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In virtually all areas of Diophantine Geometry, the theory of height functions 
plays a crucial role. This theory associates to each (Cartier) divisor D on a 
projective variety V a function ho mapping the group of rational points of V to the 
real numbers. This function, which is defined up to a bounded function on V, has 
very nice functorial properties. For example, it is linear in D and depends only on 
the linear equivalence class of D. As a consequence, any relation between divisor 
classes, such as the theorem of the square for abelian varieties, will yield a 
corresponding relation for height functions. 

Further, it is possible to write the height function ho as a sum of local height 
functions 20(" ; v), where v ranges over the distinct absolute values of the given 
field. (These local heights are also known as logarithmic distance functions or 
Weil functions.) Each 2 o is defined away from the support of D, and gives a 
measure of the v-adic distance from the given point of V to the divisor D. 

In this paper we propose to define local height functions 2 x for every closed 
subscheme X of a projective variety V. As above, 2x(- ; v) will give a measure of the 
v-adic distance from a point of V to X. These functions will have many nice 
functorial properties; for example, 2xny will equal the minimum of 2x and hr. In 
this way, relations between closed subschemes (or equivalently, between ideal 
sheaves) will yield relations between local height functions. We will thus be able to 
convert geometric statements into arithmetic statements relatively painlessly. 

More generally, we will deal with the case that V is merely quasi-projective by 
defining a function 20v('; v) which will measure the v-adic distance to the 
"boundary" of V. We will then be able to assign to each closed subscheme X of V a 
local height function 2x which will be well defined up to addition of a multiple of 
2~v. This extra generality is useful, for example, when one has a complete family of 
varieties and wishes to discard the "bad" fibers. 

As one application of the machinery that we have developed, we prove a 
quantitative version of the inverse function theorem. Thus given a finite map, we 
use local height functions to describe how far away from the ramification locus 
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(and boundary) one must stay so as to define a local inverse; and when the inverse 
is defined, we show that it is essentially distance preserving. In the final section, we 
consider the behaviour of local height functions on proper families of varieties, 
especially abelian varieties. Finally, in an appendix, we describe (without proof) the 
relation between our local height functions and sections to metrized vector 
bundles. 

Our original motivation for studying such functions was the desire to give 
uniform estimates for some of the important finiteness theorems in Diophantine 
geometry, such as Siegel's theorem. This theorem says that there are only finitely 
many integral points on any curve having positive genus. In a subsequent paper we 
will study Siegel's theorem for an algebraic family of curves; and using local height 
functions as one of our tools, we will describe how the finite set of integral points 
may vary for different curves in the family. 

More generally, our theory of local height functions should be useful anytime 
one is studying a Diophantine problem on an algebraic family of varieties and 
wishes to keep track of how the solutions vary in terms of the chosen point in the 
parameter space. In order to make these tools as accessible as possible, the author 
has tried to keep the algebro-geometric prerequisites to a minimum (almost 
everything used is in [3]). 

The author would like to thank William Fulton and Michael Artin for helpful 
advice about some basic techniques in algebraic geometry. 

1. Local Height Functions Associated to Divisors 

In this section we set notation and quickly review the facts about local height 
functions associated to divisors which will be used in the sequel. All of this material 
can be found in [4]. 

K will always be a field equipped with a proper set of absolute values MK. We 
fix an algebraic closure K a for K, and let M = M(K ~) be the set of absolute values on 
K ~ extending those on K. We write our absolute values additively; thus if v e M, 
then the triangle inequality reads 

v(x + y) > min {v(x), v(y)} + log(2), 

the log(2) being superfluous if (and only if) v is non-archimedean. 
All of our varieties will be assumed to be irreducible and defined over K. If V is 

a variety, we use V also to denote V(K"), the set of points of V defined over K ~. A 
divisor on V will always mean a Cartier divisor. (I.e. A positive divisor is a locally 
principal codimension 1 subscheme. See [3, 11.6].) 

Definition. The set c~ of (positive) MK-constants is defined by 

qr = {functions ~ : MK~[0 ,  oo)lT(v) = 0 for almost all v e MK}. 

We extend each 7 e cg to a map 7: M--. [0, oo) by setting 7(v) = 7(vlK). The set ~-(V) of 
(positive) Mx-functions on a variety V is given by 

~ ( V )  = {R : V x M ~ [ 0 ,  oo]lfor all P e 14, either 2(P;.  ) e qf or 2(P;.  ) = oo}. 
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We define an equivalence relation ~ on ~(V)  by setting 2t "-" 22 if there is an Mr- 
constant y e ~g such that 

21(P; v)-~(v) <22(P; v)<2t(P;  v)+~(v) for all (P, v)e V x M.  

(If 2,-~0, then we say that 2 is Mr-bounded. ) Then the set ~ ( V )  of local height 
functions on V is the quotient 

.,~(V)= ~(V) /  ~ . 

Notice we can define a partial ordering on ~ ( V )  by setting 2 t _~2 2 if there are 
representatives for 2t and 22 in ~-(V) (which we again denote by 21 and 22) and an 
Mr-constant 7~cg such that 21(P; v)<22(P; v)+7(v) for all (P,v)e V• M. 

We recall from [-4] that a subset B C V x M is called affine Mr-bounded if there 
is an affine open subset U C V with affine coordinates x 1 . . . . .  x, and an Mr-constant  

~ (g such that B C U x M and 

min{v(xi(P))}>-7(v) for all (P,v)~B. 

Clearly the choice of affine coordinates for U will not affect whether or not a given 
subset B C U x M is bounded. However, if U' is an affine subset of U such that B 
C U'x  M, it need not be true that B will be bounded with respect to affine 
coordinates for U'. (For example, take U = &  t and B={(x,v):O<lxlv<l}. If 
U' = A  t -  {0}, then {x, l/x} are attine coordinates for U', so B will not be bounded 
as a subset of U'.) If B C U x M is bounded for affine coordinates on U, we will say 
that B is Mr-bounded inside U. 

In order to construct our generalized local height functions, we will use the 
following result for divisors, which is essentially due to Weil. 

Theorem 1.1. Let V be a projective variety, and let Div+(V) be the set of positive 
(Cartier) divisors on E There exists a unique map 

2:Div+(V) , .~(V) 

with the following properties: 
(a) For all D, EEDiv+(V), 

2D+~=20+2E. 

(b) Let D ~ Div + (V), U C V an affine open on which D is principal, and let B C U 
• M be Mr-bounded inside U. Write Dlv = (f) for some function f e  F(U, Ov). Then 

2D,,~Vo f on B. 

[I.e. There is an Mr-constant ~ c ~  such that for all (P,v)~B, 

2o(P, v)-- y(v) < v o f (P) < 2D(P, v) + y(v).] 

Proof. This (and more) is contained in [-4] Chapter 10. 

2. Local Height Functions Associated to Closed Suhschemes 

Let V be a variety, and let Z(V) denote the set of closed subschemes of V. Note that 
the subschemes X ~ Z(V) are in one-to-one correspondence with ideal sheaves J x  
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C d~v (cf. [3, II.5.9]). We will often implicitly identify a subscheme X with its ideal 
sheaf , I  x. Our goal is to assign to each X ~ Z(V) a local height function 2 x ~ ~'r 
(at least when V is projective). Intuitively, for each (P, v) ~ V x M, we want 

2x(P; 1))= - log(v-adic  distance from P to X). 

In order to describe the desired functorial properties of 2x, we start by defining a 
number of natural operations on Z(V). 

Definition. Let X, Y~ Z(V). 
(i) The sum of X and Y, denoted X + Y, is the subscheme of V with ideal sheaf 

i x +  r = i x  J r .  

(ii) The intersection of X and Y, denoted Xc~ Y, is the subscheme of V with ideal 
sheaf 

J x ~ r  = d x  + J r .  

(iii) The union of X and Y,, denoted X u  Y, is the subscheme of Vwith ideal sheaf 

J x ~ r  = J x C ~ J r  �9 

(iv) Y is contained in X, denoted Y C X, if 

J x C J r .  

(v) Let ~0 : W o  V be a morphism of varieties. The inverse image of X, denoted 
(p'X, is the subscheme of W with ideal sheaf 

~ , , * x  = ~ 0 * J x  �9 

(We are using the notation ~0 * J x  to denote the inverse image ideal sheaf of i x .  
More standard notation for this sheaf would be ~0- l J  x �9 d~w, which is the image in 
~w of the usual sheaf ~o*J x. See [3, II.7.12.2] for a fuller discussion.) 

We are now ready to prove the existence of local height functions correspond- 
ing to each closed subscheme of V, and to describe their functorial properties. 

Theorem 2.1. Let V be a projective variety. There exists a unique map 

2 : z ( v )  ,,,-~(v) 

satisfying the following conditions: 
(a) I f  D ~ Z( V) is a positive divisor ( i. e. D ~ Div + (V)), then 2, is the usual (Weil) 

function associated to D given by Theorem l.l. 
(b) For all X,  Y~Z(V), 

2x~r = min {2x, 2r}. 

The map 2 also has the following properties: 
(c) For all X,  Y~Z(V), 

2 x + r = 2 x + 2 r .  

(d) I f  X, YE Z(V) satisfy X C Y,, then 

2 x ~ 2 r .  
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(e) For all X ,  Ye  Z(V), 

max {2x, 2r} < 2x~r < 2x + 2r. 

Further, either of the inequalities may be an equality. 
(f) I f  X ,  Y~ Z(V) satisfy Support(X) C Support(Y), then there exists a constant c 

such that 2x_--< C2r. 

(g) Let X ,  Y~ Z(V), let U C V be an open set, and let Z C V be the complement of 
U. Suppose that 

S lvC YIu. 

Then there exists a constant c > 0 such that 

2 x < 2 r + c2 z . 

(h) Let q~" W o  V be a morphism of varieties, and let X ~ Z(V). Then 

2w,+*x = ~v,x o qg. 

(Here we write 2v, x in place of  2 x so as to better indicate the underlying variety.) 

Before giving the proof of Theorem 1.1, we prove two lemmas dealing with the 
intersection of divisors. 

Lemma 2.2. Let X e Z(V). There exist positive divisors D 1 . . . .  , Dr such that 

X = c~D i . 

Proof. Fix an ample invertible sheaf Or(l) on V, and choose n sufficiently large so 
that i x (n )  is generated by global sections, say by s l . . . .  , s, ~ F( V, ix(n)).  Since ~ x(n) 
C(gv(n ), each si is a global section of the invertible sheaf Or(n), so it has a divisor 
(si) = Di > O. We claim that 

J x  = J O l  + " "  + J D , ,  

which will complete the proof of the lemma. 
To prove this equality of sheaves, it suffices to check it on stalks, so let P 6 V. 

Pick any s o e Ov, p with so(P)#0; then the map s~S/So gives an isomorphism 
(gv(n)p~(Pv.e. Now Jx(n)p maps isomorphically onto X(si/so)d3v, p, while each 
Jo,(n) maps to (si/so)(gv, e. Therefore J x ,  e= SJo , , e  as desired. 

Lemma 2.3. Let U be an affine open subset of V, and let D, DI, . . . ,D r be positive 
divisors on V which are principal on U and satisfy 

DIv 3 nD~lv . 

Let B C U x M be Mr-bounded inside U. Then 

2o>min(2o,} on B.  

Proof. Choose functions f, f l ,  f2 . . . .  e F(U, d)v) so that 

DIv=( f )  and Dilv=(fi). 

Then from Theorem 1.1, 

2 o "  v o f and 2o, ~ v o f~ on B. 
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We now use the fact that DIuD nDilu. Since D and the Di's are principal on U, 
this means that there exist gl, g2 . . . .  E F(U, ~)v) such that 

f = Sgl f i .  

Hence on B we have the estimate 

v o f = v o (Zg,fi) 

> minv o (g~fi)- 7 

> m i n v o  f ~ + m i n v o g ~ - 7  

>rainy  o f / -  7' 

for some Mx-constants ?, 7'~ ~. Here the last line follows from I-4, Chap. 10, 
Proposition 1.3], which says that since each g~ is regular on U, each v o g~ (restricted 
to B) is bounded below by an MK-constant. This implies that 

2o>min{2o,} on B, as desired. 

Proof of  Theorem 2.1. The uniqueness of 2 follows immediately from Lemma 2.2. 
For  if we write X as an intersection of positive divisors nDi, then (a) and (b) imply 
that 2x=min{2o,} for functions 2o, which have already been defined in 
Theorem 1.1. We are thus forced to define 

2x =min{2o,}. 

The next step is to check that 2x is well-defined (in ~(V)),  independent of the 
choice of the D~'s. After that, we will verify properties (a)-(g). 

Thus suppose that {Di} and {Ej} are two sets of effective divisors satisfying X = 
nD~= nEj.  We must show that 

min {)~o,} =min{ZE,}. 

Since X also equals (nDi)n(nEj),  it suffices to assume that one set of divisors is a 
subset of the other; and then by adding on one divisor at a time, we may assume 
that the larger set has only one more divisor than the smaller. Now, since the 
minimum over a larger set of numbers is necessarily smaller, this reduces us to the 
following problem. 

If D, D 1, D2, ... ~ Div+(V) and D D nD~, then 

2D>min{~,,} �9 

From Lemma 2.3, we know this is true on any set B C V • M which is Mx-bounded 
inside an affine open subset U of V on which D, D1, D2 . . . .  are all principal. But 
using I4, Chap. 10, Proposition 1.21 we see that it is possible to cover V • M by 
finitely many sets B of this sort. This completes the proof that 2x is well-defined. 

We now verify that the function ~x ~ ~(V) ,  defined as above by 2x = min {2D,} 
for any set of effective divisors such that nD  i = X, satisfies properties (a)-(g). 

(a) Clear. 
(b) If X = n D  i and Y= nEj,  then X n  Y = ( n D i ) n ( n E j )  , so 

2x~r = min {2o,, At,} = min {2x, 2~.}. 
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(c) Again writing X = nDi and Y= nEj,  we see that X +  Y= n(Di+ Ej). Hence 

2x + r = min {2o, + Ej} = min {2o,} + min {2~j} = 2x + 2r. 

Here we have used [4, Chap. 10, Proposition 2.1], which says that 2o+~ 
= 20 + 2E for divisors D and E. 

(d) I f X C  Y, then X = X n y ,  so from (b) 

2 x = 2x~ r = min {2x, 2r}. 

(e) Since X, Y C X w  Y CX + Y, applying (c) and (d) yields 

max {2x, 2r} < 2x~ r ~ 2x + 2r. 

Further, ifX = Y, so X = X u  Y, then the lower inequality will be an equality; while if 
for example X and Y are distinct irreducible subvarieties of V which intersect 
properly, then Xw Y= X + Y, so the upper inequality will be an equality. 

(f) If Support(X) C Support(Y), then the Nullstellensatz implies that there is an 
integer m > 0 such that Jx  3 J~ .  Thus X C mY, so using (c) and (d) yields 

2 x < m2 r . 

(g) Using (c) and (d), it suffices to find an integer m such that X (  Y+mZ;  or 
equivalently, such that J x  3 J r J ~ ' .  Since this may be checked locally, we may 
assume that V= Spec(A) is affine, and write J x ,  J r ,  J z  as ideals of A. Writing 
Jz  = (fl, ..., f,), we see that U is the union of the open sets U~ = Spec(As,). Now the 
given inclusion XIv3 Y[v says precisely that 

JxAf, D JrAf~ for each 1 < i < r. 

Hence we can find an integer m such that Y x 3 J r f i  m for all i; and so 

J x  3 Jr( f ( ' , . . . ,  fro) 3 J r ( f ,  . . . . .  f,)m' = j r j ~ , '  " 

(Here we may take m '=  r m - r  + 1.) 
(h) Write X = n D  i. Then ~o*X = nqg*D i, so (f)  follows from the correspond- 

ing property for divisors [4, Chap. 10, Proposition 2.5]. 
The next result shows how one can actually compute the local height function 

corresponding to a closed subscheme. 

Proposition 2.4. Let X e Z(V), and let U C V be an affine open subset such that Jx[v  
is generated by global sections, say by f l , . . . , fr  ~ F(U, i x ) .  Let B C U x M be Mx- 
bounded inside U. Then 

2 x ~ m i n v o f i  on B. 

Proof. For each i, let Di _-> 0 be the divisor of zeros offi. By assumption, Xiv = nDiiv. 
Further, let Y~Z(V)  be the (reduced) subscheme of V whose support is the 
complement of U. Then by Theorem 2.1 (b, g), there is a constant c > 0  such that 

2 x -  c2r < min 20, < 2x + C,~r. 

Further, since (f~)lv=DiIv, Theorem 1.1 (b) implies that 

2 o ~ v o f i  o n B .  
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Thus to complete the proof  of the proposition, it suffices to prove that 4y restricted 
to B is bounded by an Mr-constant.  

Write Y= c~Ej as an intersection of positive divisors (Lemma 2.2). Since 
Ylv=0, we can apply Lemma 2.3 (with D=0)  to conclude that 

2o > min 2Ej = 2r.  

But 4o is MK-bounded I-4, Chap. 10, Proposition 2.2], which gives the desired 
result. 

Example. It is quite possible for distinct closed subschemes to have the same local 
height function. For example, let D and E be distinct lines in p2, and let 

X=2Dc32E and Y=2Dn2En(D+E). 

1-IfD and E intersect at x = y = 0 ,  then locally around (0, 0) we have Jx=(x2,y 2) 
and J r  = ( x2, y2, xy), so X and Y are distinct subschemes.] Using Theorem 2.1 (b, c) 
we compute 

2r = min {22o, 24E, 2D + 4E} = min {240, 22E} = 4x. 

(Exercise. If 4 x = 4 r, then X r~d = yr+a.) 

3. Arithmetic Distance Functions 

For this section, we let V be a projective variety. Let P, Q ~ V and v ~ M. We wish to 
define a measure of the v-adic distance from P to Q. More precisely, we want a local 
height function <5 E Jf~(V • V) which is intuitively defined by 

<~(P, Q; v) = - log(v-adic  distance from P to Q). 

Since any point of V can be considered as a closed subscheme, one possibility is to 
use 4~Q; v). However, this choice does not have good functorial properties, since 
the Mx-constant inherent in the various transformation formulas would depend 
on P. We obviate this problem by the usual trick of considering the distance to the 
diagonal of V • V. 

Definition. The diagonal map of V is denoted A : V-+ V • V. We let A(V) denote the 
image of A considered as a closed subscheme of V • V (with the usual induced- 
reduced subscheme structure.) The (arithmetic) distance function on V is the local 
height function <~v ~ gf(V x V) given by 

~v = 4aw)- 

EAny function in ~ '(V • V) in the equivalence class of 6v will also be called a 
distance function.] 

We start by proving some of the elementary properties of arithmetic distance 
functions. 

Proposition 3.1. (a) (Symmetry) 

6v(e,Q;v)=bv(Q,P;v) for all (P,Q;v)EV2• 
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(b) (Triangle Inequality i )  

6v(e, R; v) > min {fiv(P, Q; v), fir(Q, R; v)} for  all (P, Q, R;  v) ~ V 3 x M .  

(c) (Triangle inequality 2) Let  X ~ Z(V).  Then 

2x(Q; v)~ min {2x(P; v), fv(P,  Q; v)} for  all (P, Q; v)~ V 2 x M .  

(d) Fix  a point P ~ V. Then 

f v (P ,Q;v )=Ap(Q;v )  for all ( Q , v ) ~ V x M .  

Proof. (a) Let i: V2~ V 2 be the map i(P, Q)=(Q, P). Then i*A(V)= A(V), so using 
Theorem 2.1(h) gives 

f v  = 2~v) = 2i.a~v) = 2a~v) ~ i = 6 v o i. 

(b) For each 1 < i < j  < 3, let rcij: V 3 ~ V 2 be projection on the (i,j) th compo- 
nents. Then we must show that 

6v o rq3 > min {fv o ~ 1 2 ,  r o T~23} . 

Now using Theorem 2.1 (h), 

and so from Theorem 2.1 (b), 

min {rv o ~ 1 2 ,  f v  ~ n 2 3 }  = min{2,~2a<v), 2~3atv)} 

t ~ n , i 2 d ( V ) n n ~ a d ( V )  . 

We thus must prove that 

so from Theorem 2.1(d) it suffices to show that 

7t*sA(V) 3 u*:A(V)nu*3A(V) .  

But u*zA(V)nrt*3A(V ) equals the diagonal of V s, which is clearly contained in 
7~*3A(V ). 

(e) Let 7h, ~t2: v Z ~ v  be the two projections. We must show that 

2x ~ ~z _-> min {2x o 7h, 6v}. 

Now 2x ~ rtz = 2~x and 

min {2x o rq, 6v} = min {2,~x, 2nov)} = 2,~x~d~v), 

so it suffices to check that 

~*X  3 ~ * X n A ( V ) .  

Since n*X = V • X and r t * X o A ( V ) = X  • X ,  this inclusion is clear. 
(d) Let q~ : V-~ V • V be the map ~0(Q) = (P, Q). Then as a function on V • M, 

6v( P, �9 ; �9 ) = f v  ~ r = 2 A~v) o r = 2~,. A~v) = 2e . 
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Example. Let us show that on an abelian variety, distance is translation invariant. 
In other words, we wish to prove that if A/K is an abelian variety, then 

6A(P,Q;v)=JA(P+R,Q+R;v) for all (P,Q,R;v)~A 3•  

The obvious approach is to use the "translation-by-R map" zR:A~A.  Since rR is 
an isomorphism, we have 

5 A(P, Q; v) = 2 a • A, a( P, Q; v) = 2A • A, ( . . . .  a)* a( P, Q; V) 

=)~a • P + R, Q + R; V)=SA(P + R, Q + R ;  v). 

Unfortunately, this derivation only shows that the difference JA(P+R, Q +R;  v) 
--JA(P, Q; v) is bounded as P and Q vary; the bound will depend on R. To obtain 
the stated result, we look instead at the subtraction map, 

a : A x A ~ A  a ( P , Q ) = P - Q .  

Then 

2A. o(P -- Q; v) = 2 A • A, ~*o( P, Q; v) = 2 A • A. A(P, O; v) = 6 a(P, Q; v). 

Now this equality holds (up to a bounded amount) for all P and Q. Since the left- 
hand side does not change if we replace P and Q by P + R and Q + R, it follows that 
the right-hand side has the same property. 

4. Global Height Functions 

In this section we add up the local height functions defined in Sect. 2 so as to obtain 
a global height function corresponding to each closed subscheme of a projective 
variety V. We will assume, for this section only, that K is a finite extension of a fixed 
base field F whose proper set of absolute values have multiplicities assigned to 
them; and hence the absolute values on every finite extension of F also have 
attached multiplicities. (Generally, one also assumes that the product formula 
holds, but this will not be necessary for our purposes. For  all of this formalism, see 
[4].) 

Definition. Denote the set of functions h: V--,[0, c~] by ~*(V). We define an 
equivalence relation on ~-*(V) by setting hi~h2 if the function [hi-h2] is 
bounded on V. (By convention, c~ - c ~  = 0.) We will also sometimes denote this 
relation by h t = h2 + O(1). The set Yf*(V) of global height functions on V is defined 
to be the quotient 

~ * ( v ) = ~ * ( v ) / ~  . 

As usual, we put a partial order on ~*(V) by saying hi < h2 if h 2 -  h~ is bounded 
below on V; this induces a partial order on A'~*(V), also. 

Definition. Let X~Z(V) .  The (global) height function associated to X is the 
function hx E ~*(V)  defined as follows: 

For  P e V, choose a finite extension L/K so that P ~ V(L). Then 

hx(P) = [L: F ] - I  ~ Nv2x(p; v). 
v ~ M  L 
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(Here No is the multiplicity attached to v.) As usual, hx is independent of the choice 
of the field L. If the dependence on V is important, we use the notation hv, x. 

We now give the basic functorial properties of global height functions, all of 
which follow by addition from the corresponding properties for local height 
functions proven in Theorem 2.1. 

Theorem 4.1. The map 
h: Z(V)  , ~ ( V )  

has the following properties: 
(a) I f  D ~ Z(V)  is a positive divisor (i. e. D ~ Div § (V)), then ho is the usual Well 

height associated to D. (Cf. [-4, Chap. 4].) 
(b) For all X, YeZ (V) ,  

hx~ r < min {hx, hr}. 

(Note the inequality, which occurs because Zmin{ai ,  bi} need not equal 
min {Zai, Sbi}.) 

(c) For all X,  YeZ (V) ,  

h x + r = h x + h r .  

(d) I f  X, Y ~ Z ( V )  satisfy X C Y, then 

hx < hr. 

(e) For all X,  YeZ (V) ,  

max {h x, hr} ~ hx~ r <= hx + hr. 

Further, either of the inequalities may be an equality. 
(f) I f  X,  Y e Z(  V) satisfy Support(X) (Support(Y), then there exists a constant c 

such that 

h x ~= chr. 

(g) Let X, Ye  Z(V), let U C V be an open set, and let Z C V be the complement of  
U. Suppose that 

XIuC YIv. 

Then there exists a constant c >= 0 such that 

hx <= hr + chz. 

(h) Let ~o : W-~ V be a morphism of varieties, and let X ~ Z(V). Then 

hq,,x = hx ~ q~ . 

Remark. Global height functions associated to divisors have two further important 
properties. First, at least for number fields, there are only finitely many points of 
bounded height (and degree) in V. Second, linearly equivalent divisors give 
equivalent height functions. As the following example shows, height functions 
associated to subschemes ofcodimension greater than 1 do not have the analogous 
properties. For this reason, such global height functions are principally useful as a 
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bookkeeping tool; in order to obtain finiteness theorems, one must ultimately 
relate everything back to height functions corresponding to divisors. 

Example. Let X = [0, 0, 1] ~ Z(F2). For  any P ~ Fz(Q), write P = I-x, y, z] with 
x, y, z ~ Z and gcd(x, y, z) = 1. Then one easily checks that if max {Ixl, lyl} > Izl, then 
hx(e) = log [.gcd(x, y)]. (A similar formula holds for max {Ixl, lYl) < Izl.) In particular, 
if x and y are relatively prime integers, then hx([x,y, 1])=0,  so PZ(tl~) clearly 
contains infinitely many points of bounded height. 

Next let Y = [0,1, 1] ~ Z(P2). Then X and Y are rationally equivalent (as are 
any two points in 1~2). But using notation as above, we have (assuming say Ixl > Izt) 

hx([x,y,z])=log[gcd(x,y)] and hr([x,y,z])=log[gcd(x,y-z)]. 

Thus hx and h~, are clearly not equivalent functions. 
We now show that the height function corresponding to an ample divisor will 

dominate any other height function. We recall the fact that it is possible to assign a 
(height) function he: V ~ R  to every Cartier divisor class ~ e CaCI(V) in such a way 
that if ~ is effective and D ~ Div+(V) is in the class of ~, then 

h~=ho+O(1 ) on V-Support(D). 

(See [4, Chap. 5 and/or Chap. 10, Sect. 4].) 

Proposition 4.2. Let ~ ~ CaCI(V) be an ample divisor class, and let X ~ Z(V). Then 
there exist constants cl, c2 > 0  such that 

hx<cahr on V-Support(X). 

[The intuition for this result is that if P is v-adically close to X, but not on X, then 
its coordinates (relative to a projective embedding induced by a multiple of 3) must 
be v-adically complicated, thereby making he(P) large.] 

Proof. Write X = c~E~ as an intersection of divisors (Lemma 2.2). From I-4, Chap. 4, 
Proposition 5.4] (which gives our result when X is a divisor), there are constants 
ca, c 2 > 0  such that for each i, 

hr~<cahr 2 on V-Support(Ei). 

Since XCE i, (4.1d) gives 

hx<=clhr on V-Support(Ei); 

and since this inequality holds for each i (and Suppor t (X)= nSupport(Ei)), we see 
that it holds on all of V-Support(X). 

Proposition 4.2 is the main estimate needed to prove Faltings' finiteness lemrna 
[2, Lemma 3] concerning metrized line bundles with logarithmic singularities 
(although this fact is somewhat concealed in the midst of his proof.) In terms of 
divisor classes, Faltings' result may be formulated as follows. Let ~ e CaCI(V), U 
C V an open set, and XeZ(V)  with Support(X)=V-U. A (height) function 
h: U - ~ R  is said to have logarithmic singularities along X (relative to ~) if there is a 
constant c > 0  such that 

Ih-hr on U. 
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Corollary 4.3 (Faltings). Let U and X be as above. Assume that K is a number field. 
Let h: U-*~, have logarithmic singularities along X relative to some ample divisor 
class ~ ~ CaCI(V). Then for any constant C, the set 

{P ~ U(K):h(P) < C} 

is finite. 

Proof Let P ~ U(K) with h(P) < C. Then from (4.2) and the definition of logarithmic 
singularities, we see that 

he(P) < h(P) + c log(2 + hx(t)) 

< C + c log(2 + clhr ) + c2). 

From this one easily deduces that there is a constant x = r(C, c, cl, c2) such that 
he(P) < r. Hence 

{P e U(K): h(e)_<_ C} C {P e 7(K): he(P) < ~c}, 

and the latter set is well-known to be finite I-4, Chap. 3, Theorem 2.6]. 

5. Height Functions on Quasi-Projective Varieties 

Let V be a quasi-projective variety; that is, a Zariski open subset of a projective 
variety. As above, we would like to associate to each closed subscheme X ~ Z(V) a 
local height function 2x e Jt~(V), this association to have nice functorial properties. 
Unfortunately, because V is not complete, a problem arises due to the fact that 
points can "move out to ~ . "  The solution will be to define a function 2~v E ~ (V)  
which will measure the distance to the "boundary" of V. It will be defined up to 
multiplication by a non-zero constant, and then the functions 2x will be defined up 
to addition of a multiple of 2~v. This prompts us to set the following notation. 

Notation. Let 21, 22, 23 ~ ( V ) .  We write 

21 -~- 2 2 "Jr 0(23)  

to mean that there exists a constant c > 0 such that 

Similarly, we use the notation 

21>> ~22 

to mean that there is a constant c > 0 such that 

c-  121 < 22 =< c21. 

We start with the following fundamental lemma, which explains the behavior 
of local height functions under rational maps. 

Lemma 5.1. Let tp : W ~ V be a dominating rational map of projective varieties. Let 
UCW be an open set on which tp is a morphism (so r is dense in V), and let 
Z ~ Z(W) be a subscheme with support equal to W -  U. For X ~ Z(V), let q~*X be the 
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Zariski closure, in W, of tplv*X. (Note tp*X may depend on U.) Then 

;L x o rp = )~*x + O(2z) on U x M.  

Proof. Blowing up W along Support(Z), we can find a variety W' and a birational 
morphism tp: W ' ~  W with the following properties: 

(i) lp maps U ' =  ~p-l(U) isomorphically to U. 
(ii) The rational mapgo o ~p : W'--} V extends to a morphism ~ :  W ' ~  V 
(W' and ~' are produced by applying [3, II.7.17.3]. The fact that W' is 

projective and u/is a birational morphism is [3, II.7.16].) 
Notice that since ~]v' equals go o ~p, we have 

(e*X)l u, = (~*(go*X))] u,. 

Hence letting Z'r  have support W ' - U ' ,  Theorem 2.1(g, h) implies that 
(note ~p and ~ are morphisms) 

;L~, x o lp = 2x ~ ~ + O(2z,) �9 

Next we note that 

Support Z' = Support~p*Z, 

so using Theorem 1.2(t) we find 

;L,p,x o ~p = 2x o ~v + O(2z o ~p). 

Finally, since v : U ' ~  U is an isomorphism, and since ~ (P )=  go(v(P)) for P e U', 
this last inequality implies that if we restrict attention to U • M, then 

2~,x = 2x o go + O(2z) �9 

Next we describe a local height function which gives the distance to the 
boundary of a quasi-projective variety. 

Lemma 5.2. Let V be a quasi-projective variety. There exists a local height function 
2or ~ ~gf(V), which we will call a boundary function, with the following property. 

Let V' be any projective closure of V, and let Z' E Z(V') be a subscheme of V' with 
support equal to V ' - E  Then 

2or ~ "~ 2z,lv. 

2~v is determined (in ~,~(V)) up to ~ ~ equivalence. 

Proof. We define 2or to be 2z,]v for a fixed choice of V' and Z'. Now let V" and Z" be 
another choice. We must show that 2z,[v ~ ~ 2z,,]v. Since V' and V" both have V as 
a dense open subset, V' and V" are birational, say by the map r : V"-~ V' taking V 
to V. Hence from Lemma 5.1, 

;Lz, ~ cp = ;L~,.z, + O(2z,,) �9 

But go*Z' is the closure in V" of go]v*Z', and go[v*Z' is trivial (i.e. the empty scheme). 
Therefore 

2z, o rp = O(,~z,,), so 2z, o r <__ C2z,,. 
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The same argument applied to go- t gives the opposite inequality, which completes 
the proof of existence. The uniqueness (up to scalar multiplication) is clear. 

The following proposition illustrates the behavior of the boundary function 
X~v. The second part is useful, for example, in cases where one has a complete 
family of varieties and wishes to discard the "bad" fibers. 

Proposition 5.3. Let V and W be quasi-projective varieties. 
(a) Let n 1 and n 2 be the two projections on V x W. Then 

2ov• ~.2~vOnl + 2~wOn2 . 

(b) Let go : W ~ V be a proper morphism. Then 

2ew >> ~ 2ev ~ go. 

Proof. Choose projective closures W' and V' for W and V. 
(a) This follows immediately from Theorem 2.1(f) and the fact that 

(W'x  V ' ) - ( W •  V ) = ( W ' -  W) • V • W x ( V ' -  V). 

[I.e. Using a more suggestive notation, 8(W x V)=(SW)x  V u W  x (SV).] 
(b) go induces a rational map W' ~ V'; and by blowing-up W' along W ' -  W, we 

may assume that go extends to a morphism W ' ~  V', which we denote by lp. (Again 
we are using [3, II.7.17.3]). We thus have the following diagram: 

Ip 
W' ,V' 

U u 

r 

W )V. 

Clearly , p - ' ( V ' - V ) C  W ' - W ,  which implies (Theorem 2.1 (f, h)) that 

2or o go < c2ow. 

We now prove the other inclusion, ,p- ' ( V ' -  V)3 W ' -  W, which will complete the 
proof. Thus let P e W' satisfy ,p(P) e K We must show that P e W. Let C C W' be a 
curve with P e C and Cc~ W 4= 0. Let R be the normalization of the local ring (gc, p, 
and let L be its quotient field. Then the map Spec(L)~ W ~  V extends to a map 
Spec(R)~V, because the closed point of Spec(R) can be sent to w(P). Since go is 
proper, it follows that we can map Spec(R)~ W (valuative criterion of properness, 
[3, II.4.7]), and so P e W as desired. 

We are now ready to assign a local height function to each dosed subscheme of 
any quasi-projective variety. 

Theorem 5.4. There are maps 

2 = ) ~ v : Z ( V ) ~ ( V ) ,  

one for each quasi-projective variety V, with the following properties: 
(a) I f  V is projective, then 2v is the map defined in Theorem 2.1. 
(b)--(g) 2 v satisfies properties (b)-(g) of Theorem 2.1 provided O(2ov ) is added 

onto each equation. 
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(h) Let ~p : W-+ V be a morphism of quasi-projective varieties, and let X ~ Z(V). 
Then 

2v, x o ~o = 2w. +*x + O(20w). 

The function 2v, x is determined up to O(2av ) (in Aa(V)) by properties (a) and (h). 

Proof. For each V we fix a smooth projective closure V'; and for X+Z(V) ,  we 
denote by X'r  the closure of X in V'. We then define 

2v,x= 2v,,x,lv , 

where 2v,,x, is given by Theorem 2.1. 
Clearly (a) is satisfied, since if V is projective, then V '=  V. The verification of 

(b)-(g) is also easy using Theorem 2.1. We illustrate by proving (b). Let X, Y~ Z(V). 
Then clearly (Xn Y)'lv = (X'n Y')lv. [Notice that (Xn  Y)' and X ' n  Y' may not agree 
on the boundary V ' -  V.] Now using the definitions of 2 v and 2or, and applying 
Theorem 2.1 (b, g), we see that 

2v.x~r = min {,~v,x, 2v, y} + O(2ov). 

It remains to check (h). The morphism ~p:W~ V induces a rational map 
~p: W ' ~ V '  with ~plw=q~. From Lemma 5.1 we conclude that 

2v,,x, o Ip = ;tw, ' ~*x, + O(2z), 

where Z e Z ( W ' )  is chosen with support equal to W ' - W .  Now 2ztw=A0w 
(Lemma 5.2), and ~p*X' is the closure in W' of ~p*X (Lemma 5.1). Therefore 

2v,,x, ~ ~P = 2w,,<+.x), + O(20w), 

which is exactly the desired relation. 
Finally, the up-to-O(20v) uniqueness of 2v is clear from (a) and (h); simply 

embed V in some projective closure. 
As in Sect. 3, we define a distance function by using the local height function 

relative to the diagonal. 

Definition. The (arithmetic) distance function on a quasi-projective variety Vis the 
local height function 6v ~ ;,~(V • V) given by 

fv ----- )taW). 

In view of Lemma 5.3(a), we see that fv(P, Q; v) is well-defined up to O(2ev(P; v) 
+ 2ev(Q; v))-equivalence. To ease notation, we will also write this as O(2ev(P, Q; v)). 

Proposition 5.5. Let V be a quasi-projective variety. 
(a) (Symmetry) 

3r(P, Q; v) = 6v(Q, P; v) + O(2ov(P, Q; v)) for all (P, Q; v) ~ V 2 x M .  

(b) (Triangle Inequality 1) 

fv(P, R; v)> rain {gig(P, Q; v), 6v(Q, R; v)} + O(2av(P , Q, R; v)) 

for all (P, Q,R; v)~ V 3 x M .  
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(c) (Triangle Inequality 2) Let X ~Z(V). Then 

2x(Q; v) > min {2x(P; v), 6v(e, Q; v)} + O(2ov(P, Q; v)) for all (P, Q; v) ~ V 2 x M.  

(d) Fix a point P ~ V. Then 

3v(P, Q; v) = 2p(Q; v) + O(2ov(P, Q; v)) for all (Q, v) ~ V x M.  

Proof Let V' be a projective closure of V. Since the closure of A(V) in V' x V' is 
precisely A(V'), we have 

6v = 6v,lv • v + O(2~v) �9 

Further, letting X'~  Z(V') be the closure in V' of X ~ Z(V), we have [by applying 
Theorem 5.4(h) to the inclusion map VC V'] 

2x = 2x,lv + O(2~v). 

Now all of Proposition 5.5 follows from the corresponding statements in 
Proposition 3.1. 

6. The Inverse Function Theorem 

Our goal in this section is to prove the following quantitative version of the inverse 
function theorem. 

Theorem 6.1. Let 9 : W ~  V be a finite map of degree d between smooth quasi- 
projective varieties. Let R(9)r be the ramification divisor of tp. I f  
(P, q, v) ~ W x V x M satisfies 

~v(~pP, q; v) > d2w. a~,)(P; v) + O(~.ow(P; v)), 

then there exists a unique Q ~ W such that 

~p(Q)=q 

and 

6w(P, Q; v) > 6v(tpP, q; v ) -  ( d -  1)),w, Rt,)(P; v) - O(2ow(P; v)) . 

The statement of this theorem requires some explanation; specifically, what is 
the meaning of the condition that Jv(~pP, q;v) be (strictly) greater than 
d2w, a~,)(P; v)+ O(2ew(P; v)). After all, these functions are only determined up to 
addition of an Mt:-bounded function (not to mention the big-O constant). What is 
meant is the following. Choose specific functions in the equivalence classes of the 
local height functions fie, 6w, 2w, Rt,), and 20w, which we will denote with the same 
symbols. Then there is a constant c > 0 and an MK-constant T, depending on V, W, q~, 
and the particular choice of functions made above, so that if (P, q, v) ~ W x V x M 
satisfies 

fiv(~pP, q; v) > d2w, R(,)(P; v) + c2ow(P; v) + ?(v), 

then there is a unique Q~ Wsuch that ~p(Q)=q and 

~w(P, Q; v) _>__ 6v(~pP, q; v) - ( d -  1)2w, xl,)(e; v ) -  c).ow(P; v) - ~(v). 

(We will use similar shorthand notation throughout this section.) 
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We mention that for any given points P e W and q e V, unless q~P = q, there can 
be only finitely many absolute values v e M K such that (P, q, v) satisfies the above 
strict inequality. This is because the right hand side is non-negative, while 
6v(cpP, q; v)=0 for all but finitely many such v. It is also worth pointing out that 
even if (P, q, v) and (P, q, v') both satisfy the given inequality, then the correspond- 
ing inverse points Q,Q'e~p-l(q) need not be the same. (One sees a similar 
phenomenon in the fact that a sequence of rational numbers may converge in 
different v-adic topologies to distinct rational numbers !) 

Remark. The inverse function theorem says (qualitatively) that a finite map is a 
local isomorphism locally around any point not on the ramification locus. 
Theorem 6.1 gives a quantitative estimate for how far away from the ramification 
locus one must stay in order to define an inverse function, and says that the 
distance between the inverse points is then about the same as the distance between 
their images. 

Remark. We mention now that finite maps are always proper I-3, Example I1.4.1]. 
We will thus frequently make use of Lemma 5.3(b) without additional comment. 

We start with the following preliminary result. 

Proposition 6.2. Let q~ : W ~ V be a finite map of smooth quasi-projective varieties. 
(a) (Separation) Let Q, Q' ~ W be distinct points with tp(Q) = ~p(Q'). Then 

6w(Q, Q' ; v) <= 2R(,)(Q; v) + O(2ov(~pQ; v)) . 

(b) (Distribution Relation) Let P ~ W and q ~ E Then 

fv(q~P, q; v) = ~ e,(Q/q)5w(P, Q; v) + O(2ow ~ v(P, q; v)). 
Q e r  - l (q )  

(Here e,(Q/q) is the ramification index of <p at Q. For example, if Q q~ Support (R(~p)), 
then e,(Q/q) = 1.) 

Proof. (a) Let rq : W • W--* W be projection on the first factor. We start with the 
ideal sheaf relation 

(~P • ~)*J~r + J ~ w ~  = n*JR. , j  �9 5 d ~ , j  + J]~wj  �9 

This says nothing more than the fact that up to quadratic terms, a polynomial map 
is given by its differential. In terms of subschemes, this gives 

(~p x ~p)*A(V)c~2A(W)=(rc*R(+)+ A(W))c~2A(W). 

Now applying Theorem 5.4 yields 

min {fv o (~0 x ~o), 2fw} = min {2,~,) o r h + 6w, 26w} + O(2ow• w). 

Next we evaulate this equation at the point (Q, Q'; v) ~ W • W • M. (From here on, 
we will omit reference to v in the notation.) Since ~p(Q)=~p(Q'), 6vO(r 
x q~)(Q, Q') = ~ .  Since further Q .  Q', five(Q, Q')* ~ ,  so we may subtract fw(Q, Q') 

from both sides. We then find 

6~Q,  Q') = min {2R~,)(Q), fw(Q, Q')} + O(2ew • w(Q, Q')). 

This implies that 

6w(Q, Q') <-< ~R(,)(Q) + o()~ow • w(Q, Q')) . 
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Finally, using Lemma 5.3, we have 

2ow • w(Q, Q') >> ~ 2ow(Q) + 2ow(Q') >> ~ 2ov(tpQ) �9 

(b) Step I. q~ : W ~ V is a Galois covering. 
Let {z~ . . . .  , %} be the set of automorphisms of W over V. (We note that since W 

and V are integral schemes and q~ is finite, every rational map ~ : W-~ W satisfying 
~0 o z = tp is actually a morphism.) Now under our assumption that tp be Galois, we 
have the equality 

(~ x ~ ) *~ (v )  = sO x ~,)*~(w). 

Therefore, choosing any point Q s ~p-~(q), we have 

6v(~PP, q) = 2~(v)(~pP, ~PQ) 

= 2(~, • ~,),atv)(P, Q) + O(2~w • v(P, q)) 

= ~,2 0 • ~,)*a(w)(P, Q) + O(2~w • v(P, q)) 

= Z 2~(w)(P, ziQ) + O(2ow • v(P, q)) 

= ~ %(Q/q)rw(P,Q)+O(,~ow• 
Oe~- 1{q) 

Here the last line follows from the fact that {z~Q} is equal to (p- l(q) counted with 
appropriate multiplicities. 

Step II. q9 : W ~  V arbitrary. 
Let T be a smooth model for the Galois closure of W over V so that the map 

~0: T ~  W is a finite morphism. We apply step I to the two Galois covers ~p : T-~ W 
and q~ o v 2 : T--. V. Thus letting t e T be any point with ~p(t) = P, we find 

~ , ( q ~  e* (Q/q)bw(P' Q) = t2~ ~_1(q) % (Q/q)c~w(~vt' Q) + O(2ow • v(P, q)) 

= Qctp~- l(q) e,(Q/q) s~(Q)-i %(s/Q)rr(t, s) + O(2ow • v(P, q)) 

= ~. e,or(S/q) 6r(t, s) + O(2ow • v(P, q)) 
s e ( r  - l ( q )  

= 6v(q~o ~p(t), q) + O(2ow • v(P, q)) 

= 6v(~PP, q) + O(2ow • v(P, q)). 

We are now ready to prove the inverse function theorem. The key idea in the 
proof is to combine the two pieces of Proposition 6.2. From the distribution 
relation, if ~pP is close to q, then some of the points in ~o- l(q) must be close to P; 
while the separation result says that no more than one of them can be close. We 
now make this intuition precise. 

Proof of Proposition 6.1. Choose Qo e ~p-X(q) so that 

6w(P, Qo) = max {rw(P, Q): ~pQ = q}. 

First we show that Qo is essentially no closer to the ramification locus than P is. 
To explain matters most clearly, we assume that actual functions have been chosen 
to represent the various local height function classes, and write in explicit big-O 
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following the statement of and M r constants. (See the discussion above 
Theorem 6.1.) 

5w(P, Qo) >(l /d)  ~, 5w(P, Q) choice of Qo 

=(1/d)Sv(qgP, q)-c12~w• Proposition 6.2(b) 

>2R(~)(P)+(c2-cOAow• by assumption 

>= min {Sw(P, Qo), 2R(~,)(Qo)} + (c2 - cl - c3)2ow • v(P, q) 

+ (2:2 - 2:~ - ~3) Proposition 5.5 (c). 

Now the constants Cl, 2:1, and c3, 2:3 are given, a priori, from Propositions 6.2 and 
5.5 respectively. In the statement of Theorem 6.1 we can thus choose c2 = cl + c3 
and ?2 = 2: ~ + 2:3, this choice being completely independent of P and q. Having done 
so, we conclude that 

5w(P, Q0) > 2R(~,)(P) > min {6w(P, Qo), 2R(~,)(Qo)} �9 

Now the strict inequality forces the right-hand minimum to be 2~(~o)(Qo), so we 
conclude that 

2R(~)(P) > 2R(~)(Qo) �9 

Next, for any Q e ~p-l(q) with Q # Qo, we have 

5w(P, Q) = min {6w(e, Qo), 5w(P, Q)} choice of Qo 

6w(Qo, Q) + O(2ow(P, Q, Q0)) Proposition 5.5 (b) 

-< 2R(r + O(2ow(P, Q, Qo)) Proposition 6.2(a) 

2Rt~)(P) + O(2ow(P, Q, Qo)) from above 

= 2a(~,)(P) + O(2ow • v(P, q)) Lemma 5.3(b). 

In other words, since P is close to Qo, it is not too close to any of the other points of 
~p- 1(@ 

We now substitute this inequality in the distribution relation 
(Proposition 6.2(b)) to complete the existence part of the argument. 

~v(tPP, q) = ~.. t~w(P, Q) + O(,~ow • v(P, q)) 

<- Sw(P, Qo) + ( d -  1)2~(~,)(P) + O(2ow • v(P, q)) . 

To show that Qo is the only point in cp- ~(q) satisfying this inequality, we use the 
inequality 

5w(P, Q)_-< AR(~)(P) + O()~ow • v(P, q)) 

proven above for Q e tp-l(q), Q #  Qo. If such a Q satisfied the conclusion of 
Theorem 6.1, then we would have 

6v(cPP, q) =< d2s(~)(P) + O(2ow • v(P, q)). 

But this exactly contradicts the initial assumption on 6v(tpP , q). Therefore Q0 is 
unique, which completes the proof of Theorem 6.1. 
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7. Families of Varieties 

Let re: V - ) T  be a surjective proper morphism of quasi-projective varieties. We 
may think of u as giving an algebraic family of varieties, namely the fibers Vt as t 
ranges over T. Our first result says that the closest a point P ~ V can come to a 
section of ~r occurs for that point of the section on the same fiber as P. 

Proposition 7.1. Let rc : V - )  T be as above, and let go ~ V(T)  be a section relative to u. 
[I.e. g o : T - ) V  is a morphism satisfying u o go = 1 r.] Let  go(T) denote the image of  go 
(with the induced-reduced subscheme structure.) Then 

2~(T)(P; V) = fir(P, go o u(P); v) + O(2~v(ue; v)) for  all (P, v) ~ V x M .  

Proof. Consider the map 

: v - )  v • v ,  ~ ( P ) = ( P ,  go o u(P)) .  

Then 

~p �9 A(V) = go(T), 

so the desired result follows from Theorem 5.4(h) and Lemma 5.3(b). 
Suppose now that u : A-)  T makes A into an abelian scheme over T. In other 

words, we have morphisms 

+ : A •  and - : A - ) A ,  

satisfying the usual group axioms, which make every fiber At into an abelian 
variety. (Note rc is a proper morphism.) There is also a distinguished section 
0 s A(T); we will often use O also to denote its image as an element of Z(A). The 
next result shows that the distance function on A is translation invariant. 

Proposition 7.2. Let T be a quasi-projective variety and u : A - )  T an abelian scheme 
over T. Then 

fia(P, q; V) = fi A(P + r, q + r; v) + O(2~r(up; v)) 

for all (p, q, r; v) ~ (A x r A x  rA) • M.  

(Note that p, q, r must all lie on the same f iber of  A, since the group law is only 
defined f iber by fiber. Thus up = uq = rcr.) 

Proof. We remark that the fibered product  A x rA sits naturally as a subvariety of 
A • A, and we have A (A) C A • rA C A • A. [Precisely, A x rA = (u • re)- 1A (T).] 
Now consider the subtraction map 

a : A  x r A - ) A ,  a ( p , q ) = p - q .  

Then a*O=A(A) ,  so for all ( p , q ) e A  x rA, 

hA(p, q; V) = 20( p -  q; V) + O ( 2 ~ z p ;  V)). 

The right-hand side of this equation clearly does not  change if we replace p and q 
by p + r and q + r, so the left-hand side is similarly invariant. 

We conclude this section by reproving a theorem of Lang-Silverman-Tate [4, 
Chap. 12, Sect. lJ. Our  reasons for doing so are two-fold. First, we can now 
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eliminate the restriction that K have characteristic 0. Second, and of more 
importance, the formalism of local height functions on quasi-projective varieties 
makes both the statement and proof far more transparent. 

Thus let T be a quasi-projective variety and rr: A ~ T an abelian scheme over T 
as above. Let D ~ Div + (A) be a fiat family of divisors over T. (This means that for 
each t ~ T, the restriction of D to the fiber A, is a divisor D, ~ Div+(At). Cf. [3, III, 
Sect. 9].) Then for each t e T, the equivalence class of local height functions 2At, o, on 
the fiber At contains a particular function, the N~ron function, which is well- 
defined up to addition of an Mr-constant.  (See [4, Chap. 11, Sect. 1.]) We piece 
these N~ron functions together fiber-by-fiber to obtain a map 

~(A,D" A---',[O, 00], 

well-defined up to an MK-constant on each fiber. Of course, we also have the usual 
local height 

~,A.D: A-"*[O, 00], 

which is only defined up to an MK-bounded function. 

Theorem 7.3. l~th notation as above, 

~'A,D = 2A,D "[- O(I~OT o ~,). 

(As  usual, what this means is that it is possible to adjust the fiber-by-fiber MK- 
constants in 7ta, o so that I](A.D--2A, DI is bounded by C2eT ~ re.) 

Corollary 7.4. Let fiA, D: A---' [0, oo) be the canonical height on A relative to D (c f  [4, 
Chap. 5]). Then 

~A,D = ha, D "~- O(hoT ~ X)+ O(1). 

Proof The corollary follows from the theorem by addition using [4, Chap. 11, 
Theorem 1.6]. To prove the theorem, we look at the multiplication-by-2 map, 
[2] : A ~ A .  (Note it is a morphism.) By linearity, it suffices to consider the case 
when D is either even or odd. Let m = 4 if D is even, m = 2 if D is odd. Then on each 
fiber, the theorem of the square says that [2]*O t ,,, mD t (linear equivalence). Hence 
there is a function f on A and a divisor E ~ Div(A) whose components are all fibral 
such that 

[2]*3 = mD+ div(f)  + E.  

Since every fiber is irreducible, it follows that E = n*B for some B ~ Div(T). Now 
this divisorial relation yields the height relation 

2a,~(2P; v) = m2a.o(P; v) + v o f (p)  + 2r, n(np; v) + O(2or(rrP; v)). 

Applying [4, Chap. 11, Proposition 1.4 and the bound in Lemmal .2] ,  we 
conclude that 

~a,~ = hA,O + O(;tr,~ o ~) + O(20T ~ n). 

Finally, since [2]*D,,, mD on every fiber, we can repeat the above argument with 
functions f t  . . . .  , f ,  and divisors B1 ..... B, eDiv(T)  having the property that 
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c~Bi = 0. Then 

min {2T.B,} = AT, c~Bi = 2T,  0 

is MK-bounded, so taking the minimum over i we obtain the desired relation 

,~A,D= 2A,D-~ 0(20 T o 7[). 

Appendix. Metrized Vector Bundles 

One can reformulate the theory of local height functions corresponding to divisors 
in terms of sections to metrized line bundles in the following manner. Let ( ~ ,  II �9 II) 
be a metrized line bundle on a projective variety V. (For details, see I-1, 2, or 5].) 
Let s be a global section to LP and D e Div § (V) the corresponding divisor. Then as 
functions in ~e(V), 

2o(P; v)= --log II s(P)ll o. 

In a similar manner, one can take the theory of local height functions 
corresponding to subschemes which we have developed above and include it in a 
theory of metrized vector bundles and their sections. Since our  interest lies 
principally in the local height functions themselves, we have chosen to make them 
the centerpiece of this article. To round matters out, we will now briefly indicate, 
without proof, the salient facts concerning metrized vector bundles and their 
sections. 

Definition. Let V be a projective variety and 8 a vector bundle (always assumed 
finite dimensional) on V. Let v ~ M. A v-adic metric on 8 consists of a (non-trivial) 
v-adic norm IL" IIv on each fiber 8p |  with the property that the norms "vary 
continuously with P e V." [I.e. If s ~ F(U, 8) is a section to 8 on some open set U, 
then the map 

u--,E0, oo) P-,IIs(P)II~ 
is continuous when U is given the v-adic topology.] A metric on 8 is a collection of 
v-adic metrics II" fly on 8, one for each veM.  Two  metrics II" II and II" if' on # are 
Mx-equivalent, denoted ]I �9 31 ~ 11 �9 II', i f  there is an Mx-constant ~ such that 

e-V(V)ll" II~ < II" II;_-< e~(O)ll" II~. 
(N.B. If two metrics are Mr-equivalent , then for almost all v ~ M r they are equal.) 

Theorem A.1. Let V be a projective variety. I t  is possible to assign to each vector 
bundle ~ over V a metric I1" I1~,, unique up to .,~ equivalence, so that the following 
properties hold: 

(a) I f  ~ is a line bundle over V which is generated by the global sections s 1 . . . .  , sn, 
then for any global section s, 

Ils(P) ll~,v ~ min {l(s/s,) (P)I~: si(P) # 0}. 

(Note each s/s i is a function on V. The Mr-constant inherent in the ,.~ equivalence 
will depend on sl , . . . ,  sn, but not on s or P.) 
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le t  8 and f be vector bundles on V,, and let ~s be a line bundle. 
(b) LI" [ I s ~ m a x { l l "  lLs, It" I[~}. 

(e) tl" tl" Ils It" II . 
(d) Suppose that 8 C ~ .  Then 

I1" lie ~restriction of  I1" I1~ to 8 .  

(e) Le t  ~p : W ~ V be a morphism of  projective varieties. Then 

It" II~.s ~ I1" IIs ~ ~0. 

[The uniqueness is clear. For  after choosing an ample line bundle (9(1) on V, one 
can find integers d, n > 0  so that 8 sits as a subbundle of (9(n) a. Then I1" 11~ is 
determined (up to ,~ equivalence) by properties (a), (b), and (d). We do not include 
a proof of the existence.] 

Definition. A metrized vector bundle on V is a pair (8, tl" II), where 8 is a vector 
bundle on V and II �9 II is a metric on 8 satisfying the conditions of theorem A.1. 

Definition. Let 8 be a vector bundle on V and let s by a global section to 8. Then s 
determines a closed subscheme Z ( s ) e Z ( V ) ,  its scheme of  zeros. (Cf. [-3, 
Appendix A.3].) 

Proposition A.2. Let  V be a projective variety, (8, IL " H) a metrized vector bundle on 
V,, and s a global section to 8.  Then as functions in ~ ( V ) ,  

2z~(P; v) = - log tt s(P) lt ~. 

(Proof omitted.) 
Now it is a standard fact that  every closed subscheme is the scheme of zeros of 

some global section to some vector bundle. Thus once one has developed the 
theory of metrized vector bundles, then 2x can be defined as - l o g  II s I] for one (any) 
s satisfying Z(s) = X .  Of course, one is still left with the task of showing that 2x is 
well-defined and verifies all of the properties given in Theorem 2.1. 
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