
Appl. Math. 0ptim. 9:1-24 (1982) Applied Mathematics 
and Optimization 

Zero-sum Markov Games with Stopping and Impulsive Strategies 

Lukasz Stettner 

Institute of Mathematics, Polish Academy of Sciences, Sniadeckich 8, 00-950 Warsaw, Poland 

Communicated by A. V. Balakrishnan 

Abstract. Three kinds of zero-sum Markov games with stopping and 
impulsive strategies are considered. For these games we find the saddle point 
strategies and prove that, the value of the game depends continuously on the 
initial state. 

In the paper the following three kinds of zero-sum, two-person Markov 
games are considered: games with stopping, games with impulsive controls 
and games with impulsive control and stopping. These games do not exhaust 
the variety of the zero-sum games with stopping and impulsive strategies but 
are typical in this theory. 

The form of the associated cost functional depends on the kind of game. 
For instance, for the game of the first type the functional is of the form: 

Jx(%8)---- Ex{ fo~Aa e '~Sf(xs)ds + x~<ae-~'~-Xt'l(X~)+ Xa<.~e-'~axP2(xa) } 

If T and 8 are stopping times chosen by the first and second player 
respectively, then the first player pays to the second one in average the total 
amount equal to Jx(~-, 6). 

A similar, but a more complicated functional is in the case of games with 
impulsive controls, and games with impulsive control and stopping. 

Under assumptions introduced by M. Robin in [8], we prove the 
existence of the saddle point strategies for these games. We show also that the 
values of the games depend continuously on the initial state. This way we 
generalize Bismut results contained in [2] and solve a problem posed by M. 
Robin in [8]. 

An analogous game to the one with impulsive controls was considered 
independently and Under stronger assumptions by J. P. Lepeltier in [6]. 
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2 L. Stettner 

1. Stochastic Game with Optimal Stopping 

1.1. Introduction 

Let (E, B) be a locally compact, with countable base state space endowed with 
the Borel o-field B, and X =  (x t, F t, Px) a right continuous, homogeneous Markov 
process on the space E. 

By C we will denote the space of all continuous, bounded functions on E, by 
C o the sub-space of C of functions vanishing at infinity and by (@(t))t~> 0 the 
Markov semigroup associated with the process X. We will assume 

(A1) V f E c ,  t>~O Op( t ) f eC  

(A2) Vf6Co , t>O Op( t ) f~C o 

(A3) if d denotes metric compatible with the topology on E, such that every 
ball is compact (it is well known that such metric exists), then 

VT > 0 . / r (R  ) deU sup Px{ sup d(xt,x)~> R} ---> 0 asR -+ oo 
x E E  O < ~ t ~ T  

Let us consider the following two person zero-sum game. The players choose as 
their strategies Markov times. If r and 6 are the strategies of the first and second 
player respectively, then the first pays to the second one the total amount equal to 
Jx(r, 6). The functional Jx(r, 6) has the form 

fO r A 8  as ." J~(r ,6)  = E x e-  f t x s ) d s + x , < a e - ~ ' q q ( x , )  

+ X~<_,e-"a'lz2(xa)} (1.1) 

where a is a positive constant, and functions f ,~ t l ,XI t  2 satisfy the following 
assumption 

(A4) f,~t',,~t' 2 ~ C, Vx E E qq(x) ~> ~t'2(x ) 

We define lower and upper value of our game, g and g respectively 

g(x)  = sup infJx(r ,  8) ~(x) = inf supJx(r,  3) (1.2) 
3 r r 8 

Under the above 4 assumptions we will prove that the game has value v: v = _v = g 
and that the value is continuous function. Moreover we will find the saddle point 
strategy (r, 6), such that v (x )  = Jx(r, 6). These results will be obtained with the 
aid of the penalty method, introduced for stopping games by N. V. Krylov [4, 5]. 
This method consists in finding for each fl > 0 a solution of the following 
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penalized equation 

v.  = Ro[ Z -  B(v" - . , ) +  + B(v" - "2 t ] (1.3) 

and showing that v ~ --, v as fl ~ m. 
Zero sum stochastic game with optimal stopping appeared first in Dynkin's 

paper [3] for stochastic sequences. Continuous time analog of this game was 
considered first by Krylov in [4, 5]. 

From the point of view of variational inequalities and for diffusion processes 
such games were investigated by Bensoussan and Friedman in [1]. Bismut in [2] 
studied similar games using results from convex analysis. In the Part 1 we present 
similar results to those obtained in [1,2,4,5], but proved under very general 
conditions (A.1), (A.2), (A.3), (A.4) introduced by Robin in [8]. 

1.2. The Main Result 

First we have to establish solvability of the penalized equation (l.3). 

Proposition 1. / f  the assumption (A1) and (A4) are satisfied then exists unique 
solution v ~ of the equation (1.3). Moreover, vB~ C(~Dy, where D X denotes the 
domain of weak infinitesimal operator A. 

Proof Proof is almost identical with the proof of Corollary 1 [10] where the 
general case of Dynkin's game is considered. Namely from the Lemma 1 [9] we 
know that (1.3) is equivalent to 

v 13 = R~+~[ f - - f l ( vB- -q l , )++f l (v[3- -q '2 )  +f ly  ~] (1.4) 

Since the function F( x ) = a - fi( x - b) + + fi( x - c) -  + fix for b ~> c is lipschitzian 
with the parameter fi, the equation (1.4) can be solved with the aid of Banach 
principle. [] 

Now, our aim is to obtain the existence of the value v of the game. The next 
two lemmas will play an important role in the proof of this fact. 

Lemma 1. The solution v/~ of the penalized equation (1.3) has the following form 

v/~(x) = inf sup Ix(u ~,u 2) = sup inf Ix(u 1,u 2) 
RIG Mfl U2E M• u2C Mfl utC M/~ 

= ix(fill3, fi2B) (1.5) 

where M/~ is a family of progressively measurable processes ( u s)s >t o with values from 
the interval [0, fl] and 

.x ul.  40 exp( :0't° + + u. l,s) 
× [ f(x,)+ u~..(x,)+ u,~.~(x,)] dt 
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and 

if v B ( x , ) < * , ( X s )  

L. Stettner 

i f  vfl( Xs ) < x I t 2 ( X s )  

(1.6) 
ifv"(xs)> %(Xs) 

Lemma 2. The following two identities are true 

I f'rA~3 
vZ(x )  = inf supE~ Jo e ~t f (x t )dt  + x ,<ae-~"~t ' l (x , )+ Xa<,e-~aq'2(xa) 

r 8 

+ X,<ae-~ ' (v  ~ - * , ) +  ( x , ) - -  Xa<~e aa 

)'( ( V fl -- xtr2 ) -- ( X s ) } 

= sup infEx{-o f~Aae ~t f (x ' )d t  + X~<ae -~P l ( x ~ )+  Xa-<'e '~aq'2(xa) 
"r - 

+X,<ae-'~'(v/~--~t, .)  + (x . ) - -Xa< .e - '~a (v /~ - - .2 )  (xa)} 

(1.7) 

First lemma is a Markov analog of Corollary 2 [10] and the second one is proved 
in the second part of proof of Theorem 3 [10]. Using these lemmas we show the 
main theorem. 

Theorem 1. Suppose the assumptions (A1)-(A4) are satisfied. Then there exists 
the value of the game v, which is the continuous function and v [3 ~ v as fi ~ 
uniformly on each compact. Moreover the times ~, 6 

:r = i n f { s > O : V ( X s ) = ' P l ( x ~ )  } g =  in f{s>~O:v(x , . )= ' t ' : (x~)}  (1.8) 

are the saddle stopping times, that is, 

v(x)  = Jx(< ) 

(We suppose that in (1.8) infimum over empty set is equal + ~) .  

Proof. We will prove only the first part of the theorem since the second one is 
almost identical with the proof of existence of the optimal stopping time in [8]. So 
we need to establish the convergence of v z to the value of the game v. Similarly as 
M. Robin in the proof of Theorem I 2 [8] we will base on the fact of density in C O 
of the domain D A of infinitesimal operator A in C 0, and we consider three cases: 

a ) ' P , , ' I ' 2 ~ D  m, 2) ' t ' , ,~I '2EC0,  and 3 ) ' t ' l , ' t ' 2 E C .  
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Step 1. Suppose 'I'1, xI' 2 E D A. Then  since 

~v~ - Av~ = I - 8 ( v B -  ~ )  + + B(vB - , 2 )  

and 

ot(vfl--~!t2)-- A(I)B--~,'2) = f -- a ~  2 q- Axlt2 - f l(v,8--  qtl)+ 

+ ~(v~'--'I'2)- 

we have 

e ~ % ~  - ,1,2 = R o ( g - B ( e ~  + , I , 2 - , t , , )  + + B f e e ) -  ) 

def 
where g = f - aXt' 2 + A'~' 2. 

So f rom L e m m a  2 we obtain  

e~(x) = {jo (jo , ) sup inf E x exp - ( a  ÷ u~ + u~ ) dr ( g ( x  s) 
.2e M~ . Ic  M~ 

+ u~(~,(xs)- ~2(<)) as} 
and therefore 

(1.9) 

(1.10) 

~ ( x )  % , ~ ( x )  - ~,(x) 
= in( sup E x e x p -  aq-ulrq-U2r)dr g ' ( x s )  

ul~ MI3 u2e MB . 0 0 

} e, 
+ u 2 ( q l e ( X s ) - -  x t ' , ( x , ) )  ds <~ - -  (1 12) 

a +  fi 
def 

where g '  = f -  a t  I + A ~  1 and t]g'H ~< cl. 

Thus  summariz ing  (1.7), (1.11), and (1.12) the following two approx imat ions  
are true 

v B max{c ,  Cl} 
- in( sup J (  'r, ~ ) ~< 

"~ 8 a +  fi 
(1.13) 

where c is constant  such that  II g II ~< c. 
On the other hand,  analogously 

--e (1.11) ~ ( x )  > ~+-~ 
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and 
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~#(x) = 

where 

XIt~ --) xtc,, xIt2n --) XIt I i n  C as  n ~ oO 

and 

Let us define 

( fTA8 as 
J : ( ' r , 8 )  = LXI}o e -  f(x,)ds+x~<.~e " ' * ~ ( x ~ )  

e ~ a g ~ t x  x] + x ~  ~ ~ j  (1.15) 

Since 

Ils~(,, a ) -  J ; ( , ,  a)ll ~ I I%] f l -  ~t~l l  ~- IlXIt2 - -  ~f2n II 

then 

i n f s u p J ~ ( ~ - , 8 ) - i n f s u p J ~ ( ~ - , 8 )  ~< I I q , ~ - q , ~ l l + l l q , 2 - , I , ; l l  (1.16) 
~- 6 -r 6 

F r o m  the Step 1 we know that  for each n = 1,2, . . .  

v # - i n f s u p J " ( T , 8 )  - ~ 0  as fl ~ oz (1.17) 

inf sup E x exp(-f ( a + u ~  u, 

+ u's*;(xs)+ u~q,;(xs)) d~) 

v ~ 8) max{c ,  c,} - sup infJ(~ ' ,  ~< (1.14) 

I f  fl tends to + oo we obtain  the assert ion of the theorem in the case 1. 

Step 2. Let 91 and 9 2 belong to Co. Since D A is dense in Co, then there exist two 
sequences (q'~),=l,2.. .  and ('t '2"),=l, 2 .... of functions f rom C o such that  
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Moreover,  

sup sup Exlfo~eXp(-£(a+ulr+u2)dr) 
ulc MB u2~ MB 

X ( uls I"t'l ( Xs)- q/r( xs)l + u;I ~2(Xs ) -  'I ';(xs)l) d, } 
II ,I,~ - ,t, r II + II q-'2 - , I ,~  II 

Summariz ing (1.16), (1.17), and (1.18) we obtain  

v ¢ ~< inf i n f s u p J ~ ( r , 8 )  inf sup Jx ( r ,  8)- sup Jx ( r ,  8) -- 
r ~ 6 r 8 

+ i n f s u p J x ~ ( ¢ , 8 ) - v f f  + l i v e -  v~l[ 
r 8 

< 2(11 ,I,1 - ,I,r fl + fl ,I,2 - q ,~ II ) 

+ vff - inf  sup Jx ~ ( r ,  8) 
r 8 

Passing with fl ~ + ac and then with n - ,  + m we have the convergence 

v ~ -+inf  s u p J ( r , 8 )  in C a s f l  -+ oc  
r 8 

The  analogous considerat ions lead to the convergence 

v ~ -+sup i n f J ( r , 8 )  in C a s f l  ~ oo 
8 r 

(1.18) 

def  . . qir(x)aefh,(x)-'Iq(x) q'2n(x) = h , ( x ) "  ' I '2(x ) 

Obviously  

Vn II ' t ' r  II ~< II ~It 1 1] l[ ~IP~ 11 ~ 11 xlt 2 11, ~t' r 1> qt2~, qr r and ~t '~E C o 

and ' t '  r ~ ,tq, 't '~ ~ 'I" 2 uniformly on each compac t  as n ~ ~ .  In  t h e  second 

Step 3. Suppose now that  ~tI11,XIt2~ C. As we know, there exists an increasing 
oo 

family of compac ts  K n such that  U Kn = E.  
n- -1  

Let  for each n = 1,2 . . . .  , h , :  E --, [0, 1] be a cont inuous  funct ion with compac t  
support ,  equal 1 on the set K , .  We put  
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step we proved that 

Vn vf  ~ v, = inf s u p J " ( ¢ , 8 )  uniformly as fl ~ oo (1.19) 

Now we will show that v, ~ v = inf supJ(¢, 8) uniformly on each compact. 

Let K =  K(x o, R1)= {x: d(xo, X)<~Rl} be a closed ball with center in the 
point x 0 and the radius equal R~. For T >  0, R > 0 we define the sets: 

D = s u p  
O<~t<~T 

I£ = {y:d(xo,Y)<~Rl+R) = K(xo, R I+R)  

We have 

IJ~(~,6) J;(T,8)['~-[ExX,<TX,<~e I ~ l ( X , ) -  ~t'~'(x,)l 

+ ExX~<~TX~<,e ~l,~2(x~)-, t ,~(x~)[]  (1.20) 

+ 2e-~T([I ~L [I + [I ~t2 ]l) = I + II 

Further, 

I = ExXm[X,r<rXr<se a'rl~Itl(Xr)-- xIY~(X,r) ] 

+ XS<TX~<~e-a~I4Z2(Xs)-- 9;(X~)I] (1.21) 

+ ExXmD[X,<rX~<se "~lqP,(x~) - ~ ( x ~ ) [ +  X~<TXs<,e - ~  

× -- I I I  + IV  

From the definition of yr(R) (see the assumption (A3)) we obtain 

IV  ~< 2YT(R)( I I  't ', II + II "1'2 II) (1.22) 

Moreover, 

In < sup I % ( y ) - , t q ( y ) [ +  sup I%(y)-'t 'y(y)I  (1.23) 
y ~ R  y ~ R  

uniformly with respect to x ~ K. Thus (1.20), (1.21), (1.22) imply 

sup [J~('r,8)- J~('r,8)[ <~ I I + I I I + I V  ~< 2(e--'~T +'YT(R)) 
x c K  

× (11% II + II xIF 2 }l) ~- sup I q ' , ( y ) -  , I q ( y ) ]  
.vE R 

+ sup I(%(y)- ~;(y)l 
yC/( 
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and since the right hand side is independent on r and 8 we have 

sup inf supJx(r  , 8 ) -  inf supJ~(r ,  8) 
x c  K "r 8 r 8 

~< 2(e ,T+  TT(R))(I I 'tq [I + 11'I'2 II) (1.24) 

+ sup Iqq(y) - ,t,~(y)l + sup J % ( y ) -  ,I,2~(y)[ 
y E / (  yE/£  

Now we see that since 

sup inf supJx(r ,6  ) -  v•(x) 
x ~ K  r 6 

~< sup inf supJx(r,  8 ) -  inf supJ~(r ,  8) (1.25) 
x ~ K  r 8 r 8 

+ i n f s u p J ' ( r , 8 ) - - v f f  + sup[v~ (x ) - - v# (x ) [  
r 6 x c K  

we have to estimate the last term of this inequality. Using the similar considera- 
tions as in the proof of inequalities (1.8), (1.20)-(1.23) we obtain for x ~  K 

(s? (So( ' ) k~(x)-  vt(x)l ~ sup sup E.  exp -- a + u. + u, ) dr 
u I ~  M B u2C  MB 

x [ ulsl ~,(x.  ) -  .i.;, (xs)1 + .;I q[t2 ( Xs ) -  ,c~¢;( Xs )l] ds } 

sup sup 
/ ~ 0  J ~ U  J 

{J: }] +ex (...)d~ 

~< sup I , I , t (y)-  'I '?(y)l + sup [qse(y) -  ' t q (y )  I 
yE/£ y E R  

+ 2 ( e - " r +  yr(R))(II  '1"1 II + II "I'2 II) (1.26) 

The last approximation is uniform with respect to x E K. Thus summarizing 
(1.24), (1.25), and (1.26) we have 

sup inf sup Jx(% 8 ) -  v~(x)  <~ 4 ( e - ~ r +  yr(R))(II  xIt 111-~-[1 ~lt 2 II) 
x ~ K  r 8 

+2  sup [qq (y ) -x t ' ~ (y ) l  

+2  sup ]q~2(y)- q~z~(Y)] 
y ~ / (  

+ inf sup J ' ( r ,  8) - v~ 
8 
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Going to the limits with fi ~ oo, n ~ oo, R --, ~ and finally with T ~ ~ we obtain 

lim sup inf sup Jx('r, ~ ) -  vB(x) = 0 
f l  "f oo x ~ K "c 8 

Changing the role of operators inf and sup we have the same convergence for the 
lower value of the game. 

Thus v ¢ tends simultaneously to the lower and upper value of the game. So 
v ~ tends uniformly on each compact to the value of the game. 

1.3. Some Additional Results 

The aim of this point is to introduce some new characterizations associated with 
Dynkin's problem. These results will be useful for the game with impulsive 
controls. The first theorem is an analog of Theorem I 32. [8], which put the 
interpretation on optimal reward in stopping as the maximum element in certain 
class of functions. 

Theorem 2. Suppose the assumptions (A1)-(A4) are satisfied. Then the value of 
the game v is the greatest, bounded, continuous function w satisfying the inequalities 

f 
w(x) 
w ( x ) ~ E x (  fogAte ~Sf(xs)ds 

for t ~> 0 

+ e - "gA 'w(xgAt )  } (1.27) 

where 6 -- ~(w) -- inf(s ~> O: w(xs)  <~ Xt'z(Xs) ) 
On the other hand, v is the least bounded, continuous function w satisfying the 

inequalities 

[w(x) 
2 ~  ? A t  - - a s  

[ for t ~> 0 

+ e ~eAtW(X¢At)} (1.28) 

where 4 = 4(w) = inf(s ~> 0: W(Xs) >! '~l(x,))  
The proof of this theorem is similar to the one of Theorem I 3.2 [8] and can 

be found in [11]. 
Sometimes, particularly in the case of games with impulsive control, inequal- 

ity q'~ ~> ~I" 2 is not satisfied. This situation consider the following 

Theorem 3. Let f ,  ~t' 1, q'2E C and the assumptions (A1)-(A3) are satisfied. Then 
zero-sum game with the functional (1.1) has the same value as the analogous game 
with the functions q'l V q'2 = max(xI'l, '~I'2}, q'2 instead of the functions ~t' t and ~t' 2 in 
(1.1). 
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Proof Let's denote 

v(x) = inf suPJx(%8 ) ~5(x) = inf supJx(%8 ) 
r 8 r 8 

where 

]~(,,,~) = ~e "Sf(x,)ds+ x,<~e-""tq V %(x , )  

First note that 

v(x) >~ infJx(~-,0 ) = 't'2(x), 
T 

11 

From Theorem 1, for arbitrary Markov times % 8 we have 

where 

= inf{s ~>0: 15 (x , )=~ ,  V q'2(x,) } 

= inf(s ~>0: 15(xs)= T2(xs)} 

We will show that (~, ~) is the saddle point for the functional Jx too. Since 

f r T A 8  a s  

]~(~,g) = ExtJo e f(xs)ds+x,<~'X{e,(~,)<%(z,)}e-"'%(x,) 

X,<eX(%(x,)> %(x,)) e a~'xI~rl (X'r) ~- X[<,e-'~C%( xg ) } + 

on the set ( 't ' l(x,)~<%(_x,) }, we have 6 ( x , ) = % ( x , )  and then ~-~>~, thus 
( % ( x , )  ~< q'z(X,)} c ( r  ~> 6}. Hence 

Jx(~-,g) = Jx(T,6)  

Particularly 

= 

On the other hand for each time 6 we have trivially 

]~(+,8) ~ Jx(+,8) 

for each Markov time ~- (1.30) 

(1.31) 

(1.32) 

v (x )  <~ supJx(0, 6) -- 't', V ,t'2(x ) (1.29) 
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Summarizing (1.30)-(1.32) for Markov times "r and 8 we finally have 

= Jx( ,X) (1 .33)  

which finishes the proof of theorem. [] 

Remark. One can consider the zero-sum game with the functional J) 

E "/~ J ) ( ' r ,6)  : x(f0 ~ e - ~ ' f ( x s ) d s  

X, ~ ~e- ~'~t', (x , )  + X~ < ,e -  ~'t '2(x8 ) } (1.34) + 

We can easily notice, that the value of this game is identical with the value of the 
game with functional J~. For new game we have the theorem analogous to the 
previous one, with the functions egl, and qq/~ xI' 2 = min(~t'l,eg2} instead of qq 
and ~2 in the functional (1.34) 

2. Stochastic Game with Impulsive Controls and a Constant Time Delay 

2.1. Formulation of  the Problem 

In this part we consider games with impulses and we will frequently use results 
from the second Chapter of Robin's dissertation [8]. 

Let ~ = D(0, oo ;E)  be the space of right continuous with left hand limits 
functions from R + in E, 

= : f o r s ,  t /> 0,  

0 t is a translation operator, and 

Ft ° = o ( x s : s < . t } ,  F ° : F o 

We denote by F t and F the universal completions of F °. 
Next assume that X =  (fL Ft, 19t, xt,  P~) is the homogeneous Markov process. 

Moreover we introduce function f defined on E and functions c, d on E × E, 
compact sets U~, U 2 c E and a constant number h > 0. Besides of the assumptions 
(A1), (A2), (A3) we introduce the following assumption (A5): 

(A5) f ~  C, and c, d E  C ( E  × E)-- the  set of bounded, continuous, real 
functions on E × E 

Let us assume now that two players choose strategies W and Z respectively of the 
form: 

W = ( T I , ~ I ;  T2,~2; . . . .  'ri,~i;...) 
Z = (~1,~1; ~2 ~2; . . . .  ~i,~i;...} (2.1) 
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where (~)i=1,2.~. and (6i)i 1,2 .... denotes increasing sequences of (Ft)t~ 0 stopping 
times, and ~', 7' are F¢, or F a, respectively measurable random variables with the 
values ~i in U 1 and ~i in U 2. 

The first player shifts process at times ~'~ + h to the states ~, provided that in 
the interval [~-g, ~ + h] no other shift of the process is done. This means that first 
player comes to decision of shift at time ~'~, and unless no other shifts in the 
interval [~-~, ~-~, + h] have appeared, this one is realized with the constant time 
delay equal h. The second player has the analogous possibilities of control. 
Moreover, if both players decided to shift process at the same moment, then it is 
passed according to the desire of the second player (obviously one can consider 
the analogous game in which such advantage will have the first player). If the 
player decided to shift process at time T ~, then provided that in time interval 
D - i -  h; T g] no one came to decision of shift, no influence on the evolution of the 
process in the time interval (z i, T~+ h) is possible--all  decisions in the interval 
(~-i, z i + h) are cancelled. 

The decisive role in the run of the controlled process will play the following 
stopping times 

p l (w ,  Z )  ---- T 1A 31 ~-- T rl /~ 3 sl 

. . . . . .  

p ' ( w ,  z )  = ~" A 3 s 

where 

r l z l  s l z l  

r 2 = min{i: ~i ~> pl + h} s 2 = min{i: 3 g >>- pl + h} 

rn=min( i :  .ri>~pn-l + h} sn=min( i :  3i>~pn-l + h} 

If a minimum is taken over the empty set, then we put suitable r ~ or s ~ equal plus 
infinity. We assume also that 

def def 
~ ' ~ = + ~  and 3 ~ = + ~ .  

Let us denote first, that ~-" and 3 s' for i = 1,2 . . . .  are (Ft)t~ 0 Markov times. 
So in fact the following impulsive control is active on the process X 

V(W, Z )  = {pl ~1; pR ;2; . . .p i , ; i  . . . .  } (2.3) 

where 

~-1={~1 if~.l<31 

lf~ -/>3 ~" { ~s n • r" 

Obviously we have fl + h ~ pi+ l for i = 1,2 . . . . .  and ~-i is F# measurable. 
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Under the influence of impulsive control V the new measure pv on the space 
of trajectories D(0, c¢ : E )  is constructed. One can find this construction in second 
chapter of [8]. We will rely on the following properties of such measure: 

pV = px ~-, on F(:+h )- (2.4) 

where 

U=~x 
p2 = pO on F~ol+h ) 

p I x ( A f ~ Z I B )  = EO[xAP~I(B)] for eachA ~ Fp~ 

B E F, where p~ = pl + h 

Px ~ = P : - '  on F(:+h ) 

P:(AAO~IB) = E~+I[xAP;.A (B)] for each A ~  F0~ , 

def 
B E F where p~ = p" + h (2.5) 

Now we can consider the functional of the game: 

Jx(W,Z).= E e-~f(x,)ds+ e [X.frt<~sIC(XTrt,~ ) 
i=l 

(2.6) 

The first player using the strategy W wants to minimize the functional, while the 
second one with the aid of strategy Z is interested in maximizing it. Let us denote 
the upper value of the game by v 

v(x) = inf sup Jx(W, Z)  (2.7) 
w z 

We will show later that v presents in fact the value of the game. 

2.2. Characterizations of the saddle strategies 

Let us define first two operators M l and M 2 by 

M,w(x) = inf [c(x,~)+e-~hw(~)] 
~ U~ 

M2w(x ) = sup [d(x,n)+ e-"hw(~l)] 
n~ U2 

(2.8) 
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and the function 'I' 

def h as 
~ ( x ) =  Ex( f o e -  f ( x s )ds  } (2.9) 

Since sets U 1 and U 2 are compact, M 1 and M 2 transform C into C, and there exist 
measurable functions ~(x) and ~(x) realizing infimum and supremum in the 
definition of M 1 and M 2, respectively. Moreover, from the assumptions (A1) and 
(A5) we have that q 'E  C. 

The following lemma will play an important role in this section 

Lemma 1. Let the assumptions (A1)-(A3), (A5) be satisfied. Then the equation 

(x)  = inf sup E x { f~  m a e ,,Sf(xs ) ds + e -<" A a) 

# kJO 

× [X,<~Mlg(X,)  + Xa_<.,M2g(xs)+ q ' (x ,Aa)  ] } (2.10) 

has unique bounded, continuous solution ~. 

Proof. We define on C the transformation F 

( /"rAg 
r : C ~  g--, F(g)  : i n f s u p L x / J 0  e - ' S f ( x , ) d s + e  ~('/~) 

r 8 

×[X,.<~M,g(x,)+Xa<_~.M2g(xa)+'ff ' (x,A~)]} (2.11) 

We easy notice (Theorems 1 and 3, Part I), that 17 acts from C into C. Since for 
g l ,  g2 ~ C 

Ilmig 1 -- Mig211 ~ e "hl[g 1 - g211 i = 1,2 

then 

I l r ( g , ) -  r(g~)ll ~ e - ~ h l l g , -  g2fl (2.12) 

and F is the contraction on C. 
Further we will proceed to show the identity g = v. With this aim we will 

need the following lemma 

Lemma 2. Assume the assumptions (A1), (A2), (A3), (A4) are satisfied. Let 

( t ' r A 8  
w ( x ) = inf supEx{./~ e -'~'f ( xs ) ds + e-'~(" A a ) [ X "~ < /qq ( x'~ ) 

T a - "U 

+ Xa-< ,'t'2 (xa)] } (2.13) 

= inf{s ~> 0: w(xs) = ff'l(Xs) } 

i~ = inf(s ~> O: w(x , )  = q'2(Xs)} (2.14) 
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p is arbitrary Markov time, and ~ is Fp measurable random variable. We put 

Ph = P + h ~ = Oh + ÷°0o,, ~ = Oh + g°Oph (2.15) 

On the space (~2, F, P) we define a new probabilistic measure fi satisfying the 
properties 

P = P  on F 
Ph 

P(AfqOo 'B  ) = E(xAP~(B))  for eachA E rp; 

A C ( p < + ~ }  and B E  F 

(such measure there exists from Lemma II 1.1 [8]). Then 

e-,~Ohw(~) = ~{  f~/~g e- , ,S f (x , )ds  + e-,~(~AY)[X~<gt, (x.7) 
Oh 

Xg<<~'~'2( xg )] IFoz } P almost surely (2.16) + 

Moreover for a Markov time r ,  r ~ Pe we have P almost surely 

e-'O~w(,) ~ E{ f~;ASe "'f(x.)ds+e-'('A'~[X~<~,(x.) 

+ Xg~,q'2(xg )] IFp; } (2.17) 

and for a Markov time 8 >~ Oh 

e ~P"w(') > /~{fol/~e ~'f(x,)ds+e-~(~A~)[X~<Sq'l(X~) 

IFo; } (2.18) + 

P almost surely. 
The proof of this lemma is similar to the one in [8] and is in [11]. 
The following theorem contains the main result of part 2. 

Theorem 1. / f  the assumptions (A1), (A2), (A3), (A5) are satisfied then 

v ( x )  = g(x)  (2.19) 

where v(x)  is defined in (2.7) and g(x) is the solution of the equation (2.10). 
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Let us introduce Markov times 
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"~ = inf{s ~> 0: Mll)(Xs)V M2V(Xs)-t- q2"(Xs) = t~(Xs) } 

i~ = i n f { s ~ > 0 :  M2v(xs)+qt(xs)=V(Xs) } (2.20) 

and assume that ~(x) ('~(x)) is a measurable function realizing the infimum in 
--, e(x, ~)+ e-~hv(~) on U 1 (supremum in ~1 ~ d(x, ~1)+ e-~hv01) on U2). 

Then the saddle strategies (W, Z)  are defined in the following way 

~,_{~ ~ i f~< ,~  

" r -  i~+ i f ~ < ~  

Ipi+h+~'°O?~'+h h 
=l: 1" '+1  +h+goO~i+h+~ on OF+lh( {~< ~ })  

on e;-&({~" = + oo, ,~ = + oo }) 

j:~(x~,) on (÷ '<oo}  
[arbitrary ~o E U, on {'~i---- + oo } 

g ifg<<-~ 
g l =  h ~+~ if.~<g 

[bi+h+/~oOp,+h h 
' i+l = l^t-~-h-~-YroO~i+hq- ~ 

on e£+'h({,~< oo } n {,~<~,~ }) 

on OF+lh({i~ = + oo } r-'l {,.? = + o o } )  

(2.21) 

(2.22) 

(2.23) 

~i = I ~(xg')  on ( ~ i < ~ )  (2.24) 
[arbi trarY~o~U 2 on ( ~ i = + o o )  

Proof First we will show that for the strategies defined with the aid of 
(2.21)-(2.24), where v is replaced by g, we have the identity 

g ( x )  = J~(I,V, 2 )  (2.25) 
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L 

~ if+~/>3" (2.28) 

Now we exert (2.16) from Lemma 2. We obtain 

e = e ~ l  e l tx , )as  
U~; + h 

^ 

F ( h ' +  h ) - }  (2.29) 

So from (2.27) we have inductively for i = 1,2 .... 

~i--  I f  f , ~ l  A ~1 + h - - a s . r e  
Z 

Uo j = l  

^ ^ ^j --a(~i+h) - ^i t ×[X.~,<;,c(x¢,,~/)+Xa,<.~M(xs,,rl ) ] + e  v(~" ) (2.30) 
) 

Since ~* = +~ A 3' --, m as i --, oo, the proof of the identity (2.25) is established. 
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In fact, from the Lemma 1 

g(x) = E°{'of+l/~gle-a'f(xs)ds + e-a(¢'A~) 

X[X,~I~AIM|g(X,~I)'Jux~I~,~IM2~(X~A1)-~'~gf(X,.~IA~')]} (2.26) 

Using the definition of ~l and ~1 we have 

e a~lMl~5(x~, ) = [ c ( x ~ , , ~ ' ) + e - a h g ( ~ l ) ] e  -a~' 

e-a~aM2g(x~ ) = [ d ( x ~ ,  ~ l )+  e-ahg(~l)] e-aS~ 

and hence 

0 "~lAgl+h - - a s  a(¢tAa g) 

X[x¢,<d~c(x¢,,~')+Xs,~.~,d(xd~,~')]+e a'f'Ad~+h)~(~l)} (2.27) 

where we set 
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The proof of theorem with be finished if we assure that I/V and 2 are the 
saddle strategies indeed. Suppose the strategy Z is arbitrary 

Then we take the strategy 1~ of the form 

÷ if4~<31 

= h 31 41 81 + ~ if < 4  

pl = +l A 81 

Ip l + h + +oOd+ n on OpT+l h({? < oO }) F'l {p' + h+  "?oOp,+h <<-8 s2 } 

on + } 

o n  e,,, +',,({+ = ~o } )  n {a~2= oo } 

pi = ~, A 8 si 

i ^ P +h+r°Od+h 

+i+1 = ~si+l ~_ h 
2 

onOAh({+<oo})n{d+h+~roO.,+h ~<8 *'+'} 

o n  '+' } 

on e,,,d,~ ({+ = oo}) n {a ' '÷ '= oo} 

(2.31) 

where s * is defined in (2.2) and ~ i_n (2.22). Let us note that on the game 
influences in fact not strategy Z but Z 

Z =  {~S1~3"' aS2,~$2 ... .  } (2.32) 

We will prove the inequality 

~(x) = 4(~,  2)/> Jx(~, z)  (2.33) 

First from (2.10) we have 

f fo  ^ sl ~(x)  >I E x +AaS'e-'~*f(xs)ds+e-"(~Aa )[Xe<~s,MdT(x~) 

+ x~,,<_~M2~(x~,,)+ ,I,(x~ ~,)]} 
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Next to simplify the notations we put  6 SI= 6 i and ~/s'= ~i. Since 

M2g(xs, ) >! d(xn,, ~') + e ah~(~l) 

L. Stettner 

then 

6(x) >~ E°[ f +'AS'" ~*e-~'~f(xs)ds+e -'~(¢'A~') 
~(Jo 

X [X,~l.<:8lc(X.~l, ~1) _{_ Xsl~,.~ld(xs,, ]]l)] _}_ e-~(# Aa'+h)~(~.,) } (2.35) 

where this time ~'~ denotes 

L T~ 1 if 61 ~< 41 "'" 

L ,)~ if 6 ~ ~< ?~ 
(2.36) 

From (2.18) we have 

If f~r2A62+h^--asg[.. ~ds 
Ex~Jpl+h ~ j,.Xs] 

F~o, +h)-} (2.37) 

Thus inductively we obtain 

{fo V(x) >1 E i- '  ÷~A~'+he ~f(x,)ds+ E e-"(vAs') 
j = l  

X [X~,j<8,c(Xcj, ~J )+  Xa,~¢,,d(xsj, rlJ)] + e a(d+h)F(~-i)} (2.38) 

Since pi = +i A 6 ~ ~ ~ as i -~ ov the inequality (2.33) is satisfied. 
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It remains to prove for each strategy W the inequality 

J~(l~, 2 )  <~ J~(W, 2 )  (2.39) 

The proof of this fact is based on the Lemmas 1 and 2, and is analogous as the 
one of inequality (2.33). So the proof of theorem is established. [] 

3. Stochastic Game with Impulsive Control and Stopping 

3.1. Introduction 

In the third part we consider more complicated situation. There are two players. 
The first one controls a Markov process by means of the instantaneous impulses 
and the second one only stops the game. Shifts are realized immediately, without 
any delay. Similarly as in Part 2 we consider Markov process X =  (fL Ft, xt, Px), 
where [~ = D(0, oe; E). But to describe the evolution of the process, controlled by 
instantaneous shifting, we need to take new probability space (2 = ~N,  ~ = F®N, p. 

Let us introduce the projection subspaces of (~ 

a ,  = a × e . . . .  an = ( e )  n+l (3.1)  

and their o algebras 

F / =  Ft®F~... F~" = (F~) ®("+') (3.2) 

We also define a translation operator On.t for 

[,o1° = (o~,,~2 .. . .  ,%+,) ~ a .  

( e . . , [ ~ l . ) ( s )  = ( e , ~ l ( S )  . . . .  e , ~ . + , ( , ) )  (3 .3)  

an impulsive control W consists of a sequence of pairs W =  (q.i ~i)i=1,2 ..... of Ft i 1 
stopping times C and F~.,-, measurable random variables ~i with the values in 
U-compact subset of E. 

Let us denote by G~, . . . .  G~° the following o-fields 

a.,  -- o(r.~ , r .°® ( ~ ,  a} ) 

G,° = o{F,~, , F,~-~® { ~ ,  [2} } (3.4) 

Then from the Lemma A2 of chapter 5 in [8] the projections P"  of themeasure  : ~"~ 
= pW of the controlled with the aid of strategy W process X on the ipaees f~ ~. ~ :  . . . . . .  
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for n = 1,2.. .  have the following properties 

1,o = e~ 

~n __ nn-- l@ r x - - r  x %y on G,, 

pn 1 
x ( e , , , , . ~ l C , . . )  = ~ , ~ + , o , , ®  • • • *~,~Dyxnn(wn)(~P~n([¢O]n_l)(B) 

Pxn-l@eq~y a.e. on { r " < o o }  where B E  F. 

%~a,%( t ) - - y  for each t >~ 0 

The process controlled by W has the following form (yt)t >/0 

yt(~o) = xk+l (o )k+ l ) fo r t  E [ r k , ,  *+'] (weput  ~-° = 0 )  

Suppose the assumptions (A1)-(A3) (Section 1) are satisfied and 

[O<-fEC 
(A6) ,~ q~EC 

[c(x,~)>~k>O is a continuous bounded function on E × U 
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(3.5) 

(3.6) 

The second player chooses as his strategy stopping time 6, which is a positive 
random variable, F / M a r k o v  time on the interval [~.i, Ti+l). 

We define for our game the functional 

Jx(W, 6) = lim JN(w, 6) (3.7) 
N~oo 

where where 

/~ { f0TN+ I N+I JN(w, 8) = E~ Aae '~Sf(ys) ds + • [X,,<~c(x~,,  ~") 
n=l  

(3.8) 

and the lower value of the game v 

v(x) = sup inf Jx(W, 6) (3.9) 
w 

So we have a zero-sum game, where the first player proceeds to minimizing (3.7), 
using the impulsive control W, while the second one with the aid of Markov time 
8 wants to maximize (3.7). 
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3.2. Main theorem 

Similarly as in Sections 1 and 2 we are interested in the saddle strategies for the 
game. 

The following theorem holds: 

Theorem 1. Under the assumptions (A1)-(A3), (A6), function v(x)  is continuous 
and presents the value of the game. Moreover we have the following saddle strategies 

[ 9 1 :  inf(s  >~ 0: V(Xs) : Mv V ~t,(Xs) } 

31 ~(x~l) where ~(x) is the measurable function realizing the infimum in 
Mv(x)  : inf (c(x, ~)+  v(~)} 

~ u  

{ ~ ( ~ , ,  ~ )  = ÷'(~,) + ~'(~)o,,~,(~,~ 

{ ÷"(~0,,...,o°) = ÷"- ' ( ,0, , . . .~,_,)  + ,1(~,)o,,,, ,  ,( ......... ,) 

~n=~(X~,,) (3.10) 

i~' = inf{s~>0: V(Xs)= q'(Xs) ) (3.11) 

Proof. The proof consists of three steps. First we will show the continuity of 
v(x)  using the uniform approximation of v. 

Step 1. Let us consider the same game, but with impulsive control consisting 
only in n shifts. We denote by v, the lower value of such game. It turns out, we 
have the following identities 

L e m m a  1. Vo, X =sup  Ij/e 
6 

v,(x) = sup lnfEx e-°7(xs)ds+x.<~e °'Mv,_, 
6 

v,I , (x,)+ x~-<~e-°~*(x~)} 

The lemma can be proved by induction basing on the suitable (in our situation) 
version of Lemma 2 2. 

Step 2. Using the technics due to Menaldi [7] we prove similarly as Robin [8] 
uniform convergence v n to v, as n--, ~ .  For the details see [11]. Since from the 
Lemma 1 for each n, the function v, is continuous, then v is continuous too. 
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Step 3. I t  remains  to check that  s trategies (3.10) and  (3.11) are saddle  indeed.  
W e  prove  this s imilar ly  as in Theorem 2 1 using the vers ion of  L e m m a  2 2. []  

Final Remarks 

This p a p e r  is based  on the par t  of  the au thor ' s  thesis which was wri t ten  under  the 
guidance  of  Prof. J. Zabczyk.  In  his d i sser ta t ion  the au thor  considers  in add i t i on  
the approx ima t ions  associa ted with the game with  s topping.  He in t roduces  
s imilar ly  as Rob in  in [8] for s topping,  two k inds  of  approx imat ions .  Namely :  
app rox ima t ion  of the process  and  app rox ima t ions  of  the funct ions  xI'~ and  q'2 in 
the funct ional  1 (1.1). Moreover ,  the error  of  the pena l ty  me thod  for this game is 
ob ta ined .  

Last  t ime the game with impulses  has appea red  in J. P. Lepel t ier  p a p e r  [6]. 
She considers  for d i f fus ion the same game as the au thor  in pa r t  2, under  the very 
s t rong assumpt ion  that  there  exists posi t ive  fl > O, such that  

l ( s u p f - i n f f )  + fl ~< inf c(x, y ) -  sup d(x, y) 
O~ 

y C  UI y ~  U 2 

for each x ~ E. 
The  case of  M a r k o v  nonzero-sum games with s topp ing  or  impulses  seemed so 

far  to be unsolved.  
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