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Abstract.

Given a closed convex pointed cone € C R” which is positively invariant
with respect to motions of the differential equation x = Ax (A4 being a real
(n X n) matrix), it is proven that a necessary and sufficient condition for
asymptotic stability of € (and therefore of the linear span of €) is

AxeC ] —

=x = 0.
xeC

In case € = R", this result yields a known equivalence from the theory of
M-matrices.

1. Introduction
Consider the linear autonomous differential equation
x(t) = Ax(¢); t=0, (1.1)

where x€ R" and A is a real constant (n X n) matrix. With regard to (1.1) we
require the following.

Definition 1.2. Let § be a nonempty subset of R".

(1.2.1) § is said to be positively invariant (with respect to motions of (1.1)) if
for each initial state x,E §, the motion emanating from x, remains in §; that is,
e!8egvr=0.
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(1.2.2) § is said to be asympiotically stable provided that for every x,E ¢ we
have e?x,—>0 as t—o0; in case span (§)=R", this means ReA <0 VAE
spectrum ( A4).

The characterization of asymptotic stability of a positively invariant set §
containing the origin is a problem of general interest, since in certain dynamical
models it may be useful to determine whether or not motions constrained to
remain in § deteriorate to the origin. The main purposes of the present work are
to obtain such a characterization (in algebraic terms) in case § is closed convex
pointed cone, and to point out connections with results from the theory of
M-matrices.

Prior to stating the main result of this note, some further terminology is
needed.

Definition 1.3. Let § be a nonempty subset of R”".

(1.3.1) § is a cone if a§ C G Va=0; that is, ag€ g Va=0, Vg 6.

(1.3.2) A cone § is pointed if SN{—G}=1{0}; that is, if g€8, — g€ G, then
g=0.

The main result of the present work gives a characterization of asymptotic
stability of closed, convex, pointed, positively invariant cones:

Theorem 14. Let C CR" be a closed convex pointed cone which is positively
invariant. Then a necessary and sufficient condition for asymptotic stability of © (and
therefore of the linear span of C) is

AxE@}

e =x =0. (1.5)

Theorem 1.4, and the following corollary, (in which we take € = R" | the
nonnegative orthant), are proven in section 2.

Corollary 1.6. Let A be a real (nXn) matrix whose off-diagonal entries are
nonnegative. Then the following are equivalent:

ReX < 0 VA € spectrum( 4) (1.7)
Ax=0 —
x>o} x=0 (18)

There exists u= 0 such that — A"u> 0. (Here “ = > and “ > " hold componentwise.)
(1.9
Corollary 1.6 represents a new proof of a known result in the theory of
M-matrices. In 1937 Ostrowski [5] proved that a real (nX n) matrix A with
nonnegative off-diagonal entries has an inverse with all nonpositive entries if and
only if Re A < VAE spectrum(4), while in 1966 Robert [6] showed that this is
equivalent to (1.8) and (1.9). (For a thorough treatment of M-matrices as well as
bibliographic background, the reader is referred to Berman and Plemmons [1].)
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2. Proof of Main Result.

Our first task is to obtain a geometric characterization of positive invariance. To
this end, we require the following specialization of a result due to Nagumo [4]; see
also Yorke [8]. (The euclidean distance from a point x& R" to a set § CR" is
denoted d(x, §). Let 99 denote the boundary of §.)

Lemma 2.1. Let § be a closed subset of R". Then a sufficient condition for positive
invariance of § is
+

liminf—d(x—iAx’—g—) =0 Vxe o8 (2.2)

t—0"

For § C R” closed, convex, and x€ 96, we denote by g(x) the cone of
outward normal vectors to G at x; that is,

Ne(x) = {vER": (v, y—x)<OVye§},

where (-,-) denotes the inner product in R”. Note that v€ 9(x)/{0} means
that v is an (outward pointing) normal to a hyperplane which supports § at x. The
support cone of § ar x€ 09 is

Se(x) = {weR":(w,v)<0VveE Ny(x)}.
Hence {x + §¢(x)} is the intersection of all halfspaces supporting § at x.

Definition 2.3. Let § C R” be closed and convex. For x € 36, we say that a vector
h &€ R" is subtangential to § at x provided that 1 € Sg(x).

Lemma 2.4. Let § be a closed convex subset of R". Then a necessary and sufficient
condition for G to be positively invariant is that Ax be subtangential to § at each
x€38.

Proof. (i) Necessity. Let x, = x(0) € 84. Since x() remains in 9, it readily follows
that

ﬂt—)tﬂ € Sg(xy) Vi>0.

Letting 1 — 0%, we obtain x(0) = Ax,E §4(x,).

(i) Sufficiency. In view of Lemma 2.1, it is enough to show that subtangentiality
of Ax to G at x for each x€ 9§ implies (2.2). (Actually, the reverse implication
holds as well, but is not required.) Suppose (2.2) did not hold. Then for some
x €96 there exist e >0 and a sequence {7,}2,, ;> 0", such that d(x + 1,4x,§) =
et;. Denote the closed ball of radius p centered at z&€ R” by B(z, p). We then have

{x+ G B(t,.Ax,t,.e)} NG = ¢ (2.5)

i=1
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We claim that

{x+ U B(tdx, te)} NG = ¢ (2.6)

t>0

Indeed, if >0 was such that {x+ B(iAx,7e)}NG+ ¢, then convexity of §
implies {x + B(tAx, te)} NG # ¢ YVt [0, 1], which violates (2.5). Now, in view of
(2.6), Ax & S4(x), contradicting subtangentiality. O

We shall require the following elementary results on subtangentiality to
cones:

Lemma 2.7. Let € C R" be a closed convex cone, and let x€3C. Then (v,x) =0
V'D (S %@(x)

Proof. Let v& I y(x) and a>0. Then axe€ €, 2ax€ €, and therefore
(v,ax —x)y=< 0; (v,2ax — x)< 0.

Taking a=2/3, we obtain —1/3(v, x)=<0 and 1/3(v, x) <0, whence {v, x)
=0. ]

Lemma 2.8. A vector y is subtangential to a closed convex cone C at x €3C if and
only if y + z is subtangential to C at x Vz€ C.

Proof. The “if” is immediate, upon taking z=0. To verify the “only if”, let
vE MNy(x) and z€ C, whence (v, z—x)<0. Since by Lemma 2.7, (v, x)=0,
(v, y—x)<0implies (v, y + z) <0.

We shall also make use of the following lemma due to 0. Hajek [2] and
Schneider and Vidyasagar [7], which generalizes the well-known result that a
nonnegative matrix possesses a nonnegative eigenvector:

Lemma 2.9. Let C C R" be a closed, convex, pointed and positively invariant cone.
Then C contains an eigenvector of A.
We are now in position to prove our main result.

Proof of Theorem 1.4. (i) Necessity. Assume that C is asymptotically stable and
that there exists £€ C/{0} such that AXE C. Let we d{% + €}. Then w =12 + x,
x€0C. Lemma 2.4 implies that Ax is subtangential to € at x, and since AR€ C,
Lemma 2.8 implies 4w = A%+ Ax is subtangential to € at x. Hence Aw is
subtangential to {£ + €} at w (since the normal cone does not change under a
shift). Lemma 2.4 now implies that {X+ C} is positively invariant. Since € is
pointed it follows that 0&{%+ C}. Closedness of {X+ (C} therefore implies
e'2 0 as ¢ — oo, contradicting asymptotic stability of C.

(ii) Sufficiency. Suppose (1.5) holds, but that € was not asymptotically stable.
Consider the nonempty set

7 = {xeC:e'xnlast—>o0}.
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In view of the structure of solutions to (1.1) ([3,p.135]), x& & implies that there
exists e>0 such that e*’x & B(0,¢) V¢=0. Note that & (the closure of ¥) is a
closed subcone of the pointed cone €, and is therefore itself pointed. To see that
Z is convex, let x' and x? be any points in Z. Then there exists >0 such that
et'x, & B(0, §) V¢ =0, i =1,2. Since € is pointed, there exists a hyperplane H with
associated open halfspaces H*, H~ such that {0} {H ™ NC} C B(0, ¢). From
positive invariance of C it then follows that for i=1,2 we have e“‘x,e H' NC
Ve=0. If x=Ax'+(1—A)x2 for A€[0,1], then convexity of H* NC ﬂ@ implies
e'x€H" NC Vt=0, whence ¢ and therefore Z are convex. Note that Z is
invariant with respect to motions of (1.1), since & clearly is. _
Upon applying Lemma 2.9 to C = Z, we conclude that there exists x€ £ /{0}
such that Ax = AXx for some real A. The definition of € implies A = 0. But then
AX € €, violating (1.5). O

Remark 2.10. With regard to Theorem 1.4, it is worthwhile to investigate the
roles played by the hypotheses of positive invariance and pointedness.

(2.10.1) If Cis a closed convex pointed cone not positively invariant, then
neither the necessity nor the sufficiency parts of the theorem need be true. For a
breakdown of the necessity part, consider

(3l o))

Then C is asymptotically stable and (1.5) is violated at x = (

(1)) A sufficiency

breakdown is illustrated by

4= ((1) ‘(1)); e= conichull{((l)),(i)}.

Here (1.5) holds, but € is not asymptotically stable.
(2.10.2) In Theorem 1.4 the role of closedness is readily seen to be vital by

1 0
0 1)and

X 0
e ={e=(2) =0} o {(o))
(2.10.3) Pointedness of Cis vital to the necessity part of the theorem; consider
the case A= — I and

C= {x:(;cl):)q?O].

In fact, we have
(2.10.4) If CCR" is a nonpointed closed convex cone which is positively
invariant, then (1.5) is impossible; that is, there exists x& C /{0} such that Ax€ C.

considering the example with 4 = (
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Outline of proof. Nonpointedness implies that € contains a nonzero subspace;
denote by 9N the maximal subspace contained in €. Let x &€ 9 /{0}. Then for Ax
to be subtangential to © at x, we must have Ax = a' + a® where a'€ M and a? is
contained in the (pointed) cone PC, P being the projection of C along 9N onto
some direct sum complement of 9. Hence Ax € C. O

Finally, we will prove the corollary of Theorem 1.4 which was given in sec-
tion 1.

Proof of Corollary 1.6. The assumptions on A imply that Ax is subtangential to
R"™ Vx€9dR%, whence R’ is positively invariant. In view of Theorem 1.4,
asymptotic stability of R, and therefore of R", is equivalent to (1.5). Now recall
that asymptotic stability of R" is equivalent to negativity of the real part of the
spectrum of 4, and note that for © = R’} , (1.5) becomes (1.8). It remains to show
that (1.8) is equivalent to (1.9). To this end, consider the following linear
programming problem, for given y& R™:

maximize (y, x) (

. P)
subject to Ax=0,x=0

y

Note that (1.8) holds if and only if (P,) has a bounded maximum (necessarily
zero) for every y = 0. From the duality theory of linear programming we then
conclude that (1.8) is equivalent to “dual feasibility” holding for each y = 0; that
is, for each y =0 there exists u, = 0 such that

—y— ATuy =0
(where “T” denotes transpose). This is equivalent to the existence of u >0 such
that — A"u>0. a
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