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1 Introduction 

In this paper we study an inverse boundary value problem for the Schrrdinger 
equation in the presence of a magnetic potential. Let f2 be a bounded domain 
in R n, n ~ 3, with smooth boundary. The Schrrdinger equation in a magnetic 
potential is given by 

(1.1) H~,q= ~-~( 1 0 ) 2  J=~ 7~xi +Aj(x) +q(x), i = ~/-L-~, 

where X = (AbAE,...,An) E CI(I]) is the magnetic potential and q E L~(12) 
is the electric potential. The magnetic field is the rotation of the magnetic 
potential, rot(A). 

We assume that X and q are real-valued function and thus (1.1) is self- 
adjoint. We also assume that zero is not a Dirichlet eigenvalue of (1.1) on f2, 
so that the boundary value problem 

( HX, qU = 0 in f2 
(1.2) 

ulon = f ~/4�89 

has a unique solution u E Hl(f l ) .  The Dirichlet-to-Neumann map AZq which 

maps H�89 into H- �89  is defined by 

(1.3) AX, q : f --~ O~v v + i(X.v)f, f E H�89 
t3fl 

where u is the unique solution to (1.2), and v is the unit outer normal on Off. 

* Partially supported by NSF Grant DMS--9123742 
** Partially supported by NSF Grant DMS-9100178 and ONR grant N00014-93-1-0295 



378 G. Nakamura et al. 

The inverse boundary value problem for (I.  1) is to recover information of 
.,1 and q from knowledge of A~,q. This problem is closely related to the inverse 
scattering problem for (1.1) with a fixed energy. This problem was considered 
in [H-N] where it is assumed that the magnetic field is small. The inverse 
problem at a fixed energy in the case that the magnetic field is 0 was solved 
by Novikov ([N]). 

As it was noted in [Su], the Dirichlet to Neumann map Ag, q is invariant 

under a gauge transformation in the magnetic potential: .~-~ .,1 + ~7g, where 
g E C A, where we denote 

(1.4) C~ = { f  E C~(FJ) ,suppf c 12} 

Thus, A~,q carries information about the magnetic field instead of information 

about ,4. The natural question is whether A~,q determines uniquely rot(.4) and 

q. In [Su], this question was answered affirmatively for .4 in the C~ class and 
q in the Loo(12) class, under the assumption that rot(.4) is small in the Loo 
topology. Namely, we have 

Theorem A. Let  ~/  E C~, qi E Loo(~), j = 1, 2. Assume that zero is not a 
Dirichlet eigenvalue Jbr H~j,qj, j = 1, 2. Then there exists a constant e = 

e(f~) > 0 such that if" IIrot(:lj)llL~(a) < ~, j = 1,2, and 

A:~l,ql : A ~2,q2 , 

then 

rot(.41 ) = rot(A2) and ql = q2 in f2 . 

The main purpose of this paper is to consider the above problem for C ~ 
class of potentials .4 and q. In this case we are able to remove the smallness 
assumption on rot(.4). We have 

Theorem B. Let  .4j E Coo(~), qj E Coo(~), j = 1, 2. Assume that zero is not 
a Dirichlet eiffenvalue of'H.~j,qj, j = 1,2. I f .  

A~l ,q l  : A~2,q2 , 

then 

rot(Ai) = rot(A2) and ql = q2 in [2. 

If we assume Aj E C~,  then ,Theorem B holds even for q /E L~176 We 
have 

Theorem C. Let  .4j E C ~ ,  qj ~ Loo(I2), j = 1, 2. Assume that zero is not a 
Dirichlet eigenoalue o f  H~j-qj, j = 1,2. 1./" 

a"~l,ql  ~--- A~2,q2 ' 
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then 

rot(Xl ) = rot(A2) and ql = q2 in f~. 

In the next three sections we shall give proofs for Theorems B and C. 
Our proofs are a combination of methods developed in [L-U], [N-U] and 
[Su]. We remark that in the case X = 0, global uniqueness was established in 
[S-U]. 

In the next section we shall show that/Ix, q determines the boundary values 

of rot(A) and its normal derivatives of all orders at the boundary. Namely, we 
have 

Theorem D. Let  A~ E Coo((2) and q1 E Coo(~]), j = 1,2. Assume that zero is 
not a Dirichlet eiyenvalue oJ'Hdj,qj, j = 1,2 . I f  

AXI,q 1 : AX2,q 2 , 

then we can find ~ E C~176 wmishin,q to first order at Of 2 such that 

X, = ,i2 + v'~ 

to infinite order at 0(2. 

As one can see from the proof of Theorem D one can prove also that 
AXr t determines also the boundary values of q and its normal derivatives of 

all orders at the boundary (This was proven in [K-V] in the cases X = 0.) 
However, this fact will not be used to prove Theorem B and C. Theorem D 
reduces the proof of Theorem B to the proof of Theorem C by an extension 
argument. 

In Sect. 3 we shall construct a family of exponentially growing functions 
(in certain directions) of the form 

(1.5) u(x, ~) = e r + o9(x, ~)) 

satisfying the equation HZqU = 0, with the property that o9(x,r decays as 

[~l ~ c~, where ~ E IU', r  = 0, "~ = r162 It is the construction of o9 which 
presents some difficulties. In [Su], o9 was constructed for X E C~, q E L~176 
under the assumption that [[rot(A)lILoo(a ) is small. In Sect. 3 we shall con- 
struct o9 for X E C~176 and q E Loo(O) without the smallness assumption 
on rot(A). This will be done by intertwining the operator e-X'~Hzq(eX'r ) 

with the operator e -~ ' r  ~'~) and then using the solutions for the latter con- 
strutted in [S-U]. A similar approach was developed in [N-U] for the elasticity 
system. 

Section 4 is devoted to the proof of Theorem B and C. We shall first reduce 
Theorem B to Theorem C. The proof of C follows from results in Sect. 3 and 
modification of arguments in [Su]. 



380 G. Nakamura et al. 

2 Boundary determination 

(2A) 

where 

In this section we prove Theorem D in the introduction. To do this we proceed 
as in [L-U]. We write the operator in boundary normal coordinates and then we 
factorize the operator. This leads to a Riccati type equation for the Dirichlet to 
Neumann map similar to the one derived in [L-U] for the case that the operator 
is the Laplace-Beltrami operator of a Riemannian metric. In that case similar 
Riccati type equations were derived by different methods by Cheney, Isaacson 
and Somersalo IS-I-C] and, in the isotropic case, by Sylvester IS]. 

The Schr6dinger operator (1.1) can be rewritten as 

n 
P(x,D) = - d  + y]2A/(x)Dxj + G(x) 

./=1 

(2.5) 

with 

(2.2) G=A 2-2i17..4+q, Dxj = 1 a 
i Ox/ 

The Dirichlet to Neumann map /12. q is a pseudodifferential operator of order 
I. In boundary normal coordinates, (x I ..... x~-1,x~) = (x',xn) with 012, (resp. 
f2) is given locally by x n = 0, (resp. xn > 0) (see [L-U]). We have that 

(2.3) -3 = l~x,, + iE(x)Dx,, + Q(x, Dx,) 

where Q(x, Dx,) a second order operator in Dx,, depending smoothly on : with 
positive principal symbol. We remark that E(x) and Q(x, Dx, ) are known in 
this case. Using (2.3), the operator (2.1) can be written as 

n--I 

(2.4) P(x,D) = D 2 + iE(x)D: + Q(x,D,,, ) + ~ 2C/(x)D~: + 22,D: + G 
j=1 

where/I~, Cj = I ..... n - I are the components of .4 in boundary normal coor- 
dinates. Now we define 

n- - I  
M(x ,D)  = e~f P(x,D)(e -~f ) ~- ~ 3  + E,~jD,: + d 

j=l  

f ( ~ ' , : )  = f ~ ( x '  : ) d s .  
0 

The point is that we can factorize (2.5) as a product of two first order operators. 
Namely, we have 

Proposition 2.6. There exists a pseudodifferential operator B(x,D~,) o f  order 
1 in x ~ depending smoothly on x n such that 

(2.7) g ( x , D )  = (Dxn + iE(x) - iB(x, Dx,)XDx, + iB(x, Dx,)) 

modulo a smoothing operator. 
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(2.9) 

where 

P r o o f  In order for (2.7) to be valid we need that B satisfies the following 
Ricatti equation 

n--I 
(2.8) i[Dx,,a] - E (x )B  + B 2 - Q - ~ , 4 / D  x, - G = 0 

j=l  

modulo smoothing. Therefore the full symbol b(x, q') of B(x, D~,) must satisfy 

E l o',bD~,b - h + Ox, b - e b  = 0 

n - I  

h(x,q') = o2(x,,') + o~(x,,') + ~ j ~ j  + 
j=l 

with 92(x, tl ~) + .ql(x, rf ) the full-symbol of Q(x, Dx, ) and 92(x, rf ) the principal 
symbol. 

We write 

(2.10) b(x ,q ' )  ,.~ ) -]bj(x ,q ' )  
j~_t 

with bj homogeneous of degree j in ~f. Grouping the homogeneous terms of 
degree two in (2.9) we obtain 

b~ - 9 2 = 0 .  

We then choose 

(2.11) bl = - V c ~ .  

The homogeneous terms of degree one in (2.9) is 

n--I 

2bob1 + E O~, (b , )D~, (b l ) -  g, + cg,,b, - E. .~iqj  - Eb,  = O . 
i~l=l y=t 

We choose 

(2.12) 

( bo 
- v ~ -  \t~1=1 = 

The homogeneous term of degree zero in (2.9) is 

j,k,K 
O~j,k~l 
Ir{=j+k 

We then choose 

1 
(2.14) b_! = 

zVg2  
o_~j, kSt  
tgl=j+k 

1 b Obo [ ~ . ~ ( b j ) ~ ( ~ )  + ~-~ - Ebo - ~ . ) 
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The terms h/,J < - 2  are chosen in a similar fashion, (see (1.9) in [L-U]) 
completing the proof of the proposition. 

The point of the construction above is that 

Proposit ion 2.15. 

(2.16) A,i,q = B(x, Dx,)lxn=o - 2i.4n I~n=o mod. smoothiny. 

Proofi Using Proposition (2.6) and the same arguments as in the proof of 
Proposition 1.2 in [L-U] we conclude that 

~ n  Ixn=0 = B(x, Dx,)Ulxn=o smoothing mod. 

where u solves the Dirichlet problem 

M(x,D)u = 0 in 12; ul,ga = f . 

Proof  o f  Theorem D. We first look at the principal symbol of (2.16). Using 
(2.16) we have that the terms homogeneous of degree one in the full symbol 
of AX, q is 

(2.17) bl(x,t/')lx,=O = V~lxn=0. 

The term homogeneous of degree zero in the full symbol of A i, q is 

(2.18) (bo - 2iAn)lx~=0 

From (2.12) then we observe that we can determine knowing the full symbol 
of the Dirichlet to Neumann map 

1 . - i  
(2.19) 2 x / ~  ~= ,~/tlJ - 2i.4n 

at x n = 0. Therefore, since .,lj are real-valued, we conclude that we can recover, 
-'lj,-4n at x n = 0 at this stage. 

The term homogeneous of degree - 1  in the full symbol of A2,q is 

b - l l x n = 0  �9 

Therefore using (2.14), (2.17) and (2.18) we conclude that we can recover 
from b-11x~=0 

~b0 
c3xn 

at X n = 0. Then using (2.12) we can determine from the full symbol of the 
D N  map 

1 d //--n-l~ 
(2.20) 2 x / ~  Ox n ~ j~I~I A j ~ j ) 8 
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at x n = 0. Since ,4/, j = 1 . . . . .  n - 1, is real-valued we determine from (2.20) 

A / , j  = 1 , . . . , n -  1 

at xn = 0. Proceeding inductively we can then prove that we can recover from 
the homogeneous terms of degree - k  in the full symbol of A~,q. 

( 0 / ~ "  
Ajtx,,=o, j = 1 . . . . .  n -  1 .  

The result now follows from (2.5) since we know Anlx,=0 and the Taylor series 
of,4j, j = 1 . . . . .  n -  1, a t x  n ----0 [ ]  

3 Construction of solutions 

Let .4 E C ~ ,  q E L~ We extend q = 0 outside ~2. We look for solution 
of the form 

(3.1) U ( x , ~ )  = e~'X+i'(x'()(l  + co(x,~)), x E ~ ,  

in the null space of H i ,  q, with the property that co(x,~) behaves like I~1-1 

as Ill tends to co, where ~ E C", ~. ~ = 0 and ~ = r This is reduced to 
construct ~b and co from the following two equations. 

(3.2) ~. g7~ = - i ~ - 2  

(3.3) 

where 

(3.4) 

Ace + 2(~ + V4, + / 2 ) .  VoJ - go  = g 

g = ~2  - i ~ 7 . A  + q - 2i ,4.  ~7qb - ~7qb. ~7q~ - dq~ . 

As in [Su], we construct ~b by Fourier transforming (3.2). This leads to 

(3 .5)  = ( 2 . ) - , ,  R" ~ ~ /dr/, 

where A denotes the Fourier transform. One can easily verify that ~b(., ~) E 
C~176 is a solution to (3.2), which satisfies 

(3.6) I1r 6 c(r 

for any bounded domain d~ C R". Moreover, ~b(x, ~) is differentiable in "~ on 
the manifold {~ E c n , ~ . ~ - - o , l ~ l - -  1}. 
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In the rest of this section we shall construct co. Since we are looking for 
solution u on ~2, we may rewrite the equation (3.3) as 

(3.8) A~o.~ + B. Wco - hco = h 

where 

(3.9) d~ = A + 2~. 7,J3 = 2(7~b + i,4)q/, h = .qq/ 

and ~0 E C~~ ") with q/la -= 1. We denote 

(3.10) M~ = A~ +/~.~7, Lr = M~ - h .  

We shall construct 09 by inverting L~. To do this, we need to invert M~ first. 
Assume that ~ = s~0 + O(~), where ~0 E c",l~01 = 1 and ~.~ = 0. 

Lemma 3.11. The operator M~ has a bounded inverse Mr --1 : L2(f2) -~ HI(f2) 

for I~1 sufficiently larye. Moreover, ]or any f E L2(K2), 

(3.12) [IM(l(f)llrz(a) _-< C1r -~l[fllr2(~) 

(3.13) IlM~-l(f)l[n,(a) ~ cllfllz2(a) 
where C is a constant independent of  ~. 

Lemma 3.11 is the key step in constructing the solution co. Once Lemma 
3.11 is proven, analogous arguments to the ones in [Su] (lemma 2.4) can be 
used to show that Lemma 3.1 1 ) is valid with Me replaced by Lr This gives us 

Proposition 3.14. For Ir large enoueh, there is a solution o9 satisj)pin9 (3.3). 
Moreover, 

(3.15) tlcollL2(~) --< ~ t '  [lV'colk~(o) =< c ,  

where C is a constant independent of  I~1. 
To prove Lemma 3.11, we first introduce some notations. We denote by 

Lm(IR',Z) the space of pseudodifferential operators of order m in the Shubin 
class [Sh] where Z = {~ E CEn,r = 0,1~1 >_- 1} (see [N-U]). We define Ar  
LS(Rn,Z) as the properly supported pseudodifferential operator with principal 
symbol 

~(h~) = (1~12 + 1~12)~, 
for the definition of properly supported see [N-U]. 

We denote 
1~Ir = McA~', 71r = A,A~'  . 

Lemma 3.16. Let N E Z +. There exist Ar and Be E L~ Z) properly sup- 
ported satisfyin 0 the following: For any dpl E C~~ n) there exist q~2, q~3, q~4 E 
C~~ n) and r > 0 such {hat 

(3.17) r162 = dplB, dP2A'~l(A, + r162 



Global identiflability 385 

where 
R~-N)- : H~(IR " ) H~+N (~. ") 

is a bounded linear operator with 

(3.18) tlR~-mlIH=<nv,>,~=+~(R.) __< C=l~t - u  

Jbr ~ E Z,[~[ > r and any a E ~ .  Morever ~b/,j = 2,3,4 are taken to satisfy 

(3.19) r162 = q~l, ~b2~b3 = q~2, q~l~b4 = r 

and 

(3.20) q~lBcq~2 = ~btBr ~b2A~-I~b3 = c~zA~ 1 . 

We refer the reader to [N-U] for the proof of Lemma 3.16. 

Proof of  lemma 3.11. By defining 

(3.21) C~ = BcA~ l 

we conclude using (3.17) and (3.20) 

(3.22) ~b,&tcA~ = (~1Cr162 -4- ~ 3 R ~ - N ) + 4 )  . 

Take now ~b~ E C ~ ( ~ n )  such that qS~ = 1 on supp ~ .  It is easy to see that 

there exists a linear operator ~-1  such that 

(3.23) ~b;C~C~ -l = ~b~ 

and 

(3.24) IIC~ -~ IIH, .H~-' < GI~I 

for any ~t E R.  We are taking in the rest of the proof r E Z, Ir => r, for an 
appropriate r > 0. Let us choose now ~b~ E C~~ ") such that 

(3.25) ~b~ Cr = q~lCr �9 

Let us consider the equation 

(3.26) (A~ + (93R~-N)o4)v = (otTC-~ 1 d?lf 

From (3.22), (3.23) and (3.25) we have 

q~137I~Acv qb~C~d~ ld~ l f=  2 , 

Hence, since ~l  = 1 on f2, if  v is a solution of (3.26), then 

(3.27) w = A-~lAr 

satisfies 

(3.28) M~w = f in 12. 
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Here we have taken r 1 4 9  C~~ ") such that ejlQ~A,dp~'= r Using 
(3.18), (3.24) and the representation theorem for compactly supported distri- 
butions (see for instance [M] Thm. 2.13, page 92), it is easy to prove that for 
any f �9 L2(F-~n), 

(3.29) v = (I + A-~tr162162162 E H:,,c(F,. n) 

satisfies (3.26). Furthermore, using (3.24) and the estimates for d~ -I ([S-U]) 
we have 

(3.30) t !  
IIr vlIH~<R.) ~ C~lr 

for �9 = 0, 1. Now we take $ l ,  $2 �9 C~~ such that ~1r = r A-~lA~bl = 
$2A-~lA,~kt. Then using the estimate (1.12) in [N-U] we conclude that w �9 

H2(~." ) and 

(3.31 ) LIwlIH'r ~ c~l~l~-~llfllH~<R~>,~ = 0, I .  

This concludes the proof. [] 

4 Proof s  o f  theorems 

In this section we prove Theorems B and C. We first reduce Theorem B to 
Theorem C. 

Let Aj E C~176 q / E  C~176 j = 1,2 and A:it, ~ = A~2,q 2. Let BR be a 

ball with center at the origin and radius R so that f2 C BR. Let r be as in 
Theorem D. Using this result and the invariance of the Dirichlet to Neumann 
map, we can change -'12 by A2 + We and assume that Al = A2 to infinite 
order at a~2. We choose a vector function .,1~ on BR so that A~ E C~(BR) and 
/1~ la = AI, and define 

f :i~(x), x �9 a Z (x) 
:i~(x), x �9 hR\a .  

Then .'1~ �9 C~~ We simply extend qy, to q) �9 L~176 = 1,2 so that 

f qj(x), x � 9  
"t O, x �9 BR\f~. 

Consider now the operator H~,q~, j = 1,2. We may change the radius R slightly 

so that zero is not a Dirichlet eigenvalue for both H i).q~ ., and thus A~,q~ is well- 

defined, j = 1, 2. Since A~I,,,,~ , .  = AA,,,,.~. - . ,  and A~ = A~ and q~ = q~ on BR\I2, 
it follows from a well-known fact m inverse boundary value problems that 
A~,q~ = A~,2,q~ 2 on dBR. Therefore, Theorem B is reduced to Theorem C. 



Global  identif iabil i ty 387 

The proof of Theorem C follows similar lines of argument to the ones 
given in [Su]. We give only an outline. 

Proof o f  Theorem C The proof begins with the following identity. 

(4.1) if(,41 -- A2)" (Ul ~7U2 - -  /'/2 ~7Ul )dx + f (2  2 - 222 + ql - q2)ulU2dx = 0 
12 f I  

where u/ is any solution of H ii,qiU j = 0, j = l, 2, and we have assumed that 
A-  ,, = A ~. ,,. See Proposition 3.1 in [Su] for a proof which is based on an �9 A~,~ Az ,~"  
integration by parts argument. 

The next step is to replace u/, J = 1,2 in (4.1) by exponentially grow- 
ing solutions constructed in Sect. 3. Let k, yh Y2 be three mutually orthogonal 
vectors in R" with I?l[ = 1~2[ ~ - - 1 .  Let (,r �9 IE n be given by ( =  Yl +i~2, 

= s( + .q(s,k)~,l, where s is a positive real parameter and 

Define 

(4.2) 

2 I ,q(s,k) = I / c l2 (2 ( I k l  2 + 4 s  )~ + 4 s )  - l  . 

ik /k 
~1 = ~ + ~ ,  ~2 = ~ - - ~ .  

One can check that ~l" ~l = ~2" ~2 = O. We now construct 

(4.3) Ui(X, ~j) = e~J "x+~JCxd,)(l + o~/(x, ~j)) 

solution of H ij,qju j = 0, j = 1,2. Substituting (4.3) into (4.1) and letting s 

tend to co, one gets 

(4.4) f e  i~'+r +~'~ (" (.~1 - ,42)dx = 0 
t2 

where q~(x,() = ~j(x,~), j = 1,2. 
(4.4) is all we need to deduce that 

(4.5) rot(,'ll) = rot(,'12). 

See Sect. 4.1 in [Su] for details. (4.5) implies that there exist p E C a so that 

(4.6) ,~l - ,~2 = U p  in I2. 

To prove qi = q2, we first recall that H2q is invariant under gauge transfor- 
mations. This fact together with (4.6) implies that A22,q 2 = A22+~,t,,q z = A~l,q2. 
On the other hand, A~t.ql = A~2,q2. So we have 

A21.q I = A21,q 2 �9 
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This means that we may assume -41 = ,~2 when we prove ql = q2. Letting 
,'ll =-g2 in (4.1) we get 

(4.7) f ( q t  - q2)u)~2dx = O. 
fit 

Now substituting (4.3) into (4.7) and letting s tend to oo we get 

f e,~+~'l +~'2 (ql - q2 )dx = O, 
12 

from which the result follows immediately. [ ]  

Note culded in proofi Esking and Ralston have recently solved the inverse scattering problem 
at a fixed energy for the Schr6dinger equation in a magnetic field assuming that the potentials 
are exponentially decaying. 
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