At f i r s t  let  us c o n s i d e r  
the c a s e  (a). All  the v a r i a b l e s  be longing  to ~ o c c u r  in P . 

O 

LEMMA. Fo r  any ~ee t= and any f o r m u l a  /a (F~- - 'P ,  ) be longing to q° o we have 

P roof .  At  f i r s t  we shal l  a s s u m e  that  /a (P1 "" "P~ ) does not  conta in  log ica l  connec t ives  o ther  than 
~ ,  ~ ,  ~.  F o r  such /~ (p1. . .p~)  it is  e a s y  to p rove  the l e m m a  by induct ion on the length of  ,~ by us ing  the 
subs t i tu t ion  t h e o r e m  for  $4, the r e l a t i o n  (*), and the fo rm of the f o r m u l a  ~ . It r e m a i n s  to note  that  any 
f o r m u l a  is equivalent  in $4 to a f o r m u l a  that  conta ins  only the connec t ives  &, ~0, ~ . Th i s  c o m p l e t e s  the 
p r o o f  o f  the l e m m a .  

In p a r t i c u l a r ,  we obtain  ~f I--  ~ ( p ~ . . . p , ) ' ~ - ' ~ f  (~(ft~)'"f(,G))" But oc (p~. . .p,~) e M (2~r), and hence  

~ ( f C p , ) . . . f ~ p , ~ ) = t ; b u t i n t h i s c a s e , ] ~ ( ~ ( ~ ( p , ) . . . ~ ( t p ~ ) ) = p - - , - p ~ .  W e o b t a i n :  ff~-~c~or..p~)~. 

* * (Pr --+-Pfl, i .e . ,  j f  k- ~ ( P I " - P ~ )  • By v i r tue  of  L e m m a  1.1 we obtain k-- n ~  " ~ (P~ • • "Pa), i .e . ,  

~- jle--*" ~ [P~" ' • P z  ) (s ince  F- n~¢./: - , - -+-~) .  Hence  we have:  ~ e ~  V t f  -~°c ( ~ ' ' ' P ~ ) '  and hence  

c, (/oi . .  "Pn ) e [-~ (~ ) - ] .  Thus  we have  p roved  the a s s e r t i o n  for  the c a s e  (a). 

Now suppose  that  ~ depends  on the v a r i a b l e s  ql'-" ~ : ~=oc  ( ~ . . . ~ ) .  We shal l  define the fol lowing 

se t  of mapp ings :  G = { ~ / ~ :  I q , ' " g ~ }  * { P , . - . P n  }~, it is f inite.  F o r  any ] e  6 let  us  define o¢3~ ~-- 

( ~ ( g , ) . . . ~ ( 5 ~ ) ) .  ~ ( ~ . . . ~ g ) ~  d~ 2 ,  a n d h e n c e ~  & u'~, .  L e t u s w r i t e  J ~ ( p , . . . p a ) =  ~ ?  • 
• . 2 e . G  a* 

"¢~ (Pr  "'P,*) e MC.~); hence  by us ing  the p roo f  for  the e a s e  (a), we obtain ~C~) ~ ~ {p~ ..... p a l  Let  us p r o v e  

tha t  ~c ( , ) ,  ~ cp, . . ,  p~,) t=~'(g,...y~. Suppose that  th is  is not  the ea se ;  then t h e r e  ex i s t s  by  v i r tue  of  L e m m a  

4.2b a subd i r ec t ly  i ndecom pos ab l e  TI3A ~-~ such that  Ig ( &a } ~- C~(n), ~ {P,-.',Pa )] , ~ (~, . . .q ,, ) q M ('~'a ) " 
Hence  t h e r e  ex i s t s  an i n t e r p r e t a t i o n  ? on &a such  that  ~ ( g ( ~ ) . . .  g({x~)g= ! .  13y v i r tue  of  L e m m a  4.4 

we have ~ o ~  , i.e.,label = {g ..... ~-e} ' e _ ~  . Le t  us define 5/,e# as  fo l lows:  
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Let us take an interpretat ion ~, of .~], into ~a defined as follows: 

) 
t otherwise.  

Then ~ ~]~ = ~ (~ (~ . . .  ~ ~) ~ / ,  i.e., J'~a ~ M{,~ a) is a contradiction to 2 ~/~,...p~) ~ M ( ~ / .  Hence ~c ¢n), 

d~ (p~ . . .  p~) ~cc;~...~) , but in this case  3(~5) ~ ~ { ~ , . . ~ ) .  This completes  the proof of the theorem. 

LEMMA 4.6. For  any nontabular logic ~4 there exists a pretabular  logic /~ such that M ~ M a 

Proof.  Let  us use Zorn ' s  lemma. Let f/Yi) LeJ be a chain in which all M~ are  nontabular logics,  

/Yi = M. Then V h?~-U /g~ (since ~M~}~¢~ is a chain). ~ M L is not tabular,  since otherwise there 

exists by virtue of Lemma 4.5 an n such that ~ {n~ ~ / ~  ; but in this case there exists an ~ such that 

~ ( ~  • M~ , which contradicts  Lemma 4.5. 

LEMMA 4.7. Let ~ be a pretabular  logic, M= M ( $ ) ,  where ~ is a subdirect ly indecomposable TBA 
that has an infinite set ~ (~)  . Then fl (M) will be pretabular .  

Proof.  f l ( M ) = Z 5  (,Z.) (Lemma 3.5). Let us prove that LG (~61 is pretabular .  

1. L5 (~5/ is not tabular. Indeed, ~ is subdirectly indecomposable; hence [9] it is completely con- 
nected; but in this case ~ (JS) will be completely connected and have an infinite number of elements.  If 
L~(,,~) would be tabular,  there  would exist [12] an m such that 

Hence ACre) = 4 on ~(.~) for any interpretation. But 6 ( ~ )  is infinite, and hence all the var iables  A (m) 
can be interpreted as distinct elements of G (~) ; but since ~ (~) is completely connected, it follows that 
A(,~) ~= i , which iS a contradiction. Hence LG C~) is not tabular.  

2. L6 (.~} is pretabular .  Kuznetsov has proved that any nontabular superintuitionistic logic is con- 
tained in a pretabular  superintuitionistic logic; therefore  LG(~) c L, where L is pretabular .  It follows 
f rom Theorem 6 that p is a homomorphism "onto," and hence there  exists an M o e /~  ; p  (M o) = L and 

p C/~vMa)=fl(/4)vfl(~)=LGC~)vL=L,. Hence MvM a is not tabular [if M is tabular,  then D(M) will be l ike- 

wise]. Wehave :  Mv}~0 is not tabular and MvM o -~ M ; h e n c e M v / ~  o =  /~; but in this case p ( / ~ ) =  

fl(/~vA/o ) = L,  where L is pretabular.  This completes the proof of the lemma. 

LEMMA 4.8. If M is a pretabular  logic, M= M (~}, where ~ is subdirect ly indecomposable and ~ (~) 
is infinite, then there exists an infinite set of tabular logics containing M . 

Proof .  It follows from Lemma 4.8 that jgCM) is a pretabular logic. Hence accordi~g to [6] there 

exists a countable set {La } n ~ of tabular logics containing j~ (M). Then the logics ~ (L~) will be distinct 

b y v i r t u e  of Theorem 5. ~(l ,~) ~_ ~(/)(~))  by virtue of (P 3) , §3, and ~(/)(M)) ~ M by vir tue of (P7), 

§3; hence ~ (/-'a) ~- ~ ( ~ ) ) ~ -  M, and by virtue of Theorem 5 we have ~ (/,~) ~ d (p(M)) ; hence all ~ (L,)  a re  

"tabular and distinct, and they contain/~ . This completes  the proof  of the lemma. 

LEMMA 4.9. If Me2g and fl(M) is tabular,  then M will be finitely approximable.  

Proof .  Let ~ { / ~  , ~ =  ~ (~ . - . P a  ); it then follows from Lemma 4.2 that there exists a subdirect ly 

indecomposable T B A . ~  such that ~ / ( $ )  -~ /~ and ~ d  ~ (~) • By virtue of Theorem 6, fl  is a homorphism,  

and hence, p ( ~ )  ~ j9 (~ (~5)). p ( /~)  is tabular;  hence [12] there exists an A (~) ~<]. .~+~V (,%; -=p,] ) such 

that A(~)e f l (M) .  In this case A (a) ep(~4;~)) and from Lemma 3.5 it follows that ]9 (/~ (.~;] = ~ ( ~ )  . 

is completely connected, and hence 6(.~) is also completely connected. Since ~ ( m e  L 5 (.~) and ~ (~) 

is completely connected, it follows (as in Lemma 4.7) that ~ (~---~)~ a . ~ ¢ /g (~}, and hence there  exists a 
e" t~,...,P,} ~ '  ~ such that ~ (gCP,)... ? (Pa))~ /" {9(p~) .... , F (Pa)} U ~(~1 c ~ ,  and by taking the c losure  
of this subset under Boolean operations,  we obtain a finite ]~oolean algebra ~a ([7], P.  2.3). Let us note 
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tha t  :b o is c l o s e d  a l so  under  = , and hence  it wil l  be a suba lgebra  of  the TBA .~ g e n e r a t e d  by  the  se t  
t ~ p , /  . . . . .  ~o (p~  o ~ ( ~ ) .  Hence  N(25 o) ~ M(.~) ~ ~,~(p, . . .p ,~)  ¢ /vl(.~o), s ince  ~.~(pl)...~o~p,~)=/= / .  
This  c o m p l e t e s  the p roo f  of  the l e m m a .  

COROLLARY.  I f  /Y = M(D) and ~ (~) is f ini te ,  then M will  be f ini te ly  approx imab le .  

By v i r tue  of L e m m a  3.5 we have p (M;=  ~5 ( ~ ) ,  and hence  ? (/~] is t abu la r ;  in this  c a s e  it fo l lows 
f r o m  L e m m a  4.9 tha t  /d is f in i te ly  app rox imab le .  

THEOREM 10. P r e t a b u l a r  moda l  l og ic s  a r e  f ini te ly  app rox imab le .  

P r o o f .  Let  /d be  p r e t a b u l a r .  It fol lows f rom L e m m a  4.3 tha t  M = A /g ( ~ ) ,  w h e r e  the ~ a r e  sub-  

d i r e c t l y  i ndecomposab le  and / # ( ~ )  --~ /Y for  any ~ e S .  If  t h e r e  a r e  no such ~ s o t h a t  6 ( ~ i )  is infinite,  

it fol lows f r o m  the c o r o l l a r y  of L e m m a  4.9 that  all  ~ (~'i) a r e  f ini te ly  app rox imab le .  In this  c a s e  ~ will  

a l so  be f ini te ly  app rox imab le .  Le t  us  a s s u m e  that  t h e r e  ex i s t s  a d~a such that  6 ~26~) is infinite.  Then  

M ( ~ ) - ~  ~¢ and f r o m  L e m m a s  4.4 and 

N ( ~ )  is p r e t abu l a r .  I t  then fol lows 

ta in ing it, i .e . ,  IN~}ned . A M~ ~_ 

4.5 it fo l lows that  /~ (~6 i) is not  t abu la r ,  and hence  /g(,~)=,g, i .e . ,  

f r o m  L e m m a  4.8 that  t h e r e  ex i s t  infini tely m a n y  t abu la r  log ics  con -  

(.~L) and A / ~  is not a t abu la r  logic  a c c o r d i n g  to L e m m a  4.5 

and L e m m a  4.3. Hence  / Y ( ~ ) =  ~ g / ~ ,  i .e . ,  M ( ~ )  is f in i te ly  app rox imab le .  But ~(flj~)= M. This  c o m -  

p le tes  the p roo f  of the t h e o r e m .  

We sha l l  say  that  a logic is an i m m e d i a t e  p r e d e c e s s o r  of  a logic  M if it is  m a x i m a l  in the se t  t~o /  

M o z,  ,o÷ M}. 
LEMMA 4.10. If  /4 is a f in i te ly  ax ioma t i zab l e  l o g i c , / 4 / c  ~4, M, =~ M, then M/ will  be conta ined  in a 

logic  which is an i m m e d i a t e  p r e d e c e s s o r  of  /~ . 

The p roof  is b a s e d  on the use  of Z o r n ' s  l emma .  

COROLLARY.  If  /Y is a t abu la r  logic ,  M 1 =k M,  / ~  ~ M , then /~1 will  be conta ined  in a logic  
which is an i m m e d i a t e  p r e d e c e s s o r  of ~¢. 

It fol lows f rom T h e o r e m  8 that  M is f ini te ly  ax ioma t i zab le .  

Now let  us  p r o v e  the fol lowing theorem." 

THEOREM 11. Modal  log ics  tha t  a r e  i m m e d i a t e  p r e d e c e s s o r s  of a t abu la r  moda l  logic  a r e  t abu la r  
logic  s. 

P r o o f .  Le t  /# be a t abu la r  logic  o ther  than ~M , and let  Mo be  an i m m e d i a t e  p r e d e c e s s o r  of this  

logic.  We sha l l  a s s u m e  tha t  M o is not  t abu la r ;  it then fo l lows f r o m  L e m m a  4.7 t h a t t h e r e e x i s t s a  p r e t a b u l a r  
logic  741 such that  M o c M1. Hence  M 0 c_a_ MA M~ ~ M, It  fol lows f r o m  T h e o r e m  10 that  M 1 is f ini te ly  ap-  

p rox imab le ;  hence  M~-~Aj M ( ~ ) ,  whe re  the ~L a r e  finite T]3A. By  v i r tue  of L e m m a  4.5 t h e r e  ex i s t s  an 

such that  ~ (~ )  • ~¢ ; s ince  M~ is not t abu la r ,  it fol lows f r o m  L e m m a  4.5 that  ,~(,~)~MI. Hence  t h e r e  

ex i s t s  a ~ such  that  ~ (n; ¢ M ( . ~ ; .  In this  case/40 ~ /# (25~) A M _c- A¢, but  M ( ~ )  A M ~ i~, s ince  ~ (~; e M 

and ~ ca) ¢ M ( ~ )  A ~¢. M a is an i m m e d i a t e  p r e d e c e s s o r  of  the logic  M ; hence  M ( ~ ) A  M = Mo, i .e . ,  M o 
is  t abu la r .  This  c o m p l e t e s  the p roo f  of  the t h e o r e m .  

COROLLARY.  T h e r e  ex i s t s  an a l g o r i t h m  which r e c o g n i z e s  a c c o r d i n g  to any f ini te  TBA ~ and a 
finite s y s t e m  of  f o r m u l a s  % . . . . .  ~ ,  w he the r  o r  not  the equat ion  ~ , ,  . . . . .  ~ , '~  = / Y ( ~ )  ho lds .  

Le t  ~ b e a f i n i t e T B A  and let  % . . . . .  ~ b e a  s y s t e m  of f o r m u l a s ,  x ~ % £ . . . &  ~a .  Let  us check  

whe the r  the f o r m u l a  ~ is t r u e  on ~L . I f  M:~: ~ ,  then E~]  4= M (.~) • O the rwise  we shal l  p r o c e e d  as  fo l -  
lows.  Le t  $ , , -~2  . . . .  be finite TBA.  By v i r t ue  of T h e o r e m  9 we can e f fec t ive ly  wr i t e  down the i r  a x i o m a -  
t i za t ions  3 (.5,), 3 ( ~ )  . . . .  and the  ax iom a t i za t i on  of  -~ ,  n a m e l y  3(.~) • Le t  us  apply an a l g o r i t h m  which 
d e r i v e s  f r o m  ~ al l  poss ib le  c o r o l l a r i e s  and an a l g o r i t h m w h i c h c h e c k s :  a) ~ 3($~) , b) ~ 3(~) ,  

and c) ~ ~ ~ .  It fol lows f rom T h e o r e m  11 that  e i the r  we find at s o m e  step of the f i r s t  a l g o r i t h m  tha t  ~(~) 

is deducible  f r o m  ~ , o r  we find at s o m e  s tep  of  the second  a lgo r i t hm that  ~ 3 ( ~ ) ,  ~5~'I~-3(~), ~5~ ~ .  

In the f i r s t  c a s e  we have E~2=~¢(.~). and in the second  c a s e  U¢ ,3 ,~¢( .~ ) .  This  c o m p l e t e s  the p r o o f  of  the 
c o r o l l a r y .  
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The maximal  logic in the lat t ice ~ is ~ ,  which is an absolutely inconsistent  logic whose only im- 

mediate  p r edeces so r  is the logic /(n~--L-p~ o p ] .  Let  us examine how many immediate  p r e d e c e s s o r s  the 

logic Ko has,  and which logics they a re .  We shall consider  two TBA: 

-Z',==<2~; & , v , ' ~ , ' ~ , n ~ ;  ¢> and ~z---- , :B;~.v,-- , - - , .~z;  ~> ,  where JS-to, a ,~,~;  <~;&,v. - -*- ,  
~;¢> is a Boolean algebra;  

{ / , : r - -  J 

0,:~--~ ~ ~ x  = o  o r  . ~ - ~ '  

It is evident that M (~,)¢= K o . M (~z) ~ K~ • 

Now we shall  prove that /~(~t) and M (~.z) a r e  p rec i se ly  all the immediate  p r e d e c e s s o r s  of the logic 
K a ; moreove r :  

THEOREM 12. Any element  of the lat t ice ~ other  than /(~ and ~b M is contained in at leas t  one of 
the logics M(,~,)  and /~(0~2~, and M(,~I) ~ /~(,,~.z). 

Proof .  Let  M e ~  , M4 K~ , M ~  N . We shall consider  co(M). If fl(M) is a c lass ica l  logic K , 

then M ~_ vfl(M)-= '~(1()=~5. Since / ~ c K  D , N ~ K o , it follows [16] that M ~  g (~,  / • Let  us assume that 
fl(/~; does not coincide with K ; it then follows from the re la t ion  p ~M) ¢ ~b~ t ha tp (M]  ~ Z$2' where the 

PBA S F < Sz '&' v,~,~ ; ~> is a t h r ee -e l emen t  l inear ly  o rde red  PBA. Hence M ~_ ¢jp (M) ~ 0 (/-,S z )= M(:t ($2~ = 
M(~). The inclusions follow from (P7) and (P3) of §3 and from the co ro l l a ry  of Theorem 5. Now we note 
that MC~5,)~ g(~bzl .Indeed, ,~Z-~n<>p is t rue  in .~,, but not in ~ ,  whereas  ~ o ( p  - - ~ p )  is t rue ' in  
~z '  but not in "~l" This completes  the proof  of the theorem.  
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