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Abstract. 
Given a closed convex pointed cone G C R n which is positively invariant 

with respect to motions of the differential equation :~ = Ax (A being a real 
(n X n) matrix), it is proven that a necessary and sufficient condition for 
asymptotic stability of C (and therefore of the linear span of G) is 

Ax@~}xE ~ x =  O. 

In case C = R~_, this result yields a known equivalence from the theory of 
M-matrices. 

1. Introduction 

Consider the linear autonomous differential equation 

5c(t) = Ax( t ) ;  t >~ O, (1.1) 

where x ~  R n and A is a real constant (n × n) matrix. With regard to (1.1) we 
require the following. 

Definition 1.2. Let ~ be a nonempty subset of R n. 
(1.2.1) ~ is said to be positively invariant (with respect to motions of (1.1)) if 

for each initial state x0~  ~, the motion emanating from x 0 remains in ~; that is, 
eAr lE  ~ Vt~>0. 
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(1.2.2) ~ is said to be asymptotically stable provided that for every x0~ ~ we 
have eAtxo---~O a s  t")OO; in case span ( ~ ) = R " ,  this means R E X < 0  VX~ 
spectrum (A). 

The characterization of asymptotic stability of a positively invariant set 
containing the origin is a problem of general interest, since in certain dynamical 
models it may be useful to determine whether or not motions constrained to 
remain in ~ deteriorate to the origin. The main purposes of the present work are 
to obtain such a characterization (in algebraic terms) in case ~ is closed convex 
pointed cone, and to point out connections with results from the theory of 
M-matrices. 

Prior to stating the main result of this note, some further terminology is 
needed. 

Definition 1.3. Let ~ be a nonempty subset of R". 
(1.3.1) ~ is a cone if a~ C~  Va~>0; that is, a g ~  Va>~O, V g ~ .  
(1.3.2) A cone ~ is pointed if ~A { - ~} = {0}; that is, if g ~  ~, - g ~  .~, then 

g = 0 .  
The main result of the present work gives a characterization of asymptotic 

stability of closed, convex, pointed, positively invariant cones: 

Theorem 1.4. Let G C R" be a closed convex pointed cone which is positively 
invariant. Then a necessary and sufficient condition for asymptotic stability of G (and 
therefore of the linear span of G) is 

AxE~)xE = x = 0 .  (1.5) 

Theorem 1.4, and the following corollary, (in which we take C = R" the  + ~  

nonnegative orthant), are proven in section 2. 

Corollary 1.6. 
nonnegative. Then the following are equivalent: 

ReX < 0 VX E spectrum(A) 

Ax>~O) 
x>~O x = 0 

There exists u ~ 0 such that - ATu > O. (Here " ~> " 

Let A be a real (n 5< n) matrix whose off-diagonal entries are 

(1.7) 

(1.8) 

and" > " hold componentwise.) 
(1.9) 

Corollary 1.6 represents a new proof of a known result in the theory of 
M-matrices. In 1937 Ostrowski [5] proved that a real (n × n) matrix A with 
nonnegative off-diagonal entries has an inverse with all nonpositive entries if and 
only if Re X < 0 VXE spectrum(A), while in 1966 Robert [6] showed that this is 
equivalent to (1.8) and (1.9). (For a thorough treatment of M-matrices as well as 
bibliographic background, the reader is referred to Berman and Plemmons [1].) 
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2. Proof of Main Result. 

Our first task is to obtain a geometric characterization of positive invariance. To 
this end, we require the following specialization of a result due to Nagumo [4]; see 
also Yorke [8]. (The euclidean distance from a point x E R" to a set G C R ~ is 
denoted d(x,  G). Let 8G denote the boundary of G.) 

Lemma 2.1. Let ~ be a closed subset of R n. Then a sufficient condition for positive 
invariance of Co is 

l i m i n f d ( x + t A x ' G )  = 0 V x E  OG (2.2) 
t~0 + t 

For G C R  n closed, convex, and xEO.G, we denote by 9L~(x) the cone of 
outward normal vectors to G at x; that is, 

= y - x > < - O V y E ¢ ) ,  

where < . , - )  denotes the inner product in R ~. Note that v E % ~ ( x ) / { 0 }  means 
that v is an (outward pointing) normal to a hyperplane which supports @ at x. The 
support cone of ~ at x E 8~ is 

Hence {x + $~(x)} is the intersection of all halfspaces supporting G at x. 

Definition 2.3. Let G C R n be closed and convex. For x ¢ 8G, we say that a vector 
h E R ~ is subtangential to ~ at x provided that h ¢ $~(x). 

Lemma 2.4. Let ~ be a closed convex subset of R n. Then a necessary and sufficient 
condition for ~ to be positively invariant is that Ax  be subtangential to @ at each 
xEO~. 

Proof (i) Necessity. Let x 0 = x(0) ¢ 8G. Since x( t )  remains in G, it readily follows 
that 

x(t)-x0 e$~(Xo) v t > 0 .  

Letting t ~ 0 +, we obtain 2(0) = A x o ~  $~(Xo). 

(ii) Sufficiency. In view of Lemma 2.1, it is enough to show that subtangentiality 
of Ax  to G at x for each x ~  0G implies (2.2). (Actually, the reverse implication 
holds as well, but is not required.) Suppose (2.2) did not hold. Then for some 
x ~  8G there exist e >  0 and a sequence {t i ]~l ,  t~ --, 0 +, such that d(x  + t iAx,  G) >t 
eQ. Denote the closed ball of radius # centered at z E  R n by B(z, 0). We then have 

x +  U B( t iAx ,  tie C3G = @ (2.5) 
i = l  
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We claim that 

x+ U B(tAx, te)} n ~  = ¢ (2.6)  
t > 0  

Indeed, if { > 0  was such that {x + B([Ax, {e)} N~ vaeo, then convexity of 
implies {x + B(tAx,  te)} C)~ 4 = ep V t E  [0, t], which violates (2.5). Now, in view of 
(2.6), A x  q£ S~(x), contradicting subtangentiality. [] 

We shall require the following elementary results on subtangentiality to 
cones: 

Lemma 2.7. Let C C R ~ be a closed convex cone, and let x E 8C. Then ( v, x )  = 0 
Vv E %e(x). 

Proof Let v E ff~e(x) and a > 0. Then ax E G, 2ax E G, and therefore 

( v ,  a x -  x )  <~ O; ( v , 2 a x -  x )  <~ O. 

Taking a = 2/3,  we obtain - 1 /3 (v ,  x )  ~< 0 and 1 /3 (v ,  x )  ~< 0, whence (v,  x )  
= 0 .  [] 

Lemma 2.8. A vector y is subtangential to a closed convex cone C at x E 8G if and 
only if y + z is subtangential to ~ at x V z E  C. 

Proof The "if"  is immediate, upon taking z = 0. To verify the "only if", let 
v E 9Le(x ) and z E  C, whence (v, z - x )  ~< 0. Since by Lemma 2.7, (v,  x )  = 0, 
(v,  y - x)  ~ 0 implies {v, y + z)  ~< 0. [] 

We shall also make use of the following lemma due to 0. H/tjek [2] and 
Schneider and Vidyasagar [7], which generalizes the well-known result that a 
nonnegative matrix possesses a nonnegative eigenvector: 

Lemma 2.9. Let G C R n be a closed, convex, pointed and positively invariant cone. 
Then G contains an eigenvector of A. 

We are now in position to prove our main result. 

Proof of Theorem 1.4. (i) Necessity. Assume that C is asymptotically stable and 
that there exists 2 E  C/{0} such that A 2 E  C. Let wE 0{2 + C}. Then w = 2 + x, 
x E  aC. Lemma 2.4 implies that A x  is subtangential to C at x, and since AYcE G, 
Lemma 2.8 implies A w =  A2 + A x  is subtangential to C at x. Hence Aw is 
subtangential to {2 + C} at w (since the normal cone does not change under a 
shift). Lemma 2.4 now implies that {2 + G} is positively invariant. Since C is 
pointed it follows that 0 ~ { 2  + C}. Closedness of {2 + C} therefore implies 
eAt2-~O as  t -0 oo, contradicting asymptotic stability of C. 

(ii) Sufficiency. Suppose (1.5) holds, but that C was not asymptotically stable. 
Consider the nonempty set 

= { x E C :  emx,,~O as t ~ oo}. 
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In view of the structure of solutions to (1.1) ([3, p. 135]),x ~ ~; implies that there 
exists e > 0  such that eAtx ~ B(O, e) Vt  >i O. Note that ~; (the closure of 2;) is a 
closed subcone of the pointed cone G, and is therefore itself pointed. To see that 

is convex, let x 1 and x 2 be any points in 2;. Then there exists ~> 0 such that 
e~tx i ~ B(0, g) Vt 1> 0, i = 1,2. Since G is pointed, there exists a hyperplane H with 
associated open halfspaces H +, H such that {0} v a { H - N C }  C B(0, e). From 
positive invariance of C it then follows that for i = 1,2 we have eAtxi E H + tIC 

Vt  >>- O. If x = ?tx I +(1 -- ?t)x 2 for X~ [0, 1], then convexity of H + AC implies 
e A t x ~ H  + FIG Vt~>0, whence 2; and therefore ~ are convex. Note that ~ is 
invariant with respect to motions of (1.1), since 2; clearly is. 

Upon applying Lemma 2.9 to C = ~;, we conclude that there exists ~ E  ~ / { 0 }  
such that A Y =  ?t~ for some real Yr. The definition of ~; implies )t ~> 0. But then 
A.gE C, violating (1.5). [] 

Remark 2.10. With regard to Theorem 1.4, it is worthwhile to investigate the 
roles played by the hypotheses of positive invariance and pointedness. 

(2.10.1) If G is a closed convex pointed cone not positively invariant, then 
neither the necessity nor the sufficiency parts of the theorem need be true. For a 
breakdown of the necessity part, consider 

- 2  - 1 ) .  
A =  1 0 ' {{')( ')} C = conic hull 1 ' _ 1  • 

Then G is asymptotically stable and (1.5) is violated at x = ' [ 0} ' A sufficiency 1," \ 
breakdown is illustrated by 

A=(0, -1)0  conichull(( )(1)} 
Here (1.5) holds, but G is not asymptotically stable. 

(2.10.2) In Theorem 1.4 the role of closedness is readily seen to be vital by 

c ° n s i d e r i n g t h e e x a m p l e w i t h A = (  -10 01)and 

0 
= u { ( 0 ) )  

(2.10.3) Pointedness of G is vital to the necessity part of the theorem; consider 
the case A = - I and 

(X ~ ( xl 
~" X 2 ) : X l ~ O )  

In fact, we have 
(2.10.4) I f  C C R n is a nonpointed closed convex cone which is positively 

invariant, then (1.5) is impossible; that is, there exists x E C/{0} such that A x  ~ G. 
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Outline of proof Nonpointedness  implies that  C contains a nonzero subspace; 
denote by ~ the maximal subspace contained in C. Let x ~ g lb /{0} .  Then for Ax  
to be subtangential to G at x, we must have A x - - a  1 + a 2 where a ~  ~L and a 2 is 
contained in the (pointed) cone PG, P being the projection of  C along 9]b onto  
some direct sum complement  of 9]L. Hence Ax ~ C. [] 

Finally, we will prove the corollary of Theorem 1.4 which was given in sec- 
t ion 1. 

Proof of Corollary 1.6. The assumptions on A imply that Ax is subtangential  to 
R n Vx~OR~+, whence R~_ is positively invariant. In view of  Theorem 1.4, + 

asymptot ic  stability of R n+, and therefore of R n, is equivalent to (1.5). N o w  recall 
that asymptot ic  stability of R n is equivalent to negativity of the real part  of  the 
spectrum of A, and note that for G = R ~ ,  (1.5) becomes (1.8). It  remains to show 
that (1.8) is equivalent to (1.9). To this end, consider the following linear 
p rogramming problem, for given y ~  R~: 

maximize ( y,  x ) ( py ) 
subject to Ax ~ O, x >I 0 

Note  that (1.8) holds if and only if (Py) has a bounded  maximum (necessarily 
zero) for every y 1> 0. F r o m  the duality theory of linear p rogramming we then 
conclude that  (1.8) is equivalent to "dual  feasibility" holding for each y ~> 0; that  
is, for each y ~> 0 there exists Uy >10 such that 

-- y -  ATUy >~ 0 

(where " T "  denotes transpose). This is equivalent to the existence of u ~> 0 such 
that - ATu > O. [] 
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