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1 Introduction 

Let X and Y be real Banach spaces and e > 0. Following Hyers and Ulam [12] 
a mapping f :  X ~ Y is called an e-isometry if t[[f(x) - f(y)[[ - Ilx - ylll < e 
whenever x, y E X. The stability problem for isometries raised by Hyers and 
Ulam can be formulated as follows: 

(a) Does there exist a constant K(X, Y) depending only on X and Y 
such that for each surjective e-isometry f :  X--~ Y there exists an isometry 
U: X ~ Y with ]If(x) - U(x)n _-< K(X, Y)e for all x C X? 

(b) If  the answer to the previous question is affirmative, then find the best 
possible value of K(X, Y). 

It was observed by Hyers and Ulam that the surjectivity assumption on 
f is essential [12]. Note that when studying e-isometries there is no loss of  
generality in assuming that f ( 0 )  = 0. Indeed, if mapping f is an e-isometry 
then the same must be true for f - f ( 0 )  and f - f ( 0 )  can be approximated 
by an isometry U if and only if f is close to isometry U + f (0) .  So, it will 
be assumed throughout the paper that each e-isometry sends the origin of  X 
into the origin of  Y. 

The above problem may be viewed as a part of  a more general stabil- 
ity problem: Assume that a mathematical object satisfies a certain property 
approximately according to some convention. Is it then possible to find near 
this object some objects satisfying the property accurately? A general discus- 
sion of  this kind of  problems can be found in interesting papers of  Ulam [17] 
and Hyers [ 11 ]. 

The first positive answer towards the solution of  problem (a) was given 
by Hyers and Ulam [12] who proved that K(X, Y) =< 10 in case X = Y is 
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a real Hilbert space. D.G. Bourgin [5] proved that K(X, Y) < 12 whenever 
X and Y belong to the class of uniformly convex real Banach spaces. The 
next partial result was given by Hyers and Ulam [13] who showed that the 
distance of an e.-isometry f to the set of all surjective isometries is at most 
21e in the case that X and Y are Banach spaces of real continuous func- 
tions on compact Hausdorff spaces with the supremum norm, provided that 
f is a homeomorphism. D.G. Bourgin [6] proved that the same result holds 
without the continuity and injectivity assumptions. This study was continued 
by R.D. Bourgin [8] who investigated the finite dimensional case under the 
additional assumption that the set of extreme points of the unit ball in X is to- 
tally disconnected. The two-dimensional case was considered by D.G. Bourgin 
[7]. 

Gruber [10] went very far towards a general solution of problem (a) by 
showing that all surjective asymptotically isometric e.-isometries can be uni- 
formly approximated by isometries. More precisely, he proved that if f :  X --* Y 
is a surjective ~-isometry and if U: X ~ Y is an isometry with U(0) = 0 for 
which I I f (x )  - U(x)l l / t lx l l  -~  0 uniformly as llxl[ --* oo, then U is surjective 
and IIf(x) - U(x)ll =< 5~ for all x E X. In particular, if K(X, Y) exists for a 
certain pair of spaces X and Y, then K(X, Y) _<_ 5. He also proved that this is 
true for the case that X and Y are finite dimensional. Problem (a) was finally 
solved by Gevirtz [9] who succeeded to show that every surjective e-isometry 
asymptotically behaves like a linear surjective isometry, thus showing that there 
exists a universal constant (not depending on the special properties of X and 
Y) K < 5 such that the distance of every surjective e-isometry to the set of 
all surjective isometries is no greater than Ke. 

We now conclude these historical remarks by mentioning a result of 
Lindenstrauss and Szankowski [15] who studied a wider concept of approx- 
imate isometries. For a given surjective mapping f :  X ~ Y they defined a 
function 

~of(t) = sup { l l [ f ( x ) -  f ( Y ) l } -  I I x -  ylll : I I x -  yll < tor II f (x)-  f (y) l l  < t} 

for t ~_ 0 and investigated the order of growth of q)f(t) as a function of t for 
which an asymptotical stability result can be obtained. They developed a sharp 
result on the allowable order of growth and this result does not depend on X 
and Y. 

It is the aim of this paper to obtain a sharp stability result for e-isometries, 
thus answering question (b). We will prove that for every surjective e-isometry 
f :  X --~ Y satisfying f ( 0 )  = 0 there exists a unique surjective linear isome- 
try U: X --, Y for which llf(x)'- U(x)[[ < 2e, x E X. This inequality is sharp 
even in the "nicest" spaces, e.g., in the case that X = Y is an n-dimensional 
real Hilbert space, n = 1,2, . . . .  

The proof of our result falls into two parts, In the first part we prove that 
every surjective e-isomett:y behaves asymptotically like a linear surjective iso- 
metry. This fact was already known to Gevirtz [9] who introduced the notion 
of a &onto e-isometry and then used some ideas similar to those of Vogt [18] 



On non linear perturbations of isometrics 619 

who proved a generalization of the Mazur-Ulam theorem on isometrics. How- 
ever, using an idea of Lindenstrauss and Szankowski [15] one can approximate 
every surjective e-isometry by a bijective approximate isometry. This makes it 
possible to avoid the use of &onto e-isometries in the first step of the proof. 
However, the main idea remains the same as in [9], and we will therefore give 
just an outline of this part of the proof. The main contribution of the paper is 
the second part of the proof in which we modify the Gruber's [10] approach 
using some new geometric ideas in order to achieve the best estimate on the 
distance between surjective e.-isometries and isometries. 

In [18] Vogt considered a similar problem, where mappings which pre- 
serve equality of distance were studied, instead of isometrics. When we 
say for a mapping f :  X ~ Y that it preserves the equality of distance, we 
mean, of course, that there exists a function p f :  [0,oc) ~ [0,oc) such that 
N f ( x )  - f(Y)[I = pf(llx - y [ l ) , x , y  ~ x .  The property of a map f that it pre- 
serves equality of distance may be characterized equivalently by the require- 
ment that for all x , y , u , v  C X ,  relation IIx-yl[ = I l u -  vii i m p l i e s  I I f ( x ) -  
f ( y ) [ I  = I [ f ( u )  - f ( v ) l l .  If such a mapping is surjective and satisfies f ( 0 )  = 0, 
then it is a scalar multiple of a surjective linear isometry, provided that the 
dimension of X is greater than one. Vogt's ideas proved to be very useful in 
the study of the stability problem for isometries. In this paper we give a new 
proof of his result which is shorter than the original one. 

The question that arises naturally in view of the result of Vogt is whether 
a weaker assumption than preserving equality of distance may imply that a 
surjective mapping is a scalar multiple of an isometry. Consider again a sur- 
jective mapping f from a real Banach space X onto a real Banach space Y 
and assume that ]If(x) - f(Y)l] = I l f ( u )  - f ( v ) l l  whenever x , y , u , v  E X and 
Ilx - yl l  = Ilu - v l l =  t for a given positive real number t. The question is, 
of course, whether this assumption assures that f is an isometry. Introduc- 
ing a new mapping g : X ~ Y defined by g ( x )  = s ( f ( t x )  - f (0) ) ,  where s 
is a suitable real constant, one can see that there is no loss of generality 
in assuming that such mappings preserve distance one, that is, [I x - y [ [  = 1 
implies I ]g(x)-  o ( y ) l l  = 1. An interested reader can find results on such 
mappings in [1-4, 14, 16]. In general, such mappings need not be isome- 
tries. 

When seeking for applications of our main result, the question of distance- 
preservers is a natural candidate. Recall that a mapping f :  X ~ Y preserves 
a given distance t in both directions if for all x , y  ~ X  with IIx- yll = t it 
follows that ] I f ( x ) -  f(Y)ll = t and conversely. We shall give an example 
of a homeomorphism f of C[0, 1] onto itself which preserves distance n in 
both directions for any positive integer n and is not an isometry (of. [16]). 
However, it turns out that such mappings are always approximate isometrics 
[16]. More precisely, if X and Y are real normed spaces such that one of 
them has dimension greater than one and if f :  X ~ Y is a surjective mapping 
preserving distance one in both directions, then 

lilf(x) - f ( y ) l l  - II x - yl l l  < 1 
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for all x, y E X. Once again, there is no loss of generality in assuming that 
f ( 0 )  = 0. According to our main result we can find then a surjective linear 
isometry U: X --* Y such that t l f (x)  - U(x)tl < 2 for all x E X. However, in 
this particular case we shall prove that the upper bound 2 can be replaced 
by 1 in this inequality and that the new inequality is sharp in this situation 
again. 

2 Results and examples 

Main Theorem. Let X and Y be real Banach spaces. Suppose that ~ > 0 
and that f :  X --~ Y is a surjective ~-isornetry satisfying f (O)  = O. Then there 
exists a unique surjective linear isometry U: X ---+ Y such that 

I I f ( x )  - U(x)[I  < 2e (1) 

for every x ~ X.  

We will postpone all the proofs until the next section. Our goal now is to 
show that inequality (1) is sharp. Let us first give a counterexample for the 
case of  Hilbert, or equivalently Banach, spaces X = Y = R.  Define a surjective 
function f :  IR ---, IR by f ( t )  = - 3 t  for t E [0, 1/2] and f ( t )  = t - 1 elsewhere. 
Clearly, f is a l-isometry and therefore, it can be approximated by a linear 
isometry U: ~,. ~ IR. There are only two such mappings, namely, U ( t ) =  t 
and U(t)  = - t .  Obviously, the second one does not approximate f uniformly. 
One can easily verify that m a x t ~ l f ( t )  - t[ = 2, which proves that inequality 
(1) is sharp in the one-dimensional case. 

Using this example it is not difficult to construct a surjective a-isometry 
f :  IR2--* R 2 at which the upper bound 2~ in inequality (1) is attained. 
However, in higher dimensions we can find even a stronger counterexample. 
Namely, because of  some possible applications of  our results on approximate 
isometrics (see [12]) it seems natural to study a smaller class of e-isometrics 
that are also homeomorphisms. It is clear that the inequality under consider- 
ation cannot be sharp in one dimension for homeomorphisms which have to 
be monotone mappings of the real line. However, we will now give a two- 
dimensional example showing that the sharpness is still true within this smaller 
set of mappings. 

Let X = Y = IR 2 be a two-dimensional Hilbert space and define X = A U 
B U C where A,B, and C are pairwise disjoint sets defined by 

a --- {(x,y) E P,2 : II(x,y)[I <- 2} ,  

B = {(x,y) E F,, 2 : l [ ( x -  14,y)l [ =< 2} ,  

c = ~2 \ (A u B) .  

Observe that we can find a continuous function u: F. 2 ---, IR satisfying 
(a) u(0,0) = 0, 
(b) 0 ~ u(x,y)  ~ 1 for all (x ,y)  E A ,  
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(c) u(14,0) --- 2, 
(d) 1 < u(x,y)  < 2 for all (x,y) E B, 
(e) u(x, y) = 1 for all (x, y)  E C, 
(f) for every fixed x E 1R the mapping y ~ y + u(x, y) is strictly increasing. 

For instance, we could set u(x,y) to be equal to ( x2+y2) /4  on A, then 
2 - ((x - 14) 2 + y2)/4 on B, and finally 1 on C in order to fulfill the wanted 
conditions. Now, define a mapping f :  X --* Y by 

f ( x ,  y) = (x, y + u(x, y))  . 

It is easy to see that f is a 1-isometry. For any fixed x E ]R the mapping y 
y + u(x, y)  is continuous and bijective. Consequently, f is a homeomorphism. 
Since by (a) we have that f ( 0 , 0 ) =  (0,0) there exists according to our main 
result a surjective linear isometry U: X ~ Y such that 

llf(x, Y) - U(x, y)l[ < 2 (2) 

for all (x, y)  E IR 2. We want to show that 2 cannot be replaced by a smaller 
constant. Insert (tx, ty) in (2) instead of (x, y) for some positive t, say, divide 
it by t and send t to infinity to conclude that 

f ( t x ,  ty) 
U(x, y) = lim ' - (x, y ) .  

t ~ o o  t 

Condition (c) now gives us the point at which the estimate is sharp: I[f(14, 0) - 
U(14,0)I I = 2. 

A similar construction produces a homeomorphic 1-isometry f with 
f ( 0 )  = 0 at which the upper bound in (1) is attained acting either on an 
n-dimensional real Hilbert space, n > 3, or on an infinite-dimensional real 
Hilbert space. 

The proof of our main result depends on the following lemma which may 
deserve to be stated separately. Observe that this result is an extension of [15, 
Lemma 3]. 

Lemma. Let X and Y be real Banach spaces. Suppose that ~ > 0 and that 
f :  X ~ Y is a surjective e.-isometry. Assume that n is a positive integer and 
that vectors xl . . . . .  x,  E X satisfy f (x~)- f (x j )  for i-j. Then for every pos- 
itive real number ~l there exists a bijective mappin 9 9: X ~ Y such that 
Ilf(x) - g(x)[I <= 7, x E x ,  and f ( x i )  = 9(xi), i = 1 . . . . .  n. 

As a corollary of  our main result and its proof we will get item (c) of  the 
following assertion. 

Corollary. Let X and Y be real Banach spaces such that one of  them has 
dimension greater than one. Suppose that f :  X ~ Y is a surjective map- 
ping that preserves distance one in both directions and satisfies f ( O ) =  O. 
Then: 

(a) f preserves distance n in both directions for all nonnegative integers n, 
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(b) f is a l-isometry, 
(c) there exists a surjective linear isometry U: X --~ Y such that ]If(x) - 

U ( x ) l l  _-< 1 for  all x E X. 

Note that condition (a) with n = 0 implies that f is injective. It was shown 
in [16] that the assumptions of this theorem imply (a) and (b). Applying our 
main result one can get the existence of a surjective linear isometry U: X --, Y 
such that [ I f ( x )  - U(x)LI =< 2 for all x E X. Condition (c) is an improvement 
of this statement and we will have to go into particularities of the proof of our 
Main Theorem if we want to get it. At the end of this section we also give an 
example showing that inequality [ I f ( x )  - U(x) I I  _-< 1 is sharp ,  

One of the milestones on the way to finding isometries uniformly approxi- 
mating approximate isometries was the method that yield the following result 
due to Vogt [18] called here Proposition for the sake of easier distinction. 
Namely, some of his ideas were helping Gevirtz when he was solving the 
main problem. Although the reader may still find some parts of these ideas in 
the proof of our Main Theorem, we have made the two theorems completely 
independent of each other. 

Proposition. [18] Let X and Y be real Banach spaces, dimX => 2, and let 
f :  X ~ Y with f (O)  = 0 be a surjective mapping which preserves equality 
o f  distance. Then, f = tU where t is a non-zero real number and U is an 
isometry o f  X onto Y. 

Let us now observe some connections between the results, presented in this 
section. The Proposition raises a natural question whether it is enough to sup- 
pose that a surjective mapping f preserves only one distance in order to get 
its conclusions. The answer is positive in some special cases [1,2, 3,4, 14, 16], 
while in general it is negative. In order to see this choose q E (0, 1/2) 
and define g~: [0,1] ~ [0, 1] by g~(t)= ~/(1- ~/)-lt for t E [ 0 , 1 -  ~/] and 
9,(t) = (1 - ~l)q-lt + 2 - q-I  elsewhere. Define also hn: ]R ~ ~ by h~(t) = 
[t] + 9 ~ ( t -  [t]). Here, [t] denotes the integer part of t. Let C[0, 1] be the 
Banach space of all real-valued continuous functions defined on [0,1] equipped 
with norm []xl[ = maxt~t0,qlx(t)l . One can verify (see [16]) that a homeomor- 
phism fq :  C[0, 1] ~ C[0, 1] defined by ( f n ( x ) ) ( t )=  h~(x(t)) satisfies much 
stronger condition than preserving just one distance, namely, for every x, y E 
C[0, 1] and each nonnegative integer n we have that IIx - Y]I = n if and only 
if IIf,(x) - f,(Y)II = n. In spite of that, f ,  is clearly not an isometry. On the 
other hand, it is easy to see that it is an approximate isometry, Actually, this 
fact follows from our Corollary. Fortunately, the same example also provides 
the sharpness of inequality (c)' of the Corollary which we have promised to 
give. Namely, let f~  : C[0, 1] ~ C[0, 1] be defined as above and let U be a 
linear isometry of C[0, 1] onto itself such that IIf,(x) - U(x)] I is uniformly 
bounded. It is easy to s~e that U must be the identity operator on C[0, 1], 
Choose x(t)  ---- 1 - r/E C[0, 1]. Then [If,(x) - x l l  - -  17 - 1 + 71 - -  1 - 2r/, and 
since q can be arbitrary small, the upper bound 1 in condition (c) o f  the 
Corollary is the best possible. 
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3 Proofs 

The proof of  the Lemma is a modification of the proof of  [15, Lemma 3]. We 
will therefore only give the part of  our proof that differs from the other one. 

Proof of the Lemma. The proof that cardX = card Y goes exactly as in the 
quoted proof. Now, let Y = Yl U . . .  U Yn U (UY~), where the sets Y1 . . . . .  Yn, Y~ 
are pairwise disjoint and such that: (a) the diameter of each of  them is no 
greater than the given positive real number I/, (b) their cardinalities are equal 
to the cardinality of  Y, and (c) f (xi)  E Y~,i = 1 . . . . .  n. Define X,. = f - I (Y i )  
and X~ = f - l ( y ~ )  to get from (b) that cardXi = cardY,,i = 1 . . . . .  n, and 
cardX~ = card Y~ for all ~. Consequently, we can find bijective mappings gi 
from Xi onto Y~ and g~ from X~ onto Y~ such that gi(xi) = f(xi). Conditions 
(a) and (c) now yield the desired properties for mapping g: X --- Y defined 
by g(x) = gi(x) for x E X~ and g(x) = g~(x) for x E X~. 

Proof of the Main Theorem. Choose x,y E X and assume for now that 
vectors f ( x ) , f ( y ) ,  and f ( ( x + y ) / 2 )  are different from each other. Next, 
fix a positive real number 6 greater than e and find, using the Lemma, a 
bijective mapping g: X ~ Y such that g(x)=f(x) ,  g (y )=f (y ) ,  g((x + y)/ 
2) = f ( ( x  + y)/2),  and [If(u) - g(u)t I < (6 - ~)/2 for all u E X. Clearly, g 
is a 6-isometry. 

Let us introduce: 
(a) a sequence of bijective mappings hk: Y ~ Y, defined inductively by 

ho(u) = 9(x + y - g-l(u)), hi(u) = 9(x) + 9(Y) - u, and 

h.=hn_2hn_th-~l_2 for all u E  Y f o r n  > 2 ;  

(b) a sequence of bijective mappings k. = hnh~-I ...ho, for n > 0; and 
(c) a sequence of vectors a.  E Y, defined inductively by 

f ( x ) + f ( y )  and a~+l =h, , - t (an)=kn-i(al)  f o r n  > 1. 
a l - -  2 

Following Gevirtz's ideas [9] one can prove that there exist sequences (p. ) ,  
(q.), ( r . )  and (s.) of nonnegative real numbers for n > 0 such that: 

(A) h. is a (pnf)-isometry for n => 0; 
(B) k. is a (q.O)-isometry for n > 0; 
(C) [[h.(u) - u][ ~_ 21[a. - u]l - r.6 for all u E Y and all positive integers 

n; and 

1 
(D) Ha2-atI] ~ 2--~5_2[la.-a._lll+s.6, fo rn  ~ 2 .  

As in [9] one can use (A), (B), (C) and (D) to prove that 

(E) f (x_~_y_) f ( x ) + f ( y ) 2  = < 112 n-:][ + ( n + 2 ) e  
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holds for all positive integers n. It is easy to see that (E) is valid also when 
vectors f ( x ) , f ( y ) ,  and f ( ( x  + y)/2)  are not different from each other. 

Inequality (E) forces that 

U(x) = lim f (2Px)  
p~oo 2 P 

exists for all x E X and that U is a linear isometry. It also implies that 

]If(x) - U(x)ll <= 2(r + 3)~ + 2-'+31lxll (3) 

for all x E X and all positive integers r. 
Let us now prove that U is surjective. Suppose to the contrary that the range 

of U is a proper subspace in Y. As it is closed, there exists a vector z E Y 
of norm one such that its distance to the range of  U is greater than 1/2. The 
surjectivity of  f implies existence of a vector xt E X such that f ( x t )  --- tz for 
any positive real number t. Recall again that mapping f is an ~-isometry with 
f ( 0 )  = 0 and observe that I l l f (x t ) l l  - Ilxtlll _-< ~ yields t - e < IIx, ll =< t + ~. 
Thus, on one hand 

t 
!If(x,) - U(xt)ll -- tl[z - t-lU(xt)[I > 

for every positive real number t, while on the other one, (3) implies that 
[If(x,)-U(xt)ll  <-_ 2(r+  3)~+2-r+3llxttl for every positive real number t. 
Choose here first t = r z and then send r to infinity to get a contradiction 
with the above displayed inequality thus proving that U is surjective. 

Let us define a mapping T: X ---* X by T = U - i f .  Clearly, T is a surjective 
e,-isometry with T(0) = 0. It follows that 

IIIT(x)[I- Ilxlll ~ ~ (4) 

for all x E X. Relation (3) yields 

liT(x) - xl] < 2(r + 3)~ + 2-r+31lxl[ (5) 

for all x c X and positive integers r. The second part of the proof will be 
devoted to verification of  the estimate 

(F) l iT (x ) -x l l  < 2e 

for all x E X. The proof of  existence will then follow by a simple observa- 
tion that U then satisfies I I f ( x )  - U ( x ) l l  _-__ 2e for all x E X. Note that if  we 
interchange here U by any linear isometry V, the estimate produces inequality 

f (2mx)  I g 
" 2" V(x) <= 2m_l 

which yields U = V in the limit by the definition of  U, thus proving its unique- 
ness and completing the proof of  the Main Theorem. 
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To prove (F) consider any x E X satisfying liT(x) - xi[ = a > 0 and set 
y = a - l ( T ( x )  - x ) .  Clearly, we have Ilyll = 1. As T is surjective, we can find 
for every positive integer n a vector zn E X such that T(x + zn) = x + ay + ny. 
From n = NT(x + Zn) - T(x)][ and the fact that T is an e-isometry we conclude 
that 

n - ~ = < Ilznll = < n + ~ ( 6 )  

holds for all positive integers n. Interchange vector x in (5) by x + z n  and 
divide the so obtained inequality by n to obtain 

]In-lay + y - n - l z ,  l[ < n-1[2(r + 3)5 + 2-r+3(llxll + n + 5)] 

Letting r equal to the integer part of  the square root of n, sending n to infinity 
and using (6) gives 

. Z n  lira ~ = y .  (7) 

Introduce 2 = lim sup . . . .  (llx + z.  II - IIz~ II) and let q be a real number. It fol- 
lows from (6) that 1 -q[Iz,,tl - ~  is positive if  n is large enough. For such 
integers n it holds that 

IIx + z.  II - lien II + q = ll(x + q tlznll-~zn) + ( l  - qllz, ll-l)z~ [I 

- I I ( 1 -  qllz.ll-~)z~ll < Ilx+qllz.ll-~z~ll. 
This implies together with (7) that 

;'. + q <= [[x + qyl[ 

for all q CIR. Similarly, 

)~ + q > l imsup(- l ix  + ql]znH-lzn[]) -----= -[]x + qy[[, q C ~ .  

Consequently, we have that 

1:. + ql < IIx + qYl[, q ~ ~ .  (8) 

In the rest of  the proof of  (F) we will have to consider two special cases. 
Let us first treat the situation when x and y are linearly independent. Define 
a functional r on the linear span of  vectors x , y  by r = 2 and r = 1. 
Inequality (8) implies that II~pll = 1. Inserting x + z~ instead o f x  into (4) gives 

5 >= ] [ x + a y + n y  H - I I x  + z ,  lt _>- r  + z ,  II 

for every positive integer n. Applying (6) we see that 

5 >= :.-( l lx+z~lI-  I l z n H ) + a -  ~ 

which further implies 25 - a > 0. This completes the proof in case that x and 
y are linearly independent. 

Finally, assume that x = #y for some real number/~. It follows from (8) 
that 12 + q[ < I/~ + ql for an arbitrary real q. Substituting q = - #  we see that 



626 M. Omladi~, P. Semrl 

). =/~.  I f  a positive integer n is large enough, then IIx + ay + nyll -= 2 + a + n. 
For such integers n we have 

e ~ I I x + a y + n y l l -  tlx + znll = a + 2 - ( i l x + z n l l -  Ilznll)+ n - I l zn l l  

which yields (F) in this case as well. This completes the proof. 

Proof  o f  the Corollary. Assertions (a) and (b)  were proved in [16]. According 
to our Main Theorem there exists a surjective linear isometry U : X ~ Y such 
that l l f ( x )  - U(x) l l  --- 2 for all x E X.  In the same way as in the proof of  
the Main Theorem we define a mapping T: X ~ X,  a sequence of vectors zn 
and a real number 2. But now, we have an additional property of  T, that is, 
it preserves distance n in both directions for every nonnegative integer n, So, 
it follows from n = IIT(x + z n ) -  T(x) l l  that IIz~ll = n for all positive integers 
n. Similar reasoning as in the proof of  the Main Theorem now leads us to 

I IT ( x ) - x l l -<  1 for all x E X .  Consequently, inequality I I f ( x ) - U ( x ) I I  _-< 1 
holds true for all x E X as we wanted to show. 

Proof  o f  the Proposition. Let us start by formulating a property of a Banach 
space X having dimension no smaller than two that we will need a few times in 
the course of  the proof: I f  x and y belong to such a space and if  IIx - Yll < na 
for some integer n > 2 and some positive real number a, then there exists a 
sequence of  vectors x = xo,xl . . . . .  x~ = y such that I l x i - x i - x l l  = a for i =  
1 . . . . .  n. In case n = 2 this is an easy consequence of the fact that in such a 
space X any sphere is connected and the general case follows by induction. 

According to our assumptions there exists a function p :  [0, cr [0, cr 
such that [If(x)  - f (Y)l l  -- P(llx - yl l ) ,x ,y  ~ x .  We have to show that p(t) = 
tp (1)  for all nonnegative real numbers t. First, we will show that f is uni- 
formly continuous. Given e > 0 we can choose x, y E X such that x ~= y and 

I l f ( x ) -  f (Y)l l  < e/2. Set 6 = 21Ix-  Ylt, choose a pair of  vectors v,w E X 
sa t i s fy ing  Ilv - wll < ,~, and find z E X with IIv - zll = IIw - eli = ,5/2 which 
g ives  I i f ( v )  - f ( w ) l l  _-< I l f ( v )  - f ( z ) l l  + I I f ( z )  - f ( w ) l l  = 2 p ( l l x  - y [ I )  < e. 

Next, we will show that 

k(a) = i n f { p ( t ) :  t ' ~  a} > 0 (9) 

for every positive real number a. Assume to the contrary that there exists 
a > 0 with k ( a ) = O .  Let x be any vector from X and choose an inte- 
ger n > a - I  Ilxll. Because k ( a ) =  0 we can find to >- a with p(to) < n -1. 
We have nto > na ~ Ilxll, and, therefore, we can find a sequence of  vec- 
tors 0 = x0,xl . . . . .  xn = x such that Ilxi - xi-  ~ II -- t0, i = 1 . . . . .  n. On account 
of  these considerations we must have I l f (x) l l  = I I f ( x )  - f ( 0 ) l l  < np(to) < 1, 
contradicting the surjectivity assumption on f .  

Property (9) implies that f is injective and, thus, bijective. It also yields 
uniform continuity of  f - , t .  Indeed, let e > 0 and let x, y E Y satisfy tlx - yl l  < 

k(e). Observation [I x - Yll = I l f ( f - I ( x ) )  - f ( f - I ( Y ) ) l l  = P ( l l f - I ( x )  - 
f - l ( y ) l { )  gives I l f - t ( x )  - f - t ( y ) l l  < e and this implies that f is a homeo- 
morphism. This means, in particular, that dim Y ~ 2. 
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In our next step we will prove that p is a strictly increasing function. For 

any t > 0 set St = {x C X: Ilxll = t} and Zp(t) = {y E Y: Ilyll = p( t )} .  Obvi- 
ously, we have f ( S t )  c Zp(t). The complement  o f  St in X consists o f  two 
connected components  for every t > 0. The bounded component  contains 0. 
Since f is a homeomorph i sm satisfying f ( 0 ) =  0 we have necessari ly that 
f ( S t )  = Zp(t) and that p is strictly increasing. 

We  claim that p ( n t ) =  rip(t) for all positive integers n and positive real 
numbers  t. Let us prove it by induction on n. There is nothing to prove in case 
n = 1. So, assume that p(nt) = np(t) and choose x E X  with tlxll -- ( n +  1)t. 
Then 

n+l 
Ilf(x)l[ _-< ~ Ilf(k(n + 1 ) - I x )  - f ( ( k  - l ) (n  + 1)- lx) l l  = (n + 1 ) p ( t ) .  (10) 

k=l  

Denote by v the vector  in X satisfying f ( v ) =  u = ( 1 -  p( t ) l l f (x ) l l - l ) f (x ) .  
Note that Ilu - f ( x ) l t  = p(t)  and therefore ]Iv - xll = t. In order to show that 
[[ult > np(t), suppose the contrary: [[u N < np(t) = p(nt) and observe that this 

would imply Ilvll < nt  which would yield Ilxll _-< 11vii + llv - x l l  < (n + 1)/ 
contradicting the above. Hence,  we have 

np(t) ~ Ilu]l = I I I f ( x ) l t  - p ( t ) l  

which implies together with (10) that IIf(x)ll = ( n +  1)p( t ) ,  and finally, 
p((n + 1 )t) = (n + 1)p(t). 

One can now easily see that p ( n - l t ) =  n - l p ( t )  and this means that 
p(rt) = rp(t) for all posit ive rational numbers r and positive real numbers 
t. Applying  the fact that p is increasing we finally get the desired relation 
p(t)  = tp(1)  for all t > 0. 
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