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I n t r o d u c t i o n  

We fix a field ~ and denote by ~ the c lass  of al l  a s soc ia t ive  a lgebras  over  this field. We denote by 
5 ( A )  the  la t t ice of suba lgebras  of the a lgebra  A • Suppose A and iF a r e  two a lgebras  of the c lass  /~ and 
suppose the la t t ices  ~c(A) and S ( B )  a r e  i somorphic .  We a r e  in te res ted  in the re la t ion  in this ca se  between 
the a lgebras  A and 2~. 

La t t i c e - i somorph i c  a lgebras  (a lgebras  with i somorphic  la t t ices  of subalgebras)  were  studied by 
D. Barnes  [1] who showed that if A is a r ing  of m a t r i c e s  of o rder  ~>J over  a f in i te -d imensional  (skew) 
field, then the re  exis ts  a 1-1 mapping  of A to /~ which is e i ther  mul t ip l ica t ive  or  ant imult ipl icat ive .  

Ar t i c l e s  [3] and [4] bo rde r  on our theme in dealing with l a t t i c e - i somorph ic  Lie a lgebras ,  as does the 
work  [2]. We note a lso  a r e s u l t  on s emi l i nea r  i s o m o r p h i s m s  of those r ings  of m a t r i c e s  (of o rder  >~3 ) over  
a lgebras  with d iv i sors  in which the i somorphic  la t t ices  a re  r ight  ideals [5, Theo rem 21]. 

We formula te  now the bas ic  r e su l t  of this work.  Consider  the case  in which one of the l a t t i c e - i so -  
morphic  a lgeb ra s  is ma t r i x  over  an a r b i t r a r y  (skew) field. We shall  a s s u m e  that  the bas ic  field ~ con- 
ta ins  at  l eas t  th ree  e lements .  

THEOREM. Suppose that  _D is an a lgebra  with d iv isor  ove r  ~ ,  that  /z is a na tura l  number ,  n ~ 3 , 
that  A= .D n is an a lgebra  of m a t r i c e s  o v e r . D ,  and that  6 is an a lgebra  of c l a s s  ~ .  Then the la t t ices  
~ ( A )  and S ( ~ )  a r e  i somorphic  if and only if the a lgebra  .B is i somorphic  or  an t i i somorphic  to an a lgebra  
.D~ over  a (skew) field ./P such that  between the (skew) f ields _~. and .D the re  ex i s t s  a ~ - s e m i l i n e a r  c o r r e -  
spondence.  

We point out that  for  _D= ~ this theorem is t rue  as well for  /z~2 [1, Theo rem 2]. The si tuation in 
the genera l  case  is not known. For  rb~ t t he re  a r e  t r iv ia l  coun te rexamples :  

a) ~ - -  ~ and B a one-d imens iona l  nilpotent a lgebra ,  

b) A and 2 subfields of the field ~ of complex numbers ,  ~A: ~ 2 ~ - ~ : ~ , A ~ B  . He re  ~ - - ~ ,  the 
field of ra t iona l  numbers .  

Before  proving  our theorem we introduce the following notation: smal l  Greek  l e t t e r s  (with o r  with- 
out subscr ip ts )  indicate e lements  of the field ~ .  The le t te r  ~ is r e s e r v e d  for  i s o m o r p h i s m s  of la t t ices .  
The a lgebra  genera ted  by the e lements  ~, ~ ,~  . . . .  is denoted by < Q, 8, C .. .  • .  

The author gra teful ly  acknowledges the in te res t  of L. A. Bokut '  in the quest ion h e r e  t rea ted .  

§ 1 .  A l g e b r a s  L a t t i c e - I s o m o r p h i c  t o  A l g e b r a s  

w i t h  Z e r o  P r o d u c t s  

The purpose  of this sect ion is to es tabl i sh  a p rope r ty  of a lgebras  l a t t i c e - i somorph ic  to a lgebras  with 
ze ro  products .  

An impor tan t  observa t ion  constant ly  used in our cons idera t ions  is given in the following obvious 
l emma:  
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LEMMA 1. A (non-null) a lgebra is one-dimensional  if and only if it contains no p roper  subalgebras.  

It is c lear  a lso that a one-dimensional  a lgebra e i ther  is an a lgebra  with zero  products  or  is genera ted  
by an idempotent. 

We now establ ish the following proposition. 

LEMMA 2. Let  ~ and ~ be la t t i ce - i somorphic  a lgebras  over  ~ ,  and let  ~" be an a lgebra  with zero  
products.  Then each (non-null) singly generated subalgebra of the algebra L "~ is one-dimensional .  

Proof .  We can assume that dXrn J~r ;~ £ . We note that ~r is an algebraic  a lgebra  (in each non-null 
subalgebra the re  is a non-null  subalgebra without proper  subalgebras).  Suppose ~" ~ (.~) , ~(lY) is an 
isomorphism and let  O~C~ ,C". Then ~P-t (~ C> 1 is a f ini te-dimensional  a lgebra  since it has zero  products  
and there  is in it no infinite s t r ic t ly  increasing chain of subalgebras (in view of f ini te-dimensional i ty  of 

f .= >== <O>). Suppose, .~,,. ..., ~,..~.,~ is a basis  of the algebra ,QP- (.<C>) . T h e n < C >  <C~,,..,Cm > , w h e r e < C ;  
~o (<'bZ.>) is a one -d imens iona la lgebra , t~< j '~ r r ( .  Since C is an a r b i t r a r y  non-null  e lement  of the "algebra 
~ ,  it Iollows that the a lgebra  ~: is genera ted  by some product  of its one-dimensional  subalgebras.  

Let  < ~ >, < C z > be a r b i t r a r y  one-dimensional  subalgebras of the algebra E .  We show that ~ C z = 
~0~ 4- ]zCz. We can assume that <0~>-~<0z> , since otherwise the re  would be nothing to prove.  The a lgebra  
< el, C z > =<< O, >, <Cz>~ is generated by any two of its dist inct  non-null  subalgebras since this p roper ty  is 

possessed  by the algebra <<4> ,<~z>  > , .<~].>=~P"(<C]>) • Hence if C, Cz¢~[.C,+~: z , then <C,,Cz>=<C,,C, Cz> 
whence 

f (c,,c,c z ) = e,g ), ¢1) 

where 7e (X,Y) and ~[X, Y] are some polynomials over ~ in the noncommutative variables X and Y. Let 

C~ z-- [C t ; multiplying both sides of (1) on the left by C 7 we get CICz-=[Cz, a contradiction. The assertion is 
proved. 

Let ~ . :D t be non-null elements of the algebra L" where further m~= :Pf, ~- a~ z , < ~/> ~ < a~z >. 
Then there is a non-null nilpotent element in the algebra <~,~ >. Suppose the contrary. Then from 
• .~fxje ~f + ~ i,~=¢,Z, follows that the algebra <:r1,~> is two-dimensional. Hence it is isomorphic 
to the algebra ~ ~ in which there are exactly three one-dimensional ~ -subalgebras. But i n the al- 

gebra ~-t (<a?1,~rz>) lattice-isomorphic to the algebra <a~1,a}>, there are more than three one-dimen- 
sional subalgebras [in view of the fact that ~=GF (g)]. The contradiction obtained shows that there is in 
the algebra ~zr~, ~> a nilpotent element N (~, :re) which generates a one-dimensional algebra. 

It is clear that <~ef,~> =~ <~, N(~,:r2)> =. <~, A/(a},~ )>. 

Let the one-dimensional algebras <C i P~L" (~E/') generate the algebra E. We can suppose that 
Ci~= 6i2 for z~,+i I and that c~. ~ i s equal to o or O~ for all ~ ei. We can present two cases. ~ 

(1) C~-- 0 for  all ~ £ T .  Then for i ,+  z~ in the re la t ion  C 4 C~z= ~,Oi, ÷ ~zC/~ in the light of 

, 

there follows CiC~--~ ft. That is, l~ is an algebra with zero multiples, which implies ddn~ <c> =~ /' for 
04~ceL" . 

(2) c~- c~o forsome(E_T. Weset_Fo"fxl[o),C=C~o, C~ ~-N(Cz,C ~) for~Ef e. Then 
L" --- <<Co/> , <C>: LEZ a > . As above, we obtain that Ko~-<<B~> : ZEZo> is an algebra with a zero mul- 
tiple. Clear ly  each e lement  of the algebra Z ~ has the form IC~ q- ~' where  ~ ' e  ~ 0 "  /We suppose that 
<ICy'be) is not a one-dimensional  a lgebra and that ]Co+ C ~=0 • Then ] ~  0 and C~: 0 . In the algebra 

~P'f (<C~,C'>') the re  a re  no non-one-dimensional  p roper  subalgebras.  Hence <CIC~+C'>----<C~,O'>, CoJ  == 
Y /  i 2 - / I I C C a . Using the equali t ies C;== 0/o . C/z= 0 . C;~ e/~C o q- ~,6', it is read i ly  shown that C/#Of~ is e i ther  o 

or both o . s e s  the   lgebr  contains onV two o n e - d i m e n s i o n a l  sub lgebras and <C'>. 
The contradict ion obtained shows that each non-null  singly genera ted  subalgebra of the a lgebra  L" is one- 
dimensional.  The lemma is proved.  
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We now give a definition neces sa ry  for formulating Lemma 3. Suppose that ~ =  {0, 8~ : i , j =  4,...,~) 

is a semigroup consist ing of zero and matr ix  units and that fl"={ 0, ~i] : $,j=t,..0,/z} is a subsemigroup of 

mult ipl icative semigroups  of some (associative) algebra.  We shall say that the sys tem {'fi, l'}$,]=¢,.,,,n is an 

i somorphism (anti isomorphism) of the semigroups  if the mapping 

0 " 0  

eq-- fq, 
is an isomorphism (anti isomorphism) of the semigroups  ~ and ~ .  

Suppose ,4 and .B a re  the a lgebras  r e f e r r e d  to in the theorem. Denote by q~- the isomorphism 

S(A) , s(J).  

Suppose ,~8~ > is the subalgebra in A generated by g/].. Then by Lemma 1 

for some element f~j.~-2~'. 
Z 

Corresponding to each sys tem of /Z nonzero e lements  ~ of the field ~ we put 

for ~--]'. 

LEMMA 3. For  genera tors  I t~E~ the sys tem [ ~ t  ~,j=¢,...,n is isomorphic or ant i isomorphic to the 

sys tem of matr ix  units. 

The proof of this asser t ion  is contained in the ar t ic le  of Barnes  [1] in which it appears  as Lemma 12. 

In the light of Lemma 3 we can consider  that the sys tem t~g'} $,j-Y....,a is isomorphic or ant i i somor-  

phic to the sys tem of matr ix  units. Let B be the a lgebra  r e f e r r e d  to in the Theorem.  In the l inear space 
of B we p re sc r ibe  a new multiplication o~eration ~1" ~ = ~2 ~ t ,  ~I, 4 £ B "  The algebra  obtained we de- 
note b y 2  r . Now we define an algebra ~ ~ Set 

,, f .B .  if f , / , , = £ ,  
B - . 8 ' .  i f  

Thus we have se lected in the capacity of the algebra ~ u  ~ I ei ther the algebra B or depending on 
whether there  is i somorphism or ant i i somorphism of {~@}/~, . ,n  and the sys tem {8~j t A]-4,...,a of matr ix  
units. 

§ 2 .  M a t r i c i t y  o f  A l g e b r a s  L a t t i c e - I s o m o r p h i c  

t o  t h e  A l g e b r a  _~ 

In this sect ion we demonst ra te  that an algebra la t t ice- isomorphic  to the algebra ~r~ is isomorphic 
or ant i isomorphic to an a lgebra  ~ ', where • is an algebra over ~ .  We shall suppose that tl~ sys tem 

' g i,j=t-,a is isomorphic to the sys tem of mat r ix  units. Consideration of the algebra introduced in § 1 

shows that this assumption does not imply loss  of general i ty.  

Put  ~]-= 2~0~] , S~] = ~P (.D~). There  holds the following lemma.  

LEMMA 4. For  each i the e lement  7Q~l is a unit of the a lgebra  ~ii • 
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Proof. Suppose 8 =  3/z , ~=~/4" ' g= 8// Note that for each $~8,~:~$- a~. In fact 

(F-: ~'~')'--~'~.f'~- f'~. f,,~' - f'~/', f', +/',/'. f',f'= o, 

whence ~ =  ~ # - -  ~f  (there is in ~ a unique one-dimensional subalgebra <~> and hence nilpotent ele- 

ments are absent). 

We denote 0~ ~- {~ e 8:  7~$ = (7~. It suffices to prove that ,~= 0 since ~ -4~e .~  for all ~6 8 .  Sup- 

p o s e  the contrary, i.e., let , ~  0, ~ a subalgebra of ~ ,  where moreover  0 ] ~  <t?>.  Let S e / )  be such 
that 0 ~-~ E ~" ~(0~) 

Consider ,~-' ~O(< ~ "">), 
We assume that ~ <~> .  Then 

m,:rn o ~,,,, ~-'~+ ,%,,o~-'" , r ~ , ÷  o ; 

mcra + ~moe" 

The latter equation demonstrates that 86 ~P-~ ( .~) ,  i.e., <Te> ~ , a contradiction. This shows that 
~ <~'>. 

Assume ,,~r'l~ O. Then we have 

m~mo 

Hence 

rtl,$/.r/0 

r~  < rrlO /~r 

This implies ~ ~P'¢ (3~), i.e., <-~> ~_J~, a contradiction. 

Thus ~<~>,  ~ =  0 ,<~,~>_=<~> That is to say/~= ~+~ + ~ ~ C~, ~ ) where 

in each word % there enters some a~ e ~ .  ~. view of eentraUty of f and ~ f =  Owe have 

Thus ~f=4 winch is to ,ay 6'f=f. (6 ~- ~)f = o, i.e., 

But ,~n~ =o whence CLb"0. From the equali~ f =~f there follo=s¢÷0. It is clear that d>¢<f>. 
Thus in ,~ there are two one-dimensional subalgebras, a contradiction. 

LEMMA 5. Suppose ~ j .  Then fiz ~q'~- ~ ' $/]'Tezi - O, 5~] f]] = bi] ,  5J $4/-- 0 for each element 

Proof. Suppose ~1z e ~/z " If ~le-- 0 , then the assert ion of the lemma is trivial. Hencesuppose 

~lZ=fi 0. In view of Lemmas 1 and 2 there exists r e D .  r ~  fl such that ,cr81e > -= ~p-t(< a,12 >).  Suppose 

< ~St>= ~{< r'¢g$t > ) ,  < % >  -- ~ ( < r " e z ¢ > ) ,  < ~ , s > - - ~ ( ~ . r e ~ > ) .  Then for 
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C = <e., %,."~,, ,  ."..,, . e , . ,  e,~,~,,,e~, e,_, > 

we have 

But 0 m ~ .  Lemma 5 now follows from Lemma 3 in view of the correspondences <2n> - = , ~ e  > , 

< celt> ~ ~ ~ ,  > and the fact that ~ z ~  ~ ~ [since the corresponding system of elements of the al- 

gebra ~a(E) is isomorphic to the system of matrix units]. 

Assertion 6. ~/~ ~) , ~2]' and ~, C~2 ~ ~Z for each ~ £ S,,. 

Proof. For ~-j there is nothing to prove. Suppose ~ = t , d - 2 .  U ~,, e ~ then the assert ion is ob- 

vious. Suppose ~ ¢ ~ .  Consider the a l g e b r a ~  = <6#,  ~4z>. We asser t  that each one-dimenslonal subal- 

gebra ~-----~ lies intO, 8~Z~>. Indeed, suppose 0 --~9"¢(~ A,,>) • Then o~-~<~O (~'),~Z >' Suppose a~e e e C, 

a~¢D and suppose for some _~ ¢ 

Then a: (a~-g')-- 0 and i faT~ 0 (i.e., <a~Eu+~/e~>~D{2 ) t h e n ~ - g ~ .  That is to say <a~e~ +~eu>  ~_ <~,4, 
.z;,,~ > ,  i.e., ~(.<~,,.+ ~,,~,2>),:::<~,,~,. >" .  

In view of the relation (~Mf,,) '= $,'~e "~,~,,~e ---- 0 we have 

On the strength of Lemma 5, ~/~e - ~L~ + ~,2" Multiplying both sides of this equality on the right by 

~2 we get ~,, £ - ~,, , S,~. In exactly the same way we show that ¢'z ~,Z ~ ~'e;" 

LEMMA 6. For  arbi t rary  ~ e  ~/ and ~ ~d, there holds the inclusion ~ / ~  ~, .  

Proof. We can of course consider that ~ # / .  Suppose d =  < 6~2. ~2~ >" We show that for each algebra 

~ c %  such that ~ ;  < c9~, o°12,822 > there holds the relation < Sz~, f~ > ~- <*~, > ~ 0 where ~t, ¢ $2,' In- 
deed, suppose 

Then ~ ~)zZ, ~)" t ( ~ )  > _. < lr~2 > ~ 0, whence the assert ion follows. 

We put J~= <~.~ ~4> If there held the relation ~ < S...S.~. 8 .  >.~enfor some 0÷~.  ~ S .  
there would be fulfilled the equality 

Multiplying both sides of this equality on the left by f~9 and on the right by f ,  we are led to the relation 
:~t! ~ O, a contradiction. This means that ~=<S#,Stt.~z>." Suppose 

(in the light of Lemmas4and  5, ~,,:~tt--O--~l £t for £~/~ S~. ). Multiplying both sides of the equality on the 
right by ~4 we get ~,z Am, *,, ~ ~#" 

Assertion 7. ~, S#$ ~ 8//" and Six o%j =" 0 for K-#m. 
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Proof. We show that ~fz ~2~ ~ ~1~" Supp°se~z¢~ tz ,  ~ e s ~ S e s ,  ~{eSza~- O. It is clear  that 

<%%> has but one one-dimensional subalgebra lying neither in ~,~ nor in~, ,  and t~at it ~ie~ in ~,~. 
algebra < ~ 2 % >  is one-dimensional. Clearly ~? ~ <:$~:~$ > ~ ~2s " This means that $~ ~2s e ~3" 

We showthat~,S,~ ~ 4~: 

= = ~ , ~ s ,  ~ ~ , , .  ~,s,~ ~,,~,~, ~ ,~ ,~  ' ' 

~n~ogously:$,, 6 ,  ~- 4~'  The remaining inolusions are obvious. 

Suppose zn and ,~ are natural numbers,  m ~  • Then 

~i,, sm~ = ~ i , , L , , ' 4 m ~ m j  = o.  

LEMMA 7. The algebra ~ = ~ (A) is isomorphic to ~n where ~ is an algebra over { .  

Proof. In the light of Assert ion 7, for each element ~ 

-Z~j" then f,# ZSVTgmm = f K ~ m m ,  whence ~,#m= :£#m for all K andrra. 

Fix a pair (/¢, rn) . In the light of the equality 

we have the relation 

where the presentation of each element of S/~ in the form ~ ~K~ f ~  is unique. 

/$ 

Suppose~ffi81{ . If ~EB t h e n ~ 5 ~ / ~  t ~/].flj , where ~ j ~ f l .  It is apparent that the mapping 

is an isomorphism of the algebra _~ to ~ .  

§3 .  A l g e b r a s  L a t t i c e - I s o m o r p h i c  to  M a t r i x  A l g e b r a s  

o v e r  ( S k e w )  F i e l d s  

In this section we conclude the proof of our Theorem, formulated in the Introduction. We shall as- 

sume that the system {f6j ] ~,j=,....,r~ is isomorphic to the system of matrix units. 

Assert ion 8. Let ~ £ D  and ~P:<a81z>---~<~,flz> . Then ~" <ae,s > - < ~ , >  and ~:<~ge3> --~ 

Proof. We canobviouslyassumethat  ~ 0  • For some g .  C E ~) we have 

Put O~l~<~g~ ,5~81S >. It is clear that ~/3/.DtS=<~zg~> Suppose ~ :  ~!  ---~-~! = <~f12 
Then (Rq=  ,~rf/d,' ) ' g''~ 

The 

, ~ , 5 ,  >. 
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whence < ~z > = <~ > • 

- " NOW consider ~ z - -  < ere , 

obtain that <Cfz ~ > =  < a ~ z  ~ ) ,  

Asser t ion  9. Suppose ~z , g e ~ .  
Then ~o: <O.~glz >--- <a~l~ >. 

Proof.  We can obviously assume that ~ O, ~=O. 
view of Asser t ion 8 

• As above we 

We assume that ~0: ( a e ~  >--~_<a~z > and ~0: < ~glz >- ~ < ~ z  )." 

T h e n a ~  0 .  Put ~ ~ <~2etz, ~Bz~, (a~)g,3 >" In 

which implies J~ t~ ~ _~ < ~ f , s )  and ~ D ~s  ~ <~Z~/e~s ) '  so that it suffices to prove that a ~  0 .  But 

if equality ~ 6  -~ 0 held, then in view of the re la t ion ~ = (~Y~z ' ~Fzs ) we would have ~ R ~3 -~ 0 ,  a con- 
tradiction• The asser t ion  is proved. 

Now assume an element ~e2) .  Consider the algebra 

It is one-dimensional.  If 0 is a one-dimensional  algebra,  L)a--(< ~, >,DIz , < ~ ) )  , then 0 -~ ~ for some t ~ D 
~ w  

(provided of course  that ~ (~,,/_~lZ ) ,  ~ ( B~s,_PlZ > )• Suppose ~o: ( ~ - - - , - ~ ,  ~e R (the existence and 

uniqueness of r a re  obvious). Then define ~ : ~ --~-r. The ensuing situation corresponds to the diagram 

LEMMA 8. Suppose $ and ~ are elements of the (skew) field .D, l inear ly  independent over ~. Then 

Proof.  Suppose ~z,~z £ . ~ .  Put  a-£.¢~.g._q-e._,6--g. +~.g_ ÷ gss" Then ~ z = o :  ,~z ~, Q~__~, 

For ~ g D  we have 

Indeed, the condition on the left  side of ~----~ can be expressed so: for some }L,/ze 

= 

For  • -~ $4- ~ we put 2~=fl/~-¢. Conversely,  if we have (7) then ~ :- a = 2~ -- jd$ and hence by l inear in- 
dependence of $ and 2 we obtain ~. - ¢ ,  i .e.,  ~ = ~ ÷ 2 .  

Now L e m m a  8 easi ly follows from the definitions• 
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LEMMA 9. 
equalities 

Let /-- (~f)".  We suppose that E ~ :  ~J ~ 2 .  Then for ail ¢ , ~ e ~  there hold the 

/ 

Proof. For Xef l  we put ~ = ~ .  
Consider the cases:  

We prove the equality :c-~ ~-~ ~ ] .  We can assume that ~c ~ 0 , ] ~ 0 .  

1) ~ ¢ ~  ; then ~r=/~-a, w h e r e / ,  a_, are linearly independent over ~ .  We have 

On the other hand, since ~ and a~ are linearly independent, it follows that 

# t , ] = f  + # £  
I f  the relation ~#-'~- / held, then ] =  ~]_ would be ~ulfilled, v~ence O - l i -  ~ # .  This would mean that 
I-¢~=~, ~ - ~ " ,  whence a~-l~ :, a cofitradietion. Thus ~ = / ~ ] .  

25 ] ~ ~ .  The proof in this case proceeds analogously to that in ease 15. 

35 Suppose ~ , / ~ 6 ~  , ~VE~\~ , Z+~/=p.  Then ~ / ~  We have 

Thus, in all cases & - ] ] - - ] ~ .  

The equality x +~ - ~4 - ]  requires proof only in case of linearly dependent x and ~/. 

We note t h a t - ¥ ~ - - t - - - - / ' / :  T--  (-t)(-/) = ] -  / -¢  , i.e., ~ ~-¢ = --7 2. But 7 :~--/ in case ~(J)  ~2 ,  
whence -1---1 . In the case where the characteristic ~ (~ )  of the field ~ is equal to 2, the equation - !  =-¢  
is trivial. Hence 

- - 2  - ( -~ )z  = / - - 7 ~  = ] ( - / - ' ) 5  = - ~ .  

Suppose now x --- cr~, ~/-~pz,  ~ + ~ / ~  0 .  In view of the relation L-13 : ~ t> 2 there exists ~ 6 2  such that 
and z are linearly independent. It is clear that ~(g + ~ a n d / ~ -  ~ are also linearly independent. Hence 

(x+O, ~+0) 

FinaUy, if ~ = 0  or .~/=0, then ~+~i=.~+~ in the light of the equality i~ = 0. The lemma is proved. 

We returntothe  proof of the ~theorem. If 2 -  ~, then in view of Lemma 3 there is nothing to prove. 
If 1)~: ~ ,  then E/_7 : ~ 1> Z .  From Lemma 9 follows that the mapping ~:  D ~ ~ provided by the equality 

X~---- i ' "  ~V~ is a semillnear isomorphism of .D to ~ .  From Lemma 7 now follows that ~ - - ~ , w h e r e  
the (skew} field .D  is semilinearly isomorphic to the (skew) field .D. Conversely, if the (skew5 field -~  
is semilinearly isomorphic to the (skew) field .D , then obviously the lattice S ( ~ z )  is isomorphic to the 
lattice ~(D,). The theorem is completely proved. 
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