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Remarks on the Existence Problem
of Positive Kihler-Einstein Metrics

Wei-Yue Ding
Institute of Mathematics, Academia Sinica, Beijing, Peoples Republic of China

Recently, there has been interesting progress on the problem of existence of
Kihler-Finstein metrics on compact Kédhler manifolds with positive first Chern
class (cf. [Si, Ti, T-Y]). The approach proposed by Tian is of particular interest. In
[Ti], he defined an invariant a(M) for compact Kahler manifolds with ¢,(M)>0,

and proved that, if (M)> Z%’ where n=dimM, then there exists a Kihler-

Einstein metric on M. The definition of (M) is as follows.
Let g be a Kéihler metric on M. Let

P(M,g)={ue C*(M,R): g3 +u >0},

2
where u 5= aaa P and Py(M, g)={ue P(M, g): max,,u=0}. It is proved in [Ti]
that there exists a constant a>0 such that
I&e"“‘dygc for all ue Po(M, g). 1)

Define oM, g)=sup{a > 0: there exists a constant C such that (1) holds.} It can be
shown that a(M,g) does not depend on the specific metric g in a given
cohomological class. Therefore, we may define «(M) to be a(M, g) for any Kéhler
metric g such that its Kahler form w,ec,(M).

In the present notes it is our aim to introduce another invariant n(M) which
also gives a criterion for the existence of K ihler-Finstein metrics. Moreover, Tian’s
criterion can be easily derived from the new criterion [assuming the validity of
Tian’s inequality (1)]. Like «(M), the invariant (M) also arises from an inequality
which is a generalization of Moser’s inequality on S?=CP". This generalized
Moser inequality was first conjectured and proposed to be used in the proof of
existence of Kihler-Einstein metrics by Aubin ([Au]).

Recall the two functionals defined on P(M, g) as follows

6= 5 | ult T,

11
Ju)= g ?I(tu)dt .
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Here, V is the volume of (M, g) and $¥(u) is the complex Monge-Ampére operator
defined by

M(u) =det(g,p+ u, ,p)/det(gp) -
Recall the following inequality for I and J (cf. [Au, B-M]):

1
05 JW S IW =0+ 1.
The generalized Moser inequality takes the following form:

ifle"'d,u_gCexp[nJ(u)— -:;J{ludu:l. (2)

It was conjectured by Aubin that there exist constants #>0 and C >0 such that
(2) holds for all ue P(M, g). Until now, it is unknown whether this is true or not.
What we can prove is a weaker result which is actually an easy consequence of a
result of Bando and Mabuchi [B-M].

Let Q%M,g)={ueP(M, g): Riz=egip}, where gip=g,5+u 3 and Rz is the
Ricei curvature of the metric g

Proposition 1. For >0 there exists C,= C,(M, g) such that
fedu=sC, exp[(n+ 1)J(w)— 1 ) udu] (3
M V i

for all ue Q*(M, g).
Proof. By Bando and Mabuchi ([B-M], Prop. 3.6), there exists 4,= A(M,g)>0
such that for any ue Q(M, g)

—minyus — 1 [ uMM(uydp+ A,
Vi
1
=Iuw)—— [udu+A,.
V u

Using the inequality I(u)<(n+ 1)J(u) we have
) S+ VW) = [ udu+ A,.
V i

Taking the exponential of the above inequality and integrating over M we get (3)
Now, we define 7(M, g) to be the infimum of all positive numbers 7 such that (2)
holds for all ueQ%(M,g) with some C=C(¢,n, M, g). Then define
n(M)=inf{n(M,g):w,cc,(M)}.
By Proposition 1, one has n(M)<n+1 for any compact Kihler manifold with
positive first Chern class.

Theorem 2. Let M be a compact Kéhler manifold with ¢,(M)>0. If n(M)<1, then
there exists a Kdhler-Einstein metric on M.
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Proof. Since n(M) <1, we may take a Kihler metric g on M with w,ec,(M) and
nM,g) < 1. There exists a function fe C*(M) such that Ryp=gp+ o It will be
convenient to normalize f by requiring that

1
7§ ddu=1. @)

The problem of finding Kéhler-Einstein metrics can be reduced to solving the
following Monge-Ampére equation
Mu)=e' ", uePM,g). S

Asin [Au], one attempts to solve (5) by continuity method. Consider the family of
equations:

Mu)=e’"", uecPM,p), (6),

where t € [0, 1]. It can be shown that there exists a smooth family of solutions {u,}
of (6), for te[0, 1) with some 7€ (0, 1). Moreover, if one has a priori estimates

I “r”cO(M) =C 9]

forall t e [0, 7), then 7 =1 and u, subconverges in C*(M) to a solution u, of (6); =(5)

(cf. [Au] or [Ti]). It is also important to notice that if we set g* =g* and denote the

Ricci curvature of g* by R',p, then R' 5 =(1 —t)g,3+ tg5p. This implies u, € (M, g).
Consider now the following family of functionals defined on P(M, g):

1 1 1
= —— — —1 —_ f—‘u
F(u)=J(u) v I&ud,u ; og[V A[‘e du],
where t >0, with the understanding that

1 1
=J(u)— — Tudu.
Fo(u)=J(u) % I{lud;z+ 7% b]{e udy
If 1(s) is a smooth curve in P(M, g) with ;—sv(s)lsz():C, then one has (cf. [Au])

d 1
. _-— f—tud S —tu —1‘
T FOls=0=—7 bflfm(u)idu+(l&e { u)(ﬂfle dﬂ)
This means the Euler-Lagrange equation of F, is
1
— — S —tu -1 f—m. R
p )= ([ e ) e ®

Note that F(u + c¢) = F(u) for any constant c, which implies whenever u is a critical
point of F, so is u +c. Note also that u is a critical point of F, iff u is a solution to

1
v‘.m(u)=cef T
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for any positive constant c. In fact, integrating the above equation over M we get
c | ¢/ ~™du=1, which means u satisfies (8). Now set
M

i
vt:u'_?]{{u’d"’ tE[O,'C).
Then v, is a critical point of F,, and | ndu=0. We have
M
d d 1 1
Bl - — o =ty
SF)= T F@)at 3 log[V [e du]
1
- J —tog J—ve -1
+ t(lé'lu,e d,u)(ﬂjle d,u)
——1—10 1 T=toegy | + ! D(v,)d
=5 ngIle I tV}{lvt v)dp

= — L LF o)~ Je)]— 1.
It follows that
% [tF{v)]=J(v)—I(v,).
Integrating this to get

1
F t(vt) = ?

i [Jw)—I(v)]ds<0.

Let d (0, 7). Then we have v, € Q*(M, g) for t € [ 8, 7). Since (M, g) < 1, one may take
n<1 so that )

log | e™*du=nJ(v)+C, o)
M
Therefore
1log jef""‘d,uélog(j e‘""du)”‘+ C
t M M
<log | e™"du+ Cj
M
=nJ(v)+C5.
It follows that
Flv)z({ —mJ(v)—C;.
Since F(v,) <0, we see that
Jw)SC for teld,1).
By [B-M], for any ue Q¥M, g) we have
Maxu—Minu < I(u)+ C(g, 8). (10)
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Hence,
‘Maxo,—Minv, <(n+1)J(v)+ C(g, ) <C.

where t €[, 7). On the other hand, from v,€ P(M, g) and | v,du=0 one deduces
Maxp, < C (cf. [Au] or [Ti]). It follows that "

0l copry S C .. (11)
Notice now that by integrating (6), we have

V={[ef "™y,

M

.. . 1 .
which combining with u,=uv,+ v | udy gives
M

¢ 1
exp(V;lu,du)=vbjlef ey

So, l—:; { utd,u‘ <C for te[,1). This together with (11) shows |u,llconr, =C, ie.
M

(7) holds. It follows that (5) has a solution u;, which gives rise to a Kahler-Ein-
stein metric on M. The proof of Theorem 2 is complete.

Proposition 3. n(M)<(n+1)[1—a*(M)], where o*(M)=Min{a(M),1}. In parti-
n . .
cular, (M) > Tl implies n(M)< 1.

Proof. We need only to show
n(M,g) < (n+1)[1—-a*(M)] (12)

for any Kéhler metric g on M with w, € ¢,(M). Let « be any positive number less
than a*(M). For ue Q%M, g), since u—Maxue Py(M, g), we have

fe Mgy <C. (13)
M
Using (10) and (13) we estimate
je‘“d/t= I e—u(u—Maxu)e——(l—m)ue—aMaxudﬂ
M M
<Cexp[—(1 —o)Minu—oMaxu]
<C,exp[(1 —)I(u)—Maxu]
1
£C,exp |:(1 —)(n+D)Jw)—~ — | udu].
V u

This means (M, g) <(n+1) (1 —a). Letting a—a*(M), we see (12) holds.

. . no, .
By Theorem 2 and Proposition 3, it is easily seen that «(M)> nl implies the
existence of Kihler-Einstein metrics on M, which is just Tian’s criterion.
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Remark 1. Proposition 3 indicates that #(M)<1 may be a better criterion than
(M) > ;% However, we do not know how to estimate n(M) directly. The only

known estimation of n(M) is Proposition 3 which relates the upper bound of n(M)
with the lower bound of «(M). So we have not obtained any new existence results.
We should also mention that in the special case M = CP?, we have n(CP')=1. This
is a consequence of Moser’s inequality [Mo]. In the improved version [On], this
inequality may be written as

fe "du=s Vexp[](u)—l jud,u].
M V u

. 1
Notice that V=4n for M =CP* and J(u)= W [ |Vu|®du for n=1.1t can be proved
M

that on CP” equipped with a suitable multiple of the Fubini-Study metric [so that
w, € ¢,(CP")], the above inequality holds for all ue P(CP", g) with u(x)=u(d(x, p)),
where d(x, p) is the distance from x to a fixed point p.

Remark 2. It would be interesting to know whether Proposition 1 is still true if we
replace the condition ue Q%(M, g) by ue P(M, g). If it remained true, then there
would be a constant 7,>0 depending only on n such that on any compact Kéhler
manifold one can always solve Eq.(6), for te[0,7,). Indeed, one can replace
inequality (9) in the proof of Theorem 2 by

log { e ™du<(n+1)J(tv)+C.
M
On the other hand, from

d dti d:i
EJ(tu)— - ;I(stu)ds— ¥ g ;I(su)ds

dt o
1 n+11

= -—[(tu)=z —~ J(t
Lz "

one derives
n+1

Jew st * Jw).

Therefore,

log [ e duS (n+ 1) I(w) +C.
M
and
Fiw)2[1 (- DeV"I(w) —C.

From here one can follow the proof of Theorem 2 to show that (6), has a solution
for te[0,t,), where 1,=1/(n+1)". This means that on any compact Kahler
manifold M with ¢,(M)>0, there exists a Kihler metric g with Ric(g) = (r,—¢) fof
any ¢>0. As explained in [T-Y], such a result will imply c,(M)"<c(n) forAaH
compact Kihler manifolds M with ¢,(M)>0, where c(n) is a constant depending
only on the dimension.



Existence Problem of Positive Kihler-Einstein Metrics " 469

Remark 3. As in [Ti], for every compact subgroup G of Aut(M), we may define
ne(M) by requiring in the definition of #(M) that the metrics g and the functions
ue 0(M, g) be G-invariant. In such cases, the proof of Theorem 2 can be easily
modified to show that ng(M) <1 implies the existence of Kédhler-Einstein metrics
on M. [Just notice that, since the solutions of (6), are unique for t€(0, 1), the v,’s
have to be G-invariant.] Also, similar to Proposition 3, we have ng(M)
<(n+1)[1—ag(M)]. The necessity of introducing a(M) and 15(M) will be seen in
the following discussions.

In the proof of Theorem 3 we have used the fact that (6), is the Euler-Lagrange
equation of the functional F,. Of the family of functionals {F,}, the most important
one is F=F, whose critical points correspond to Kéhler-Finstein metrics on M.
So we would like to discuss some basic properties of F. To emphasize the
dependence of F on the metrics g, we set

F g(u) = Lg(u) - Gq(u) ’

where

Lu)=J (w)— 17 Ajl udp,,

G, (u)=log [iV J{e’g‘“dug] .
Lemma 4. Let ve P(M, g) and g3=g8,3+, ,3. Then for ue P(M, g°) it holds that
L,(v)+ L,(u)=L(u+v), (14)
G, () + G p(u) =G, (u+v). (15)

Proof. Let L(,) be the functional defined in [Ma]. One checks that L {v)=L(0, ),
Lyu)=L(v,u +v), and L (u+v)=L(0,u+v). It follows from the 1-cocycle property
of L(,) that (14) holds (cf. [Ma, Theorem (2.3)]). Next, we have

(fg), ap= (Rg)aB - gaﬁ = (log det(gzﬂ)), afp — gaB .
Combining this with the analogous identity for f,. we get

(for—JD,ap= — (108 My (0)),up— 0.0 »
which implies

Joo=f;—logM (v)—v—C, (16)
for some constant C. By condition (4), one determines C =G (v). It is then easy to
derive (15) from (16).

As an immediate consequence of Lemma 4, we get
Fy(v)+Fg"(u)=Fg(u+v)a (17)

for ve P(M, g) and ue P(M, g").

Now, let Auty(M) denote the connected component of the automorphism
group Aut(M) containing the identity. For any ¢@e€Auty(M) there exists
%€ C*(M), unique upto a constant, such that

((p*g)aﬂ =8ap + (vq)),aﬁ = (ng)aB .
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Proposition 5. Let g be a Kdhler-Einstein metric on a compact Kdhler manifold M
with w,€c,(M)>0. Then, for any @€ Auty(M) we have

F(u)=F (¢*u+v,) forallueP(M,g). (18)
Proof. We have
F (w)=F . (@*u)=F, . (0*u)=F (o*u+ v,)—F(v,)

by (17). It suffices to show F (v,) =0 for any ¢ € Aut,(M). Let ¢, be a smooth curve

in Auty(M) such that ¢, =id and ¢, = ¢. Then v,=v,, is a smooth curve in P(M, )

(assuming { u,d,ug=()> with v,=0 and v, =v,. Notice that each g* is a Kahler-
M

Einstein metric, so v, is a critical point of F,, for each t. It follows that 7 Fv)=0,
and hence F(v,)=F(0)=0. This completes the proof. t

Remark 4. Relation (18), reflecting one of the important holomorphically invariant
properties of the functional F on a Kéhler-Einstein manifold, was first discovered
by Onofri for M = CP! in [On], where he used it to improve the Moser inequality
on CP!. Later, it was found that such a relation is very useful in solving the
problem of prescribing Gaussian curvatures on §2=CP" (cf. [C-Y, C-D]).

Proposition 6. Let M be a compact Kdhler manifold with ¢,(M)>0. If M admitsa
nonzero holomorphic vector field, then n(M)z=1.

Proof. If there is no Kihler-Einstein metric on M, then the conclusion follows from
Theorem 2. So we assume M has a Kahler-Einstein metric g with o, ec,(M). We
need only to show n(M, g") =1 for any we P(M, g). Now, for ¢ € Auty(M) let v, be
the function as above. By (17) we have

Fplv,—w)=F (v,)—F (W)= —F (w). (19

Notice that (vq,—w)te(M, g"). If (M, g")<1, then inequality (2) (with n<1)
implies there exist ¢>0 and C>0 such that

Fouv,—w)z e julv,—w)—C. (20)
Combining (19) and (20) gives
Jplv,— W)= Cle,w) @

for all ¢ € Auty(M). On the other hand, since each g’ is Kéhler-Einstein, v, —W
satisfies Eq. (5) with respect to the metric g”. As in the proof of Theorem 2, on¢
shows by (21) that {v,—w} is uniformly bounded in C°(M). Estimates for higher
order derivatives of solutions of (5) (cf. [Au] or [Ti]) then shows {v,—Ww} I
uniformly bounded in C{M) for any k 2 1. It follows that {g"» = ¢*g : @ € Auto(M)}
is a compact family of Kihler-Einstein metrics. However, if M admits a nonzer¢
holomorphic vector field, one knows from the proof of Matsushima theorem (see
[Ko, p.96]) that the first nonzero eigenvalue of the complex Laplacian of 2
Kihler-Einstein metric equals 1, and the gradient vector field of a first eigcnfun_c'
tion generates one-parameter family {¢,} of holomorphic transformations tf
Auty(M). Since the gradient flow contracts an open set of M to a lower-
dimensional subset, it is clear that the family {¢*g} can not be compact. The
contradiction shows that #(M)=1.
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Remark 5. The above result shows that if M admits nonzero holomorphic vector

fields, then one has to use ag(M) instead of a(M) to prove the existence of Kédhler-

Finstein metrics, where G is the maximal compact subgroup of Aut(M) (cf. [Ti,

T-Y]). On the other hand, if the maximal compact subgroup G is normal in

Aut(M) (we do not know whether this is possible), which implies the action of

Aut(M) preserves G-invariant metrics, one can prove in a similar way that
n

n+1
Finally, if u is a critical point of F,, one obtains the second variation formula of
F, at u by a direct computation and making use of (17). The result is, for any

veC*(M) with [ vdu,..=0 one has
M

ne(M)=1 and hence ag(M)<

d?F (1) (v, v)=d*F .(0) (v,v) = % [ (Vput)® —0v))dpuz0.
M

The equality holds if and only if the first eigenvalue of the complex Laplacian of g,
is 1 (hence M admits nonzero holomorphic vector fields) and v is a first
eigenfunction.
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