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In virtually all areas of Diophantine Geometry, the theory of height functions
plays a crucial role. This theory associates to each (Cartier) divisor D on a
projective variety V a function h, mapping the group of rational points of ¥ to the
real numbers. This function, which is defined up to a bounded function on V has
very nice functorial properties. For example, it is linear in D and depends only on
the linear equivalence class of D. As a consequence, any relation between divisor
classes, such as the theorem of the square for abelian varieties, will yield a
corresponding relation for height functions.

Further, it is possible to write the height function A, as a sum of local height
functions 4,(-;v), where v ranges over the distinct absolute values of the given
field. (These local heights are also known as logarithmic distance functions or
Weil functions.) Each 4, is defined away from the support of D, and gives a
measure of the v-adic distance from the given point of V to the divisor D.

In this paper we propose to define local height functions A, for every closed
subscheme X of a projective variety V. As above, 4,( - ; v) will give a measure of the
v-adic distance from a point of ¥ to X. These functions will have many nice
functorial properties; for example, Ay .y will equal the minimum of 4, and A,. In
this way, relations between closed subschemes (or equivalently, between ideal
sheaves) will yield relations between local height functions. We will thus be able to
Convert geometric statements into arithmetic statements relatively painlessly.

More generally, we will deal with the case that V is merely quasi-projective by
defining a function A,(-;v) which will measure the v-adic distance to the
“boundary” of V. We will then be able to assign to each closed subscheme X of V a
local height function 1, which will be well defined up to addition of a multiple of
Aay- This extra generality is useful, for example, when one has a complete family of
varieties and wishes to discard the “bad” fibers.

As one application of the machinery that we have developed, we prove a
Quantitative version of the inverse function theorem. Thus given a finite map, we
use local height functions to describe how far away from the ramification locus
————
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(and boundary) one must stay so as to define a local inverse; and when the inverse
is defined, we show that it is essentially distance preserving. In the final section, we
consider the behaviour of local height functions on proper families of varieties,
especially abelian varieties. Finally, in an appendix, we describe (without proof) the
relation between our local height functions and sections to metrized vector
bundles.

Our original motivation for studying such functions was the desire to give
uniform estimates for some of the important finiteness theorems in Diophantine
geometry, such as Siegel’s theorem. This theorem says that there are only finitely
many integral points on any curve having positive genus. In a subsequent paper we
will study Siegel’s theorem for an algebraic family of curves; and using local height
functions as one of our tools, we will describe how the finite set of integral points
may vary for different curves in the family.

More generally, our theory of local height functions should be useful anytime
one is studying a Diophantine problem on an algebraic family of varieties and
wishes to keep track of how the solutions vary in terms of the chosen point in the
parameter space. In order to make these tools as accessible as possible, the author
has tried to keep the algebro-geometric prerequisites to a minimum (almost
everything used is in [3]).

The author would like to thank William Fulton and Michael Artin for helpful
advice about some basic techniques in algebraic geometry.

1. Local Height Functions Associated to Divisors

In this section we set notation and quickly review the facts about local height
functions associated to divisors which will be used in the sequel. All of this material
can be found in [4].

K will always be a field equipped with a proper set of absolute values M. We
fix an algebraic closure K* for K, and let M = M(K®) be the set of absolute values on
K* extending those on K. We write our absolute values additively; thus if ve M,
then the triangle inequality reads

v(x +y) Zmin {v(x), o(y)} +log(2),

the log(2) being superfluous if (and only if) v is non-archimedean.

All of our varieties will be assumed to be irreducible and defined over K. If V' is
a variety, we use V also to denote V(K"), the set of points of V defined over K*. A
divisor on V will always mean a Cartier divisor. (I.e. A positive divisor is a locally
principal codimension 1 subscheme. See [3, IL.6].)

Definition. The set € of (positive) M g-constants is defined by
% = {functions y: Mg—[0, ©)|y(v)=0 for almost all ve My} .

Weextend each ye % toamap y: M— [0, o0) by setting y(v) =y(v|,). The set F(V) of
(positive) Mg~functions on a variety V is given by

F(V)={4:V x M-[0, co]lfor all PeV, either A(P;-)e% or A(P;-)=00}.
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We define an equivalence relation ~ on £ (V) by setting 1, ~ 4, if there is an M-
constant y e ¥ such that

M(P;0)—y(0) S A,(P; ) A4,(P;v)+y(v) for all (P,v)eVxM.

(If A~0, then we say that 4 is Mg-bounded.) Then the set (V) of local height
functions on V is the quotient

HV)=F V)~ .

Notice we can define a partial ordering on (V) by setting A, <4, if there are
representatives for 4, and 4, in #(V) (which we again denote by 4, and 4,) and an
Mg-constant y€ @ such that A,(P; v) £ A,(P; v)+y(v) for all (P,v)eV x M.

We recall from [4] that a subset BCV x M is called affine M -bounded if there
isan affine open subset U C ¥ with affine coordinates x, ..., x,, and an M g-constant
ye® such that BCU x M and

min{v(x(P))} = —y(v) forall (P,v)eB.

Clearly the choice of affine coordinates for U will not affect whether or not a given
subset BCU x M is bounded. However, if U’ is an affine subset of U such that B
CU'x M, it need not be true that B will be bounded with respect to affine
coordinates for U’. (For example, take U= A' and B={(x,v):0<|x|,<1}. If
U'=A"'—{0}, then {x, 1/x} are affine coordinates for U’, so B will not be bounded
asasubset of U.) f BCU x M is bounded for affine coordinates on U, we will say
that B is M-bounded inside U.

In order to construct our generalized local height functions, we will use the
following result for divisors, which is essentially due to Weil.

Theorem 1.1. Let V be a projective variety, and let Div*(V) be the set of positive
(Cartier ) divisors on V. There exists a unique map

A:Divi(V)— #(V)

with the following properties:
(@) For all D,EeDiv*(V),
j’D +E™ }‘D + AE .

(b) Let DeDiv*(V), UCYV an affine open on which D is principal, and let BCU
X M be M y-bounded inside U. Write D|,=(f) for some function fe I'(U, Oy). Then

Ap~vof onB.
[Le. There is an My-constant ye ¥ such that for all (P,v)e B,
Ap(P,v)—y(®) Lo f(P)S Ap(P,0)+7(v).]
Proof. This (and more) is contained in [4] Chapter 10.

2. Local Height Functions Associated to Closed Subschemes

Let ¥ be a variety, and let Z(V) denote the set of closed subschemes of V. Note that
the subschemes X e Z(V) are in one-to-one correspondence with ideal sheaves .#
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C Oy (cf. [3, I1.5.9]). We will often implicitly identify a subscheme X with its ideal

sheaf .# y. Our goal is to assign to each X € Z(V) a local height function 1, e (V)

(at least when V is projective). Intuitively, for each (P,v)e V x M, we want
Ax(P; v)= —log(v-adic distance from P to X).

In order to describe the desired functorial properties of 1y, we start by defining a
number of natural operations on Z(V).

Definition. Let X, Ye Z(V).
(i) The sum of X and Y, denoted X + Y, is the subscheme of V with ideal sheaf

Ixry=IxIy.

(i) The intersection of X and Y, denoted X N, is the subscheme of V with ideal

sheaf
anY=jX+JY'

(iii) The union of X and Y, denoted X U, is the subscheme of V" with ideal sheaf
I xny=FxNIy.
(iv) Y is contained in X, denoted YCX, if
IxCHy.

(v) Let ¢ : W—V be a morphism of varieties. The inverse image of X, denoted
¢@*X, is the subscheme of W with ideal sheaf

j*X=(P*jX'

(4

(We are using the notation ¢ * # 4 to denote the inverse image ideal sheaf of Fy.
More standard notation for this sheaf would be ¢ ~1.# - O, which is the image in
Oy of the usual sheaf @*.%. See [3, 11.7.12.2] for a fuller discussion.)

We are now ready to prove the existence of local height functions correspond-
ing to each closed subscheme of ¥, and to describe their functorial properties.

Theorem 2.1. Let V be a projective variety. There exists a unique map
A Z(V)— H(V)

satisfying the following conditions:

(@) If De Z(V)is a positive divisor (i.e. De Div*(V)), then 4, is the usual ( Weil )
function associated to D given by Theorem 1.1.

(b) Forall X,YeZ(V),

A’XHY = min {lx, ly} .

The map A also has the following properties:
(c) Forall X,YeZ(V),

Ax.’.yzllx'*‘ly.
(d) If X,YeZ(V) satisfy XCY, then
AxSiy.
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(e) For all X,Ye Z(V),
max{Ay, Ay} Sy SAx+4y.

Further, either of the inequalities may be an equality.
) If X, Ye Z(V) satisfy Support(X)C Support(Y), then there exists a constant c

such that IS chy.

(g) Let X,YeZ(V),let UCV be an open set, and let Z CV be the complement of
U. Suppose that X|yC Yly.
Then there exists a constant ¢ =0 such that
AxSAy+cig.
(h) Let @ : W—V be a morphism of varieties, and let X € Z(V). Then
/1W,¢'x=/1v,x° Q.
(Here we write Ay y in place of Ay so as to better indicate the underlying variety.)

Before giving the proof of Theorem 1.1, we prove two lemmas dealing with the
intersection of divisors.

Lemma 2.2. Let X € Z(V). There exist positive divisors D, ..., D, such that
X=nD;.

Proof. Fix an ample invertible sheaf ¢,(1) on ¥, and choose n sufficiently large so
that .# 4(n) is generated by global sections, say by s,, ..., s, € I'(V, £ x(n)). Since .# 4(n)
COy(n), each s, is a global section of the invertible sheaf 0;{n), so it has a divisor

(s)=D;=0. We claim that
Ix=Fp,+...+Fp,,

which will complete the proof of the lemma.

To prove this equality of sheaves, it suffices to check it on stalks, so let Pe V.
Pick any s,€0y p with 50(P)#0; then the map s—s/s, gives an isomorphism
Oy(n)p— Oy p. Now S x(n)p maps isomorphically onto Z(s;/so)0y p, While each
#p(n) maps to (s;/so) Oy p. Therefore Sy p=25 ), p as desired.

Lemma 2.3, Let U be an affine open subset of V, and let D,D,, ...,D, be positive
divisors on V which are principal on U and satisfy

Dly>nDy.
Let BCU x M be Mg-bounded inside U. Then
Apzmin{ip} on B.
Proof. Choose functions f, f;, f5,...€ (U, 0y) so that

Dly=(f) and Djly=(f).
Then from Theorem 1.1,

Ip~vof and Ap~vef, onB.
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We now use the fact that D|; D> nDj|y. Since D and the D;’s are principal on U,
this means that there exist g, g,,...€I'(U, 0}) such that

f=2zgf:.
Hence on B we have the estimate
vof=v0(2g:f)
2minve (g, f)—7y
=>minvo f;+minvog,—y
Zminve f;—y’

for some M -constants y, y'€%. Here the last line follows from [4, Chap. 10,
Proposition 1.3], which says that since each g; is regular on U, each v - g; (restricted
to B) is bounded below by an M -constant. This implies that

Apzmin{lp} on B, as desired.

Proof of Theorem 2.1, The uniqueness of A follows immediately from Lemma 2.2.
For if we write X as an intersection of positive divisors nD,, then (a) and (b) imply
that Ay=min{4,} for functions i, which have already been defined in
Theorem 1.1. We are thus forced to define

lx =min {}’Di} .

The next step is to check that 1, is well-defined (in #(1)), independent of the
choice of the D;’s. After that, we will verify properties (a){g).

Thus suppose that {D;} and {E;} are two sets of effective divisors satisfying X =
ND;=NnE; We must show that

min {4p} =min{ig}.

Since X also equals (nD;)n(NnE)), it suffices to assume that one set of divisors is a
subset of the other; and then by adding on one divisor at a time, we may assume
that the larger set has only one more divisor than the smaller. Now, since the
minimum over a larger set of numbers is necessarily smaller, this reduces us to the
following problem.

If D,D,,D,,...eDiv*(V) and D> nD,, then

Ap=min{ip}.

From Lemma 2.3, we know this is true on any set BC V x M which is M x-bounded
inside an affine open subset U of V on which D, D,,D,, ... are all principal. But
using [4, Chap. 10, Proposition 1.2], we see that it is possible to cover V x M by
finitely many sets B of this sort. This completes the proof that 1, is well-defined.
We now verify that the function Ay € #(V), defined as above by A, =min {4}
for any set of effective divisors such that nD;= X, satisfies properties (a){(g).
(a) Clear.
(b) If X=nD,; and Y=nEj, then XnY=(nD)nN(NE}), so

lxhy=min{lDi, A’Ej} =min {lx, Ay} .
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(c) Again writing X =nD;and Y=nE; we see that X + Y=n(D;+ E}). Hence
lx+y=min{lpi+Ej} =m11’1{/1D'} -+ mln {A’E]} = llx'i'ly .

Here we have used [4, Chap. 10, Proposition 2.1], which says that A,,
=Ap+ A for divisors D and E.
(d) If XY, then X=XnY, so from (b)

A’X = AXUY = mil’l {lx, A‘Y} .
{e) Since X, YCXUYCX+Y, applying (c) and (d) yields
max {Ay, Ay} SAx y Sy +1y.

Further, if X = Y, so X = X LY, then the lower inequality will be an equality; while if
for example X and Y are distinct irreducible subvarieties of V which intersect
properly, then XU Y =X+ Y, so the upper inequality will be an equality.

() If Support(X)CSupport(Y), then the Nullstellensatz implies that there is an
integer m>0 such that .#,>.#%. Thus X CmY, so using (c) and (d) yields

AxSmly.
{(g) Using (c) and (d), it suffices to find an integer m such that X CY+mZ; or
equivalently, such that .#,>.#,.#%. Since this may be checked locally, we may
assume that ¥V =_Spec(4) is affine, and write £, 4, £, as ideals of A. Writing

F2=(f1, ..., f,), we see that U is the union of the open sets U;=Spec(4 ). Now the
given inclusion X|; > Y|y says precisely that

IxA; D FyA,; foreach 1gisr.
Hence we can find an integer m such that .#,>.# f;" for all i; and so

IxDIAST s DI S S = I I

(Here we may take m'=rm—r+1.)

(h) Write X =nD,. Then ¢*X = ng*D,, so (f) follows from the correspond-
ing property for divisors [4, Chap. 10, Proposition 2.5].

The next result shows how one can actually compute the local height function
corresponding to a closed subscheme.

Proposition 2.4. Let X € Z(V), and let U CV be an affine open subset such that % x|,
is generated by global sections, say by fi,....f,e (U, #£x). Let BCU x M be M g-
bounded inside U. Then

Ay~minvof; on B.

Proof. For each i, let D; = 0 be the divisor of zeros of f;. By assumption, X |, = nD]y.
Further, let YeZ(V) be the (reduced) subscheme of ¥V whose support is the
complement of U. Then by Theorem 2.1 (b, g), there is a constant ¢ =0 such that

Axy—cAySminip SAx+cly.
Further, since (f)|y = D,|y, Theorem 1.1(b) implies that
Ap,~vof; on B.
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Thus to complete the proof of the proposition, it suffices to prove that A, restricted
to B is bounded by an M -constant.

Write Y=nE; as an intersection of positive divisors (Lemma 2.2). Since
Y|y =0, we can apply Lemma 2.3 (with D=0) to conclude that

Ag2Zmindg =2y.

But A, is M -bounded [4, Chap. 10, Proposition 2.2], which gives the desired
result.

Example. It is quite possible for distinct closed subschemes to have the same local
height function. For example, let D and E be distinct lines in IP?, and let

X=2DNn2E and Y=2DN2E~(D+E).

[If D and E intersect at x =y =0, then locally around (0, 0) we have £, =(x?,y?)
and £, =(x?,y?, xy),s0 X and Y are distinct subschemes.] Using Theorem 2.1(b, ¢)
we compute

ly=min{2lb, ZAE, A‘D+ }'E} =min{2lD, ZiE} = }’X .

(Exercise. If Ax= Ay, then X™4=Y"?)

3. Arithmetic Distance Functions

For this section, we let V be a projective variety. Let P,Q e Vandve M. We wish to
define a measure of the v-adic distance from P to Q. More precisely, we want a local
height function d e #(V x V) which is intuitively defined by

o(P, Q; v)= —log(v-adic distance from P to Q).

Since any point of V can be considered as a closed subscheme, one possibility is to
use Ap(Q; v). However, this choice does not have good functorial properties, since
the M g-constant inherent in the various transformation formulas would depend
on P. We obviate this problem by the usual trick of considering the distance to the
diagonal of V' x V.

Definition. The diagonal map of V is denoted 4: V-V x V. We let A(V) denote the
image of 4 considered as a closed subscheme of ¥ x V (with the usual induced-
reduced subscheme structure.) The (arithmetic) distance function on V is the local
height function d, € #(V x V) given by

6y= A‘A(V) .

[Any function in #(V x V) in the equivalence class of §, will also be called a
distance function.]

We start by proving some of the elementary properties of arithmetic distance
functions.

Proposition 3.1. (a) (Symmetry)
Oy(P,Q;v)=0,(Q, P;v) forall (P,Q;v)eV*xM.
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(b) (Triangle Inequality 1)
S(P, R;v) Z2min{6,(P,Q; v),8,(Q,R;v)} for all (P,Q,R;v)eV3xM.
(¢) (Triangle inequality 2) Let X € Z(V). Then
Ad@; v)Zmin {Ax(P;v), 8,(P,Q;v)} forall (P,Q;v)eVixM.
(d) Fix a point Pe V. Then
Op(P,Q;v)=Ap(Q;v) forall (Q,v)eV xM.

Proof. (a) Let i: V> V2 be the mapi(P, Q)=(Q, P). Then i*A(V)= A(V), so using
Theorem 2.1(h) gives

5V = AA(V) = }*i*A(V) = AA(V) oi= 5V oi.

(b) For each 1 <i<j<3, let m;: V*—>V? be projection on the (i, j)* compo-
nents. Then we must show that

Sy o My3 2Min{dy o M1y, Oy o Mp3} -
Now using Theorem 2.1(h),
Oy o = AA(V) oM = A‘ﬂ:,‘,-A(V) >
and so from Theorem 2.1(b),
min{dy o w5, 0y ° Ma3} =Min{Auy, 4wy, Arssa)}

= Ant24()nmsa40)
We thus must prove that

j’n’i 34(V) 2 /11:1 LAV )RS 3A(V) 5
s0 from Theorem 2.1(d) it suffices to show that
1 4(V)Dnt,A(V)na3A(V).

But n},4(V)nn¥,4(V) equals the diagonal of V3, which is clearly contained in
n34(V).
(c) Let m,,m,: V2—V be the two projections. We must show that

AyemyZmin{iyomy,dy}.
Now Ay om,= A,y and
min{Ayomy, 0y} =min{Ayyx, Aawy} = Anyxnawy s
s0 it suffices to check that
X on¥XnAV).

Since n¥X = ¥ x X and n¥XnA(V)=X x X, this inclusion is clear.
(d) Let ¢: V-V x V be the map ¢(Q)=(P, Q). Then as a function on V x M,

op(P, - ')=5V°<P=/14(V)°‘P=)~¢*A(V)=}~P-



202 1. H. Silverman

Example. Let us show that on an abelian variety, distance is translation invariant,
In other words, we wish to prove that if A/K is an abelian variety, then

0P, Q;0)=8(P+R,Q+R;v) forall (P,Q,R;v)eA®*xM.

The obvious approach is to use the “translation-by-R map” t5: 4— A. Since 13 is
an isomorphism, we have

6A(P, Q;v)__.AAXA,A(P’ Q;v)=1AXA,(tthR)*A(P7 Q’ U)
=A4xa,AAP+R,Q+R;v)=0,P+R,Q+R;v).

Unfortunately, this derivation only shows that the difference é ,(P+ R, Q+R;v)
—04(P, Q;v)is bounded as P and Q vary; the bound will depend on R. To obtain
the stated result, we look instead at the subtraction map,

g:AxA->A oP,Q)=P—-Q.
Then

}*A,O(P_Q;U)=/IAxA,a*0(P7Q;U):’leA,A(PaQ;U)=5A(P,Q§U)-

Now this equality holds (up to a bounded amount) for all P and Q. Since the left-
hand side does not change if we replace P and Q by P+ R and Q + R, it follows that
the right-hand side has the same property.

4. Global Height Functions

In this section we add up the local height functions defined in Sect. 2 so as to obtain
a global height function corresponding to each closed subscheme of a projective
variety V. We will assume, for this section only, that K is a finite extension of a fixed
base field F whose proper set of absolute values have multiplicities assigned to
them; and hence the absolute values on every finite extension of F also have
attached multiplicities. (Generally, one also assumes that the product formula
holds, but this will not be necessary for our purposes. For all of this formalism, see

[41)

Definition. Denote the set of functions h: V—[0, 0] by F*(V). We define an
equivalence relation on #*(V) by setting h, ~h, if the function |k, —h,| is
bounded on V. (By convention, o0 — oo =0.) We will also sometimes denote this
relation by h, = h, 4+ O(1). The set #*(V) of global height functions on V is defined
to be the quotient

HHV)=FXV) ~ .

As usual, we put a partial order on #*(V) by saying h, <h, if h,—h, is bounded
below on V; this induces a partial order on #*(V), also.
Definition. Let X e Z(V). The (global) height function associated to X is the

function hy e F*(V) defined as follows:
For PeV, choose a finite extension L/K so that Pe V(L). Then

hx(P)=[L:FI™" ¥ Nx(P;v).
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(Here N, is the multiplicity attached to v.) As usual, h, is independent of the choice
of the field L. If the dependence on V is important, we use the notation hy .

We now give the basic functorial properties of global height functions, all of
which follow by addition from the corresponding properties for local height
functions proven in Theorem 2.1.

Theorem 4.1. The map
h:Z(V)—— #(V)

has the following properties:

(@) If De Z(V) is a positive divisor (i.e. De Div*(V)), then hy, is the usual Weil
height associated to D. (Cf. [4, Chap. 4].)

(b) For all X,YeZ(V),

hy~y Smin{hy, hy}.

(Note the inequality, which occurs because Xmin{a,b;} need not equal
min{Xa; Xb;}.)
(c) Forall X,YeZ(V),

hy i y=hx+hy.
(d) If X,YeZ(V) satisfy X CY, then
hyZ<hy.
(e) Forall X,YeZ(V),
max {hy, hy} Shy yShy+hy.

Further, either of the inequalities may be an equality.

(0) If X, Ye Z(V) satisfy Support(X) C Support(Y), then there exists a constant ¢
such that

hy=<chy.

(8) Let X, YeZ(V), let UCV be an open set, and let Z CV be the complement of
U. Suppose that

XlyCYly.
Then there exists a constant ¢ 20 such that
hy<hy+ch,.
(h) Let o: W—V be a morphism of varieties, and let X € Z(V). Then
hypx=hxo@.

Remark. Global height functions associated to divisors have two further important
Properties. First, at least for number fields, there are only finitely many points of
bounded height (and degree) in V. Second, linearly equivalent divisors give
tquivalent height functions. As the following example shows, height functions
associated to subschemes of codimension greater than 1 do not have the analogous
Properties. For this reason, such global height functions are principally useful as a
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bookkeeping tool; in order to obtain finiteness theorems, one must ultimately
relate everything back to height functions corresponding to divisors.

Example. Let X =[0,0,1]1€ Z(IP?). For any PeP*@), write P=[x, y,z] with
x,y,z€Z and ged(x, y,z)=1. Then one easily checks that if max {|x], |y|} = |z|, then
hy(P)=log[gcd(x, y)]. (A similar formula holds for max {|x|, |y|} < |z|.) In particular,
if x and y are relatively prime integers, then hy([x,y,1])=0, so P*(@) clearly
contains infinitely many points of bounded height.

Next let Y=[0,1,1]€ Z(IP?). Then X and Y are rationally equivalent (as are
any two points in IP2). But using notation as above, we have (assuming say |x| > |z|)

hx([x, y,z])=log[gcd(x,y)] and hy([x,y,z])=log[gecd(x,y—2)].

Thus hy and hy are clearly not equivalent functions.

We now show that the height function corresponding to an ample divisor will
dominate any other height function. We recall the fact that it is possible to assign a
(height) function h,: V- R to every Cartier divisor class { € CaCl(V)in such a way
that if ¢ is effective and DeDiv*(V) is in the class of &, then

he=hp+0(1) on V-Support(D).
(See [4, Chap. 5 and/or Chap. 10, Sect. 4].)

Proposition 4.2. Let £ e CaCl(V) be an ample divisor class, and let X € Z(V). Then
there exist constants c;, ¢,>0 such that

hy<cih;+c, on V-Support(X).

[ The intuition for this result is that if P is v-adically close to X, but not on X, then
its coordinates (relative to a projective embedding induced by a multiple of &) must
be v-adically complicated, thereby making h.(P) large.]

Proof. Write X = NE, as an intersection of divisors (Lemma 2.2). From [4, Chap. 4,
Proposition 5.4] (which gives our result when X is a divisor), there are constants
¢y, € >0 such that for each i,

hg, <cih:+c, on V-Support(E)).
Since X CE,, (4.1d) gives
hx<cih;+c, on V-Support(Ey);

and since this inequality holds for each i (and Support(X)= nSupport(E;)), we see
that it holds on all of V-Support(X).

Proposition 4.2 is the main estimate needed to prove Faltings’ finiteness lemma
[2, Lemma 3] concerning metrized line bundles with logarithmic singularities
(although this fact is somewhat concealed in the midst of his proof.) In terms of
divisor classes, Faltings’ result may be formulated as follows. Let £e CaCI(V), U
CV an open set, and X € Z(V) with Support(X)=V—U. A (height) function
h: U—R is said to have logarithmic singularities along X (relative to ¢ ) if thereis a
constant ¢>0 such that

lh—hi<=clog(2+hy) onU.
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Corollary 4.3 (Faltings). Let U and X be as above. Assume that K is a number field.
Let h: U—IR have logarithmic singularities along X relative to some ample divisor
class E€ CaCl(V). Then for any constant C, the set

{PeU(K):h(P)<C}
is finite.
Proof. Let P e U(K) with h(P) < C. Then from (4.2) and the definition of logarithmic
singularities, we see that
hdP)< h(P)+clog(2+ hy(P))
SC+clog(2+c hdP)+c,).

From this one easily deduces that there is a constant k =«(C, c, c,, ¢;) such that
h{P)<«. Hence

{PeU(K):h(P)SC}C{PeV(K):h{P)S K},
and the latter set is well-known to be finite [4, Chap. 3, Theorem 2.6].

5. Height Functions on Quasi-Projective Varieties

Let V be a quasi-projective variety; that is, a Zariski open subset of a projective
variety. As above, we would like to associate to each closed subscheme X e Z(V) a
local height function 4, € #(V), this association to have nice functorial properties.
Unfortunately, because ¥V is not complete, a problem arises due to the fact that
points can “move out to o.” The solution will be to define a function A, € #(V)
which will measure the distance to the “boundary” of V. It will be defined up to
multiplication by a non-zero constant, and then the functions 1, will be defined up
to addition of a multiple of A,,. This prompts us to set the following notation.

Notation. Let Ay, 4,, A5 € # (V). We write
Ay=24,+0(43)

to mean that there exists a constant ¢>0 such that

Ay—cl3= A, S4+cd;.
Similarly, we use the notation

Ay> <4,
to mean that there is a constant ¢>0 such that
¢ 1S4, Sch,.

We start with the following fundamental lemma, which explains the behavior
of local height functions under rational maps.

Lemma 5.1, Let @ : WV be a dominating rational map of projective varieties. Let
UCW be an open set on which ¢ is a morphism (so @(U) is dense in V'), and let
Z€Z(W) be a subscheme with support equal to W —U. For X e Z(V), let p*X be the



206 J. H. Silverman

Zariski closure, in W, of ¢|y*X. (Note ¢*X may depend on U.) Then
j.x°(p=z,¢ax+0(lz) on UxM.

Proof. Blowing up W along Support(Z), we can find a variety W’ and a birational
morphism y: W' — W with the following properties:

(i) v maps U’'=vy~!(U) isomorphically to U.

(i) The rational map¢ oy : W’'—V extends to a morphism ¥: W' V.

(W' and ¥ are produced by applying [3, I1.7.17.3]. The fact that W’ is
projective and y is a birational morphism is [3, I11.7.16].)

Notice that since ¥|y. equals ¢ o1, we have

(P* Xy =W*(@* XNy -

Hence letting Z'e Z(W’) have support W'—U’, Theorem 2.1(g, h) implies that
(note p and ¥ are morphisms)

Agxop=Axo ¥ +0(4z).
Next we note that
SupportZ’ =Supporty*Z,
so using Theorem 1.2(f) we find
Apxop=Ago P +0(z°p).

Finally, since y:U'— U is an isomorphism, and since ¥(P)= ¢(p(P)) for PeU,
this last inequality implies that if we restrict attention to U x M, then

j‘q)*X:A'X °oQ +O(iz) .

Next we describe a local height function which gives the distance to the
boundary of a quasi-projective variety.

Lemma 5.2. Let V be a quasi-projective variety. There exists a local height function
Ay € H(V), which we will call a boundary function, with the following property.

Let V' be any projective closure of V, and let Z' € Z(V’) be a subscheme of V' with
support equal to V' —V. Then

Aoy > <Azly.
Agy is determined (in S (V)) up to > < equivalence.
Proof. We define A, to be A,/|, for a fixed choice of V" and Z'. Now let V" and Z" be
another choice. We must show that 4./, > <4,y Since ¥’ and V" both have V as
a dense open subset, ¥’ and V" are birational, say by the map ¢ : V" — V" taking V
to V. Hence from Lemma 5.1,
AZ' cPp= Aq,azl + O(A'Z”) .

But ¢*Z' is the closure in V" of ¢|,*Z’, and ¢l|,,*Z’ is trivial (i.e. the empty scheme)
Therefore

Apo@=0(z), 80 Azo@=cly.
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The same argument applied to ¢ ™! gives the opposite inequality, which completes
the proof of existence. The uniqueness (up to scalar multiplication) is clear.

The following proposition illustrates the behavior of the boundary function
Asv- The second part is useful, for example, in cases where one has a complete
family of varieties and wishes to discard the “bad” fibers.

Proposition 5.3. Let V and W be quasi-projective varieties.
(a) Let =, and m, be the two projections on V x W. Then

Aoy xw> Sy oy + Ao o Ty
(b) Let @ : WV be a proper morphism. Then
Aow> Aoy o .

Proof. Choose projective closures W' and V' for W and V.
(a) This follows immediately from Theorem 2.1(f) and the fact that

(W XV)—(Wx V)=(W —W)x V U Wx (V' —V).

{I.e. Using a more suggestive notation, o(W x ¥V)=(0W) x VUW x (0V).]

{b) @ induces a rational map W’'—V"; and by blowing-up W’ along W’ — W, we
may assume that ¢ extends to a morphism W’ V', which we denote by . (Again
we are using [3, 11.7.17.3]). We thus have the following diagram:

v

W——-V

V) )

[

W ——V.
Clearly v~ (V' — V)C W' — W, which implies (Theorem 2.1(f, h)) that
Aov o @S Chap -

We now prove the other inclusion, p~Y(V' —V)> W’ — W, which will complete the
proof, Thus let Pe W’ satisfy p(P)e V. We must show that Pe W. Let CCW' be a
curve with Pe C and CnW 0. Let R be the normalization of the local ring O, p,
and let L be its quotient field. Then the map Spec(L)— W —V extends to a map
Spec(R)— ¥, because the closed point of Spec(R) can be sent to y(P). Since ¢ is
proper, it follows that we can map Spec(R)— W (valuative criterion of properness,
[3,114.7]), and so Pe W as desired.

We are now ready to assign a local height function to each closed subscheme of
any quasi-projective variety.

Theorem 5.4. There are maps
A=Ay Z(V)>H(V),

one for each quasi-projective variety V, with the following properties:

(@) If V is projective, then Ay is the map defined in Theorem 2.1.

(b){g) A, satisfies properties (b)«(g) of Theorem 2.1 provided O(3,y) is added
onto each equation.
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(h) Let ¢: W~V be a morphism of quasi-projective varieties, and let X € Z(V).
Then
}W, x°P= /IW, ex T O(aw).
The function Ay is determined up to O(Asy) (in #(V)) by properties (a) and (h).
Proof. For each V we fix a smooth projective closure V’; and for X e Z(V), we
denote by X' e Z(V') the closure of X in V. We then define
lv,x = A'V',X'IV s

where Ay x is given by Theorem 2.1.

Clearly (a) is satisfied, since if V is projective, then V' = V. The verification of
(b){g) is also easy using Theorem 2.1. We illustrate by proving (b). Let X, Ye Z(V).
Then clearly (XN Y)Y |, =(X'nY’)}y. [Notice that (X~ Y) and X'~ Y’ may not agree
on the boundary V’'— V] Now using the definitions of A, and 4,,, and applying
Theorem 2.1(b, g), we see that

Ay xay=min{iy x, Ay y} +O0(Lp).

It remains to check (h). The morphism ¢: W—V induces a rational map
p: W -V’ with p|=¢. From Lemma 5.1 we conclude that

Ay x o W=y, yox:+O0(Az),
where ZeZ(W’) is chosen with support equal to W' —W. Now Azly =4w
(Lemma 5.2), and p*X’ is the closure in W’ of ¢*X (Lemma 5.1). Therefore
Ay x oW =2y (@xy +00sw),

which is exactly the desired relation.

Finally, the up-to-O(4,y) uniqueness of A, is clear from (a) and (h); simply
embed V in some projective closure.

As in Sect. 3, we define a distance function by using the local height function
relative to the diagonal.

Definition. The (arithmetic ) distance function on a quasi-projective variety V is the
local height function d,, € #(V x V) given by

5V=A'A(V) .

In view of Lemr.na 5.3(a), we see that 6,(P, Q; v) is well-defined up to O(Ay(P;?)
+ Asp(Q; v))-equivalence. To ease notation, we will also write this as O(Aov(P, Q: )

Proposition 5.5. Let V be a quasi-projective variety.
(a) (Symmetry)

0P, Q;0)=6,(Q, P;v)+ O(A,{P,Q;v)) for all (P,Q;v)e Vix M.
(b) (Triangle Inequality 1)

Oy(P, R; v)2min {6,(P, Q;v),5,(Q, R; v)} +O0(As1(P, Q, R; v))
for all (P,Q,R;v)eV3x M.



Arithmetic Distance Functions 209

(c) (Triangle Inequality 2) Let X € Z(V). Then
Ax(Q; ©)2min{Ax(P; v), 6y(P, @; v)} + O(A5(P, Q; v)) for all (P,Q;v)eV>x M.
(d) Fix a point PeV. Then
Op(P, Q; 1) =2p(Q; )+ O(A5(P,Q;v) for all (Q,v)eVx M.

Proof. Let V' be a projective closure of V. Since the closure of A(V)in V' x V' is
precisely A(V’), we have

Oy =0y ly xy+O0(Asy).

Further, letting X’ e Z(V’) be the closure in ¥’ of X € Z(V), we have [by applying
Theorem 5.4(h) to the inclusion map V' C V']

Ax=Axly+O0(Asy).

Now all of Proposition 5.5 follows from the corresponding statements in
Proposition 3.1.

6. The Inverse Function Theorem

Our goal in this section is to prove the following quantitative version of the inverse
function theorem.

Theorem 6.1. Let ¢: W—V be a finite map of degree d between smooth quasi-
projective varieties. Let R(@)eDiv*(W) be the ramification divisor of ¢. If
(P,q,v)e W x V x M satisfies

O0W(@P,q; 0)>dAy, g P; )+ O(Aew(P; V),

then there exists a unique Qe W such that

o(Q)=4q

and

Ow(P,Q; 1) 2 6y(9P,q; U)—(d—n/lw,kw)(P; )~ O(Aow(P; ).

The statement of this theorem requires some explanation; specifically, what is
the meaning of the condition that O0y(@P,q;v) be (strictly) greater than
iy, rig(P; 1)+ O(dow(P; v)). After all, these functions are only determined up to
addition of an M g-bounded function (not to mention the big-O constant). What is
Meant is the following. Choose specific functions in the equivalence classes of the
local height functions 8y, Sy, Ay, Reey a0d Ay, which we will denote with the same
Symbols. Then there is a constant ¢ >0 and an M g-constant y, depending on V, W, o,

a"‘? i_he particular choice of functions made above, so that if (P,q,v)e Wx V x M
Satisfies

O{@P, q; v)>dAy, gy P; V) + cAaplP; ) +7(v),
then there is a unique Q € Wsuch that ¢(Q)=q and
Ow(P, Q; V)2 0y(@P, q; v) —(d — 1) A, gi(P; V) — Ay P; v) — y(v).

(We will uge similar shorthand notation throughout this section.)
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We mention that for any given points Pe W and g€ ¥, unless ¢ P=g, there can
be only finitely many absolute values ve My such that (P, g, v) satisfies the above
strict inequality. This is because the right hand side is non-negative, while
dy(@P, q; v)=0 for all but finitely many such v. It is also worth pointing out that
even if (P, ¢,v) and (P, g, v') both satisfy the given inequality, then the correspond-
ing inverse points Q,Q €@~ '(q) need not be the same. (One sees a similar
phenomenon in the fact that a sequence of rational numbers may converge in
different v-adic topologies to distinct rational numbers!)

Remark. The inverse function theorem says (qualitatively) that a finite map is a
local isomorphism locally around any point not on the ramification locus.
Theorem 6.1 gives a quantitative estimate for how far away from the ramification
locus one must stay in order to define an inverse function, and says that the
distance between the inverse points is then about the same as the distance between
their images.

Remark. We mention now that finite maps are always proper [3, Example 11.4.1].
We will thus frequently make use of Lemma 5.3(b) without additional comment.
We start with the following preliminary result.

Proposition 6.2. Let ¢o: W—V be a finite map of smooth quasi-projective varieties.
(a) (Separation) Let Q,Q'e W be distinct points with ¢(Q)=@(Q"). Then

Owl(Q, Q'3 1) S A Q; 1) + O(A5{0Q; v).
(b) (Distribution Relation) Let Pe W and qe V. Then

oy(QP,q;v)= o Y e Q/q)ow(P,Q;v)+ O(Asw « (P, gq; v)).

@~ 1(q)

(Here e(Q/q) is the ramification index of ¢ at Q. For example, if Q ¢ Support(R(¢)),
then e,(Q/q)=1.)

Proof. (a) Let n,: W x W—W be projection on the first factor. We start with the
ideal sheaf relation

(@ X OP*& 40y + I swy= 7} roy Famy+Fiw) -

This says nothing more than the fact that up to quadratic terms, a polynomial map
is given by its differential. In terms of subschemes, this gives

(¢ X @)* 4(V)N24(W)=(ntR(p)+ A(W)N24(W).
Now applying Theorem 5.4 yields
min{ay ° ((p X (P), 26”/} =min{AR(¢) ° 7[1 + 5w, 26W} + O(AGW x W) .

Next we evan}ate this equation at the point (Q, 0’; v)e W x W x M. (From here on,
we will omit reference to v in the notation) Since @(Q)=@(Q), dy°(@

X 9)(Q, Q)= 0. Since further Q + @', 5,(0, ")+ 0, 50 e may subtract 54(Q,¢)
from both sides. We then find

Ow(Q, @) =min {Ar (), 5(Q, @)} + Oz « (0, 0)).
This implies that

OwQ, Q)= Ar(Q) + 0o (0, Q).
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Finally, using Lemma 5.3, we have

Aow (@ Q> <Aow( Q)+ Aow( Q) > < Aav(@Q).

(b) Step I. ¢ : W—V is a Galois covering.

Let {zy,...,7,} be the set of automorphisms of W over V.(We note that since W
and V are integral schemes and ¢ is finite, every rational map 7: W— W satisfying
@ o 7= ¢ is actually a morphism.) Now under our assumption that ¢ be Galois, we

have the equalit
HEREEEER (oxppram) =20 xuyram).
Therefore, choosing any point Qe ¢~ *(q), we have

Oy(@P, q)= 41\ 0P, 9Q)
= Ao x oy a0 Ps @)+ Oow x (P, )
=2 A1 xeeaom(P> Q)+ Oow x (P, )
=2 Aaw(P, 1:Q) + O(Aow x (P, )

= QWZ‘W) €,(2/0)0w(P, Q)+ OAow  v(P, ).

Here the last line follows from the fact that {,Q} is equal to ¢ ~'(g) counted with
appropriate multiplicities.

Step I1. @ . W—V arbitrary.

Let T be a smooth model for the Galois closure of W over V so that the map
y: T W is a finite morphism. We apply step I to the two Galois covers p: T—>W
and g oy: T— V. Thus letting t € T be any point with y(t)=P, we find

szl(q) e,(Q/9)6w(P, Q)= Qe‘;l(q) ¢(0/9)3w(wt, Q)+ Oy « (P> )
= i YD T eds/D(t,5)+ Olhow (P, )

Qep~1!
€p.(5/4)01(t, ) + O(Aow x v(P, 9))

se(oow) ™ 1(q)

Sylpep(1), 9)+ Odow x v(P, q))
= 6V(¢Pa q) + O(AaW x V(P) q)) .

We are now ready to prove the inverse function theorem. The key idea in the
proof is to combine the two pieces of Proposition 6.2. From the distribution
relation, if P is close to g, then some of the points in ¢ ~!(g) must be close to P;
while the separation result says that no more than one of them can be close. We
0w make this intuition precise.

Proof of Proposition 6.1. Choose Qo€ 9~ 1(q) so that
6W(P’ QO) =max {6W(Pa Q) : (PQ = q} .

First we show that Q, is essentially no closer to the ramification locus than P is.
0 explain matters most clearly, we assume that actual functions have been chosen
1 represent the various local height function classes, and write in explicit big-O
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and My constants. (See the discussion above following the statement of
Theorem 6.1.)

dwl(P,Qo)=(1/d) Qe¢2"l(q) dw(P,0) choice of Q,

=(1/d)8y(¢P,q)— 1w «v(P,9)—7,  Proposition 6.2(b)
> Ap@(P)+(c2—¢1)ow (P, @) +(y2—7;) by assumption
2 min {0y(P, Qo), Ari(Qo)} +(c2—¢1 —C€3) dow x v(P, @)
+(y,—7v,—ys) Proposition 5.5(c).
Now the constants ¢,, y,, and ¢3, 75 are given, a priori, from Propositions 6.2 and
5.5 respectively. In the statement of Theorem 6.1 we can thus choose ¢, =c¢; +¢;

and y, =7, +7s, this choice being completely independent of P and q. Having done
so, we conclude that

Ow(P, Qo) > Agi(P) 2 min {3(P, @), Ar()(Qo)} -

Now the strict inequality forces the right-hand minimum to be Ag,(Qo), so we
conclude that

Ar@(P) 2 Ar((Qo) -
Next, for any Q € 9 ~(g) with Q + Q,,, we have
ow(P, Q)=min{ow(P, Qo), w(P, Q)} choice of @,
S0p(Q6, Q)+ 04w (P, Q. Q) Proposition 5.5(b)
= Ar@)Qo) + O(Aow(P, Q, Qo)) Proposition 6.2(a)
S Ar@(P)+ O0(Aow(P, Q, Q) from above
= Ap()P) + Odow « (P, q)) Lemma 5.3(b).

In other words, since P is close to Q,, it is not too close to any of the other points of
-1
¢~ (g).
We now substitute this inequality in the distribution relation
(Proposition 6.2(b)) to complete the existence part of the argument.

ovl@P, q)= sz_‘,l(q) ow(P, Q)+ O(Zaw x (P, ))

Z0w(P, Qo) +(d— 1) Ap(g(P) + OQow x (P, 9)).-

To show that @y, is the only point in ¢ ~!(q) satisfying this inequality, we use the
inequality

Ow(P, Q)< Agiey(P) + O(Ayyy (P, q))

proven above for Qe¢~!(q), Q% Q,. If such a Q satisfied the conclusion of
Theorem 6.1, then we would have

OV{PP, Q) S digeP)+ 0oy x (P, ).

But this exactly contradicts the initial assumption on ,(¢P, g). Therefore Qo i8
unique, which completes the proof of Theorem 6.1.
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7. Families of Varieties

Let n: V—T be a surjective proper morphism of quasi-projective varieties. We
may think of 7 as giving an algebraic family of varieties, namely the fibers V, as ¢
ranges over T. Our first result says that the closest a point Pe V can come to a
section of © occurs for that point of the section on the same fiber as P.

Proposition 7.1. Let w: V—T be as above, and let ¢ € V(T) be a section relative to 7.
[Le. ¢: T—V is a morphism satisfying nwo ¢ =1y.] Let ¢(T) denote the image of ¢
(with the induced-reduced subscheme structure.) Then
Ao(ry(P; ©)=6y(P, @ o t(P); v) + O(A5r(mP;v)) for all (P,v)eV x M.
Proof. Consider the map
p:VoVxV, w(P)y=(P,¢o-n(P)).
Then
p*A(V)=o(T),

so the desired result follows from Theorem 5.4(h) and Lemma 5.3(b).

Suppose now that n: A—T makes A into an abelian scheme over T. In other
words, we have morphisms

+:AxA—>A and —:1A-A4,

satisfying the usual group axioms, which make every fiber 4, into an abelian
variety. (Note 7 is a proper morphism.) There is also a distinguished section
0 € A(T); we will often use O also to denote its image as an element of Z(A4). The
next result shows that the distance function on A is translation invariant.

Proposition 7.2. Let T be a quasi-projective variety and n: A— T an abelian scheme
over T. Then

04(p,q;v)=0p+r,q9+1;0)+ O(As1(np; v))
for all (p,q,r;v)e(Ax rAx pA)X M.
(Note that p, q, r must all lie on the same fiber of A, since the group law is only
defined fiber by fiber. Thus np=nq=nr.)

Proof. We remark that the fibered product A x ;4 sits naturally as a subvariety of
AX A, and we have 4(4)CA x ;ACA x A. [Precisely, A x A=(nxn)"1A(T).]
Now consider the subtraction map

g:Ax A=A, olp,q9)=p—q.
Then 6*0 = 4(4), so for all (p,q)e A x 74,
0.4(p, 4; V)= Ao(p—g; 0) + O(Ar(mp; v)).

The right-hand side of this equation clearly does not change if we replace p and g
Y P+rand g+, so the left-hand side is similarly invariant.

We conclude this section by reproving a theorem of Lang-Silverman-Tate [4,

hap. 12, Sect. 1]. Our reasons for doing so are two-fold. First, we can now
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eliminate the restriction that K have characteristic 0. Second, and of more
importance, the formalism of local height functions on quasi-projective varieties
makes both the statement and proof far more transparent.

Thus let T be a quasi-projective variety and n: A— T an abelian scheme over T
as above. Let D e Div*(A) be a flat family of divisors over T. (This means that for
each t e 7T, the restriction of D to the fiber A, is a divisor D,e Div™*(4,). Cf. [3, 111,
Sect. 9].) Then for each t € T, the equivalence class of local height functions 4, p,, on
the fiber A4, contains a particular function, the Néron function, which is well-
defined up to addition of an M g-constant. (See [4, Chap. 11, Sect. 1.]) We piece
these Néron functions together fiber-by-fiber to obtain a map

ZapiA-[0, ],

well-defined up to an M -constant on each fiber. Of course, we also have the usual
local height

Agp:A-[0, 0],
which is only defined up to an M -bounded function.
Theorem 7.3. With notation as above,

Aa =244 p+0(srom).

(As usual, what this means is that it is possible to adjust the fiber-by-fiber My-
constants in X, , so that |1 4,0~ A4, pl is bounded by clypom.)

Corollary 74. Let h, ,: A—[0, ) be the canonical height on A relative to D (cf.[4,
Chap. 5). Then

hyp=hyp+O0(hyrom)+0(1).

Proof. The corollary follows from the theorem by addition using [4, Chap. 11,
Theorem 1.6]. To prove the theorem, we look at the multiplication-by-2 map,
[2]:A—A. (Note it is a morphism.) By linearity, it suffices to consider the case
when D is either even or odd. Let m=4if D is even, m=2if D is odd. Then on each
fiber, the theorem of the square says that [2]*D, ~mD, (linear equivalence). Hence

there is a function f on 4 and a divisor E e Div (4) whose components are all fibral
such that

[21*D=mD +div(f)+E.

Since every fiber is irreducible, it follows that E=n*B for some B e Div(T). Now
this divisorial relation yields the height relation

A4 p2P;0)=md p(P; v)+vo f(P)+ Ay y(mP; 1) + O(Ayr(nP; v)).

Applying [4, Chap.11, Proposition 1.4 and the bound in Lemma 1.2], We
conclude that

Aup= Aa,p+ 0@ o)+ O(spom).

Finally, since [2]*D~mD on every fiber, we can repeat the above argument with
functions f,,....f, and divisors B, ..., B,eDiv(T) having the property that
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nB;=90. Then
min{Ar g} =Ar, a5, =19
is Mg-bounded, so taking the minimum over i we obtain the desired relation

IA,D=1A,D+ O(Agrom).

Appendix. Metrized Vector Bundles

One can reformulate the theory of local height functions corresponding to divisors
in terms of sections to metrized line bundles in the following manner. Let (%, || - ||)
be a metrized line bundle on a projective variety V. (For details, see [1, 2, or 5].)
Let s be a global section to % and D € Div *(V) the corresponding divisor. Then as
functions in J#(V),

Ap(P; v)= —log{s(P)|l,.

In a similar manner, one can take the theory of local height functions
corresponding to subschemes which we have developed above and include it in a
theory of metrized vector bundles and their sections. Since our interest lies
principally in the local height functions themselves, we have chosen to make them
the centerpiece of this article. To round matters out, we will now briefly indicate,

without proof, the salient facts concerning metrized vector bundles and their
sections.

Definition. Let V be a projective variety and & a vector bundle (always assumed
finite dimensional) on V, Let ve M. A v-adic metric on & consists of a (non-trivial)
v-adic norm || - ||, on each fiber £,® K* with the property that the norms “vary

continuously with Pe V. [Le. If se I'(U, &) is a section to & on some open set U,
then the map

U—[0,0) P-|s(P)ll,

is continuous when U is given the v-adic topology.] A metric on & is a collection of
v-adic metrics || - ||, on &, one for each ve M. Two metrics || - || and || - | on & are
My-equivalent, denoted | - || ~ || - ', if there is an M g-constant y such that

e "ol - 1L =™ -,
(N.B. If two metrics are M g-equivalent, then for almost all ve M x they are equal.)

Theorem A.1. Let V be a projective variety. It is possible to assign to each vector

bundle & over V a metric || - || 5, unique up to ~ equivalence, so that the following
Properties hold:

(@) If & is aline bundle over V which is generated by the global sections sy, ..., s,,
then for any global section s,

Is(P)l| &, ~min {|(s/s) (P)},: s{(P)+0} .

( Note each ss, is a function on V. The M y-constant inherent in the ~ equivalence
will depend on 81, ... Sy, but not on s or P.)
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Let & and F be vector bundles on V, and let ¥ be a line bundle.
() I legs~max{ll-fisl-ls}.

© I leee~1-llell-lle-

(d) Suppose that 8CF. Then
|- | g ~restriction of || |l& to &.

(e} Let ¢: W—V be a morphism of projective varieties. Then
- llgra~T-llece.
[The uniqueness is clear. For after choosing an ample line bundle (1) on V, one
can find integers d,n>0 so that & sits as a subbundle of O(n)*. Then |- ||, is

determined (up to ~ equivalence} by properties {a), (b), and (d). We do not include
a proof of the existence.]

Definition. A metrized vector bundle on V is a pair (&, - ||), where & is a vector
bundle on V and | - || is a metric on & satisfying the conditions of theorem A.1.

Definition. Let & be a vector bundle on ¥ and let s by a global section to &. Then s
determines a closed subscheme Z(s)eZ(V), its scheme of zeros. (Cf. [3,
Appendix A.3].)

Proposition A.2. Let V be a projective variety, (&, || - ||) a metrized vector bundle on
V, and s a global section to &. Then as functions in #(V),

AZ(s)(P ;0= —loglis(P)ll,.

(Proof omitted.)

Now it is a standard fact that every closed subscheme is the scheme of zeros of
some global section to some vector bundle. Thus once one has developed the
theory of metrized vector bundles, then A, can be defined as —log|s|| for one (any)
s satisfying Z(s)= X. Of course, one is still left with the task of showing that 4 is
well-defined and verifies all of the properties given in Theorem 2.1.
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