A Note on Positively Invariant Cones*

Ronald J. Stern

Department of Mathematics, Concordia University, Montreal, Canada

Communicated by A. V. Balakrishnan

Abstract.

Given a closed convex pointed cone $C \subset \mathbb{R}^n$ which is positively invariant with respect to motions of the differential equation $\dot{x} = Ax$ (*A* being a real $(n \times n)$ matrix), it is proven that a necessary and sufficient condition for asymptotic stability of $\mathcal C$ (and therefore of the linear span of $\mathcal C$) is

$$
\begin{array}{c}\nAx \in \mathcal{C} \\
x \in \mathcal{C}\n\end{array} \Rightarrow x = 0.
$$

In case $\mathcal{C} = R^n_{+}$, this result yields a known equivalence from the theory of M-matrices.

1. **Introduction**

Consider the linear autonomous differential equation

$$
\dot{x}(t) = Ax(t); \qquad t \geq 0,\tag{1.1}
$$

where $x \in \mathbb{R}^n$ and A is a real constant $(n \times n)$ matrix. With regard to (1.1) we require the following.

Definition 1.2. Let \mathcal{G} be a nonempty subset of \mathbb{R}^n .

 $(1.2.1)$ \circ is said to be *positively invariant* (with respect to motions of (1.1)) if for each initial state $x_0 \in \mathcal{G}$, the motion emanating from x_0 remains in \mathcal{G} ; that is, $e^{At} \mathcal{G} \in \mathcal{G} \; \forall t \geq 0.$

^{*}This research was supported by the Natural Sciences and Engineering Council Canada under grant A4641.

(1.2.2) \Im is said to be *asymptotically stable* provided that for every $x_0 \in \Im$ we have $e^{At}x_0 \to 0$ as $t \to \infty$; in case span $(\mathcal{G})=R^n$, this means Re $\lambda < 0$ $\forall \lambda \in$ spectrum (A) .

The characterization of asymptotic stability of a positively invariant set $\mathcal G$ containing the origin is a problem of general interest, since in certain dynamical models it may be useful to determine whether or not motions constrained to remain in $\mathcal G$ deteriorate to the origin. The main purposes of the present work are to obtain such a characterization (in algebraic terms) in case $\mathcal G$ is closed convex pointed cone, and to point out connections with results from the theory of M-matrices.

Prior to stating the main result of this note, some further terminology is needed.

Definition 1.3. Let \mathcal{G} be a nonempty subset of R^n .

(1.3.1) \Im is a *cone* if $\alpha \Im \subset \Im \forall \alpha \ge 0$; that is, $\alpha g \in \Im \forall \alpha \ge 0$, $\forall g \in \Im$.

(1.3.2) A cone $\mathcal G$ is *pointed* if $\mathcal G \cap \{-\mathcal G\} = \{0\}$; that is, if $g \in \mathcal G$, $-g \in \mathcal G$, then $g=0$.

The main result of the present work gives a characterization of asymptotic stability of closed, convex, pointed, positively invariant cones:

Theorem 1.4. Let $C \subset \mathbb{R}^n$ be a closed convex pointed cone which is positively *invariant. Then a necessary and sufficient condition for asymptotic stability of G (and therefore of the linear span of G) is*

$$
\begin{aligned} Ax \in \mathcal{C} \\ x \in \mathcal{C} \end{aligned} \Rightarrow x = 0. \tag{1.5}
$$

Theorem 1.4, and the following corollary, (in which we take $\mathcal{C} = R_{+}^{n}$, the nonnegative orthant), are proven in section 2.

Corollary 1.6. Let A be a real $(n \times n)$ matrix whose off-diagonal entries are *nonnegative. Then the following are equivalent:*

$$
\text{Re }\lambda < 0 \,\forall \lambda \in \text{spectrum}(A) \tag{1.7}
$$

$$
\begin{aligned} Ax \ge 0\\ x \ge 0 \end{aligned} \bigg| \Rightarrow x = 0 \tag{1.8}
$$

There exists u ≥ 0 *such that* $-A^Tu > 0$. (*Here* " \geq " *and* " $>$ " *hold componentwise.*) (1.9)

Corollary 1.6 represents a new proof of a known result in the theory of M-matrices. In 1937 Ostrowski [5] proved that a real $(n \times n)$ matrix A with nonnegative off-diagonal entries has an inverse with all nonpositive entries if and only if $\text{Re }\lambda < 0$ $\forall \lambda \in \text{ spectrum}(A)$, while in 1966 Robert [6] showed that this is equivalent to (1.8) and (1.9) . (For a thorough treatment of M-matrices as well as bibliographic background, the reader is referred to Berman and Plemmons [1].)

2. Proof of Main Result.

Our first task is to obtain a geometric characterization of positive invariance. To this end, we require the following specialization of a result due to Nagumo [4]; see also Yorke [8]. (The euclidean distance from a point $x \in \mathbb{R}^n$ to a set $\mathcal{G} \subset \mathbb{R}^n$ is denoted $d(x, \mathcal{G})$. Let $\partial \mathcal{G}$ denote the boundary of \mathcal{G} .)

Lemma 2.1. Let $\mathcal G$ be a closed subset of $\mathbb R^n$. Then a sufficient condition for positive *invariance of G is*

$$
\liminf_{t \to 0^+} \frac{d(x + tAx, \mathcal{G})}{t} = 0 \quad \forall x \in \partial \mathcal{G}
$$
\n(2.2)

For $\mathcal{G} \subset \mathbb{R}^n$ closed, convex, and $x \in \partial \mathcal{G}$, we denote by $\mathcal{H}_\mathcal{G}(x)$ the *cone of outward normal vectors to G at x;* that is,

$$
\mathfrak{N}_{\mathfrak{q}}(x) = \{v \in R^n : \langle v, y - x \rangle \leq 0 \,\forall y \in \mathcal{G}\},
$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product in R^n . Note that $v \in \mathcal{R}_e(x)/\{0\}$ means that v is an (outward pointing) normal to a hyperplane which supports $\mathcal G$ at x. The *support cone of* \mathcal{G} *at* $x \in \partial \mathcal{G}$ is

$$
\mathcal{S}_{\mathcal{G}}(x) = \{w \in R^n : \langle w, v \rangle \leq 0 \,\forall v \in \mathfrak{N}_{\mathcal{G}}(x)\}.
$$

Hence $\{x + S_g(x)\}\$ is the intersection of all halfspaces supporting $\mathcal G$ at x.

Definition 2.3. Let $\mathcal{G} \subset \mathbb{R}^n$ be closed and convex. For $x \in \partial \mathcal{G}$, we say that a vector $h \in \mathbb{R}^n$ *is subtangential to* \mathcal{G} *at x* provided that $h \in \mathcal{S}_{\mathcal{G}}(x)$.

Lemma 2.4. Let $\mathcal G$ be a closed convex subset of $\mathbb R^n$. Then a necessary and sufficient *condition for* \Im *to be positively invariant is that Ax be subtangential to* \Im *at each* $x \in \partial \mathcal{G}$.

Proof. (i) *Necessity.* Let $x_0 = x(0) \in \partial \mathcal{G}$. Since $x(t)$ remains in \mathcal{G} , it readily follows that

$$
\frac{x(t)-x_0}{t}\in\mathcal{S}_g(x_0)\quad\forall t>0.
$$

Letting $t \to 0^+$, we obtain $\dot{x}(0) = Ax_0 \in \mathcal{S}_e(x_0)$.

(ii) *Sufficiency.* In view of Lemma 2.1, it is enough to show that subtangentiality of *Ax* to $\mathcal G$ at *x* for each $x \in \partial \mathcal G$ implies (2.2). (Actually, the reverse implication holds as well, but is not required.) Suppose (2.2) did not hold. Then for some $x \in \partial \mathcal{G}$ there exist $\varepsilon > 0$ and a sequence $\{t_i\}_{i=1}^{\infty}$, $t_i \to 0^+$, such that $d(x + t_i A x, \mathcal{G}) \ge$ ϵt_i . Denote the closed ball of radius ρ centered at $z \in \mathbb{R}^n$ by $B(z, \rho)$. We then have

$$
\left\{ x + \bigcup_{i=1}^{\infty} B(t_i A x, t_i \varepsilon) \right\} \cap \mathcal{G} = \phi
$$
\n(2.5)

We claim that

$$
\left\{x + \bigcup_{t > 0} B(tAx, t\epsilon)\right\} \cap \mathcal{G} = \phi \tag{2.6}
$$

Indeed, if $\tilde{t} > 0$ was such that $\{x + B(\tilde{t}Ax, \tilde{t}\epsilon)\}\cap \mathcal{G} \neq \phi$, then convexity of $\mathcal G$ implies $\{x + B(tAx, t\epsilon)\}\cap \mathcal{G} \neq \phi \ \forall t \in [0, \hat{t}]$, which violates (2.5). Now, in view of (2.6) , $Ax \notin \mathcal{S}_o(x)$, contradicting subtangentiality.

We shall require the following elementary results on subtangentiality to cones:

Lemma 2.7. *Let* $\mathcal{C} \subset \mathbb{R}^n$ *be a closed convex cone, and let* $x \in \partial \mathcal{C}$ *. Then* $\langle v, x \rangle = 0$ $\forall v \in \mathfrak{N}_{\varphi}(x)$.

Proof. Let $v \in \mathfrak{N}_{\varphi}(x)$ and $\alpha > 0$. Then $\alpha x \in \mathfrak{C}$, $2\alpha x \in \mathfrak{C}$, and therefore

 $\langle v, \alpha x - x \rangle \leq 0$; $\langle v, 2\alpha x - x \rangle \leq 0$.

Taking $\alpha = 2/3$, we obtain $-1/3\langle v, x \rangle \le 0$ and $1/3\langle v, x \rangle \le 0$, whence $\langle v, x \rangle$ $=0.$

Lemma 2.8. *A vector y is subtangential to a closed convex cone* \mathcal{C} *at* $x \in \partial \mathcal{C}$ *if and only if y + z is subtangential to* \mathcal{C} *at x* $\forall z \in \mathcal{C}$ *.*

Proof. The "if" is immediate, upon taking $z = 0$. To verify the "only if", let $v \in \mathfrak{N}_{\phi}(x)$ and $z \in \mathcal{C}$, whence $\langle v, z - x \rangle \le 0$. Since by Lemma 2.7, $\langle v, x \rangle = 0$, $\langle v, v-x \rangle \leq 0$ implies $\langle v, v+z \rangle \leq 0$.

We shall also make use of the following lemma due to 0 . Hajek $[2]$ and Schneider and Vidyasagar [7], which generalizes the well-known result that a nonnegative matrix possesses a nonnegative eigenvector:

Lemma 2.9. Let $C \subset \mathbb{R}^n$ be a closed, convex, pointed and positively invariant cone. *Then G contains an eigenvector of A.*

We are now in position to prove our main result.

Proof of Theorem 1.4. (i) *Necessity.* Assume that C is asymptotically stable and that there exists $\hat{x} \in \mathcal{C}/\{0\}$ such that $A\hat{x} \in \mathcal{C}$. Let $w \in \partial {\{\hat{x} + \mathcal{C}\}}$. Then $w = \hat{x} + x$, $x \in \partial \mathcal{C}$. Lemma 2.4 implies that *Ax* is subtangential to \mathcal{C} at x, and since $A\hat{x} \in \mathcal{C}$, Lemma 2.8 implies $Aw = A\hat{x} + Ax$ is subtangential to C at x. Hence Aw is subtangential to $\{\hat{x} + \mathcal{C}\}\$ at w (since the normal cone does not change under a shift). Lemma 2.4 now implies that $\{\hat{x} + \mathcal{C}\}\$ is positively invariant. Since $\mathcal C$ is pointed it follows that $0 \notin {\{\hat{x} + \mathcal{C}\}}$. Closedness of ${\{\hat{x} + \mathcal{C}\}}$ therefore implies $e^{At}\hat{x} \nrightarrow 0$ as $t \rightarrow \infty$, contradicting asymptotic stability of C.

(ii) Sufficiency. Suppose (1.5) holds, but that C was not asymptotically stable. Consider the nonempty set

$$
\mathfrak{X} = \{x \in \mathcal{C} : e^{At}x \leftrightarrow 0 \text{ as } t \to \infty\}.
$$

In view of the structure of solutions to (1.1) ([3, p. 135]), $x \in \mathcal{Z}$ implies that there exists $\epsilon > 0$ such that $e^{At}x \notin B(0, \epsilon)$ $\forall t \ge 0$. Note that $\tilde{\mathcal{Z}}$ (the closure of \mathcal{Z}) is a closed subcone of the pointed cone C , and is therefore itself pointed. To see that $\overline{\mathcal{Z}}$ is convex, let x^1 and x^2 be any points in \mathcal{Z} . Then there exists $\hat{\epsilon} > 0$ such that $e^{At}x_i \notin B(0,\hat{\epsilon})$ $\forall t \ge 0$, $i = 1,2$. Since \mathcal{C} is pointed, there exists a hyperplane H with associated open halfspaces H^+ , H^- such that ${0} \neq {H^- \cap \mathcal{C}} \subset B(0, \varepsilon)$. From positive invariance of C it then follows that for $i = 1,2$ we have $e^{At}x_i \in H^+ \cap \mathcal{C}$ $\forall t \ge 0$. If $x = \lambda x^1 + (1 - \lambda)x^2$ for $\lambda \in [0, 1]$, then convexity of $\overrightarrow{H^+ \cap \mathcal{C}}$ implies $e^{At}x \in \overline{H^+ \cap C}$ $\forall t \ge 0$, whence \mathcal{Z} and therefore $\overline{\mathcal{Z}}$ are convex. Note that $\overline{\mathcal{Z}}$ is invariant with respect to motions of (1.1), since \mathfrak{X} clearly is.

Upon applying Lemma 2.9 to $\mathcal{C} = \overline{\mathcal{Z}}$, we conclude that there exists $\overline{x} \in \overline{\mathcal{Z}}$ /{0} such that $A\overline{x} = \lambda \overline{x}$ for some real λ . The definition of \mathcal{Z} implies $\lambda \ge 0$. But then $A\bar{x} \in \mathcal{C}$, violating (1.5).

Remark 2.10. With regard to Theorem 1.4, it is worthwhile to investigate the roles played by the hypotheses of positive invariance and pointedness.

(2.10.1) If C is a closed convex pointed cone *not positively invariant*, then neither the necessity nor the sufficiency parts of the theorem need be true. For a breakdown of the necessity part, consider

$$
A = \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix}; \qquad C = \text{conic hull} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -\frac{1}{2} \end{pmatrix} \right\}.
$$

Then C is asymptotically stable and (1.5) is violated at $x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. A sufficiency breakdown is illustrated by

$$
A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}; \qquad C = \text{conic hull} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}.
$$

Here (1.5) holds, but C is not asymptotically stable.

(2.10.2) In Theorem 1.4 the role of closedness is readily seen to be vital by considering the example with $A=\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ and

$$
\mathcal{C} = \left\{ x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_1 > 0 \right\} \cup \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}.
$$

 $(2.10.3)$ Pointedness of $\mathcal C$ is vital to the necessity part of the theorem; consider the case $A = -I$ and

$$
\mathcal{C} = \left\{ x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_1 \geq 0 \right\}.
$$

In fact, we have

(2.10.4) If $C \subset \mathbb{R}^n$ is a nonpointed closed convex cone which is positively *invariant, then* (1.5) *is impossible; that is, there exists* $x \in C$ /{0} such that $Ax \in C$.

Outline of proof. Nonpointedness implies that C contains a nonzero subspace; denote by $\partial \mathbb{R}$ the maximal subspace contained in \mathcal{C} . Let $x \in \partial \mathbb{R}$ /{0}. Then for *Ax* to be subtangential to C at x, we must have $Ax = a^{1} + a^{2}$ where $a^{1} \in \mathfrak{M}$ and a^{2} is contained in the (pointed) cone $P\mathcal{C}, P$ being the projection of $\mathcal C$ along \mathfrak{N} onto some direct sum complement of \mathfrak{M} . Hence $Ax \in \mathcal{C}$.

Finally, we will prove the corollary of Theorem 1.4 which was given in section 1.

Proof of Corollary 1.6. The assumptions on A imply that *Ax* is subtangential to R^n_+ $\forall x \in \partial R^n_+$, whence R^n_+ is positively invariant. In view of Theorem 1.4, asymptotic stability of R^n_+ , and therefore of R^n , is equivalent to (1.5). Now recall that asymptotic stability of $Rⁿ$ is equivalent to negativity of the real part of the spectrum of A, and note that for $C = Rⁿ$, (1.5) becomes (1.8). It remains to show that (1.8) is equivalent to (1.9). To this end, consider the following linear programming problem, for given $y \in R^n$:

$$
\begin{array}{ll}\text{maximize } \langle y, x \rangle\\ \text{subject to } Ax \geq 0, x \geq 0 \end{array} \tag{Py}
$$

Note that (1.8) holds if and only if (P_v) has a bounded maximum (necessarily zero) for every $y \ge 0$. From the duality theory of linear programming we then conclude that (1.8) is equivalent to "dual feasibility" holding for each $y \ge 0$; that is, for each $y \ge 0$ there exists $u_y \ge 0$ such that

$$
-y - A^T u_y \geq 0
$$

(where "T" denotes transpose). This is equivalent to the existence of $u \ge 0$ such that $-A^T u > 0$.

Acknowledgments

The author benefitted from communications with A. Ben-Israel, A. Berman, and H. Wolkowicz, and from the hospitality of the late Sam Baylin.

References

- 1. Berman A, Plemmons RJ (1979) Nonnegative matrices in the mathematical sciences. Academic Press
- 2. Hájek O (unpublished manuscript) A short proof of Brammer's theorem.
- 3. Hirsch MW, Smale S (1974) Differential equations, dynamical systems, and linear algebra. Academic Press
- 4. Nagumo M (1942) Uber die Lage der Integralkurven gewohnlicher Differentialgleichungen. Proc Phys--Math Soc Japan 24:551-559
- 5. Ostrowski AM (1937) Uber die Determinaten mit uberwiegender Hauptdiagonale. Comment Math Helv 10:69-96
- 6. Robert F (1966) Recherche d'une M-matrice, parmi les minorantes d'un operateur lineaire. Numer Math 9:189-199
- 7. Schneider H, Vidyasagar M (1970) Cross-positive matrices. SIAM J Numer Anal 9:508-519
- 8. Yorke JA (1967) Invariance for ordinary differential equations. Math Systems Theory 1:353-372

Accepted 5/10/82