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Introduction

We fix a field # and denote by O the class of all associative algebras over this field. We denote by
S(A) the lattice of subalgebras of the algebra A. Supposz A and B are two algebras of the class {f and
suppose the lattices S(A) and S(B) are isomorphic. We are interested in the relation in this case between
the algebras A and B. _

Lattice-isomorphic algebras (algebras with isomorphic lattices of subalgebras) were studied by
D. Barnes [1] who showed that if A isa ring of matrices of order >3 over a finite-dimensional (skew)
field, then there axists a 1-1 mapping of 4 to B which is either multiplicative or antimultiplicative.

Articles [3] and [4] border on our theme in dealing with lattice-isomorphic Lie algebras, as does the
work [2]. We note also a result on semilinear isomorphisms of those rings of matrices (of order =3 ) over
algebras with divisors in which the isomorphic lattices are right ideals [5, Theorem 21].

We formulate now the basic result of this work. Consider the case in which one of the lattice-iso-
morphic algebras is matrix over an arbitrary (skew) field. We shall assume that the basic field 75 con-
tains at least three elements.

THEOREM. Suppose that 7 is an algebra with divisor over ;5 that 2 is a natural number, 723,
that A= .Z7 is an algebra of matrices over /7, and that B is an algebra of class &£ . Then the lattices
S (/1) and 5 (B) are isomorphic if and only if the algebra B is isomorphic or antiisomorphic to an algebra
.Z7 over a (skew) field 7 such that between the (skew) fields 7 and _D there exists a £ -semilinear corre-
spondence

We point out that for J= f this theorem is true as well for =2 [1, Theorem 2]. The situation in
the general case is not known. For n=/{ there are trivial counterexamples:

a) A= £ and B a one-dimensional nilpotent algebra,

b) A and B subfields of the field £ of complex numbers, [A: §1=2=[B:f,A%B . Here £=~@ , the
field of rational numbers.

Before proving our theorem we introduce the following notation: small Greek letters (with or with-
out subscripts) indicate elements of the field £ . The letter ¢ is reserved for isomorphisms of lattices.
The algebra generated by the elements &, 5 L,... is denoted by< @, 5 c..>.

The author gratefully acknowledges the interest of L. A. Bokut! in the question here treated.

§1. Algebras Lattice-Isomorphic to Algebras

with Zero Products

The purpose of this section is to establish a property of algebras lattice-isomorphic to algebras with
zero products.

An important observation constantly used in our considerations is given in the following obvious
lemma:
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LEMMA 1. A (non-null) algebra is one-dimensional if and only if it contains no proper subalgebras.

It is clear also that a one-dimensional algebra either is an algebra with zero products or is generated
by an idempotent. :

We now establish the following proposition.

LEMMA 2. Let & and £ be lattice- isomorphic algebras over £ , and let & be an algebra with zero
products. Then each (non-null) singly generated subalgebra of the algebra £ is one-dimensional.

Proof. Wecanassumethat dim & >2 . We note that £ is an algebraic algebra (in each non-null
subalgebra there is a non-null subalgebra without proper subalgebras). Suppose ¢: § ($)——§(K) is an
isomorphism and let 0#ce £ . Then ¢" (<¢>) is a finite-dimensional algebra since it has zero products
and there is in it no infinite strictly increasing chain of subalgebras (in view of finite-dimensionality of

<C>). Suppose {5;,..,, fm} is a basis of the algebra 50'/(<C>) . Then <C>=<(,...,Cp >, where < >=
p (< £:>) is a one-dimensional algebra,/s; </ . Since ¢ is an arbitrary non-null element of the algebra
L, it éollows that the algebra £ is generated by some product of its one-dimensional subalgebras.

Let <¢,>,<C,> be arbitrary one-dimensional subalgebras of the algebra £ . We show that ¢, ¢, =
4G + ),C,. We can assume that <(, >-74<02> , 8ince otherwise there would be nothing to prove. The algebra
K€/ C>=KG >,<cz>> is generated by any two of its distinct non-null subalgebras since this property is

_p(l)lssessed by the algebra « 5,>,<5Z>> , <4§->= 50”(<c/>) . Hence if 0,6}¢ fc,+fQ » then <(,,6,>=<(,,6C, >
whence

6=£6.66)=64(c,¢), ' )

where { (X,Y) and g(X, Y) are some polynomials over £ in the noncommutative variables X and Y. Let

L’,z = {C, ; multiplying both sides of (1) on the left by ¢, we get C,5,=)(,, a contradiction. The assertion is
proved.

7 T
Then there is a non-null nilpotent element in the algebra <z;,,>. Suppose the contrary. Then from

LI E !l'l’z- + 162} {,/=1.2, follows that the algebra <z,,.z,> is two-dimensional. Hence it is isomorphic
to the algebra '@ i in which there are exactly three one—dimensionalf -subalgebras. But in the al-

Let &, . Z, be non-null elements of the algebra £ where further = z,, .'Z!zz=:nz y <Ey>FELLY

gebra gp" (<z,,z,>) lattice-isomorphic to the algebra <z,,7,>, there are more than three one-dimen-
sional subalgebras [in view of the fact that £+@F (2)), The contradiction obtained shows that there is in
the algebra <x,,7,> a nilpotent element N (a;, x,) which generates a one-dimensional algebra.

It is clear that <@, 4, > = < T N (5, 5)> =<4, N (5, 5>,

Let the one-dimensional algebras <C; >SL (i€ ) generate the algebra { . We can suppose that
G cjz for #,#¢, and that cf is equal to O or ¢, for all (e . We can present two cases:
7

2 e . ., . .
(1) ¢;=0 for all£€ I . Then for 4% Z, in the relation Cz‘, ci:: y,ail + 4 Cb-z in the light of

2 ’ z 2
C‘:’ 'ci’cb'z— J,Cé’+jzel:,cz'z and C;"CQ "‘/’c‘; C‘-z + /ZCL'Z ’
there follows ; C£2= 0. That is, £ is an algebra with zero multiples, which implies dim <¢>= { for
O0+cel . !

2 . . . .
(2) = 62-” for some ¢ €7. We set Jy,=7 ~{s,}, €J=&":o, 6‘5' = N (cb.ﬂ.cb-) for veZ,. Then
L= <<G; >, <Cél> P 6 E.Z'a > . As above, we obtain that [a=<f0£> : ¢€7,> is an algebra with a zero mul-
tiple. Clearly each element of the algebra £ has the form yc, + ¢ where 0'e ,Ca . ,WeA suppose that
<Jc,’+o’> is not a one-dimensional algebra and that yc;-{- ¢’#0. Then } % 0 and C#¥ 0 . In the algebra
P-l (< CJ,C’)) there are no non-one-dimensional proper subalgebras., Hence < xc{,+ c>=< co’ ,c’> ; c;o’==
5 ) , .
c'c; . Using the equalities Ca, = 0; . c ‘= a. cga’e é/c; + 50’, it is readily shown that cal ¢ ; is either o

’ ’
or ¢’ . In both cases the algebra <C,,,,G’> contains only two one-dimensional subalgebras: <f,> and <C>.
The contradiction obtained shows that each non-null singly generated subalgebra of the algebra £ is one-
dimensional., The lemma is proved.
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We now give a definition necessary for formulating Lemma 3. Suppose that b= { o, B/}j A = l,...,/‘t}
is a semigroup consisting of zero and matrix units and that £={0, E £,j=hm,1}is a subsemigroup of
multiplicative semigroups of some (associative) algebra. We shall say that the system {ﬁj}'o‘,j#....,m is an

isomorphism (antiisomorphism) of the semigroups if the mapping

g—0
Zy——>-fb1, [/,j= fyeo o9/l

is an isomorphism (antiisomorphism) of the semigroups b and f .

Suppose A and B are the algebras referred to in the theorem. Denote by ¢ the isomorphism

S(A) — $(B).

Suppose <€;:> is the subalgebra in A generated by Then by Lemma 1

b -
S‘o : <eé/- >—--<f47,- >

for some element féjé'B’

Corresponding to each system of 72 2 nonzero elements v‘,/- of the field { we put

vy fij for ¢,

ﬁj (‘,li]') = ﬁ/ ={ fb’j or i=f,

LEMMA 3. For generators )@ '3 ,é the system {ﬁ’l} boj= tyuert is isomorphic or antiisomorphic to the
system of matrix units,

The proof of this assertion is contained in the article of Barnes [1] in which it appears as Lemma 12,

In the light of Lemma 3 we can consider that the system { f‘l} by e is isomorphic or antiisomor-

phic to the system of matrix units. Let B be the algebra referred to in the Theorem. In the linear space

of B we prescribe a new multiplication o?eration bof = 5 3 , 5 f € B. The algebra obtained we de-
7 . I 1 T2 z2 1 1*%2

note by B° . Now we define an algebra B°. Set

B” - 'B, ' if ﬂ’/f72=f12’
B . i 7‘111/12=0'

/g !
Thus we have selected in the capacity of the algebra B either the algebra Bor B depending on

whether there is isomorphism or antiisomorphism of { and the system {Bg} b tyenatt of matrix
units,

T} ijetonn

§2. Matricity of Algebras Lattice-Isomorphic

to the Algebra Dn

In this section we demonstrate that an algebra lattice-isomorphic to the algebra .D,,' is isomorphic
or antiisomorphic to an algebra P,‘ , where R is an algebra over ,é’ . We shall suppose that the system
. ¥

{fé{'}éjﬂ.—.n is isomorphic to the system of matrix units. Consideration of the algebra B introduced in §1
shows that this assumption does not imply loss of generality.

Put 7, = 1794/. + §y= ¢ (Jy). There holds the following lemma.

LEMMA 4, For each / the element £}, is a unit of the algebra §; .
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Proof. Suppose §= 8, , F=f;. €=¢; Note that for each4€ 8 fa= 8f . 1 fact

(fo=fsf)'=fsfs~fufof ~ fsf fo+ fsf - fuf =0,
o~ fof) = of sf—sf-fsf —fuf-sf + fof -Fuf=0,

whence vf4= 71’475 = if (there isin § a unique one-dimensional subalgebra <{' >- and hence nilpotent ele-
ments are absent). _

We denote f={4e8: {3 = 0}. I suffices to prove that £=0 since fs-sef for all 4€S5. Sup-
pose the contrary, i.e., let JZ% o, Jg a subalgebra of § , where moreover £ ? <f’ >, Let €2 be such

that +1€ @'(A) .
Consider B= ¢ (<7 7).
We assume that /32 <f>. Then

-n ~/n,
=2 Amt Fhpt T Ayt

m<my,
my mym
LY=2Rpt "+ AL

The latter equation demonstrates that g€ ga" (#£), ie., <7" > S £ , a contradiction. This shows that
BE <P

Assume ﬁnﬂ% 0. Then we have
- M - -
mgm,,v’”(é ) e (£)n T (B), "m,,‘?é 0.
Hence
" "0 1),
V€ + L v, 270 e o7l (#),
»

. mem, ™
This implies ¢ € (p" (#£), i.e.,~<.f’> c A, a contradiction. ,
Thus B 2 <F> BnA=0 ,<Jf,/6>2<f>. That is to say § = b+a + 3 kj & (£, B) where
in each word W; there enters some g, € # . In view of centrality of £ and Jﬁf = Owe have ’

Fim bf +af + 20 (4, B)f = 4.

Thus 57"=f which is to say ng=f’. (52— 5)7!= g, i.e.,
8- 4e A

But #n%B =0 whence § —4=0. From the equality f-*—f;" there follows 6#0. Tt is clear that <6>#<f>.

Thus in § there are two one-dimensional subalgebras, a contradiction.

LEMMA 5. Suppose {#§. Then B=3y - yTu= 0" 5 75:1'= 3y f;jsgao for each element

5” € Sg .
Proof. Suppose 3, € S 12 * If4,= 0 , then the assertion of the lemma is trivial. Hence suppose
5,;;4 0. In view of Lemmas 1 and 2 there exists reZ) , r#&{ such that <rg,>= 50”(< 4,,>). Suppose

<3g>=9(<re,>), <4,>= @ (<r7€,>), <3,>=p(<rey>). Then for
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-1, -1
C =<€”,I'0,2,/‘ eﬁ,/’ e:’.;pe, ,8321823!%29€’3>

we have

(P: 0-—'-<f‘ﬁ! 512, 434; 5:./; 4’[5974’2’%23’7@2‘%33)'

But{ % {4 . Lemma 5 now follows from Lemma 3 in view of the correspondences <§,> = <7"ﬁ >,
Lre,> ~—>< 4,,> and the fact that f’zz 7025 = 7”23 [since the corresponding system of elements of the al-
gebra ¢ (C) is isomorphic to the system of matrix units].

Assertion 8. 3, ﬂ'j € 85]' and 75«,; §; € é}‘. for each 3;; € Su.

Proof. For /=; there is nothing to prove. Suppose i=/, j=2. 3 e £ then the assertion is ob-
vious. Suppose 3,, ¢ £. Consider the algebra f£= <3, 75,2>. We assert that each one~-dimensional subal-
gebra DS £ lies in <7f, , 3,z>. Indeed, suppose (' = (p"(< 3,>) . Then :)5=<§,0(0),7",2 >. Suppose X, € C,
x€]) and suppose for some & ek

2
(ze,+y&,) = ¢ (ze,tye,).
Then &£ (®-5)=0 andif £# 0 (Le., <Ze +46,>% J,,) then £~Ze£. That is to say <z&, +¢¢,> C<é,,

Dy > s, plcxe, +ye,>) S<f,, 8,2

In view of the relation (3,7, )= 4117(:2 -7"” 3, f,, = 0 we have
d,fpe <t 8,>

On the strength of Lemma 5, 4,,7‘,’2 - ﬂ,f;f + 3, . Multiplying both sides of this equality on the right by
'/;z we get 3, ﬁz =-3,€ 8, . In exactly the same way we show that f;z 3, € ‘S;b
LEMMA 6, For arbitrary :14/. € 5;-1- and .4:”‘ 6452 there holds the inclusion .4.9-:&; € 6}5 .
Proof. We can of course consider that £ 7‘/ . Suppose A=« 3,34 >. We show that for each algebra

BE £ such that BE <6, , §,, §,, > there holds the relation §,,, B> 2 <3, >+ 0 wheres, e §,. In-
deed, suppose

T+ Yo, + 28, + U6, € 97 (B), 1F0, T 480D,

Then<JD,,, ;0" (B)>2< U6, ># 0, whencethe assertion follows.
We put = < 3, 4,,7. 1f there held the relation BELS,,S

2t 5’22‘>,thenfor some 0%521 € 52/
there would be fulfilled the equality

_ /
3= 3 +2 7"/ (dﬂ:&”) ’

Multiplying both sides of this equality on the left by fzz and on the right by f ,, Wwe are led to the relation

3,,= 0, a contradiction. This means that ‘62(5”,8,2,4 % Suppose

B, =3, i, + 3, 2 A’g‘rg 3,% S/Zgw—g 3y

(in the light of Lemmas4and 5, 4,3, ~0=3 4, for4. € .). Multiplying both sides of the equality on the
ight b t4,4 =%, €0 20T |
right by £, weget 4,4 =3 €4 .

Agsertion 7. SJK ij < 5’,;,- and 6"-,( ‘ij = (] for K#m.
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Proof. We show that 3 25,3 S J,. Suppose 4, ES 3,4 € «.9 3,58,4F 0. Tt is clear that

<3, > has but one one~-dimensional subalgebra lying neither in 5,2 nor in 323 and that it lies in 3,3 . The

12'

algebra <3 8, 23> is one-dunensmnal ClearlyS 2 <3 2 23> géé’z 3 This means that 4,2 28 65,3.

We show that 5, §, < &,

r 7
dydy= 717073 f:H 12 515‘325512'

Analogously,S,z 522 /z « The remaining inc¢lusions are obvious.

Suppose /7t and 4 are natural numbers, m# «x . Then
:&‘-K 4,"}- = 4{,(70,“ ’ fﬂzm imj =0.

LEMMA 7, The algebra B =@ (A) is isomorphic to £, where 1? is an algebra over % .
Proof. In the light of Assertion 7, for each element ¢ 5

5%— Z‘iéj , 3y € (S"./. )
! / [
Isz&j -2 “Zj then ﬂk 2 55/‘ fmm = fKKZ d‘(,'/ fmm , whence 4, =4, ., forallx andm .
Fix a pair (x, /) . In the light of the equality

A’Pg=/ﬁk (76/(/7 4,ag7py/n77amg

we have the relation
S g = {fpx ixm'/pmz fdum eSxm} ’

where the presentation of each element of § oy in the form is unique.

ok Pxm. f mg
A
Suppose K =§, . If fcB thend -ZJZ_, ﬁ-, Zé/- f, o where 2 i € R. It is apparent that the mapping

Zﬁrzéjfj /=f.

is an isomorphism of the algebra 3 to ..

§3. Algebras Lattice-Isomorphic to Matrix Algebras

over (Skew) Fields

In this section we conclude the proof of our Theorem, formulated in the Introduction. We shall as-
sume that the system {ﬁ} b f= st is isomorphic to the system of matrix units,

Assertion 8. Let aeJ and p:<ae, >—»<af’,z> Then ¢: <@¢, >—=<&f,> and ¢:<a;>
<@f, >.
Proof, We canobviouslyassume that zz#o For some$ , CE€E R we have

i <aey>—< 6f,> and P1 <28, >—=< Ly >

Put £, =<a6,,26,, &3> 1t is clear that #, N D, =<a;>. Suppose p: £, —B, = <&f, , tf,. ;3 >.
Then( /?ﬂ/
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B NR2<af, > andB N&, =< 6>
whence <1€7‘;5 = <af,> _
Now consider £, = < ¢,, @€, ae, >. Suppose ¢: £, — B,=<f,.cf,. Zf,> . Asabove we
obtain that <cf,, >=<af,>.
Assertion 9. Suppose @ , €. We assume that o <ae,2> ;> and <p:<zfe,z>—.-< gﬁz),
Then ¢: <af e, >—<abf,, >

Proof. We canobviously assumethat @#0, 6#0. Then ab#0. pPut # = <CZ€,Z y 06, (45)2 >, In
view of Assertion 8

‘P’-’g——"‘ﬁ =<Eﬂz’gfzs";i7frs>

which implies B N R, 2 <5gf,3) and BN Ry <a5f,3 >, so that it suffices to prove that 6+ 0. But

if equality ab=0 held, then in view of the relation f3=< 57‘;2 4 fz_, > we would have /BN '?/3 = {,acon-
tradiction. The assertion is proved.

Now assume an element €.7. Consider the algebra

O, = <e,+te,+ 6>,

It is one-dimensional. If O is a one-dimensional algebra, 0SK ¢,>,7,,,<4;>» , then 0= g, for somet € D
(provided of course that U <&

”,_7 >, O < b44,0,> ). Suppose @: @t—’_@ , re X (the existence and

uniqueness of » are obvious). Then define 7" : £ —r. The ensuing situation corresponds to the diagram

6, o

LEMMA 8. Suppose 4 and ¢ are elements of the (skew) field .2, linearly independent over f Then
(44+20)f = 4f +2f.

Proof. Suppose 7,7, €.2. Put a=grze, +6,,6=¢ 'H"zefz + 4. Then 2’=c Bi=4, ab= 4,

bz =c , so that<a, 5>-{7La+/ug L/Ie%} Therefore

<0,, 0,>ND,={1t-t)e,: rek),

For £€ we have

(£0,0,>0D,2<0,,6,.6,>N0,)&

4 "

&(0,.0>nD0,2 <0,,¢,6,>nD,) & o=1+t
Indeed, the condition on the left side of <= can be expressed so: for some A, ME £
£—4 =AZ
{.1: -7 =pd.
For Z= 4+ we put A= =1, .Conversely, if we have (7) then t-4a=0% — M4 and hence by linear in-
dependence of 4 and Z we obtain A =1, i.e., @=4+L.

Now Lemma 8 easily follows from the definitions,
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LEMMA 9. Let y= (#)"". We suppose that [ D f] > 2, Thenforall £ , 4€D there hold the
equalities
@ =Jaf-4f wa (esg)f = of 14f.
Proof, For €. we put Z=2f . We prove the equality Ty =y FJ. Wecanassume that2#0 , §#0.
Consider the cases: i '

1) £¢£ ; then z=/+a where/ , @ are linearly independent over £ . We have
5 - (rhaly =1 MG=A(+a)=2y] +147.
On the other hand, since y and af/ are linearly independent, it follows that

T~ JTG 7 + 4.
If the relation A (y':ﬁe { held, @hep 4= vii would be fulfilled, whence 0= ({-v2)§ - This would mean that
1-va=0, a =v7, whence a € £ , a contradiction, Thus Ty =yx7. )
2) yﬁ' é . The proof in this case proceeds analogously to that in case 1),
3) Suppose « « fef . e D\E . Z+4=p. Then £ €. We have

TP = «(T1Y) = ST+ =g = JET + J& [ = J T+ )= R TTY=Y<A.
Thus, in all cases ,:"vjy_=/.fg .

The equality 2 + g= z +£7 requires proof only in case of linearly dependent & and 4.

We note that - 7=-7= —}": 1= (-1)(-1) = J- 77, e, 7= 73” = 7%, But 7 +7 in case Z (£) #2,
whence ~7/=~7 . In the case where the characteristic 7 ( £) of the field # is equal to 2, the equation =7 =-7
is trivial. Hence

T=Mz=y=78=)-y)T=-7

Suppose now & = x 3, y=ps, Ty # 0. In view of the relation [D: £1>7 there exists t €2 such that
7 and z are linearly independent. It is clear that «z + Z and g% — ¢ are also linearly independent. Hence

(z+0, 5%0)

(@ +y) = (xz+1) +( Mt )= xz11 +p2-1= e‘czr+z7+p?—z7=5+y.

Finally, if £=0 or 4=0, then zty =E+7 in the light of the equality § = 0. The lemma is proved.

We i‘etprn to the proof of the ‘theorem, I J=4£ ,then in view of Lemma 3 there is nothing to prove.
It D##£,then(7: £1>2. From Lemma 9 follows that the mapping f : D —R provided by the equality

zf = )’"- Z# is a semilinear isomorphism of Jto # . From Lemma 7 now follows that 5=7), ,where
the (skew) field .7/ is semilinearly isomorphic to the (skew) field 2. Conversely, if the (skew) field

is semilinearly isomorphic to the (skew) field 2, then obviously the lattice S | D ) is isomorphic to the
lattice S(Dn). The theorem is completely proved. 4
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