LATTICE DEFINABILITY OF CERTAIN MATRIX ALGEBRAS

A. V. Yagzhev

UDC 519.48

Introduction

We fix a field \mathscr{X} and denote by \mathscr{U} the class of all associative algebras over this field. We denote by $\mathcal{S}(A)$ the lattice of subalgebras of the algebra A. Suppose A and B are two algebras of the class \mathscr{U} and suppose the lattices $\mathcal{S}(A)$ and $\mathcal{S}(B)$ are isomorphic. We are interested in the relation in this case between the algebras A and B.

Lattice-isomorphic algebras (algebras with isomorphic lattices of subalgebras) were studied by D. Barnes [1] who showed that if A is a ring of matrices of order ≥ 3 over a finite-dimensional (skew) field, then there exists a 1-1 mapping of A to B which is either multiplicative or antimultiplicative.

Articles [3] and [4] border on our theme in dealing with lattice-isomorphic Lie algebras, as does the work [2]. We note also a result on semilinear isomorphisms of those rings of matrices (of order ≥ 3) over algebras with divisors in which the isomorphic lattices are right ideals [5, Theorem 21].

We formulate now the basic result of this work. Consider the case in which one of the lattice-isomorphic algebras is matrix over an arbitrary (skew) field. We shall assume that the basic field $\frac{1}{k}$ contains at least three elements.

<u>THEOREM.</u> Suppose that \mathcal{D} is an algebra with divisor over k, that π is a natural number, $\pi \ge 3$, that $A = \mathcal{D}_n$ is an algebra of matrices over \mathcal{D} , and that \mathcal{B} is an algebra of class \mathcal{U} . Then the lattices $\mathcal{S}(A)$ and $\mathcal{S}(\mathcal{B})$ are isomorphic if and only if the algebra \mathcal{B} is isomorphic or antiisomorphic to an algebra \mathcal{D}_n over a (skew) field \mathcal{D} such that between the (skew) fields \mathcal{D} and \mathcal{D} there exists a k-semilinear correspondence.

We point out that for $\mathcal{D} = k$ this theorem is true as well for n=2 [1, Theorem 2]. The situation in the general case is not known. For n=1 there are trivial counterexamples:

a) A = k and B a one-dimensional nilpotent algebra,

b) A and B subfields of the field C of complex numbers, $[A:Q] = 2 = [B:Q], A \neq B$. Here k = Q, the field of rational numbers.

Before proving our theorem we introduce the following notation: small Greek letters (with or without subscripts) indicate elements of the field k. The letter φ is reserved for isomorphisms of lattices. The algebra generated by the elements a, b, c, \ldots is denoted by $\langle a, b, c \ldots \rangle$.

The author gratefully acknowledges the interest of L. A. Bokut' in the question here treated.

§1. Algebras Lattice-Isomorphic to Algebras

with Zero Products

The purpose of this section is to establish a property of algebras lattice-isomorphic to algebras with zero products.

An important observation constantly used in our considerations is given in the following obvious lemma:

Translated from Algebra i Logika, Vol. 13, No. 1, pp. 104-116, January-February, 1974. Original article submitted May 3, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

LEMMA 1. A (non-null) algebra is one-dimensional if and only if it contains no proper subalgebras.

It is clear also that a one-dimensional algebra either is an algebra with zero products or is generated by an idempotent.

We now establish the following proposition.

<u>LEMMA 2.</u> Let \mathcal{L} and \mathcal{L} be lattice-isomorphic algebras over k, and let \mathcal{L} be an algebra with zero products. Then each (non-null) singly generated subalgebra of the algebra \mathcal{L} is one-dimensional.

<u>Proof.</u> We can assume that $\dim \mathcal{L} \ge 2$. We note that \mathcal{L} is an algebraic algebra (in each non-null subalgebra there is a non-null subalgebra without proper subalgebras). Suppose $\varphi: \mathcal{S}(\mathcal{L}) \longrightarrow \mathcal{S}(\mathcal{L})$ is an isomorphism and let $0 \neq c \in \mathcal{L}$. Then $\varphi^{-1}(\langle c \rangle)$ is a finite-dimensional algebra since it has zero products and there is in it no infinite strictly increasing chain of subalgebras (in view of finite-dimensionality of

<C>). Suppose $\{b_{j}, \ldots, b_{m}\}$ is a basis of the algebra $\varphi^{-1}(<C>)$. Then $<C>=<C_{j}, \ldots, C_{m}>$, where $<C_{j}>=\varphi(<b_{j}>)$ is a one-dimensional algebra, $1 \le j \le m$. Since C is an arbitrary non-null element of the algebra \mathcal{L} , it follows that the algebra \mathcal{L} is generated by some product of its one-dimensional subalgebras.

Let $\langle C_1 \rangle, \langle C_2 \rangle$ be arbitrary one-dimensional subalgebras of the algebra \mathcal{L} . We show that $C_1 C_2 = \int_1^1 C_1 + \int_2^1 C_2$. We can assume that $\langle C_1 \rangle \neq \langle C_2 \rangle$, since otherwise there would be nothing to prove. The algebra $\langle C_1, C_2 \rangle = \langle C_1, C_2 \rangle = \langle C_1 \rangle, \langle C_2 \rangle$ is generated by any two of its distinct non-null subalgebras since this property is

possessed by the algebra $\langle\!\langle b_1 \rangle\rangle, \langle b_2 \rangle\!\rangle, \langle b_j \rangle\!= \varphi^{-1}(\langle c_j \rangle)$. Hence if $c_1 c_2 \notin k c_1 + k c_2$, then $\langle c_1, c_2 \rangle\!=\!\langle c_1, c_1, c_2 \rangle$ whence

$$C_2 = f(C_1, C_1, C_2) = C_1 g(C_1, C_2),$$
(1)

,

where f(X,Y) and g(X,Y) are some polynomials over ℓ in the noncommutative variables X and Y. Let $C_1^2 = fC_1$; multiplying both sides of (1) on the left by C_1 we get $C_1C_2 = fC_2$, a contradiction. The assertion is proved.

Let $x_j \, \cdot \, x_j$ be non-null elements of the algebra \mathcal{L} where further $x_j^2 = x_j \, \cdot \, x_2^2 = x_2 \, \cdot \, \langle x_j \rangle \neq \langle x_2 \rangle$. Then there is a non-null nilpotent element in the algebra $\langle x_j, x_2 \rangle$. Suppose the contrary. Then from $x_i x_j \in k x_i + k x_i \, \cdot \, i, j = 1, 2$, follows that the algebra $\langle x_j, x_2 \rangle$ is two-dimensional. Hence it is isomorphic to the algebra $k \oplus k$ in which there are exactly three one-dimensional k-subalgebras. But in the al-

gebra $\varphi^{-\prime}(\langle x_1, x_2 \rangle)$ lattice-isomorphic to the algebra $\langle x_1, x_2 \rangle$, there are more than three one-dimensional subalgebras [in view of the fact that $\not{k} \neq GF(2)$]. The contradiction obtained shows that there is in the algebra $\langle x_1, x_2 \rangle$ a nilpotent element $\mathcal{N}(x_1, x_2)$ which generates a one-dimensional algebra.

It is clear that $\langle x_1, x_2 \rangle = \langle x_1, \mathcal{N}(x_1, x_2) \rangle = \langle x_2, \mathcal{N}(x_1, x_2) \rangle$.

Let the one-dimensional algebras $\langle C_i \rangle \subseteq \mathcal{L}$ $(i \in I)$ generate the algebra \mathcal{L} . We can suppose that $C_i \neq C_{i_1}$ for $i_j \neq i_2$ and that C_i^2 is equal to 0 or C_i for all $i \in I$. We can present two cases:

(1) $c_i^2 = 0$ for all $i \in I$. Then for $i_j \neq i_j$ in the relation $c_i, c_i = j_j c_i + j_j c_{i_j}$ in the light of

$$C_{i_{j}} \cdot C_{i_{j}} C_{i_{2}} = j_{1} C_{i_{j}}^{2} + j_{2} C_{i_{j}} C_{i_{2}}$$
 and $C_{i_{j}} C_{i_{2}}^{2} = j_{1} C_{i_{j}} C_{i_{j}} + j_{2} C_{i_{2}}^{2}$

there follows $C_{i_1}C_{i_2} = 0$. That is, \mathcal{L} is an algebra with zero multiples, which implies $\dim \langle C \rangle = 1$ for $0 \neq C \in \mathcal{L}$.

(2) $C_{i_0}^2 = C_{i_0}$ for some $i_0 \in I$. We set $I_0 = I \setminus \{i_0\}$, $C_0' = C_{i_0}$, $C_i' = N(C_{i_0}, C_i)$ for $i \in I_0$. Then $\mathcal{L} = \langle C_0' \rangle, \langle C_i' \rangle : i \in I_0 \rangle$. As above, we obtain that $\mathcal{L}_0 = \langle C_0' \rangle : i \in I_0 \rangle$ is an algebra with a zero multiple. Clearly each element of the algebra \mathcal{L} has the form $\langle C_0' + C' \rangle$ where $C' \in \mathcal{L}_0$. We suppose that $\langle fC_0' + C' \rangle$ is not a one-dimensional algebra and that $\int C_0' + C' \neq 0$. Then $f \neq 0$ and $C' \neq 0$. In the algebra $\varphi^{-i}(\langle C_0', C' \rangle)$ there are no non-one-dimensional proper subalgebras. Hence $\langle fC_0' + C' \rangle = \langle C_0', C' \rangle, C_0' C' = C'C_0'$. Using the equalities $C_0'^2 = C_0'$, $C'^2 = 0$, $C_0'C' \in \mathcal{K}_0' + \mathcal{K}_0'$, it is readily shown that $C_0'C'$, is either 0 or C'. In both cases the algebra $\langle C_0', C' \rangle$ contains only two one-dimensional subalgebras: $\langle C_0' \rangle$ and $\langle C' \rangle$. The contradiction obtained shows that each non-null singly generated subalgebra of the algebra \mathcal{L} is one-dimensional. The lemma is proved. We now give a definition necessary for formulating Lemma 3. Suppose that $\mathcal{E} = \{0, e_{ij} : i, j = 1, ..., n\}$ is a semigroup consisting of zero and matrix units and that $\mathcal{F} = \{0, f_{ij} : i, j = 1, ..., n\}$ is a subsemigroup of multiplicative semigroups of some (associative) algebra. We shall say that the system $\{f_{ij}\}_{i,j=1,...,n}$ is an isomorphism (antiisomorphism) of the semigroups if the mapping

$$\begin{cases} 0 \longrightarrow 0 \\ \theta_{ij} \longrightarrow f_{ij}, \quad b, j = 1, \dots, n, \end{cases}$$

is an isomorphism (antiisomorphism) of the semigroups ${\boldsymbol{\mathcal{S}}}$ and ${\boldsymbol{\mathcal{F}}}$.

Suppose A and B are the algebras referred to in the theorem. Denote by φ the isomorphism

 $S(A) \longrightarrow S(B)$.

Suppose $\langle e_{ij} \rangle$ is the subalgebra in A generated by e_{ij} . Then by Lemma 1

$$\varphi: \langle e_{ij} \rangle \longrightarrow \langle f_{ij} \rangle$$

for some element $f_{ij} \in \mathcal{B}$.

Corresponding to each system of n^2 nonzero elements v_{ij} of the field k we put

$$\overline{f_{ij}}(v_{ij}) = \overline{f_{ij}} = \begin{cases} v_{ij} f_{ij} & \text{for } i \neq j, \\ f_{ij} & \text{for } i = j. \end{cases}$$

<u>LEMMA 3.</u> For generators $V_{ij} \in k$ the system $\{\overline{f}_{ij}\}_{i,j=1,...,n}$ is isomorphic or antiisomorphic to the system of matrix units.

The proof of this assertion is contained in the article of Barnes [1] in which it appears as Lemma 12. In the light of Lemma 3 we can consider that the system $\{f_{ij}\}_{i,j=1,...,n}$ is isomorphic or antiisomorphic to the system of matrix units. Let \mathcal{B} be the algebra referred to in the Theorem. In the linear space of \mathcal{B} we prescribe a new multiplication operation $\delta_1 \circ \delta_2 = \delta_2 \delta_1$, $\delta_1, \delta_2 \in \mathcal{B}$. The algebra obtained we denote by \mathcal{B}' . Now we define an algebra \mathcal{B}'' . Set

$$B'' = \begin{cases} B & \text{if } f_{11} = f_{12} \\ B' & \text{if } f_{12} = 0 \end{cases}$$

Thus we have selected in the capacity of the algebra \mathcal{B}'' either the algebra \mathcal{B} or \mathcal{B}' depending on whether there is isomorphism or antiisomorphism of $\{f_{ij}\}_{i,j=1,...,n}$ and the system $\{e_{ij}\}_{i,j=1,...,n}$ of matrix units.

§2. Matricity of Algebras Lattice-Isomorphic to the Algebra D_n

In this section we demonstrate that an algebra lattice-isomorphic to the algebra $\mathcal{D}_{\mathcal{R}}$ is isomorphic or antiisomorphic to an algebra $\mathcal{R}_{\mathcal{R}}$, where \mathcal{R} is an algebra over \mathscr{R} . We shall suppose that the system $\{f_{ij}\}_{i,j=\dots,n}$ is isomorphic to the system of matrix units. Consideration of the algebra \mathcal{B}'' introduced in §1 shows that this assumption does not imply loss of generality.

Put
$$\mathcal{D}_{ij} = \mathcal{D} \boldsymbol{e}_{ij}$$
, $\boldsymbol{\delta}_{ij} = \boldsymbol{\varphi} (\mathcal{D}_{ij})$. There holds the following lemma.
LEMMA 4. For each *i* the element f_{ii} is a unit of the algebra $\boldsymbol{\delta}_{ii}$

<u>Proof.</u> Suppose $\delta = \delta_{ii}$, $f = f_{ii}$, $\ell = \ell_{ii}$ Note that for each $\delta \in \delta$, $f \delta = \delta f$. In fact

$$(fs - fsf)^{2} = fs \cdot fs - fs \cdot fsf - fsf \cdot fs + fsf \cdot fsf = 0,$$

$$(sf - fsf)^{2} = sf \cdot sf - sf \cdot fsf - fsf \cdot sf + fsf \cdot fsf = 0,$$

whence $f \leq f \leq f \leq f \leq f'$ (there is in \mathcal{S} a unique one-dimensional subalgebra $\langle f \rangle$ and hence nilpotent elements are absent).

We denote $\mathscr{A} = \{ \mathfrak{s} \in \mathscr{S} : \mathfrak{f} \mathfrak{s} = 0 \}$. It suffices to prove that $\mathscr{A} = 0$ since $\mathfrak{f} \mathfrak{s} - \mathfrak{s} \in \mathscr{A}$ for all $\mathfrak{s} \in \mathscr{S}$. Suppose the contrary, i.e., let $\mathscr{A} \neq 0$, \mathscr{A} a subalgebra of \mathscr{S} , where moreover $\mathscr{A} \not\cong \langle \mathfrak{f} \rangle$. Let $\mathfrak{t} \in \mathcal{D}$ be such that $\mathfrak{t} \not= \mathfrak{t} \in \varphi^{-1}(\mathscr{A})$.

Consider $\mathcal{B} = \varphi(\langle t^{-1} \rangle)$.

We assume that $\mathcal{B} \supseteq \langle f \rangle$. Then

$$\begin{split} e &= \sum_{m < m_0} \lambda_m t^{-m} + \lambda_{m_0} t^{-m_0} , \quad \lambda_{m_0} \neq 0 ; \\ t^{m_0} &= \sum \lambda_m t^{m_0 - m} + \lambda_{m_0} e . \end{split}$$

The latter equation demonstrates that $\ell \in \varphi^{-1}(\mathcal{A})$, i.e., $\langle f \rangle \subseteq \mathcal{A}$, a contradiction. This shows that $\mathcal{B} \neq \langle f \rangle$.

Assume $\mathcal{B} \cap \dot{\mathcal{A}} \neq 0$. Then we have

$$\sum_{m \leq m_0} v_m \left(t^{-\prime} \right)^m \in \varphi^{-\prime}(\mathcal{A}) \cap \varphi^{-\prime}(\mathcal{B}), \quad v_{m_0} \neq 0.$$

Hence

$$t^{m_o} \sum_{m \leq m_o} v_m t^{-m} \epsilon \varphi^{-1} (\mathcal{A}),$$

$$v_{m_o} \epsilon + \sum_{m < m_o} v_m t^{m_o - m} \epsilon \varphi^{-1} (\mathcal{A}).$$

This implies $e \in \varphi^{-1}(\mathcal{A})$, i.e., $\langle f \rangle \subseteq \mathcal{A}$, a contradiction.

Thus $\mathcal{B} \not\equiv \langle f \rangle$, $\mathcal{B} \cap \mathcal{A} = 0$, $\langle \mathcal{A}, \mathcal{B} \rangle \supseteq \langle f \rangle$. That is to say $f = b + a + \sum \lambda_j w_j$ (\mathcal{A}, \mathcal{B}) where in each word w_j there enters some $a_k \in \mathcal{A}$. In view of centrality of f and $\mathcal{A}f = 0$ we have

$$f^{2} = \delta f + \alpha f + \sum \lambda_{j} \omega_{j} (\mathcal{A}, \mathcal{B}) f = \delta f.$$

Thus $\delta f = f$ which is to say $\delta^2 f = f$. $(\delta^2 - \delta)f = 0$, i.e.,

b²-beA.

But $\mathcal{A} \cap \mathcal{B} = 0$ whence $\delta^2 - \delta = 0$. From the equality $f = \delta f$ there follows $\delta \neq 0$. It is clear that $\langle \delta \rangle \neq \langle f \rangle$. Thus in S there are two one-dimensional subalgebras, a contradiction.

<u>LEMMA 5.</u> Suppose $i \neq j$. Then $f_{ii} s_{ij} = s_{ij} \cdot s_{ij} f_{ii} = 0$. $s_{ij} f_{jj} = s_{ij} \cdot f_{jj} s_{ij} = 0$ for each element $s_{ij} \in S_{ij}$.

<u>Proof.</u> Suppose $\mathbf{s}_{12} \in \mathcal{S}_{12}$. If $\mathbf{s}_{12} = 0$, then the assertion of the lemma is trivial. Hence suppose $\mathbf{s}_{12} \neq 0$. In view of Lemmas 1 and 2 there exists $r \in \mathcal{D}$, $r \neq 0$ such that $\langle r e_{12} \rangle = \varphi^{-1}(\langle \mathbf{s}_{12} \rangle)$. Suppose $\langle \mathbf{s}_{31} \rangle = \varphi(\langle r^{-1} e_{31} \rangle), \langle \mathbf{s}_{21} \rangle = \varphi(\langle r^{-1} e_{21} \rangle), \langle \mathbf{s}_{13} \rangle = \varphi(\langle r e_{13} \rangle)$. Then for

$$f_{\nu} = \langle e_{\mu}, re_{12}, r^{-1}e_{31}, r^{-1}e_{21}, re_{13}, e_{32}, e_{23}, e_{22}, e_{33} \rangle$$

we have

$$\varphi: \mathcal{C} \longrightarrow \langle f_{H}, \mathfrak{L}_{12}, \mathfrak{L}_{51}, \mathfrak{L}_{21}, \mathfrak{L}_{13}, f_{32}, f_{23}, f_{22}, f_{33} \rangle.$$

But $\mathcal{C} \simeq k_3$. Lemma 5 now follows from Lemma 3 in view of the correspondences $\langle \ell_{H} \rangle \longleftrightarrow \langle f_{H} \rangle$, $\langle r \ell_{12} \rangle \longleftrightarrow \langle \delta_{12} \rangle$ and the fact that $f_{22}f_{23} = f_{23}$ [since the corresponding system of elements of the algebra $\varphi(\mathcal{C})$ is isomorphic to the system of matrix units].

<u>Assertion 6.</u> $s_{ii} f_{ij} \in \delta_{ij}$ and $f_{ji} s_{ii} \in \delta_{ji}$ for each $s_{ii} \in \delta_{ii}$.

<u>Proof.</u> For i=j there is nothing to prove. Suppose i=1, j=2. If $s_{11} \in k$ then the assertion is obvious. Suppose $s_{11} \notin k$. Consider the algebra $\mathcal{A} = \langle s_{11}, f_{12} \rangle$. We assert that each one-dimensional subalgebra $\mathcal{B} \subseteq \mathcal{A}$ lies in $\langle f_{11}, \delta_{12} \rangle$. Indeed, suppose $\mathcal{C} = \varphi^{-1} \langle \langle s_{11} \rangle$. Then $\mathcal{A} = \langle \varphi(\mathcal{C}), f_{12} \rangle$. Suppose $\mathcal{X} \in \mathcal{L}$, $x \in \mathcal{D}$ and suppose for some $\zeta \in k$

$$(xe_{H} + ye_{12})^{2} = \zeta (xe_{H} + ye_{12}).$$

Then $x(x-\zeta) = 0$ and if $x \neq 0$ (i.e., $\langle xe_n + ye_n \rangle \notin D_{12}$) then $x-\zeta \in k$. That is to say $\langle xe_n + ye_n \rangle \subseteq \langle e_n, D_{12} \rangle$, i.e., $\wp(\langle xe_n + ye_n \rangle) \subseteq \langle f_n, S_{12} \rangle$.

In view of the relation $(s_{\prime\prime}f_{\prime2})^2 = s_{\prime\prime}f_{\prime2} \cdot f_{\prime\prime}s_{\prime\prime}f_{\prime2} = 0$ we have

$$\mathbf{J}_{H}f_{12} \in \langle f_{H}, \delta_{12} \rangle.$$

On the strength of Lemma 5, $s_{H}f_{12} = \lambda f_{11} + s_{12}$. Multiplying both sides of this equality on the right by f_{22} we get $s_{H}f_{12} - s_{12} \in \delta_{12}$. In exactly the same way we show that $f_{jl}s_{ll} \in \delta_{jl}$.

LEMMA 6. For arbitrary $s_{ij} \in \delta_{ij}$ and $s'_{ji} \in \delta_{ji}$ there holds the inclusion $s_{ij} s'_{ji} \in \delta_{ii}$.

<u>Proof.</u> We can of course consider that $i \neq j$. Suppose $\mathscr{A} = \langle s_{12}, s_{24} \rangle$. We show that for each algebra $\mathscr{B} \subseteq \mathscr{A}$ such that $\mathscr{B} \not\subseteq \langle s_{14}, s_{12}, s_{22} \rangle$ there holds the relation $\langle s_{22}, \mathfrak{B} \rangle \supseteq \langle s_{24} \rangle \neq 0$ where $s_{24} \in \mathcal{S}_{24}$. Indeed, suppose

$$xe_{n} + ye_{n} + ze_{22} + \sigma e_{21} \in \varphi^{-1}(\mathcal{B}), \quad \sigma \neq 0, \quad x, y, z, \sigma \in \mathcal{D}.$$

Then $\langle \mathcal{D}_{22}, \varphi^{-\prime}(\mathcal{B}) \rangle \supseteq \langle \mathscr{O}\mathcal{P}_{12} \rangle \neq 0$, whence the assertion follows.

We put $\mathcal{B} = \langle \mathfrak{s}_{12} \mathfrak{s}_{21} \rangle$. If there held the relation $\mathcal{B} \not\equiv \langle \mathfrak{S}_{11}, \mathfrak{S}_{12}, \mathfrak{S}_{22} \rangle$, then for some $0 \neq \overline{\mathfrak{s}}_{21} \in \mathfrak{S}_{21}$ there would be fulfilled the equality

$$\bar{s}_{2i} = s_{22} + \sum \lambda_{j} (s_{12} s_{2i})^{j}.$$

Multiplying both sides of this equality on the left by f_{22} and on the right by f_{11} we are led to the relation $\delta_{21} = 0$, a contradiction. This means that $\mathcal{B} \leq \langle \delta_{\eta_1}, \delta_{\eta_2}, \delta_{\eta_2} \rangle$. Suppose

$$\mathbf{s}_{12}\mathbf{s}_{21} - \widetilde{\mathbf{s}}_{11} + \widetilde{\mathbf{s}}_{12} + \widetilde{\mathbf{s}}_{22} + \Sigma \lambda_{q} v_{q} \mathbf{s}_{12} + \Sigma \mu_{q} w_{q} \mathbf{s}_{22}$$

(in the light of Lemmas 4 and 5, $s_{12}s_{11} = 0 = s_{22}s_{11}$ for $s_{ij} \in S_{ij}$). Multiplying both sides of the equality on the right by f_{11} we get $s_{12}s_{21} = \tilde{s}_{11} \in S_{11}$.

Assertion 7.
$$\mathcal{S}_{i\kappa} \mathcal{S}_{\kappa j} \subseteq \mathcal{S}_{ij}$$
 and $\mathcal{S}_{i\kappa} \mathcal{S}_{mj} = 0$ for $\kappa \neq m$.

61

<u>Proof.</u> We show that $\delta_{12} \delta_{23} \subseteq \delta_{13}$. Suppose $\delta_{12} \in \delta_{12}$, $\delta_{23} \in \delta_{23}$, $\delta_{12} \delta_{23} \neq 0$. It is clear that $\langle \delta_{12}, \delta_{23} \rangle$ has but one one-dimensional subalgebra lying neither in δ_{12} nor in δ_{23} and that it lies in δ_{13} . The algebra $\langle \delta_{12} \delta_{23} \rangle$ is one-dimensional. Clearly $\delta_{12} \neq \langle \delta_{12} \delta_{23} \rangle \notin \delta_{23}$. This means that $\delta_{12} \delta_{23} \in \delta_{13}$. We show that $\delta_{11} \delta_{12} \subseteq \delta_{12}$:

$$s_{H}s_{12} = s_{H}f_{13} \cdot f_{31}s_{12} = s_{13}s_{32} \in S_{12}.$$

Analogously, $S_{12} S_{22} \subseteq S_{12}$. The remaining inclusions are obvious.

Suppose m and κ are natural numbers, $m \neq \kappa$. Then

$$s_{i\kappa}s_{mj} = s_{i\kappa}f_{\kappa\kappa}\cdot f_{mm}s_{mj} = 0.$$

<u>LEMMA 7.</u> The algebra $\mathcal{B} = \varphi(A)$ is isomorphic to \mathcal{R}_n where \mathcal{R} is an algebra over $\mathbf{\hat{k}}$. <u>Proof.</u> In the light of Assertion 7, for each element $\boldsymbol{\delta} \in \mathcal{B}$

$$\mathscr{B} = \sum \mathfrak{s}_{ij} \ , \ \mathfrak{s}_{ij} \in \mathscr{S}_{ij} \ .$$

If $\sum s_{ij} - \sum s'_{ij}$ then $f_{\kappa\kappa} \sum s_{ij} f_{mm} = f_{\kappa\kappa} \sum s'_{ij} f_{mm}$, whence $s_{\kappa m} = s'_{\kappa m}$ for all κ and m.

Fix a pair (κ, m) . In the light of the equality

$$\mathfrak{s}_{pq} = f_{PK} (f_{KP} \mathfrak{s}_{pq} f_{qm}) f_{mq}$$

we have the relation

$$S_{pq} = \{f_{px} \, s_{\kappa m} \, f_{mq} : s_{\kappa m} \in S_{\kappa m}\},\,$$

where the presentation of each element of $S_{\rho q}$ in the form $f_{\rho\kappa} s_{\kappa m} f_{mq}$ is unique.

Suppose $R = S_{ii}$. If $\delta \in B$ then $\delta - \sum_{i,j=1}^{n} f_{ii} z_{ij} f_{ij}$, where $z_{ij} \in R$. It is apparent that the mapping $\sum f_{ii} z_{ij} f_{ij} \longrightarrow \| z_{ij} \|_{i,j=1,...,n}$

is an isomorphism of the algebra \mathcal{B} to \mathcal{R}_{a} .

§3. Algebras Lattice-Isomorphic to Matrix Algebras

over (Skew) Fields

In this section we conclude the proof of our Theorem, formulated in the Introduction. We shall assume that the system $\{f_{ij}\}_{i,j=1,...,n}$ is isomorphic to the system of matrix units.

Assertion 8. Let $a \in \mathcal{D}$ and $\varphi:\langle ae_{n} \rangle \rightarrow \langle \overline{a}f_{n} \rangle$. Then $\varphi:\langle ae_{n} \rangle \rightarrow \langle \overline{a}f_{n} \rangle$ and $\varphi:\langle ae_{n} \rangle \rightarrow \langle \overline{a}f_{n} \rangle$.

<u>Proof.</u> We can obviously assume that $a \neq 0$. For some $b \in C \in R$ we have

$$\varphi: \langle a e_{13} \rangle \longrightarrow \langle b f_{13} \rangle \text{ and } \varphi: \langle a e_{23} \rangle \longrightarrow \langle c f_{23} \rangle.$$

Put $\mathcal{A}_{i} = \langle a e_{i3}, a e_{i3}, e_{23} \rangle$. It is clear that $\mathcal{A}_{i} \cap \mathcal{D}_{i3} = \langle a e_{i3} \rangle$. Suppose $\varphi : \mathcal{A}_{i} \longrightarrow \mathcal{B}_{i} = \langle \overline{a} f_{i2}, b f_{i3}, f_{23} \rangle$. Then $(R_{ij} = R f_{ij})$

$$\mathcal{B}_{i} \cap \mathcal{R}_{13} \supseteq \langle \overline{a} f_{13} \rangle \text{ and } \mathcal{B}_{i} \cap \mathcal{R}_{13} \supseteq \langle \delta f_{13} \rangle,$$

whence $\langle \delta f_{13} \rangle = \langle \bar{a} f_{13} \rangle$. Now consider $\mathcal{A}_2 = \langle e_{12}, a e_{13} \rangle$. Suppose $\psi : \mathcal{A}_2 \longrightarrow \mathcal{B}_2 = \langle f_{12}, c f_{23}, \bar{a} f_{13} \rangle$. As above we obtain that $< cf_{23} > = < af_{23} > .$

<u>Assertion 9.</u> Suppose a, $b \in D$. We assume that $\varphi : \langle a e_{12} \rangle \longrightarrow \langle \overline{a} f_{12} \rangle$ and $\varphi : \langle b e_{12} \rangle \longrightarrow \langle \overline{b} f_{12} \rangle$. Then $\varphi : \langle a b e_{12} \rangle \longrightarrow \langle \overline{a} b f_{12} \rangle$.

<u>Proof.</u> We can obviously assume that $a \neq 0$, $b \neq 0$. Then $ab \neq 0$. Put $\mathcal{H} = \langle ae_{12}, be_{23}, (ab)e_{13} \rangle$. In view of Assertion 8

$$\varphi: \mathcal{A} \longrightarrow \mathcal{B} = \langle \bar{a}f_{12}, \bar{b}f_{23}, \bar{a}\bar{b}f_{13} \rangle,$$

which implies $\mathcal{B} \cap \mathcal{R}_{13} \supseteq \langle \overline{a}\overline{b}f_{13} \rangle$ and $\mathcal{B} \cap \mathcal{R}_{13} \supseteq \langle \overline{a}\overline{b}f_{13} \rangle$, so that it suffices to prove that $\overline{a}\overline{b} \neq 0$. But if equality $\bar{a}\bar{b} = 0$ held, then in view of the relation $\mathcal{B} = \langle \bar{a}f_{12} \rangle$, $\bar{b}f_{23} \rangle$ we would have $\mathcal{B} \cap \mathcal{R}_{13} = 0$, a contradiction. The assertion is proved.

Now assume an element $t \in \mathcal{D}$. Consider the algebra

$$\mathcal{O}_t = \langle e_{_{H}} + t e_{_{12}} + e_{_{33}} \rangle$$

It is one-dimensional. If \mathcal{O} is a one-dimensional algebra, $\mathcal{O} \subseteq \ll \ell_{1/2}, \mathcal{D}_{1/2}, \mathcal{L}_{3/3} \gg$, then $\mathcal{O} = \mathcal{O}_t$ for some $t \in D$ (provided of course that $\mathcal{U} \not\subseteq \langle e_{i_1}, \mathcal{D}_{i_2} \rangle$, $\mathcal{O} \not\subseteq \langle e_{33}, \mathcal{D}_{i_2} \rangle$). Suppose $\varphi \colon \mathcal{O}_t \longrightarrow \widetilde{\mathcal{O}}_r$, $r \in \mathcal{R}$ (the existence and uniqueness of r are obvious). Then define $f: t \rightarrow r$. The ensuing situation corresponds to the diagram

$$\begin{array}{c} \mathcal{O}_{t} & \stackrel{\varphi}{\longrightarrow} & \widetilde{\mathcal{O}}_{r} \\ \uparrow^{t} & & \downarrow^{r} \\ t. & --t- \rightarrow r \end{array}$$

<u>LEMMA 8.</u> Suppose 1 and t are elements of the (skew) field \mathcal{D} , linearly independent over t. Then (a+t)f = af + tf.

<u>Proof.</u> Suppose $t_1, t_2 \in \mathcal{D}$. Put $a = \ell_H + t_1 \ell_{n_2} + \ell_{33}, b = \ell_H + t_2 \ell_{12} + \ell_{33}$. Then $a^2 = \alpha$, $b^2 = b$, ab = b, $ba = \alpha$, so that $\langle a, b \rangle = \{\lambda \alpha + \mu b : \lambda, \mu \in k\}$. Therefore

$$\langle \mathcal{O}_{t_{\gamma}}, \mathcal{O}_{t_{2}} \rangle \cap \mathcal{D}_{12} = \left\{ \lambda \left(t_{\gamma} - t_{2} \right) e_{12} : \lambda \in k \right\}.$$

For $x \in D$ we have

$$\begin{array}{c} (<\mathcal{O}_{x},\mathcal{O}_{t}^{} > \cap \mathcal{D}_{12}^{} \supseteq <\mathcal{O}_{4}^{}, e_{_{H}^{}}, e_{_{33}}^{} > \cap \mathcal{D}_{12}^{}) \& \\ \\ \& \left(<\mathcal{O}_{x}^{}, \mathcal{O}_{4}^{} > \cap \mathcal{D}_{12}^{} \supseteq <\mathcal{O}_{t}^{}, e_{_{H}^{}}, e_{_{33}}^{} > \cap \mathcal{D}_{12}^{} \right) \Longleftrightarrow x = \mathbf{1} + \mathbf{t} \end{array}$$

Indeed, the condition on the left side of \iff can be expressed so: for some $\lambda, \mu \in k$

$$\begin{cases} x-4 = \lambda t \\ x-t = \mu 4. \end{cases}$$

For x = 1 + t we put $\lambda = \mu = 1$. Conversely, if we have (7) then $t - 1 = \lambda t - \mu 1$ and hence by linear independence of \mathfrak{s} and \mathfrak{t} we obtain $\mathfrak{\lambda} = 1$, i.e., $\mathfrak{x} = \mathfrak{s} + \mathfrak{t}$.

Now Lemma 8 easily follows from the definitions.

<u>LEMMA 9.</u> Let $y' = (ff)^{-1}$. We suppose that $[\mathcal{D}: k] \ge 2$. Then for all x, $y \in \mathcal{D}$ there hold the equalities

$$(xy)f = y \cdot xf \cdot yf$$
 and $(x+y)f = xf + yf$.

<u>Proof.</u> For $x \in \mathcal{D}$ we put $\overline{x} = xf'$. We prove the equality $\overline{xy} = y \overline{xy}$. We can assume that $x \neq 0$, $y \neq 0$. Consider the cases:

1) $x \notin k$; then x = /+a where /, a are linearly independent over k. We have

$$\overline{xy} = (\overline{1+a})\overline{y} = \lambda \quad \overline{1+a} \quad \overline{y} = \lambda \quad (y^{-1}+\overline{a})\overline{y} = \lambda \quad y^{-1}\overline{y} + \lambda \overline{a} \quad \overline{y}.$$

On the other hand, since y and αy are linearly independent, it follows that

$$\overline{xy} = \overline{y + ay} = \overline{y} + \mu \overline{a} \overline{y}.$$

If the relation $\lambda y^{-1} \neq i$ held, then $\bar{y} = \sqrt{a}\bar{y}$ would be fulfilled, whence $\theta = (i - \sqrt{a})\bar{y}$. This would mean that $i - \sqrt{a} = 0$, $\bar{\alpha} = \sqrt{-1}$, whence $a \in k$, a contradiction. Thus $\bar{xy} = y\bar{x}\bar{y}$.

2) $\psi \notin k$. The proof in this case proceeds analogously to that in case 1).

3) Suppose
$$\alpha \quad \beta \in k \quad x \in \mathcal{D} \setminus k \quad x + y = \beta$$
. Then $y \notin k$. We have
 $\overline{\alpha \beta} = \overline{\alpha (x + y)} = \overline{\alpha x} + \overline{\alpha y} = y\overline{\alpha x} + y\overline{\alpha y} = y\overline{\alpha}(\overline{x} + \overline{y}) = y\overline{\alpha x} + \overline{y}\overline{\alpha \beta}$

Thus, in all cases $\overline{xy} - \gamma \overline{xy}$.

The equality $\overline{x+y} - \overline{x} + \overline{y}$ requires proof only in case of linearly dependent x and y.

We note that $-\overline{7} = -\overline{7} = -\overline{y}^{-1}$: $\overline{f} = (-1)(-1) = y^{-\overline{1}} - \overline{7}$, i.e., $\overline{f}^2 = \overline{7y}^{-1} = -\overline{7}^2$. But $\overline{7} \neq -\overline{7}$ in case $\mathcal{X}(k) \neq 2$, whence $-\overline{7} = -\overline{7}$. In the case where the characteristic $\chi(k)$ of the field k is equal to 2, the equation $-\overline{7} = -\overline{7}$ is trivial. Hence

$$\overline{-x} - \overline{(-i)x} = y \overline{-ix} = y(-y^{-i})\overline{x} = -\overline{x}.$$

Suppose now $x = \alpha z$, $y = \beta z$, $x + y \neq 0$. In view of the relation $[\mathcal{D}: k] \geq 2$ there exists $t \in \mathcal{D}$ such that t and z are linearly independent. It is clear that $\alpha z + t$ and $\beta z - t$ are also linearly independent. Hence $(x \neq 0, y \neq 0)$

$$\overline{(x+y)} = \overline{(\alpha z+t) + (\beta z-t)} = \overline{\alpha z+t} + \overline{\beta z-t} = \overline{\alpha z} + \overline{t} + \overline{\beta z-t} = \overline{x} + \overline{y}.$$

Finally, if x=0 or y=0, then $\overline{x+y}=\overline{x}+\overline{y}$ in the light of the equality $\overline{0}=0$. The lemma is proved.

We return to the proof of the theorem. If $\mathcal{D} = k$, then in view of Lemma 3 there is nothing to prove. If $\mathcal{D} \neq k$, then $[\mathcal{D}: k] \ge 2$. From Lemma 9 follows that the mapping $\overline{f}: \mathcal{D} \longrightarrow \mathcal{R}$ provided by the equality $x\overline{f} = y^{-i} \cdot x\overline{f}$ is a semilinear isomorphism of \mathcal{D} to \mathcal{R} . From Lemma 7 now follows that $\mathcal{B} = \widetilde{\mathcal{D}}_n$, where the (skew) field $\widetilde{\mathcal{D}}$ is semilinearly isomorphic to the (skew) field \mathcal{D} . Conversely, if the (skew) field $\widetilde{\mathcal{D}}$ is semilinearly isomorphic to the (skew) field \mathcal{D} , then obviously the lattice $S(\widetilde{\mathcal{D}}_n)$ is isomorphic to the lattice $S(\mathcal{D}_n)$. The theorem is completely proved.

LITERATURE CITED

- 1. D. W. Barnes, "Lattice isomorphisms of associative algebras," J. Austral. Math. Soc., <u>6</u>, No. 1, 106-121 (1966).
- 2. A. Ya. Khelemskii, "On the connection between the construction of certain nilpotent associative algebras and the construction of the structure of their ideals," Dokl. Akad. Nauk SSSR, <u>187</u>, No. 3, 521-524 (1969).
- 3. R. C. Glaeser and B. Kolman, "Lattice isomorphic solvable Lie algebras," J. Austral. Math. Soc., 10, Nos. 3-4, 266-268 (1969).

- 4. A. A. Lakhshi, "Structural isomorphisms of nilpotent Lie rings," Soobshchen. Akad. Nauk GSSR, <u>65</u>, No. 1, 21-24 (1972).
- 5. L. A. Skornyakov, Dedekind Structures with Complements and Regular Rings [in Russian], Fizmatgiz (1961).