H. LEBESGUE.

Sur la non-applicabilité de deux domaines appartenant respectivement à des espaces à n et n+p dimensions.

(Extrait d'une lettre à M. O. Blumenthal).

Par

HENRI LEBESGUE à Paris.

L'autre jour, comme vous me parliez d'une démonstration de l'impossibilité d'établir une correspondance univoque et continue entre les points de deux espaces à n et n+p dimensions, démonstration due à M. Brouwer et que les Mathematische Annalen doivent publier, je vous ai indiqué le principe de quelques preuves du même théorème. Je vous expose la plus simple de ces démonstrations; je ne me préoccuperai pas ici de tirer du raisonnement d'autres conséquences que le théorème en question lui même.

Ce théorème résulte de suite d'une sorte de généralisation de cette proposition qu'énonce M. Jordan dans son Cours d'Analyse et d'après laquelle tout ensemble de points admet au moins un point frontière: Si chaque point d'un domaine D à n dimensions appartient à l'un au moins des ensembles fermés E_1, E_2, \cdots, E_p en nombre fini et si ces ensembles sont suffisamment petits, il y a des points communs au moins à n+1 de ces ensembles.

Soient x_1, x_2, \dots, x_n les n coordonnées; on peut préciser le degré de petitesse des E_i en supposant que D contient un intervalle de diamètre 2l [c'est-à-dire l'ensemble des points définis par n inégalités de la forme

$$0 \leq x_i - x_i^0 \leq 2l,$$

où les x_i^0 sont des constantes] et que chaque E_i est contenu dans un intervalle de diamètre l.

Je suppose d'abord que chaque E_i soit formé par la réunion d'un nombre fini d'intervalles et je considère ceux des E_i qui contiennent des points de la variété $x_1 = x_1^0$ frontière de l'intervalle I de diamètre 2l contenu dans D. L'ensemble e_1 de ces E_i n'a pas de points communs avec la variété $x_1 = x_1^0 + 2l$; la frontière de e_1 à l'intérieur de I est un

ensemble de variétés linéaires à n-1 dimensions, c'est-à-dire définies chacune par une seule équation du premier degré jointe à certaines inégalités*). Cet ensemble de variétés contient en particulier un ensemble I_1 d'un seul tenant qui s'étend depuis chaque variété $x_i = x_i^0$ jusqu'à chaque variété $x_i = x_i^0 + 2l$ $(i = 2, 3, \dots, n)$.

Je considère l'ensemble e_2 des points qui appartiennent à ceux des E_i non entièrement intérieurs à e_1 qui contiennent des points communs à I_1 et à $x_2=x_2^0$, l'ensemble commun à e_2 et à I_2 est limité à l'intérieur de I par un ensemble de variétés linéaires à n-2 dimensions, car e_2 ne pouvant contenir de points de $x_2=x_2^0+2l$ a nécessairement une frontière intérieure à I. Une partie I_2 de cette frontière s'étend depuis $x_i=x_i^0$ jusqu'à $x_i=x_i^0+2l$, pour $i=3,4,\cdots,n$.

On définira ainsi de proche en proche les ensembles I, I_1, I_2, \dots, I_n . Or tout point de I appartient au moins à l'un des E_i , tout point de I_1 appartient au moins à deux E_i et ainsi de suite, tout point I_n appartient au moins à n+1 des E_i . Le théorème est donc démontré pour les E_i particuliers considérés.

Pour le cas général je considère un carrelage de l'espace à l'aide d'intervalles non empiétants de diamètre ε . Je remplace chaque E_i par l'ensemble \mathfrak{E}_i de ceux des intervalles du carrelage qui ont des points communs avec E_i . Le théorème étant vrai pour les \mathfrak{E}_i , quel que soit ε , est par suite vrai aussi pour les E_i .

Le théorème énoncé est entièrement démontré; pour en déduire l'impossibilité de l'application des espaces à n et à n+p dimensions il suffit de le compléter en prouvant que les E_i peuvent être choisis de manière qu'il n'y ait pas de points communs à plus de n+1 des E_i . Or ceci est facile.

Soit d'abord le cas de deux dimensions x et y. Les droites x = entier, y = entier, divisent le plan en carrés qui se répartissent en bandes parallèles à Ox qu'on numérote de proche en proche. Déplaçons chacune des bandes de rang impair parallèlement à Ox et d'une longueur égale à $\frac{1}{2}$. Nous obtenons un carrelage équivalent, au point de vue de l'analysis situs, au carrelage formé d'hexagones réguliers; en prenant les carrés ainsi définis pour les E_i , il n'y a que des sommets triples.

Si l'on a 3 coordonnées x, y, z, on considère le carrelage de l'espace à l'aide de cubes limités par des plans z = entier et dont les faces parallèles à Oxy se projettent sur le carrelage défini plus haut. Les cubes ainsi

^{*)} Cette équation et ces inégalités sont respectivement de la forme $x_k = \alpha$, $\beta \le x_j \le \gamma$. L'étude de ces égalités et inégalités permettrait de démontrer algébriquement les faits bien évidents que je vais admettre.

construits se répartissent en couches; faisons subir à celles de ces couches qui sont de rang impair la translation qui amène le point 0, 0, 0 dans la position $\frac{1}{2}$, $\frac{1}{2}$, 0. En prenant les cubes ainsi placés pour les ensembles E_i , on n'a que des sommets quadruples.

En continuant ainsi on ne sera jamais arrêté.

La démonstration précédente est en relation intime avec la proposition suivante que je me borne à énoncer: une courbe qui remplit un domaine à n dimensions a nécessairement des points multiples d'ordre n+1 au moins et il y a des courbes remplissant un domaine à n dimensions qui n'ont pas de points multiples d'ordre superieur à n+1.*)

On pourrait présenter la démonstration précédente de façon moins artificielle, mais j'ai cherché surtout à être court parce qu'une méthode de démonstration naturelle et qui a l'avantage d'élucider en même temps plusieurs autres questions fondamentales d'Analysis situs a été indiquée par M. R. Baire**). Sans doute M. Baire n'a pas dévéloppé sa démonstration; mais il me semble que, si l'on tient compte des indications données par M. Baire***), il ne reste plus à trancher que des difficultés de détail peu sérieuses.

Paris, 14 octobre 1910.

^{*)} Déjà, dans son article des Mathematische Annalen, M. Hilbert remarquait qu'on peut remplir un domaine plan avec des courbes n'ayant que des points triples.

**) Bulletin des Sciences Mathématiques (2) 31 (Avril 1907).

^{***)} Voir aussi Comptes Rendus de l'Académie des Sciences 144 (11 Février 1907).