LATTICE DEFINABILITY OF CERTAIN MATRIX ALGEBRAS

A. V. Yagzhev

UDC 519.48

Introduction

We fix a field $\hat{\mathcal{X}}$ and denote by $\hat{\mathcal{U}}$ the class of all associative algebras over this field. We denote by $5(A)$ the lattice of subalgebras of the algebra A. Suppose A and B are two algebras of the class α and suppose the lattices $\mathcal{S}(A)$ and $\mathcal{S}(B)$ are isomorphic. We are interested in the relation in this case between the algebras Λ and Λ .

Lattice-isomorphic algebras (algebras with isomorphic lattices of subalgebras) were studied by D. Barnes [1] who showed that if \hat{A} is a ring of matrices of order $\geq \hat{J}$ over a finite-dimensional (skew) field, then there exists a 1-1 mapping of A to B which is either multiplicative or antimultiplicative.

Articles [3] and [4] border on our theme in dealing with lattice-isomorphic Lie algebras, as does the work [2]. We note also a result on semilinear isomorphisms of those rings of matrices (of order ≥ 3) over algebras with divisors in which the isomorphic lattices are right ideals [5, Theorem 21].

We formulate now the basic result of this work. Consider the case in which one of the lattice-isomorphic algebras is matrix over an arbitrary (skew) field. We shall assume that the basic field $\cancel{\ell}$ contains at least three elements.

THEOREM. Suppose that D is an algebra with divisor over ℓ , that ℓ is a natural number, $n \geq 3$, that $A = D$, is an algebra of matrices over D , and that B is an algebra of class α . Then the lattices $\mathcal{S}(A)$ and $\mathcal{S}(B)$ are isomorphic if and only if the algebra B is isomorphic or antiisomorphic to an algebra \mathcal{D}_n over a (skew) field $\mathcal D$ such that between the (skew) fields $\mathcal Q$ and $\mathcal D$ there exists a k -semilinear correspondence.

We point out that for $D = \mathbf{k}$ this theorem is true as well for $D = 2$ [1, Theorem 2]. The situation in the general case is not known. For $n=$ there are trivial counterexamples:

a) $A-\hat{\mathbf{z}}$ and B a one-dimensional nilpotent algebra,

b) A and B subfields of the field C of complex numbers, $[A: \mathbf{A}] = 2-[B:\mathbf{A}], A \neq B$. Here $\mathbf{A} = \mathbf{A}$, the field of rational numbers.

Before proving our theorem we introduce the following notation: small Greek letters (with or without subscripts) indicate elements of the field ℓ . The letter φ is reserved for isomorphisms of lattices. The algebra generated by the elements $\alpha, \beta, \beta, \ldots$ is denoted by $\leq \alpha, \beta, \delta, \ldots$.

The author gratefully acknowledges the interest of L. A. Bokut' in the question here treated.

§1. Algebras Lattice-Isomorphic to Algebras

with Zero Products

The purpose of this section is to establish a property of algebras lattice-isomorphic to algebras with zero products.

An important observation constantly used in our considerations is given in the following obvious lemma:

Translated from Algebra i Logika, Vol. 13, No. 1, pp. 104-116, January-February, 1974. Original article submitted May 3, 1973.

© 19 75 Plenum Publishing Corporation, 22 7 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

LEMMA **1. A** (non-null) algebra is one-dimensional if and only if it contains no proper subalgebras.

It is clear also that a one-dimensional algebra either is an algebra with zero products or is generated by an idempotent.

We now establish the following proposition.

LEMMA 2. Let $\mathcal X$ and $\mathcal L$ be lattice-isomorphic algebras over ℓ , and let $\mathcal X$ be an algebra with zero products. Then each (non-null) singly generated subalgebra of the algebra $\mathcal L$ is one-dimensional.

<u>Proof.</u> We can assume that $\dim \mathcal{L} > 2$. We note that $\mathcal L$ is an algebraic algebra (in each non-null subalgebra there is a non-null subalgebra without proper subalgebras). Suppose $\varphi\colon \mathcal{S}(\mathcal{L}) \longrightarrow \mathcal{S}(\mathcal{L})$ is an isomorphism and let $0\not= c \in \mathcal{L}$. Then $\varphi^{-1}(< c >)$ is a finite-dimensional algebra since it has zero products and there is in it no infinite strictly increasing chain of subalgebras (in view of finite-dimensionality of

 $f(x) = \sup_{x \in \mathbb{R}^n} \{f(x, y) = f(x, y) \}$ is a basis of the algebra $\varphi^{-1}(x, y)$. Then $\langle x \rangle = \langle f_1, ..., f_m \rangle$, where $\langle f_2 \rangle = \langle f_1, ..., f_m \rangle$ φ (
 $\langle b; \rangle$) is a one-dimensionalalgebra, $t \leq j \leq m$. Since c is an arbitrary non-null element of the algebra ζ , it follows that the algebra ζ is generated by some product of its one-dimensional subalgebras.

Let $\langle c, c \rangle$, $\langle c, \rangle$ be arbitrary one-dimensional subalgebras of the algebra \mathcal{L} . We show that $c, c, \geq 0$ f_1 , c_1 , f_2 . We can assume that $\langle c_1 \rangle \neq \langle c_2 \rangle$, since otherwise there would be nothing to prove. The algebra $\langle c_1, c_2 \rangle = \langle c_1, c_2 \rangle$ is generated by any two of its distinct non-null subalgebras since this property is

possessed by the algebra $\ll \ell, \gg, \ll \ell, \gg$, $\ll \ell, \gg = \varphi^{-1}(\lll; c)$. Hence if $c, c, \notin \ell, +\ell, c$, then $\lll c, c, c, \gg = \lll, c, c, \gg$ whence

$$
c_2 = f(c_1, c_1, c_2) = c_1 g(c_1, c_2),
$$
\n(1)

 \cdot

where $f(X, Y)$ and $g(X, Y)$ are some polynomials over ℓ in the noncommutative variables X and Y. Let $C^2 - \frac{1}{2}C_f$; multiplying both sides of (1) on the left by C, we get $C_1C_2 - \frac{1}{2}C_f$, a contradiction. The assertion is proved.

Let x_i , x_j be non-null elements of the algebra L where further $x_i = x_i$, $x_j = x_j$, $\langle x_i \rangle \neq \langle x_j \rangle$. Then there is a non-null nilpotent element in the algebra $\langle x, x \rangle$. Suppose the contrary. Then from $x_i x_j \in \ell x_i + \ell x_i$, $i, j = 1, 2$, follows that the algebra $\langle x_i, x_j \rangle$ is two-dimensional. Hence it is isomorphic to the algebra $\ell \mathcal{P} \ell$ in which there are exactly three one-dimensional ℓ -subalgebras. But in the al-

gebra $\varphi^{-1}(\langle x, x, x \rangle)$ lattice-isomorphic to the algebra $\langle x, x \rangle$, there are more than three one-dimensional subalgebras [in view of the fact that $\cancel{\ell}+\cancel{GF(z)}$]. The contradiction obtained shows that there is in the algebra $\langle x, x \rangle$ a nilpotent element $N(x, x)$ which generates a one-dimensional algebra.

It is clear that $\langle x, x, z \rangle = \langle x, y | (x, x) \rangle = \langle x, y | (x, x) \rangle$.

Let the one-dimensional algebras $\langle C_i \rangle$ \leq ℓ ($\ell \in \ell$) generate the algebra ℓ . We can suppose that $C_i \neq C_i$ for $\bar{\nu}_i \neq \nu_j$ and that C_i is equal to 0 or C_i for all $i \in I$. We can present two cases:

(1) $c_i^2 = 0$ for all $i \in I$. Then for $i \neq i_2$ in the relation $c_i c_i = \frac{1}{2} c_i + \frac{1}{2} c_i$ in the light of

$$
c_{i_1} \cdot c_{i_2} c_{i_2} = f_1 c_{i_1}^2 + f_2 c_{i_2} c_{i_2}
$$
 and
$$
c_{i_1} c_{i_2}^2 = f_1 c_{i_1} c_{i_2} c_{i_2}^2 + f_2 c_{i_2}^2
$$

there follows $c_{i_1}c_{i_2} = 0$. That is, $\mathcal L$ is an algebra with zero multiples, which implies $\dim \langle c \rangle = 1$ for $0 \neq c \in \mathcal{L}$.

(2) $c^2_{i_0} = c_{i_0}$ for some $i_0 \in I$. We set $I_0 = I \setminus \{i_0\}$, $c'_0 = c_{i_0}$, $c'_i = N(c_{i_0}, c_i)$ for $i \in I_0$. Then $\mathcal{L}' = \langle \langle \mathcal{L}'_a \rangle$, $\langle \mathcal{L}'_c \rangle$: $i \in I_a$, \ldots As above, we obtain that $\mathcal{L}^-_a \ll \mathcal{L}'_a$, $i \in I_a$, is an algebra with a zero multiple. Clearly each element of the algebra $\mathcal L$ has the form $\chi_0^c + c'$ where $c' \in \mathcal L_q$. We suppose that $\langle fC_1/c_2'+c'\rangle$ is not a one-dimensional algebra and that $fC_1'+c'+0$. Then $f\neq 0$ and $c'\neq 0$. In the algebra $\varphi^{-1}(\langle c'_a,c'\rangle)$ there are no non-one-dimensional proper subalgebras. Hence $\langle c'_a+c'\rangle=\langle c'_a,c'\rangle$, $c'_a c'$ $C' C'_a$. Using the equalities $C'^2 - C'_a$. $C'^2 = 0$. $C'_a C' \in \& C'_a + \& C'_a$, it is readily shown that $C'_a C'$, is either 0 or c' . In both cases the algebra $\langle c'_0, c' \rangle$ contains only two one-dimensional subalgebras: $\langle c'_0 \rangle$ and $\langle c' \rangle$. The contradiction obtained shows that each non-null singly generated subalgebra of the algebra $\mathcal L$ is onedimensional. The lemma is proved.

We now give a definition necessary for formulating Lemma 3. Suppose that $\mathcal{E} = \{0, \ell_{ij} : i,j = 1, ..., n\}$ is a semigroup consisting of zero and matrix units and that $\mathcal{F}=[0, f_{ij} : i,j=1,...,n]$ is a subsemigroup of multiplicative semigroups of some (associative) algebra. We shall say that the system $\{f_{ij}\}_{i,j=4,...,n}$ is an isomorphism (antiisomorphism) of the semigroups if the mapping

$$
\begin{cases}\n o \longrightarrow o \\
 e_{ij} \longrightarrow f_{ij}, \quad b, j = 1, \ldots, n,\n\end{cases}
$$

is an isomorphism (antiisomorphism) of the semigroups $~\pmb{\mathscr{S}}~$ and $~\pmb{\mathscr{F}}$.

Suppose A and B are the algebras referred to in the theorem. Denote by φ the isomorphism

 $S(A) \longrightarrow S(B)$.

Suppose $\langle e_{ij} \rangle$ is the subalgebra in A generated by e_{ij} . Then by Lemma 1

$$
\varphi:\mathopen{<} e_{ij}\mathclose{>}\longrightarrow\mathopen{<} f_{ij}\mathclose{>}
$$

for some element $f_{ij} \in B$.

Corresponding to each system of n^2 **nonzero elements** v_{ij} **of the field** ℓ **we put**

$$
\bar{f}_{ij}(\nu_{ij}) = \bar{f}_{ij} - \begin{cases} \nu_{ij} f_{ij} & \text{for } i \neq j, \\ f_{ij} & \text{for } i = j. \end{cases}
$$

<u>LEMMA 3.</u> For generators $V_{ij} \in \mathbf{k}$ the system $\{\overline{f}_{ij} \}_{i,j=\{m,n\}}$ is isomorphic or antiisomorphic to the system of matrix units.

The proof of this assertion is contained in the article of Barnes [1] in which it appears as Lemma 12. In the light of Lemma 3 we can consider that the system ${f_{ij}}_{j,j=\{...,n\}}$ is isomorphic or antiisomorphic to the system of matrix units. Let B be the algebra referred to in the Theorem. In the linear space of B we prescribe a new multiplication operation b , \circ b , \circ , \circ , b , δ , δ , \in B . The algebra obtained we denote by B' . Now we define an algebra B'' . Set

$$
B'' = \begin{cases} B, & \text{if } f_n f_n = f_n, \\ B', & \text{if } f_n f_n = 0. \end{cases}
$$

Thus we have selected in the capacity of the algebra $~B~\;$ either the algebra $~B~\;$ or $~B~\;$ depending on whether there is isomorphism or antiisomorphism of $\{f_{ij}^k\}_{k=1}$, and the system $\{g_{ij}\}_{k=1,\ldots,n}$ of matrix units.

§2. Matricity of Algebras Lattice-Isomorphic to the Algebra $D_{\!a}$

In this section we demonstrate that an algebra lattice-isomorphic to the algebra $~\mathcal{L}_n~$ is isomorphic or antiisomorphic to an algebra R_{ρ} , where R is an algebra over ℓ . We shall suppose that the system $\{f_{ij}\}_{i,j,\mu,\eta}$ is isomorphic to the system of matrix units. Consideration of the algebra \bar{B} introduced in §1 shows that this assumption does not imply loss of generality.

Put
$$
\mathcal{D}_{ij} = D \mathcal{C}_{ij}
$$
, $\mathcal{S}_{ij} = \varphi(\mathcal{D}_{ij})$. There holds the following lemma. **LEMMA 4.** For each *i* the element f_{ij} is a unit of the algebra \mathcal{S}_{ij} .

<u>Proof.</u> Suppose $\delta = \delta_{ii}$, $f = f_{ii}$. $e = e_{ii}$ Note that for each $\delta \in \mathcal{S}$, $f \mathcal{A} = \delta f$. In fact

$$
(f_4 - f_3 f)^2 = f_3 \cdot f_3 - f_3 \cdot f_4 f - f_3 f \cdot f_4 + f_4 f \cdot f_4 f = 0,
$$

$$
(4f - f_3 f)^2 = 4f \cdot 4f - 4f \cdot f_4 f - f_4 f \cdot 4f + f_4 f \cdot f_4 f = 0,
$$

whence $f_4 = f_4 f = 4f$ (there is in δ a unique one-dimensional subalgebra $\langle f \rangle$ and hence nilpotent elements are absent).

We denote $\mathcal{A} = \{ \mathbf{1} \in \mathcal{S} : f \mathbf{1} = \mathbf{0} \}$. It suffices to prove that $\mathcal{A} = 0$ since $f \mathbf{1} - \mathbf{1} \in \mathcal{A}$ for all $\mathbf{1} \in \mathcal{S}$. Suppose the contrary, i.e., let $\mathcal{H} \neq \emptyset$, \mathcal{H} a subalgebra of \mathcal{S} , where moreover $\mathcal{H} \neq \langle f \rangle$. Let $\mathcal{I} \in \mathcal{L}$ be such that $0 \neq t \in \varphi^{-1}(\mathcal{A})$

Consider $\mathcal{B} = \varphi(\langle t^{-1} \rangle)$.

We assume that $\beta \geq \langle f \rangle$. Then

$$
\begin{array}{lll} \displaystyle e=\sum_{m
$$

The latter equation demonstrates that $e \in \varphi^{-1}(A)$, i.e., $\langle f \rangle \subseteq A$, a contradiction. This shows that $\mathcal{B} \neq \langle f \rangle$.

Assume $\mathcal{B} \cap \mathcal{A} \neq 0$. Then we have

$$
\sum_{m \leq m_0} \gamma_m (t^{-1})^m \in \varphi^{-1}(\mathcal{A}) \cap \varphi^{-1}(\mathcal{B}) , \qquad \gamma_{m_0} \neq 0 .
$$

Hence

$$
t^{m_{0}} \sum_{m \le m_{0}} \gamma_{m} t^{-m} \in \varphi^{-1}(\mathcal{A}),
$$

$$
\gamma_{m_{0}} \ell + \sum_{m \le m_{0}} \gamma_{m} t^{m_{0} - m} \in \varphi^{-1}(\mathcal{A}),
$$

This implies $e \in \varphi^{-1}(\mathcal{A})$, i.e., $\langle f \rangle \subseteq \mathcal{A}$, a contradiction.

Thus $\mathcal{B} \neq \langle f \rangle$, $\mathcal{B} \cap \mathcal{A} = 0$, $\langle \mathcal{A}, \mathcal{B} \rangle \supseteq \langle f \rangle$. That is to say $f = \beta + a + \sum_{i} \lambda_i \omega_i$ (\mathcal{A}, \mathcal{B}) where in each word ω_j there enters some $a_{\kappa} \in \mathcal{A}$. In view of centrality of f and $\mathcal{A}f = 0$ we have

$$
f^2 - \theta f + af + \sum \lambda_j \omega_j \left(\mathcal{A}, \mathcal{B} \right) f = \theta f.
$$

Thus $bf = f$ which is to say $\hat{\theta}^2 f = f$. $(\hat{\theta}^2 - \hat{\theta})f = 0$, i.e.,

 $h^2-h \epsilon \, \hat{t}$.

But $\mathcal{F} \cap \mathcal{B} = 0$ whence $\mathcal{D} = 0$. From the equality $f = 6f$ there follows $\theta \neq 0$. It is clear that $\langle \theta \rangle \neq \langle f \rangle$. Thus in δ there are two one-dimensional subalgebras, a contradiction.

<u>LEMMA 5.</u> Suppose $i \neq j$. Then $f_{ii} s_{ij} = s_{ij} \cdot s_{ij} f_{ii} = 0$. $s_{ij} f_{jj} = s_{ij} \cdot f_{jj} s_{ij} = 0$ for each element $s_{ij} \in S_{ij}$.

<u>Proof.</u> Suppose $s_{12} \in \mathcal{S}_{12}$. If $s_{12} = 0$, then the assertion of the lemma is trivial. Hence suppose $a_{12} \neq 0$. In view of Lemmas 1 and 2 there exists $r \in \mathcal{D}$, $r \neq 0$ such that $\langle r \theta_{12} \rangle = \varphi^{-1}(\langle a_{12} \rangle)$. Suppose $\langle \Delta_{g_i} \rangle = \varphi(\langle r^{-1} \ell_{g_i} \rangle), \langle \Delta_{g_i} \rangle = \varphi(\langle r^{-1} \ell_{g_i} \rangle), \langle \Delta_{g_i} \rangle = \varphi(\langle r \ell_{g_i} \rangle).$ Then for

$$
\mathcal{C} = \langle e_{n}, re_{i2}, r^{-1}e_{31}, r^{-1}e_{21}, re_{i3}, e_{32}, e_{23}, e_{22}, e_{33} \rangle
$$

we have

$$
\varphi: C \longrightarrow \langle f_n, \Delta_{12}, \Delta_{34}, \Delta_{24}, \Delta_{13}, f_{32}, f_{23}, f_{22}, f_{33} \rangle.
$$

But $0 \leq k_3$. Lemma 5 now follows from Lemma 3 in view of the correspondences $\langle \ell_{\mu} \rangle \leftarrow \langle \ell_{\mu} \rangle$, $\langle r e_{i} \rangle$ $\rightarrow \langle \phi_{i} \rangle$ and the fact that $f_{i} f_{i} f_{i} = f_{i}$ [since the corresponding system of elements of the algebra $\varphi(\mathcal{C})$ is isomorphic to the system of matrix units].

Assertion 6. $\Delta_{i\lambda} f_{ij} \in \mathcal{S}_{ij}$ and $f_{ji} \Delta_{i\lambda} \in \mathcal{S}_{ji}$ for each $\Delta_{i\lambda} \in \mathcal{S}_{i\lambda}$.

Proof. For $i-j$ there is nothing to prove. Suppose $i=1$, $j=2$. If $s_n \in \mathbb{R}$ then the assertion is obvious. Suppose $s_{tt} \notin \hat{k}$. Consider the algebra $\mathscr{A} = \langle s_{tt}, f_{tt} \rangle$. We assert that each one-dimensional subalgebra $\mathscr{B} \subseteq \mathscr{A}$ lies in $\langle f'_{\alpha}, \delta_{\alpha}, \rangle$. Indeed, suppose $\mathscr{C} = \varphi^{-1}(\langle \delta_{\alpha}, \rangle)$. Then $\mathscr{A} = \langle \varphi(\mathscr{C}), f_{\alpha}, \rangle$. Suppose $xe_{\alpha}, \epsilon \mathscr{C}$. $x \in \mathcal{D}$ and suppose for some $\zeta \in \mathcal{E}$

$$
(xe_n+ye_{n2})^2=\zeta(xe_n+ye_{n2}).
$$

Then $x(x-\zeta)=0$ and if $x\neq 0$ (i.e., $\langle xe_{n}+ye_{n}\rangle\neq \mathcal{Q}_{1}$) then $x-\zeta\in k$. That is to say $\langle xe_{n}+ye_{n}\rangle\subseteq\langle e_{n},e_{n}+e_{n}\rangle$ D_{12} , i.e., φ (< xe_{tt} + $y e_{tt}$ >) \subseteq < f'_{tt} , S_{12} $>$ \therefore

In view of the relation $({3_H}f_{12})^2={3_H}f_{12}\cdot f_{14}y_{11}f_{12}=0$ we have

$$
A_{H}f_{12}\in\langle f_{11},\delta_{12}\rangle.
$$

On the strength of Lemma 5, $\frac{1}{4}f_{12} = \lambda f_{11} + \frac{1}{4}f_{22}$. Multiplying both sides of this equality on the right by f_{22} we get $a_{11} f_{12} - a_{12} \in \mathcal{S}_{12}$. In exactly the same way we show that $f_{jl} a_{2l} \in \mathcal{S}_{ji}$.

LEMMA 6. For arbitrary $a_{ij} \in \delta_{ij}$ and $a'_{ji} \in \delta_{ji}$ there holds the inclusion $a_{ij} a'_{ji} \in \delta_{ii}$.

<u>Proof.</u> We can of course consider that $i \neq j$. Suppose $d = \langle \Delta_{12}, \Delta_{24} \rangle$. We show that for each algebra $\mathcal{B}\subseteq\mathcal{A}$ such that $\mathcal{B}\nsubseteq\langle\mathcal{S}_n,\mathcal{S}_2,\mathcal{S}_2\rangle$ there holds the relation $\langle\mathcal{S}_{22},\mathcal{B}\rangle\supseteq\langle\mathcal{S}_{2i}\rangle\neq\emptyset$ where $\mathcal{S}_{2i}\in\mathcal{S}_{2i}$. Indeed, suppose

$$
xe_{n} + ye_{n2} + ze_{22} + ve_{21} \in \varphi^{-1}(\mathcal{B}), \quad \pi \neq 0, \ x, y, z, \sigma \in \mathcal{D}.
$$

Then $\langle D_{22}, \varphi^{-1}(\mathcal{B})\rangle \supseteq \langle \sigma_{\ell_1} \rangle \neq 0$, whence the assertion follows.

We put $\mathscr{B} = \langle \mathcal{A}_1, \mathcal{A}_2 \rangle$. If there held the relation $\mathscr{B} \neq \langle \mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_2 \rangle$, then for some $0 \neq \overline{\mathcal{A}}_2 \in \mathscr{S}_{24}$ there would be fulfilled the equality

$$
\bar{3}_{21} = 3_{22} + \sum \lambda_j \left(3_{12} 3_{21} \right)^j.
$$

Multiplying both sides of this equality on the left by $f_{,2}$ and on the right by $f_{,}$ we are led to the relation $s_{\rm 1} = 0$, a contradiction. This means that $\mathcal{B} \leq \langle \mathcal{S}_{\mu}, \mathcal{S}_{\mu}, \mathcal{S}_{\nu} \rangle$. Suppose

$$
\mathbf{A}_{12}\mathbf{A}_{21} - \widetilde{\mathbf{A}}_{11} + \widetilde{\mathbf{A}}_{12} + \widetilde{\mathbf{A}}_{22} + \Sigma \lambda_q \mathbf{U}_q \mathbf{A}_{12} + \Sigma \mu_q \mathbf{U}_q \mathbf{A}_{22}
$$

(in the light of Lemmas 4 and 5, \mathcal{L}_r , $\mathcal{L}_r = \mathcal{L}_r$, \mathcal{L}_r , for \mathcal{L}_r , $\in \mathcal{S}_{r}$.). Multiplying both sides of the equality on the right by $f_{\mu\nu}$ we get $A_{12} A_{2\nu} = \tilde{A}_{\mu\nu} \in \mathcal{S}_{\mu\nu}$.

$$
\underline{\text{Association 7.}} \ \mathcal{S}_{i\kappa} \ \mathcal{S}_{\kappa j} \subseteq \ \mathcal{S}_{ij} \ \text{ and } \ \mathcal{S}_{i\kappa} \ \mathcal{S}_{mj} \ - \ 0 \ \text{ for } \ \kappa \neq m.
$$

61

<u>Proof.</u> We show that $S_{q} S_{q} \subseteq S_{q}$. Suppose $A_{q} \in S_{q}$, $A_{q} S_{q} \in S_{q}$, $A_{q} S_{q} \neq 0$. It is clear that $\langle \Delta_{12}, \Delta_{23} \rangle$ has but one one-dimensional subalgebra lying neither in S_{12} nor in S_{23} and that it lies in S_{13} . algebra $\langle 3, 2 \rangle$ is one-dimensional. Clearly $S_{12} \ncong \langle 3, 2 \rangle \ncong S_{23}$. This means that $\langle 4, 2 \rangle_{12} \in S_{33}$. We show that $S_{\prime\prime}S_{\prime\prime} \subseteq S_{\prime\prime}$: **The**

$$
\Delta_{H} \Delta_{12} = \Delta_{H} f_{13} \cdot f_{31} \Delta_{12} = \Delta_{13}' \Delta_{32}' \in \mathcal{S}_{12}.
$$

Analogously, $S_{12} S_{22} \subseteq S_{42}$. The remaining inclusions are obvious.

Suppose π and κ are natural numbers, $m \neq \kappa$. Then

$$
\Delta_{ik}\Delta_{mj}=\Delta_{ik}f_{kk}\cdot f_{mn}\Delta_{mj}=0.
$$

LEMMA 7. The algebra $B = \varphi (\overline{A})$ is isomorphic to R_n where R is an algebra over ℓ . Proof. In the light of Assertion 7, for each element $\beta \in \beta$

$$
\mathbf{b} = \sum \mathbf{i}_{ij} , \quad \mathbf{i}_{ij} \in \mathcal{S}_{ij} .
$$

If $\sum \Delta_{ij} = \sum \Delta'_{ij}$ then $f_{\kappa\kappa} \sum \Delta_{ij} f_{mm} = f_{\kappa\kappa} \sum \Delta'_{ij} f_{mm}$, whence $\Delta_{\kappa m} = \Delta'_{\kappa m}$ for all κ and m .

Fix a pair (κ, m) . In the light of the equality

$$
s_{\rho q} = f_{\rho \kappa} (f_{\kappa \rho} s_{\rho q} f_{\rho m}) f_{m q}
$$

we have the relation

$$
S_{\rho q} = \left\{ f_{\rho \kappa} \Delta_{\kappa m} f_{mq} : \Delta_{\kappa m} \in S_{\kappa m} \right\},\,
$$

where the presentation of each element of $S_{\rho q}$ in the form $f_{\rho\kappa} s_{\kappa m} f_{mq}$ is unique.

 \overline{a} Suppose $R = S_{\mu}$. If $\delta \in \beta$ then $\theta = \sum f_i, z_i, f_j$, where $z_i \in \mathbb{R}$. It is apparent that the mapping $\sum f_{ij} z_{ij} f_{ij} \longrightarrow \| z_{ij} \|_{i,j=1,...,n}$

is an isomorphism of the algebra β to \mathcal{R}_n .

§3. Algebras Lattice-Isomorphic to Matrix Algebras

over (Skew) Fields

In this section we conclude the proof of our Theorem, formulated in the Introduction. We shall assume that the system ${f_{ij}}_{i,j=t,...,n}$ is isomorphic to the system of matrix units.

Assertion 8. Let $a \in \mathcal{D}$ and φ : $\langle ae_{n2} \rangle \rightarrow \langle \overline{a}f_{n2} \rangle$. Then φ : $\langle ae_{n3} \rangle \rightarrow \langle \overline{a}f_{n3} \rangle$ and φ : $\langle ae_{n3} \rangle \rightarrow \langle \overline{a}f_{n4} \rangle$.

Proof. We can obviously assume that $a \neq 0$. For some b , $c \in \mathbb{R}$ we have

$$
\varphi: \langle a e_{3} \rangle \longrightarrow \langle b f_{3} \rangle \text{ and } \varphi: \langle a e_{23} \rangle \longrightarrow \langle c f_{23} \rangle.
$$

Put $\mathcal{A} = \langle \alpha e_n, \alpha e_n, \dot{e}_n \rangle$. It is clear that $\mathcal{A}, \cap D_a = \langle \alpha e_a \rangle$. Suppose $\varphi : \mathcal{A}, \rightarrow \mathcal{B}, \neg \langle \alpha e_n \rangle$ Then $(R_i = Rf_{ij})$ **,** $\sigma_{7,3}$, σ_{23} /.

$$
\mathcal{B}_1 \cap R_{13} \supseteq \langle \bar{\alpha} f_{13} \rangle \text{ and } \mathcal{B}_1 \cap R_{13} \supseteq \langle \beta f_{13} \rangle
$$

whence $\langle 6t_{12} \rangle = \langle 4t_{13} \rangle$

Now consider $f_1 - \langle \ell_1, \alpha \ell_2, \alpha \ell_3 \rangle$. Suppose $\varphi: f_2 \to \mathcal{B}_1 - \langle f_1, \alpha \ell_3, \overline{\alpha} f_3 \rangle$. As above we obtain that $\langle cf_{23} \rangle = \langle af_{23} \rangle$.

 ${\rm Assertion}$ 9. Suppose a , be D Then φ : $\langle a b \rangle e_{12} \rangle \longrightarrow \langle \bar{a} b f_{12} \rangle$. We assume that φ : $\langle ae_{i} \rangle \rightarrow \langle \overline{a}f'_{i2} \rangle$ and φ : $\langle be_{i} \rangle \rightarrow \langle bf_{i2} \rangle$.

<u>Proof.</u> We can obviously assume that $a \neq 0$, $b \neq 0$. Then $a \delta \neq 0$. Put $\pi = \langle a e_{ij}, b e_{i}, a \rangle$, $(a \delta e_{i}, \delta e_{j})$. In view of Assertion 8

$$
\varphi: \mathcal{A} \longrightarrow \mathcal{B} = \langle \bar{a}f_n, \bar{b}f_{23}, \bar{a}f_n \rangle,
$$

which implies $\beta \cap R_{13} \supseteq \langle \bar{a} \bar{b} f_{13} \rangle$ and $\beta \cap R_{13} \supseteq \langle \bar{a} \bar{b} f_{13} \rangle$, so that it suffices to prove that $\bar{a} \bar{b} \neq 0$. But if equality $\overline{\mathcal{A}}\overline{\mathcal{B}} = 0$ held, then in view of the relation $\mathcal{B} = \langle \overline{\mathcal{A}}_{12}^f, \overline{\mathcal{A}}_{13}^f \rangle$ we would have $\mathcal{B} \cap R_{13} = 0$, a contradiction. The assertion is proved.

Now assume an element $t \in \mathcal{D}$. Consider the algebra

$$
\mathcal{O}_t = \langle e_n + te_{12} + e_{33} \rangle.
$$

It is one-dimensional. If $\mathcal O$ is a one-dimensional algebra, $\mathcal O \subseteq \ll \ell_{\mu} > \ell_{\mu} > \ell_{\mu} \gg \ell_{\mu}$, then $\mathcal O = \mathcal O_{\ell}$ for some t $\in D$ (provided of course that $\mathbb{U} \not\subseteq \langle \mathcal{E}_{\mu}, \mathcal{D}_{\mu} \rangle$, $\mathbb{O} \not\subseteq \langle \mathcal{E}_{33}, \mathcal{D}_{12} \rangle$). Suppose $\varphi \colon \mathbb{O}_t \to \widetilde{\mathbb{O}}_r$, $r \in \mathbb{R}$ (the existence and uniqueness of r are obvious). Then define $f: t \rightarrow r$. The ensuing situation corresponds to the diagram

$$
\begin{array}{ccc}\n\mathcal{O}_t & \xrightarrow{\varphi} & \mathcal{O}_r \\
\uparrow^t & \xrightarrow{-t} & \uparrow^t\n\end{array}
$$

<u>LEMMA 8.</u> Suppose \triangle and \hat{t} are elements of the (skew) field \hat{D} , linearly independent over $\hat{\ell}$. Then $(4+\hat{t})f = 4f + \hat{t}f$.

<u>Proof.</u> Suppose $t_1, t_2 \in \mathcal{D}$. Put $a = \ell_1 + t_1 \ell_2 + \ell_3$, $b = \ell_1 + t_2 \ell_{12} + \ell_{33}$. Then $a^2 = \alpha$, $b^2 = \beta$, $a\beta = \beta$, $b\alpha = \alpha$, so that $\langle a, b \rangle = {\lambda \alpha + \mu b : \lambda, \mu \in \mathcal{E}}$. Therefore

$$
\langle \mathcal{O}_{t_1}, \mathcal{O}_{t_2} \rangle \cap \mathcal{D}_{t_2} = \left\{ \lambda \left(t_1 - t_2 \right) e_{t_2} : \lambda \in \mathcal{K} \right\}.
$$

For $x \in D$ we have

$$
\langle \langle \mathcal{O}_x, \mathcal{O}_t \rangle \cap \mathcal{D}_{12} \supseteq \langle \mathcal{O}_4, e_n, e_{33} \rangle \cap \mathcal{D}_{12} \rangle \&
$$

$$
\langle \langle \mathcal{O}_x, \mathcal{O}_3 \rangle \cap \mathcal{D}_{12} \supseteq \langle \mathcal{O}_t, e_n, e_{33} \rangle \cap \mathcal{D}_{12} \rangle \Longleftrightarrow x = s + t
$$

Indeed, the condition on the left side of \iff can be expressed so: for some $\lambda, \mu \in \mathcal{E}$

$$
\begin{cases}\nx - 4 = \lambda t \\
x - t = \mu 4.\n\end{cases}
$$

For $x = 4+t$ we put $\lambda = \mu = i$. Conversely, if we have (7) then $t - 4 = \lambda t - \mu/4$ and hence by linear independence of ϕ and ϕ' we obtain $\lambda = \ell$, i.e., $x = \phi + \phi$.

Now Lemma 8 easily follows from the definitions.

LEMMA 9. Let $y = (f')'$. We suppose that $\lfloor D : \ell \rfloor \ge 2$. Then for all x , $y \in \mathcal{D}$ there hold the equalities

$$
(xy)f = \int \cdot x f \cdot y f \quad \text{and} \quad (x+y)f = xf + yf.
$$

Proof. For $x \in \mathcal{Y}$ we put $\bar{x} = x f$. We prove the equality $\bar{x}y = y \cdot x y$. We can assume that $x \neq 0$, $y \neq 0$ Consider the cases:

1) $x \notin k$; then $x = t + a$ where f, a are linearly independent over k . We have

$$
\overline{xy} = \overline{(1 + a)y} = \lambda \ \overline{1} \overline{a} \ \overline{y} = \lambda \ (y^{-1} + \overline{a}) \overline{y} = \lambda \ y^{-1} \overline{y} + \lambda \overline{a} \ \overline{y}.
$$

On the other hand, since ψ and $\alpha\psi$ are linearly independent, it follows that

$$
\overline{xy}=\overline{y+ay}-\overline{y}+\mu\overline{a}\overline{y}.
$$

If the relation $\lambda j^{*} \neq l$ held, then $\bar{q} = \nu \bar{a} \bar{q}$ would be fulfilled, whence $0 \leq l \leq \nu \bar{a} \bar{a}$. This would mean that $\mathcal{I}-\sqrt{a}=\mathcal{O}$, $\bar{\alpha}$ = \sqrt{a} , whence $a \in \mathcal{L}$, a contradiction. Thus $\bar{x}\bar{y}-\bar{y}\bar{x}$

2) $\psi \notin \mathcal{E}$. The proof in this case proceeds analogously to that in case 1).

3) Suppose
$$
\propto \beta \in \mathbb{Z} \cdot x \in \mathbb{Z} \setminus \mathbb{Z} \cdot x + y = \beta
$$
. Then $y \notin \mathbb{Z}$. We have

$$
\overline{\propto \beta} = \overline{\propto (x+y)} = \overline{\propto x} + \overline{\propto y} = y \overline{\propto x} + y \overline{\propto y} = y \overline{\propto} (\overline{x} + \overline{y}) = y \overline{\propto} \overline{x} + y = y \overline{\propto \beta}.
$$

Thus, in all cases \overline{xy} - $\overline{y}\overline{x}\overline{y}$.

The equality $x + y - \overline{x} + \overline{y}$ requires proof only in case of linearly dependent x and y.

We note that $-\bar{z}=-\bar{z}-\bar{z}$ $-\bar{z}$ \bar{z} $\bar{z$ whence $-i=-7$. In the case where the characteristic $\chi(\kappa)$ of the field κ is equal to 2, the equation $-\kappa$ is trivial. Hence

$$
\overline{\mathcal{X}} = \overline{(-/x)} = \sqrt{-(x^2 - 2x^2)} = \sqrt{(-y^{-1})\overline{x}} = -\overline{x}.
$$

Suppose now $x = -\alpha s$, $y = \beta s$, $x+y \neq 0$. In view of the relation $\Box x : \Box z \geq 2$ there exists $t \in \mathcal{D}$ such that and z are linearly independent. It is clear that $\alpha z + t$ and $\beta z - t$ are also linearly independent. Hence $(x \neq 0, y \neq 0)$

$$
\overline{(x+y)} = \overline{(\alpha z+t)+(\beta z-t)} = \overline{\alpha z+t} + \overline{\beta z-t} = \overline{\alpha z} + \overline{t} + \overline{\beta z} - \overline{t} = \overline{x} + \overline{y}.
$$

Finally, if $x=0$ **or** $y=0$ **, then** $\overline{x+y}=\overline{x+y}$ **in the light of the equality** $\overline{0}=0$ **. The lemma is proved.**

We return to the proof of the "theorem. If $\mathcal{D} - \ell$, then in view of Lemma 3 there is nothing to prove. If $D \neq \ell$, then $[D : \ell] \geq 2$. From Lemma 9 follows that the mapping $\bar{f}: D \longrightarrow R$ provided by the equality $x_1^T = y^{-1}$ x_1^T is a semilinear isomorphism of D to ℓ . From Lemma 7 now follows that $B = \widetilde{D}_a$, where the (skew) field \widetilde{D} is semilinearly isomorphic to the (skew) field D . Conversely, if the (skew) field \widetilde{D} is semilinearly isomorphic to the (skew) field D , then obviously the lattice $S(\widetilde{D})$ is isomorphic to the lattice $S(\mathcal{D}_q)$. The theorem is completely proved.

LITERATURE CITED

- 1. D. W. Barnes, "Lattice isomorphisms of associative algebras," J. Austral. Math. Soc., 6, No. 1, 106-121 (1966).
- 2. A. Ya. Khelemskii, "On the connection between the construction of certain nilpotent associative algebras and the construction of the structure of their ideals," Dokl. Akad. Nauk SSSR, 187, No. 3, 521- 524 (1969).
- 3. R.C. Glaeser and B. Kolman, "Lattice isomorphic solvable Lie algebras," J. Austral. Math. Soc., 10, Nos. 3-4, 266-268 (1969).
- $4.$ A. A. Lakhshi, "Structural isomorphisms of nilpotent Lie rings," Soobshchen. Akad. Nauk GSSR, 65, No. 1, 21-24 (1972).
- L. A. Skornyakov, Dedekind Structures with Complements and Regular Rings [in Russian], Fizmatgiz 5. (1961). $\bar{\bar{z}}$