Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field

Gen Nakamura¹, Ziqi Sun^{2, *}, Gunther Uhlmann^{3, **}

¹Department of Mathematics, Science University of Tokyo, Shinjuku-ku, Tokyo 162, Japan ²Department of Mathematics and Statistics, Wichita State University, Wichita, KS 67260, USA

³ Department of Mathematics, University of Washington, Seattle, WA 98195, USA

Received: 20 December 1993/Revised version: 11 July 1994

Mathematics Subject Classification (1991): 35 R, 35 Q

1 Introduction

In this paper we study an inverse boundary value problem for the Schrödinger equation in the presence of a magnetic potential. Let Ω be a bounded domain in \mathbb{R}^n , $n \ge 3$, with smooth boundary. The Schrödinger equation in a magnetic potential is given by

(1.1)
$$H_{\vec{A},q} = \sum_{j=1}^{n} \left(\frac{1}{i} \frac{\partial}{\partial x_j} + A_j(x) \right)^2 + q(x), \ i = \sqrt{-1} ,$$

where $\vec{A} = (A_1, A_2, ..., A_n) \in C^1(\bar{\Omega})$ is the magnetic potential and $q \in L^{\infty}(\Omega)$ is the electric potential. The magnetic field is the rotation of the magnetic potential, $rot(\vec{A})$.

We assume that \vec{A} and q are real-valued function and thus (1.1) is selfadjoint. We also assume that zero is not a Dirichlet eigenvalue of (1.1) on Ω , so that the boundary value problem

(1.2)
$$\begin{cases} H_{\vec{A},q}u = 0 & \text{in } \Omega\\ u|_{\partial\Omega} = f \in H^{\frac{1}{2}}(\partial\Omega) \end{cases}$$

has a unique solution $u \in H^1(\Omega)$. The Dirichlet-to-Neumann map $\Lambda_{\vec{A},q}$ which maps $H^{\frac{1}{2}}(\partial\Omega)$ into $H^{-\frac{1}{2}}(\partial\Omega)$, is defined by

(1.3)
$$\Lambda_{\vec{A},q}: f \to \left. \frac{\partial u}{\partial v} \right|_{\partial \Omega} + i(\vec{A} \cdot v)f, \ f \in H^{\frac{1}{2}}(\partial \Omega)$$

where u is the unique solution to (1.2), and v is the unit outer normal on $\partial \Omega$.

^{*} Partially supported by NSF Grant DMS-9123742

^{**} Partially supported by NSF Grant DMS-9100178 and ONR grant N00014-93-1-0295

The inverse boundary value problem for (1.1) is to recover information of \vec{A} and q from knowledge of $\Lambda_{\vec{A},q}$. This problem is closely related to the inverse scattering problem for (1.1) with a fixed energy. This problem was considered in [H-N] where it is assumed that the magnetic field is small. The inverse problem at a fixed energy in the case that the magnetic field is 0 was solved by Novikov ([N]).

As it was noted in [Su], the Dirichlet to Neumann map $\Lambda_{\vec{A},q}$ is invariant under a gauge transformation in the magnetic potential: $\vec{A} \rightarrow \vec{A} + \nabla g$, where $g \in C_{\Omega}^{1}$, where we denote

(1.4)
$$C_{\Omega}^{s} = \{ f \in C^{s}(\mathbb{R}^{n}), \operatorname{supp} f \subset \Omega \}$$

Thus, $\Lambda_{\vec{A},q}$ carries information about the magnetic field instead of information about \vec{A} . The natural question is whether $\Lambda_{\vec{A},q}$ determines uniquely $\operatorname{rot}(\vec{A})$ and q. In [Su], this question was answered affirmatively for \vec{A} in the C_{Ω}^2 class and q in the $L^{\infty}(\Omega)$ class, under the assumption that $\operatorname{rot}(\vec{A})$ is small in the L^{∞} topology. Namely, we have

Theorem A. Let $\vec{A}_j \in C^2_{\Omega}, q_j \in L^{\infty}(\Omega), j = 1, 2$. Assume that zero is not a Dirichlet eigenvalue for $H_{\vec{A}_j,q_j}, j = 1, 2$. Then there exists a constant $\varepsilon = \varepsilon(\Omega) > 0$ such that if $\|\operatorname{rot}(\vec{A}_j)\|_{L^{\infty}(\Omega)} < \varepsilon, j = 1, 2$, and

$$\Lambda_{\vec{A}_{1},q_{1}} = \Lambda_{\vec{A}_{2},q_{2}} ,$$

then

$$rot(\vec{A}_1) = rot(\vec{A}_2)$$
 and $q_1 = q_2$ in Ω

The main purpose of this paper is to consider the above problem for C^{∞} class of potentials \vec{A} and q. In this case we are able to remove the smallness assumption on $rot(\vec{A})$. We have

Theorem B. Let $\vec{A}_j \in C^{\infty}(\tilde{\Omega})$, $q_j \in C^{\infty}(\tilde{\Omega})$, j = 1, 2. Assume that zero is not a Dirichlet eigenvalue of $H_{\vec{A}_j,q_j}$, j = 1, 2. If

$$\Lambda_{\vec{A}_1,q_1} = \Lambda_{\vec{A}_2,q_2} ,$$

then

$$\operatorname{rot}(\vec{A}_1) = \operatorname{rot}(\vec{A}_2)$$
 and $q_1 = q_2$ in Ω .

If we assume $\vec{A}_j \in C^{\infty}_{\Omega}$, then Theorem B holds even for $q_j \in L^{\infty}(\Omega)$. We have

Theorem C. Let $\vec{A}_j \in C_{\Omega}^{\infty}$, $q_j \in L^{\infty}(\Omega)$, j = 1, 2. Assume that zero is not a Dirichlet eigenvalue of $H_{\vec{A}_i, q_i}$, j = 1, 2. If

$$\Lambda_{\vec{A}_{1},q_{1}}=\Lambda_{\vec{A}_{2},q_{2}},$$

then

$$\operatorname{rot}(\vec{A}_1) = \operatorname{rot}(\vec{A}_2)$$
 and $q_1 = q_2$ in Ω .

In the next three sections we shall give proofs for Theorems B and C. Our proofs are a combination of methods developed in [L-U], [N-U] and [Su]. We remark that in the case $\vec{A} = 0$, global uniqueness was established in [S-U].

In the next section we shall show that $\Lambda_{\vec{A},q}$ determines the boundary values of $rot(\vec{A})$ and its normal derivatives of all orders at the boundary. Namely, we have

Theorem D. Let $\vec{A}_j \in C^{\infty}(\tilde{\Omega})$ and $q_j \in C^{\infty}(\bar{\Omega})$, j = 1, 2. Assume that zero is not a Dirichlet eigenvalue of $H_{\vec{A}_i,q_i}$, j = 1, 2. If

$$\Lambda_{\vec{A}_{1},q_{1}}=\Lambda_{\vec{A}_{2},q_{2}},$$

then we can find $\phi \in C^{\infty}(\Omega)$ vanishing to first order at $\partial \Omega$ such that

$$\vec{A}_1 = \vec{A}_2 + \nabla \phi$$

to infinite order at $\partial \Omega$.

As one can see from the proof of Theorem D one can prove also that $A_{\vec{A},q}$ determines also the boundary values of q and its normal derivatives of all orders at the boundary (This was proven in [K-V] in the cases $\vec{A} = 0.$) However, this fact will not be used to prove Theorem B and C. Theorem D reduces the proof of Theorem B to the proof of Theorem C by an extension argument.

In Sect. 3 we shall construct a family of exponentially growing functions (in certain directions) of the form

(1.5)
$$u(x,\xi) = e^{\xi \cdot x + \phi(x,\xi)} (1 + \omega(x,\xi))$$

satisfying the equation $H_{\vec{A},q}u = 0$, with the property that $\omega(x,\xi)$ decays as $|\xi| \to \infty$, where $\xi \in \mathbb{C}^n$, $\xi \cdot \xi = 0$, $\hat{\xi} = \xi/|\xi|$. It is the construction of ω which presents some difficulties. In [Su], ω was constructed for $\vec{A} \in C_{\Omega}^2$, $q \in L^{\infty}(\Omega)$ under the assumption that $\|\operatorname{rot}(\vec{A})\|_{L^{\infty}(\Omega)}$ is small. In Sect. 3 we shall construct ω for $\vec{A} \in C^{\infty}(\bar{\Omega})$ and $q \in L^{\infty}(\Omega)$ without the smallness assumption on $\operatorname{rot}(\vec{A})$. This will be done by intertwining the operator $e^{-x \cdot \xi} H_{\vec{A},q}(e^{x \cdot \xi})$ with the operator $e^{-x \cdot \xi} \Delta(e^{x \cdot \xi})$ and then using the solutions for the latter constructed in [S-U]. A similar approach was developed in [N-U] for the elasticity system.

Section 4 is devoted to the proof of Theorem B and C. We shall first reduce Theorem B to Theorem C. The proof of C follows from results in Sect. 3 and modification of arguments in [Su].

2 Boundary determination

In this section we prove Theorem D in the introduction. To do this we proceed as in [L-U]. We write the operator in boundary normal coordinates and then we factorize the operator. This leads to a Riccati type equation for the Dirichlet to Neumann map similar to the one derived in [L-U] for the case that the operator is the Laplace-Beltrami operator of a Riemannian metric. In that case similar Riccati type equations were derived by different methods by Cheney, Isaacson and Somersalo [S-I-C] and, in the isotropic case, by Sylvester [S].

The Schrödinger operator (1.1) can be rewritten as

(2.1)
$$P(x,D) = -\Delta + \sum_{j=1}^{n} 2A_j(x)D_{x_j} + G(x)$$

where

(2.2)
$$G = \vec{A}^2 - 2i\nabla \cdot \vec{A} + q, \quad D_{x_j} = \frac{1}{i}\frac{\partial}{\partial x_j}$$

The Dirichlet to Neumann map $\Lambda_{\vec{A},q}$ is a pseudodifferential operator of order 1. In boundary normal coordinates, $(x^1, \ldots, x^{n-1}, x^n) = (x', x_n)$ with $\partial \Omega$, (resp. Ω) is given locally by $x^n = 0$, (resp. $x_n > 0$) (see [L-U]). We have that

(2.3)
$$-\Delta = D_{x^n}^2 + iE(x)D_{x^n} + Q(x,D_{x'})$$

where $Q(x, D_{x'})$ a second order operator in $D_{x'}$, depending smoothly on x^n with positive principal symbol. We remark that E(x) and $Q(x, D_{x'})$ are known in this case. Using (2.3), the operator (2.1) can be written as

(2.4)
$$P(x,D) = D_{x^n}^2 + iE(x)D_{x^n} + Q(x,D_{x'}) + \sum_{j=1}^{n-1} 2C_j(x)D_{x^j} + 2\tilde{A}_n D_{x^n} + G$$

where $\tilde{A}_n, C_j = 1, ..., n-1$ are the components of \vec{A} in boundary normal coordinates. Now we define

(2.5)
$$M(x,D) = e^{if} P(x,D) (e^{-if}) = -\Delta + \sum_{j=1}^{n-1} \tilde{A}_j D_{x^j} + \tilde{G}$$

with

$$f(x',x^n) = \int_0^{x^n} \tilde{A}_n(x',s) ds \, .$$

The point is that we can factorize (2.5) as a product of two first order operators. Namely, we have

Proposition 2.6. There exists a pseudodifferential operator $B(x, D_{x'})$ of order 1 in x' depending smoothly on x^n such that

$$(2.7) M(x,D) = (D_{x^n} + iE(x) - iB(x,D_{x'}))(D_{x^n} + iB(x,D_{x'}))$$

modulo a smoothing operator.

Proof. In order for (2.7) to be valid we need that B satisfies the following Ricatti equation

(2.8)
$$i[D_{x^n}, B] - E(x)B + B^2 - Q - \sum_{j=1}^{n-1} \tilde{A}_j D_{x^j} - \tilde{G} = 0$$

modulo smoothing. Therefore the full symbol $b(x, \eta')$ of $B(x, D_{x'})$ must satisfy

(2.9)
$$\sum_{\alpha} \frac{1}{\alpha!} \partial_{\eta'}^{\alpha} b D_{x'}^{\alpha} b - h + \partial_{x^n} b - Eb = 0$$

where

$$h(x,\eta') = g_2(x,\eta') + g_1(x,\eta') + \sum_{j=1}^{n-1} \tilde{A}_j \eta_j + \hat{G}$$

with $g_2(x, \eta') + g_1(x, \eta')$ the full-symbol of $Q(x, D_{x'})$ and $g_2(x, \eta')$ the principal symbol.

We write

$$(2.10) b(x,\eta') \sim \sum_{j \leq 1} b_j(x,\eta')$$

with b_j homogeneous of degree j in η' . Grouping the homogeneous terms of degree two in (2.9) we obtain

$$b_1^2 - g_2 = 0$$

We then choose

(2.11)
$$b_1 = -\sqrt{g_2}$$

The homogeneous terms of degree one in (2.9) is

$$2b_0b_1 + \sum_{|\alpha|=1} \partial_{\eta'}^{\alpha}(b_1)D_{x'}^{\alpha}(b_1) - g_1 + \partial_{x''}b_1 - \sum_{j=1}^{n-1} \tilde{A}_j\eta_j - Eb_1 = 0.$$

We choose

(2.12)

$$b_{0} = \frac{1}{2\sqrt{g_{2}}} \left(\sum_{|\alpha|=1} \partial_{\eta'}^{\alpha'}(\sqrt{g_{2}}) D_{x'}^{\alpha'}(\sqrt{g_{2}}) - g_{1} - \partial_{x''}\sqrt{g_{2}} + E\sqrt{g_{2}} + \sum_{j=1}^{n-1} \tilde{A}_{j}\eta_{j} \right)$$

The homogeneous term of degree zero in (2.9) is

(2.13)
$$2b_{-1}b_1 + \sum_{\substack{j,k,K\\0 \le j,k \le 1\\|K| = j+k}} \frac{1}{K!} \partial_{\eta'}^K(b_j) D_{x'}^K(b_k) + \frac{\partial}{\partial x^n} b_0 - \tilde{G} - Eb_0 .$$

We then choose

(2.14)
$$b_{-1} = \frac{1}{2\sqrt{g_2}} \left(\sum_{\substack{j,k,K \\ 0 \le j,k \le 1 \\ |K| = j+k}} \frac{1}{K!} \partial_{\eta'}^K(b_j) D_{x'}^K(b_k) + \frac{\partial b_0}{\partial x^n} - Eb_0 - \tilde{G} \right) .$$

The terms $b_j, j \leq -2$ are chosen in a similar fashion, (see (1.9) in [L-U]) completing the proof of the proposition.

The point of the construction above is that

Proposition 2.15.

(2.16)
$$\Lambda_{\vec{A},q} = B(x, D_{x'})|_{x^n=0} - 2i\tilde{A}_n|_{x^n=0} \mod \text{ smoothing }.$$

Proof. Using Proposition (2.6) and the same arguments as in the proof of Proposition 1.2 in [L-U] we conclude that

$$\frac{\partial u}{\partial x^n}|_{x^n=0} = B(x, D_{x'})u|_{x^n=0} \text{ mod. smoothing}$$

where u solves the Dirichlet problem

$$M(x,D)u = 0$$
 in $\Omega; \quad u|_{\partial\Omega} = f$.

Proof of Theorem D. We first look at the principal symbol of (2.16). Using (2.16) we have that the terms homogeneous of degree one in the full symbol of $A_{\vec{l},\vec{n}}$ is

(2.17)
$$b_1(x,\eta')|_{x^n=0} = \sqrt{g_2}|_{x^n=0}$$

The term homogeneous of degree zero in the full symbol of $A_{\vec{A},q}$ is

$$(2.18) (b_0 - 2i\tilde{A}_n)|_{x^n = 0}$$

From (2.12) then we observe that we can determine knowing the full symbol of the Dirichlet to Neumann map

(2.19)
$$\frac{1}{2\sqrt{g_2}}\sum_{j=1}^{n-1}\tilde{A}_j\eta^j - 2i\tilde{A}_n$$

at $x^n = 0$. Therefore, since \tilde{A}_j are real-valued, we conclude that we can recover, \tilde{A}_j, \tilde{A}_n at $x^n = 0$ at this stage.

The term homogeneous of degree -1 in the full symbol of $\Lambda_{\vec{A},q}$ is

$$b_{-1}|_{x^n=0}$$
.

Therefore using (2.14), (2.17) and (2.18) we conclude that we can recover from $b_{-1}|_{x^n=0}$

$$\frac{\partial b_0}{\partial x^n} - \tilde{G}$$

at $x^n = 0$. Then using (2.12) we can determine from the full symbol of the DN map

(2.20)
$$\frac{1}{2\sqrt{g_2}}\frac{\partial}{\partial x^n}\left(\sum_{j=1}^{n-1}\tilde{A}_j\eta^j\right) - \tilde{G}$$

at $x^n = 0$. Since \tilde{A}_j , j = 1, ..., n - 1, is real-valued we determine from (2.20)

$$\frac{\partial}{\partial x^n}\tilde{A_j}, j=1,\ldots,n-1$$

at x'' = 0. Proceeding inductively we can then prove that we can recover from the homogeneous terms of degree -k in the full symbol of $\Lambda_{\vec{k},a}$.

$$\left(\frac{\partial}{\partial x^n}\right)^k \tilde{A}_j|_{x^n=0}, \ j=1,\ldots,n-1$$
.

The result now follows from (2.5) since we know $\tilde{A}_n|_{x^n=0}$ and the Taylor series of \tilde{A}_j , j = 1, ..., n-1, at $x^n = 0$

3 Construction of solutions

Let $\vec{A} \in C_{\Omega}^{\infty}$, $q \in L^{\infty}(\Omega)$. We extend q = 0 outside Ω . We look for solution of the form

(3.1)
$$U(x,\xi) = e^{\xi \cdot x + \phi(x,\xi)} (1 + \omega(x,\xi)), \ x \in \Omega,$$

in the null space of $H_{\vec{A},q}$, with the property that $\omega(x,\xi)$ behaves like $|\xi|^{-1}$ as $|\xi|$ tends to ∞ , where $\xi \in \mathbb{C}^n$, $\xi \cdot \xi = 0$ and $\hat{\xi} = \xi/|\xi|$. This is reduced to construct ϕ and ω from the following two equations.

(3.2)
$$\xi \cdot \nabla \phi = -i\xi \cdot \vec{A}$$

(3.3)
$$\Delta \omega + 2(\xi + \nabla \phi + i\vec{A}) \cdot \nabla \omega - g\omega = g$$

where

(3.4)
$$g = \vec{A}^2 - i\nabla \cdot \vec{A} + q - 2i\vec{A} \cdot \nabla \phi - \nabla \phi \cdot \nabla \phi - \Delta \phi$$

As in [Su], we construct ϕ by Fourier transforming (3.2). This leads to

(3.5)
$$\phi(x,\hat{\xi}) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{-ix \cdot \eta} \left(\frac{\xi \cdot \vec{A}^{\wedge}(\eta)}{\xi \cdot \eta} \right) d\eta ,$$

where \wedge denotes the Fourier transform. One can easily verify that $\phi(\cdot, \hat{\xi}) \in C^{\infty}(\mathbb{R}^n)$ is a solution to (3.2), which satisfies

$$(3.6) \|\phi(\cdot,\widehat{\xi})\|_{C^{m}(\bar{\mathcal{O}})} \leq C(\mathcal{O},m)\|\vec{A}\|_{C^{m}_{\Omega}}$$

for any bounded domain $\mathcal{O} \subset \mathbb{R}^n$. Moreover, $\phi(x, \hat{\xi})$ is differentiable in $\hat{\xi}$ on the manifold $\{\xi \in \mathbb{C}^n, \xi \cdot \xi = 0, |\xi| = 1\}$.

In the rest of this section we shall construct ω . Since we are looking for solution u on Ω , we may rewrite the equation (3.3) as

(3.8)
$$\Delta_{\xi}\omega + \overline{B}\cdot\nabla\omega - h\omega = h$$

where

(3.9)
$$\Delta_{\xi} = \Delta + 2\xi \cdot \nabla, \vec{B} = 2(\nabla \phi + i\vec{A})\psi, \ h = g\psi$$

and $\psi \in C_0^{\infty}(\mathbb{R}^n)$ with $\psi|_{\Omega} \equiv 1$. We denote

$$(3.10) M_{\xi} = \varDelta_{\xi} + \vec{B} \cdot \nabla, \ L_{\xi} = M_{\xi} - h \,.$$

We shall construct ω by inverting L_{ξ} . To do this, we need to invert M_{ξ} first. Assume that $\xi = s\xi_0 + O(\frac{1}{s})$, where $\xi_0 \in \mathbb{C}^n$, $|\xi_0| = 1$ and $\xi \cdot \xi = 0$.

Lemma 3.11. The operator M_{ξ} has a bounded inverse $M_{\xi}^{-1} : L^{2}(\Omega) \to H^{1}(\Omega)$ for $|\xi|$ sufficiently large. Moreover, for any $f \in L^{2}(\Omega)$,

(3.12) $\|M_{\xi}^{-1}(f)\|_{L^{2}(\Omega)} \leq C|\xi|^{-1} \|f\|_{L^{2}(\Omega)}$

(3.13)
$$\|M_{\xi}^{-1}(f)\|_{H^{1}(\Omega)} \leq C \|f\|_{L^{2}(\Omega)}$$

where C is a constant independent of ξ .

Lemma 3.11 is the key step in constructing the solution ω . Once Lemma 3.11 is proven, analogous arguments to the ones in [Su] (lemma 2.4) can be used to show that Lemma 3.11) is valid with M_{ξ} replaced by L_{ξ} . This gives us

Proposition 3.14. For $|\xi|$ large enough, there is a solution ω satisfying (3.3). Moreover,

(3.15)
$$\|\omega\|_{L^{2}(\Omega)} \leq \frac{C}{|\xi|}, \ \|\nabla\omega\|_{L^{2}(\Omega)} \leq C,$$

where C is a constant independent of $|\xi|$.

To prove Lemma 3.11, we first introduce some notations. We denote by $L^m(\mathbb{R}^n, Z)$ the space of pseudodifferential operators of order *m* in the Shubin class [Sh] where $Z = \{\xi \in \mathbb{C}^n, \xi \cdot \xi = 0, |\xi| \ge 1\}$ (see [N-U]). We define $\Lambda_{\xi} \in L^s(\mathbb{R}^n, Z)$ as the properly supported pseudodifferential operator with principal symbol

$$\sigma(\Lambda^{s}_{\xi}) = (|\eta|^{2} + |\xi|^{2})^{\frac{4}{2}},$$

for the definition of properly supported see [N-U].

We denote

$$\tilde{M}_{\xi} = M_{\xi} \Lambda_{\xi}^{-1}, \ \tilde{\Delta}_{\xi} = \Delta_{\xi} \Lambda_{\xi}^{-1}.$$

Lemma 3.16. Let $N \in \mathbb{Z}^+$. There exist A_{ξ} and $B_{\xi} \in L^0(\mathbb{R}^n, \mathbb{Z})$ properly supported satisfying the following: For any $\phi_1 \in C_0^{\infty}(\mathbb{R}^n)$ there exist $\phi_2, \phi_3, \phi_4 \in C_0^{\infty}(\mathbb{R}^n)$ and r > 0 such that

(3.17)
$$\phi_1 \tilde{M}_{\xi} A_{\xi} = \phi_1 B_{\xi} \phi_2 \Lambda_{\xi}^{-1} (\Delta_{\xi} + \phi_3 R_{\xi}^{(-N)} \phi_4)$$

where

$$R^{(-N)}_{\xi}: H^{\alpha}(\mathbb{R}^n) \to H^{\alpha+N}(\mathbb{R}^n)$$

is a bounded linear operator with

(3.18)
$$\|R_{\xi}^{(-N)}\|_{H^{\alpha}(\mathbb{R}^{n}),H^{\alpha+N}(\mathbb{R}^{n})} \leq C_{\alpha}|\xi|^{-N}$$

for $\xi \in \mathbb{Z}, |\xi| \ge r$ and any $\alpha \in \mathbb{R}$. Morever $\phi_j, j = 2, 3, 4$ are taken to satisfy

(3.19)
$$\phi_1\phi_2 = \phi_1, \ \phi_2\phi_3 = \phi_2, \ \phi_1\phi_4 = \phi_1$$

and

(3.20)
$$\phi_1 B_{\xi} \phi_2 = \phi_1 B_{\xi}, \ \phi_2 A_{\xi}^{-1} \phi_3 = \phi_2 A_{\xi}^{-1}$$

We refer the reader to [N-U] for the proof of Lemma 3.16.

Proof of lemma 3.11. By defining

$$(3.21) C_{\xi} = B_{\xi} A_{\xi}^{-1}$$

we conclude using (3.17) and (3.20)

(3.22)
$$\phi_1 \tilde{M}_{\xi} A_{\xi} = \phi_1 C_{\xi} \left(\Delta_{\xi} + \phi_3 R_{\xi}^{(-N)} \phi_4 \right)$$

Take now $\phi'_1 \in C_0^{\infty}(\mathbb{R}^n)$ such that $\phi'_1 = 1$ on supp ϕ_1 . It is easy to see that there exists a linear operator \tilde{C}_{ξ}^{-1} such that

(3.23)
$$\phi'_1 C_{\xi} \tilde{C}_{\xi}^{-1} = \phi'_1$$

and

$$(3.24) \|\tilde{C}_{\xi}^{-1}\|_{H^{\alpha}, H^{\alpha-1}} \leq C_{\alpha}|\xi|$$

for any $\alpha \in \mathbb{R}$. We are taking in the rest of the proof $\xi \in Z$, $|\xi| \ge r$, for an appropriate r > 0. Let us choose now $\phi'_2 \in C_0^{\infty}(\mathbb{R}^n)$ such that

(3.25)
$$\phi_1' C_{\xi} \phi_2' = \phi_1 C_{\xi}$$

Let us consider the equation

(3.26)
$$(\Delta_{\xi} + \phi_3 R_{\xi}^{(-N)} \phi_4) v = \phi_2' \tilde{C}_{\xi}^{-1} \phi_1 f$$

From (3.22), (3.23) and (3.25) we have

$$\phi_1 \tilde{M}_{\xi} A_{\xi} v = \phi_1^3 \phi_1' C_{\xi} \tilde{C}_{\xi}^{-1} \phi_1 f = \phi_1^2 \phi_1' f = \phi_1^2 f .$$

Hence, since $\phi_1 = 1$ on Ω , if v is a solution of (3.26), then

$$(3.27) w = \Lambda_{\xi}^{-1} A_{\xi} \phi_1'' v$$

satisfies

$$(3.28) M_{\xi}w = f \quad \text{in } \Omega.$$

Here we have taken $\phi_1'' \in C_0^{\infty}(\mathbb{R}^n)$ such that $\phi_1 \tilde{M}_{\xi} A_{\xi} \phi_1'' = \phi_1 \tilde{M}_{\xi} A_{\xi}$. Using (3.18), (3.24) and the representation theorem for compactly supported distributions (see for instance [M] Thm. 2.13, page 92), it is easy to prove that for any $f \in L^2(\mathbb{R}^n)$,

(3.29)
$$v = \left(I + \Delta_{\xi}^{-1}\phi_{3}R_{\xi}^{(-N)}\phi_{4}\right)^{-1}\Delta_{\xi}^{-1}\phi_{2}'\tilde{C}_{\xi}^{-1}\phi_{1}f \in H_{loc}^{1}(\mathbb{R}^{n})$$

satisfies (3.26). Furthermore, using (3.24) and the estimates for Δ_{ξ}^{-1} ([S-U]) we have

$$\|\phi_1''v\|_{H^{\alpha}(\mathbb{R}^n)} \leq C_{\alpha}|\xi|^{\alpha} \|f\|_{L^2(\mathbb{R}^n)}$$

for $\alpha = 0, 1$. Now we take $\psi_1, \psi_2 \in C_0^{\infty}(\mathbb{R}^n)$ such that $\psi_1 \phi_1'' = \phi_1'', \Lambda_{\xi}^{-1} A_{\xi} \psi_1 = \psi_2 \Lambda_{\xi}^{-1} A_{\xi} \psi_1$. Then using the estimate (1.12) in [N-U] we conclude that $w \in H^2(\mathbb{R}^n)$ and

(3.31)
$$||w||_{H^{\alpha}(\mathbb{R}^{n})} \leq C_{\alpha}|\xi|^{\alpha-1}||f||_{H^{1}(\mathbb{R}^{n})}, \alpha = 0, 1.$$

This concludes the proof.

4 Proofs of theorems

In this section we prove Theorems B and C. We first reduce Theorem B to Theorem C.

Let $\vec{A}_j \in C^{\infty}(\bar{\Omega})$, $q_j \in C^{\infty}(\bar{\Omega})$, j = 1, 2 and $A_{\vec{A}_1,q_1} = A_{\vec{A}_2,q_2}$. Let B_R be a ball with center at the origin and radius R so that $\bar{\Omega} \subset B_R$. Let ϕ be as in Theorem D. Using this result and the invariance of the Dirichlet to Neumann map, we can change \vec{A}_2 by $\vec{A}_2 + \nabla \phi$ and assume that $\vec{A}_1 = \vec{A}_2$ to infinite order at $\partial \Omega$. We choose a vector function \vec{A}'_1 on B_R so that $\vec{A}'_1 \in C_0^{\infty}(B_R)$ and $\vec{A}'_1|_{\Omega} \equiv \vec{A}_1$, and define

$$\vec{A}_2'(x) = \begin{cases} \vec{A}_2(x), & x \in \Omega \\ \vec{A}_1'(x), & x \in \tilde{B}_R \setminus \Omega \end{cases}$$

Then $\vec{A}'_2 \in C_0^{\infty}(B_R)$. We simply extend q_j , to $q'_j \in L^{\infty}(B_R), j = 1, 2$ so that

$$q'_j(x) = \begin{cases} q_j(x), & x \in \Omega \\ 0, & x \in B_R \setminus \Omega \end{cases}$$

Consider now the operator $H_{\vec{A}'_j,q'_j}$, j = 1, 2. We may change the radius R slightly so that zero is not a Dirichlet eigenvalue for both $H_{\vec{A}'_j,q'_j}$, and thus $\Lambda_{\vec{A}'_j,q'_j}$ is welldefined, j = 1, 2. Since $\Lambda_{\vec{A}_1,q_1} = \Lambda_{\vec{A}_2,q_2}$, and $\vec{A}'_1 = \vec{A}'_2$ and $q'_1 = q'_2$ on $B_R \setminus \Omega$, it follows from a well-known fact in inverse boundary value problems that $\Lambda_{\vec{A}'_1,q'_1} = \Lambda_{\vec{A}'_2,q'_2}$ on ∂B_R . Therefore, Theorem B is reduced to Theorem C.

The proof of Theorem C follows similar lines of argument to the ones given in [Su]. We give only an outline.

Proof of Theorem C. The proof begins with the following identity.

(4.1)
$$i \int_{\Omega} (\vec{A}_1 - \vec{A}_2) \cdot (u_1 \nabla \overline{u}_2 - u_2 \nabla \overline{u}_1) dx + \int_{\Omega} (\vec{A}_1^2 - \vec{A}_2^2 + q_1 - q_2) u_1 \overline{u}_2 dx = 0$$

where u_j is any solution of $H_{\vec{A}_j,q_j}u_j = 0$, j = 1, 2, and we have assumed that $\Lambda_{\vec{A}_1,q_1} = \Lambda_{\vec{A}_2,q_2}$. See Proposition 3.1 in [Su] for a proof which is based on an integration by parts argument.

The next step is to replace u_j , j = 1, 2 in (4.1) by exponentially growing solutions constructed in Sect. 3. Let k, γ_1, γ_2 be three mutually orthogonal vectors in \mathbb{R}^n with $|\gamma_1| = |\gamma_2| = 1$. Let $\zeta, \zeta \in \mathbb{C}^n$ be given by $\zeta = \gamma_1 + i\gamma_2$, $\zeta = s\zeta + g(s,k)\gamma_1$, where s is a positive real parameter and

$$g(s,k) = |k|^2 (2(|k|^2 + 4s^2)^{\frac{1}{2}} + 4s)^{-1}$$

Define

(4.2)
$$\xi_1 = \frac{ik}{2} + \xi, \quad \overline{\xi}_2 = \frac{ik}{2} - \xi$$

One can check that $\xi_1 \cdot \xi_1 = \xi_2 \cdot \xi_2 = 0$. We now construct

(4.3)
$$u_{j}(x,\xi_{j}) = e^{\xi_{j} \cdot x + \phi_{j}(x,\xi_{j})} (1 + \omega_{j}(x,\xi_{j}))$$

solution of $H_{\vec{A}_j,q_j}u_j = 0$, j = 1,2. Substituting (4.3) into (4.1) and letting s tend to ∞ , one gets

(4.4)
$$\int_{\Omega} e^{ikx + \phi_1^* + \bar{\phi}_2^*} \zeta \cdot (\vec{A}_1 - \vec{A}_2) dx = 0$$

where $\phi_j^*(x,\zeta) = \phi_j(x,\widehat{\zeta}), \ j = 1,2.$

(4.4) is all we need to deduce that

$$\operatorname{rot}(\vec{A}_1) = \operatorname{rot}(\vec{A}_2) \,.$$

See Sect. 4.1 in [Su] for details. (4.5) implies that there exist $p \in C_{\Omega}^{1}$ so that

$$\vec{A}_1 - \vec{A}_2 = \nabla p \quad \text{in } \Omega$$

To prove $q_1 = q_2$, we first recall that $H_{\vec{A},q}$ is invariant under gauge transformations. This fact together with (4.6) implies that $\Lambda_{\vec{A}_2,q_2} = \Lambda_{\vec{A}_2+\nabla p,q_2} = \Lambda_{\vec{A}_1,q_2}$. On the other hand, $\Lambda_{\vec{A}_1,q_1} = \Lambda_{\vec{A}_2,q_2}$. So we have

$$\Lambda_{\vec{A}_{1},q_{1}} = \Lambda_{\vec{A}_{1},q_{2}} \, .$$

This means that we may assume $\vec{A}_1 = \vec{A}_2$ when we prove $q_1 = q_2$. Letting $\vec{A}_1 = \vec{A}_2$ in (4.1) we get

(4.7)
$$\int_{\Omega} (q_1 - q_2) u_1 \overline{u}_2 dx = 0$$

Now substituting (4.3) into (4.7) and letting s tend to ∞ we get

$$\int_{\Omega} e^{ikx+\phi_1^*+\bar{\phi}_2^*}(q_1-q_2)dx=0,$$

from which the result follows immediately.

Note added in proof. Esking and Ralston have recently solved the inverse scattering problem at a fixed energy for the Schrödinger equation in a magnetic field assuming that the potentials are exponentially decaying.

References

- [K-V] Kohn, R. and Vogelius, M., Determining conductivity by boundary measurements, Comm. Pure Appl. Math. 38 (1985), 643–667
- [H-N] Henkin, G.M. and Novikov, R.G., ∂-equation in the multidimensional inverse scattering problem, Uspekhi Math. Nauk. 42 (1987), 93-152 (translated in Russian Math. Surveys 42 (1987), 109-180)
- [L-U] Lee, J. and Uhlmann, G., Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math. 42 (1989), 1097-1112
- [M] Mizohata, S., The theory of partial differential equations, Cambridge University Press, (1973)
- [N-U] Nakamura, G. and Uhlmann, G., Global uniqueness for an inverse boundary value problem arising in elasticity. Invent. Math. 118 (1994), 457-474
- [N] Novikov, R., Multidimensional inverse spectral problems for the equation $-\Delta + (V(x) Eu(x))\psi = 0$, Funct. Anal. Appl. 22 (1988), 263-272
- [S] Sylvester, J., A convergent layer stripping algorithm for a radially symmetric impedance tomography problem, Comm. P.D.E. 17 (1992), 1955-1994
- [S-U] Sylvester, J. and Uhlmann, G., A global uniqueness theorem for an inverse boundary value problem, Ann. Math. 125 (1987), 153-169
- [Sh] Shubin, M. A., Pseudodifferential operators and spectral theory, Springer Series in Soviet Mathematics, Springer-Verlag (1987)
- [So-I-C] Somersalo, E., Isaacson, D. and Cheney M., Layer stripping: a direct numerical method for impedance imaging, Inverse problems 7 (1991), 899–926
- [Su] Sun, Z., An inverse boundary value problem for Schrödinger operator with vector potentials, Trans. of AMS, 338(2), (1993), 953-969