Applied Mathematics and Optimization

A Note on Positively Invariant Cones*

Ronald J. Stern

Department of Mathematics, Concordia University, Montreal, Canada

Communicated by A. V. Balakrishnan

Abstract.

Given a closed convex pointed cone $\mathcal{C} \subset \mathbb{R}^n$ which is positively invariant with respect to motions of the differential equation $\dot{x} = Ax$ (A being a real $(n \times n)$ matrix), it is proven that a necessary and sufficient condition for asymptotic stability of \mathcal{C} (and therefore of the linear span of \mathcal{C}) is

$$\begin{array}{l} Ax \in \mathcal{C} \\ x \in \mathcal{C} \end{array} \} \Rightarrow x = 0.$$

In case $\mathcal{C} = \mathbb{R}^n_+$, this result yields a known equivalence from the theory of *M*-matrices.

1. Introduction

Consider the linear autonomous differential equation

$$\dot{x}(t) = Ax(t); \qquad t \ge 0, \tag{1.1}$$

where $x \in \mathbb{R}^n$ and A is a real constant $(n \times n)$ matrix. With regard to (1.1) we require the following.

Definition 1.2. Let \mathcal{G} be a nonempty subset of \mathbb{R}^n .

(1.2.1) \mathcal{G} is said to be *positively invariant* (with respect to motions of (1.1)) if for each initial state $x_0 \in \mathcal{G}$, the motion emanating from x_0 remains in \mathcal{G} ; that is, $e^{\mathcal{A}t} \mathcal{G} \in \mathcal{G} \ \forall t \ge 0$.

^{*}This research was supported by the Natural Sciences and Engineering Council Canada under grant A4641.

(1.2.2) \mathcal{G} is said to be asymptotically stable provided that for every $x_0 \in \mathcal{G}$ we have $e^{At}x_0 \to 0$ as $t \to \infty$; in case span $(\mathcal{G}) = R^n$, this means $\operatorname{Re} \lambda < 0 \ \forall \lambda \in \operatorname{spectrum}(A)$.

The characterization of asymptotic stability of a positively invariant set \mathcal{G} containing the origin is a problem of general interest, since in certain dynamical models it may be useful to determine whether or not motions constrained to remain in \mathcal{G} deteriorate to the origin. The main purposes of the present work are to obtain such a characterization (in algebraic terms) in case \mathcal{G} is closed convex pointed cone, and to point out connections with results from the theory of *M*-matrices.

Prior to stating the main result of this note, some further terminology is needed.

Definition 1.3. Let \mathcal{G} be a nonempty subset of \mathbb{R}^n .

(1.3.1) \mathcal{G} is a cone if $\alpha \mathcal{G} \subset \mathcal{G} \forall \alpha \geq 0$; that is, $\alpha g \in \mathcal{G} \forall \alpha \geq 0$, $\forall g \in \mathcal{G}$.

(1.3.2) A cone \mathcal{G} is *pointed* if $\mathcal{G} \cap \{-\mathcal{G}\} = \{0\}$; that is, if $g \in \mathcal{G}$, $-g \in \mathcal{G}$, then g = 0.

The main result of the present work gives a characterization of asymptotic stability of closed, convex, pointed, positively invariant cones:

Theorem 1.4. Let $\mathcal{C} \subset \mathbb{R}^n$ be a closed convex pointed cone which is positively invariant. Then a necessary and sufficient condition for asymptotic stability of \mathcal{C} (and therefore of the linear span of \mathcal{C}) is

$$\begin{array}{l} Ax \in \mathcal{C} \\ x \in \mathcal{C} \end{array} \Rightarrow x = 0. \tag{1.5}$$

Theorem 1.4, and the following corollary, (in which we take $\mathcal{C} = \mathbb{R}^n_+$, the nonnegative orthant), are proven in section 2.

Corollary 1.6. Let A be a real $(n \times n)$ matrix whose off-diagonal entries are nonnegative. Then the following are equivalent:

$$\operatorname{Re} \lambda < 0 \,\forall \lambda \in \operatorname{spectrum}(A) \tag{1.7}$$

$$\begin{cases} Ax \ge 0\\ x \ge 0 \end{cases} \Rightarrow x = 0$$
 (1.8)

There exists $u \ge 0$ such that $-A^T u \ge 0$. (Here " \ge " and ">" hold componentwise.) (1.9)

Corollary 1.6 represents a new proof of a known result in the theory of *M*-matrices. In 1937 Ostrowski [5] proved that a real $(n \times n)$ matrix *A* with nonnegative off-diagonal entries has an inverse with all nonpositive entries if and only if Re $\lambda < 0 \ \forall \lambda \in$ spectrum(*A*), while in 1966 Robert [6] showed that this is equivalent to (1.8) and (1.9). (For a thorough treatment of *M*-matrices as well as bibliographic background, the reader is referred to Berman and Plemmons [1].)

2. Proof of Main Result.

Our first task is to obtain a geometric characterization of positive invariance. To this end, we require the following specialization of a result due to Nagumo [4]; see also Yorke [8]. (The euclidean distance from a point $x \in \mathbb{R}^n$ to a set $\mathcal{G} \subset \mathbb{R}^n$ is denoted $d(x, \mathcal{G})$. Let $\partial \mathcal{G}$ denote the boundary of \mathcal{G} .)

Lemma 2.1. Let \mathcal{G} be a closed subset of \mathbb{R}^n . Then a sufficient condition for positive invariance of \mathcal{G} is

$$\liminf_{t \to 0^+} \frac{d(x + tAx, \mathcal{G})}{t} = 0 \quad \forall x \in \partial \mathcal{G}$$
(2.2)

For $\mathcal{G} \subset \mathbb{R}^n$ closed, convex, and $x \in \partial \mathcal{G}$, we denote by $\mathfrak{N}_{\mathcal{G}}(x)$ the cone of outward normal vectors to \mathcal{G} at x; that is,

$$\mathfrak{N}_{\mathfrak{G}}(x) = \{ v \in \mathbb{R}^n : \langle v, y - x \rangle \leq 0 \; \forall y \in \mathfrak{G} \},\$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product in \mathbb{R}^n . Note that $v \in \mathfrak{N}_{\mathfrak{G}}(x)/\{0\}$ means that v is an (outward pointing) normal to a hyperplane which supports \mathfrak{G} at x. The support cone of \mathfrak{G} at $x \in \partial \mathfrak{G}$ is

$$\mathbb{S}_{\mathcal{G}}(x) = \{ w \in \mathbb{R}^n : \langle w, v \rangle \leq 0 \; \forall v \in \mathcal{N}_{\mathcal{G}}(x) \}.$$

Hence $\{x + S_{\mathcal{G}}(x)\}$ is the intersection of all halfspaces supporting \mathcal{G} at x.

Definition 2.3. Let $\mathcal{G} \subset \mathbb{R}^n$ be closed and convex. For $x \in \partial \mathcal{G}$, we say that a vector $h \in \mathbb{R}^n$ is subtangential to \mathcal{G} at x provided that $h \in S_{\mathcal{G}}(x)$.

Lemma 2.4. Let \mathcal{G} be a closed convex subset of \mathbb{R}^n . Then a necessary and sufficient condition for \mathcal{G} to be positively invariant is that Ax be subtangential to \mathcal{G} at each $x \in \partial \mathcal{G}$.

Proof. (i) Necessity. Let $x_0 = x(0) \in \partial \mathcal{G}$. Since x(t) remains in \mathcal{G} , it readily follows that

$$\frac{x(t)-x_0}{t} \in \mathbb{S}_{\mathcal{G}}(x_0) \quad \forall t > 0.$$

Letting $t \to 0^+$, we obtain $\dot{x}(0) = Ax_0 \in S_{\mathcal{G}}(x_0)$.

(ii) Sufficiency. In view of Lemma 2.1, it is enough to show that subtangentiality of Ax to \mathcal{G} at x for each $x \in \partial \mathcal{G}$ implies (2.2). (Actually, the reverse implication holds as well, but is not required.) Suppose (2.2) did not hold. Then for some $x \in \partial \mathcal{G}$ there exist $\epsilon > 0$ and a sequence $\{t_i\}_{i=1}^{\infty}, t_i \to 0^+$, such that $d(x + t_i Ax, \mathcal{G}) \ge \epsilon t_i$. Denote the closed ball of radius ρ centered at $z \in \mathbb{R}^n$ by $B(z, \rho)$. We then have

$$\left\{x + \bigcup_{i=1}^{\infty} B(t_i A x, t_i \varepsilon)\right\} \cap \mathcal{G} = \phi$$
(2.5)

We claim that

$$\left\{x + \bigcup_{t>0} B(tAx, t\varepsilon)\right\} \cap \mathcal{G} = \phi$$
(2.6)

Indeed, if $\tilde{t} > 0$ was such that $\{x + B(\tilde{t}Ax, \tilde{t}\varepsilon)\} \cap \mathcal{G} \neq \phi$, then convexity of \mathcal{G} implies $\{x + B(tAx, t\varepsilon)\} \cap \mathcal{G} \neq \phi \ \forall t \in [0, \tilde{t}]$, which violates (2.5). Now, in view of (2.6), $Ax \notin S_{\mathcal{G}}(x)$, contradicting subtangentiality.

We shall require the following elementary results on subtangentiality to cones:

Lemma 2.7. Let $\mathcal{C} \subset \mathbb{R}^n$ be a closed convex cone, and let $x \in \partial \mathcal{C}$. Then $\langle v, x \rangle = 0$ $\forall v \in \mathfrak{N}_{\mathcal{C}}(x)$.

Proof. Let $v \in \mathfrak{N}_{\mathcal{C}}(x)$ and $\alpha > 0$. Then $\alpha x \in \mathcal{C}$, $2\alpha x \in \mathcal{C}$, and therefore

 $\langle v, \alpha x - x \rangle \leq 0; \langle v, 2\alpha x - x \rangle \leq 0.$

Taking $\alpha = 2/3$, we obtain $-1/3\langle v, x \rangle \leq 0$ and $1/3\langle v, x \rangle \leq 0$, whence $\langle v, x \rangle = 0$.

Lemma 2.8. A vector y is subtangential to a closed convex cone \mathcal{C} at $x \in \partial \mathcal{C}$ if and only if y + z is subtangential to \mathcal{C} at $x \forall z \in \mathcal{C}$.

Proof. The "if" is immediate, upon taking z = 0. To verify the "only if", let $v \in \mathfrak{N}_{\mathcal{C}}(x)$ and $z \in \mathcal{C}$, whence $\langle v, z - x \rangle \leq 0$. Since by Lemma 2.7, $\langle v, x \rangle = 0$, $\langle v, y - x \rangle \leq 0$ implies $\langle v, y + z \rangle \leq 0$.

We shall also make use of the following lemma due to 0. Hájek [2] and Schneider and Vidyasagar [7], which generalizes the well-known result that a nonnegative matrix possesses a nonnegative eigenvector:

Lemma 2.9. Let $\mathcal{C} \subset \mathbb{R}^n$ be a closed, convex, pointed and positively invariant cone. Then \mathcal{C} contains an eigenvector of A.

We are now in position to prove our main result.

Proof of Theorem 1.4. (i) Necessity. Assume that \mathcal{C} is asymptotically stable and that there exists $\hat{x} \in \mathcal{C}/\{0\}$ such that $A\hat{x} \in \mathcal{C}$. Let $w \in \partial\{\hat{x} + \mathcal{C}\}$. Then $w = \hat{x} + x$, $x \in \partial \mathcal{C}$. Lemma 2.4 implies that Ax is subtangential to \mathcal{C} at x, and since $A\hat{x} \in \mathcal{C}$, Lemma 2.8 implies $Aw = A\hat{x} + Ax$ is subtangential to \mathcal{C} at x. Hence Aw is subtangential to $\{\hat{x} + \mathcal{C}\}$ at w (since the normal cone does not change under a shift). Lemma 2.4 now implies that $\{\hat{x} + \mathcal{C}\}$ is positively invariant. Since \mathcal{C} is pointed it follows that $0 \notin \{\hat{x} + \mathcal{C}\}$. Closedness of $\{\hat{x} + \mathcal{C}\}$ therefore implies $e^{At}\hat{x} \neq 0$ as $t \to \infty$, contradicting asymptotic stability of \mathcal{C} .

(ii) Sufficiency. Suppose (1.5) holds, but that \mathcal{C} was not asymptotically stable. Consider the nonempty set

$$\mathfrak{Z} = \{ x \in \mathcal{C} \colon e^{\mathcal{A}t} x \not\rightarrow 0 \text{ as } t \rightarrow \infty \}.$$

In view of the structure of solutions to (1.1) ([3,p.135]), $x \in \mathbb{Z}$ implies that there exists $\varepsilon > 0$ such that $e^{At}x \notin B(0, \varepsilon) \ \forall t \ge 0$. Note that \mathbb{Z} (the closure of \mathbb{Z}) is a closed subcone of the pointed cone \mathcal{C} , and is therefore itself pointed. To see that \mathbb{Z} is convex, let x^1 and x^2 be any points in \mathbb{Z} . Then there exists $\hat{\varepsilon} > 0$ such that $e^{At}x_i \notin B(0, \hat{\varepsilon}) \ \forall t \ge 0$, i = 1, 2. Since \mathcal{C} is pointed, there exists a hyperplane H with associated open halfspaces H^+ , H^- such that $\{0\} \ne \{H^- \cap \mathcal{C}\} \subset B(0, \varepsilon)$. From positive invariance of \mathcal{C} it then follows that for i = 1, 2 we have $e^{At}x_i \in \overline{H^+ \cap \mathcal{C}}$ $\forall t \ge 0$. If $x = \lambda x^1 + (1 - \lambda)x^2$ for $\lambda \in [0, 1]$, then convexity of $\overline{H^+ \cap \mathcal{C}}$ implies $e^{At}x \in \overline{H^+ \cap \mathcal{C}} \ \forall t \ge 0$, whence \mathbb{Z} and therefore $\overline{\mathbb{Z}}$ are convex. Note that $\overline{\mathbb{Z}}$ is invariant with respect to motions of (1.1), since \mathbb{Z} clearly is.

Upon applying Lemma 2.9 to $\mathcal{C} = \overline{\mathfrak{Z}}$, we conclude that there exists $\overline{x} \in \overline{\mathfrak{Z}} / \{0\}$ such that $A\overline{x} = \lambda \overline{x}$ for some real λ . The definition of \mathfrak{Z} implies $\lambda \ge 0$. But then $A\overline{x} \in \mathcal{C}$, violating (1.5).

Remark 2.10. With regard to Theorem 1.4, it is worthwhile to investigate the roles played by the hypotheses of positive invariance and pointedness.

(2.10.1) If \mathcal{C} is a closed convex pointed cone *not positively invariant*, then neither the necessity nor the sufficiency parts of the theorem need be true. For a breakdown of the necessity part, consider

$$A = \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix}; \qquad \mathcal{C} = \operatorname{conic} \operatorname{hull}\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -\frac{1}{2} \end{pmatrix} \right\}.$$

Then \mathcal{C} is asymptotically stable and (1.5) is violated at $x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. A sufficiency breakdown is illustrated by

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}; \qquad \mathcal{C} = \operatorname{conic} \operatorname{hull}\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}.$$

Here (1.5) holds, but \mathcal{C} is not asymptotically stable.

(2.10.2) In Theorem 1.4 the role of closedness is readily seen to be vital by considering the example with $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ and

$$\mathcal{C} = \left\{ x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_1 > 0 \right\} \cup \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}.$$

(2.10.3) Pointedness of \mathcal{C} is vital to the necessity part of the theorem; consider the case A = -I and

$$\mathcal{C} = \left\{ x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_1 \ge 0 \right\}.$$

In fact, we have

(2.10.4) If $\mathcal{C} \subset \mathbb{R}^n$ is a nonpointed closed convex cone which is positively invariant, then (1.5) is impossible; that is, there exists $x \in \mathcal{C}/\{0\}$ such that $Ax \in \mathcal{C}$.

Outline of proof. Nonpointedness implies that \mathcal{C} contains a nonzero subspace; denote by \mathfrak{M} the maximal subspace contained in \mathcal{C} . Let $x \in \mathfrak{M}/\{0\}$. Then for Ax to be subtangential to \mathcal{C} at x, we must have $Ax = a^1 + a^2$ where $a^1 \in \mathfrak{M}$ and a^2 is contained in the (pointed) cone $P\mathcal{C}$, P being the projection of \mathcal{C} along \mathfrak{M} onto some direct sum complement of \mathfrak{M} . Hence $Ax \in \mathcal{C}$.

Finally, we will prove the corollary of Theorem 1.4 which was given in section 1.

Proof of Corollary 1.6. The assumptions on A imply that Ax is subtangential to $R_+^n \quad \forall x \in \partial R_+^n$, whence R_+^n is positively invariant. In view of Theorem 1.4, asymptotic stability of R_+^n , and therefore of R^n , is equivalent to (1.5). Now recall that asymptotic stability of R^n is equivalent to negativity of the real part of the spectrum of A, and note that for $\mathcal{C} = R_+^n$, (1.5) becomes (1.8). It remains to show that (1.8) is equivalent to (1.9). To this end, consider the following linear programming problem, for given $y \in R^n$:

$$\begin{array}{l} \text{maximize } \langle y, x \rangle \\ \text{subject to } Ax \ge 0, x \ge 0 \end{array} \tag{P_y}$$

Note that (1.8) holds if and only if (P_y) has a bounded maximum (necessarily zero) for every $y \ge 0$. From the duality theory of linear programming we then conclude that (1.8) is equivalent to "dual feasibility" holding for each $y \ge 0$; that is, for each $y \ge 0$ there exists $u_y \ge 0$ such that

$$-y - A^T u_y \ge 0$$

(where "T" denotes transpose). This is equivalent to the existence of $u \ge 0$ such that $-A^T u \ge 0$.

Acknowledgments

The author benefitted from communications with A. Ben-Israel, A. Berman, and H. Wolkowicz, and from the hospitality of the late Sam Baylin.

References

- 1. Berman A, Plemmons RJ (1979) Nonnegative matrices in the mathematical sciences. Academic Press
- 2. Hájek O (unpublished manuscript) A short proof of Brammer's theorem.
- 3. Hirsch MW, Smale S (1974) Differential equations, dynamical systems, and linear algebra. Academic Press
- Nagumo M (1942) Uber die Lage der Integralkurven gewohnlicher Differentialgleichungen. Proc Phys—Math Soc Japan 24:551–559
- Ostrowski AM (1937) Uber die Determinaten mit uberwiegender Hauptdiagonale. Comment Math Helv 10:69-96
- Robert F (1966) Recherche d'une M-matrice, parmi les minorantes d'un operateur lineaire. Numer Math 9:189–199
- 7. Schneider H, Vidyasagar M (1970) Cross-positive matrices. SIAM J Numer Anal 9:508-519
- 8. Yorke JA (1967) Invariance for ordinary differential equations. Math Systems Theory 1:353-372

Accepted 5/10/82