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1. Introduction 

Consider the second order elliptic partial differential equation 

(l.l) L(tt)= ~ ~i(aij~ju)=O 
i,j=l 

whose coefficients aij are C ~-functions in a domain D of R". If G is another domain 
in R n and if f :  G~D is a C2-map whose jacobian J(x,f) is positive in G, then f 
induces a similar elliptic operator f * L  in G with the property that u of  is a 
solution of f *  L(v)= 0 whenever u is a solution of L(u)= 0. For this classical result 
see e.g. [Vl, p. 38]. If the functions % are merely L~-functions in D and i f ( H )  is 
interpreted in the weak sense, then a proper counterpart of the locally dif- 
feomorphic C2-maps seems to be the class of locally bilipschitz maps. In this paper 
we show that there is, however, a more general class of maps f :  G~D which enjoy 
the above invariance property and which are not necessarily locally injective. We 
say that these maps are of bounded length distortion, abbreviated BLD. More 
precisely, a continuous map f :  G~R" is L-BLD for some L__> 1 i f f  is discrete, open 
and sense-preserving and if for each path a in G we have 

t (a) /L < l(f ) <__ Ll( ) . 

Here l(a) denotes the length of the path g. Although a BLD map is locally lipschitz, 
it need not be a local homeomorphism. A typical example is the map 
(r, ~b, z) ~-} (r, 2~b, z) in the cylindrical coordinates of R 3. This map is 2-BLD in R 3. 

We shall consider the second order elliptic differential equation 

(1.2) v. A(x, Vu(x))  = o 

in divergence form with IA(x, h)l ~ ]h] v- 1 for some p >  1. For p4:2 the Eq. (1.2) is 
non-linear. The invariance property applies to the wider class of equations 
.V. A = B. The Eq. (1.2) have been chosen for the sake of simplicity. They include the 
Important Euler equations of the variational integrals 

S F(x, Vu(x))dm(x) 

Where F(x, h),~ Ihl v. 
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The Laplace equation Au=O in the plane is invariant under analytic and 
antianalytic functions. This phenomenon has a proper counterpart for Eq. (1.2) 
with p = n. In all dimensions the invariance property is enjoyed by the quasiregular 
(QR) maps, which form a generalization of the complex analytic functions to 
higher dimensional euclidean spaces. This invariance property has been studied by 
Reshetnyak I-Re2], see also I-GLM]. The BLD maps form a proper subclass of QR 
maps, and we shall use the theory of QR maps in several occasions. For the basic 
properties of QR maps, see I-MRV1]. 

In Sect. 2 we give several equivalent characterizations for BLD. For the study 
of the aforementioned invariance property the most useful characterization is the 
following: A continuous map f :  G---,R ~ is L-BLD if and only if (i) f is absolutely 
continuous on lines (ACL), 0i) for almost every x �9 G 

Ihl/L < [f'(x)h[ < Zlh[ 

for all h �9 R n and (iii) J(x, f ) >  0 a.e. in G. 
Section 3 is devoted to the study of the Eq. (1.2) and the corresponding induced 

equations V . f * A = O .  In particular, we show that if the equations V. A =0 and 
V-f  # = 0 are both elliptic and satisfy a natural boundedness condition, then under 
weak assumptions on the map f :  G ~ D ,  f is BLD for p4:n and QR for p=n. 

Some properties of BLD maps are studied in Sect. 4. These include distortion, 
normal families, boundary behavior and the multiplicity function 

N(y, f, A) = card (A c~f- l(y)) 

of a BLD map f. For example, we show that for every y ~ R n, N(y, f, R")< L 2~ 
whenever f :  R ' ~ R  ~ is L-BLD. An interesting problem associated with f is the 
structure of the branch set By off. It turns out that Bf in the BLD case is somewhat 
simpler than in the QR case; we show that R"\By is a uniform domain [-MS] for a 
BLD map f :  R ~ R  ~. On the other hand, for every n > 3 and e > 0 there is a BLD 
map f :  R"--,R ~ such that the Hausdorff dimension of By exceeds n - e .  

As a by-product we obtain new examples of finite quasiconformal groups of R n, 
n > 4, not quasiconformally conjugate to M6bius groups. 

2. Definitions for BLD Maps 

2.1. In this section we give various characterizations for BLD maps and also some 
preliminary material needed in the later sections. The main results are given in 
2.16. Throughout the paper, the notation f :  G ~ R  n will include the assumptions 
that G is a domain in R n, n > 2, and that f is continuous. We start with the following 
definition: 

Let L > I .  A map f : G ~ R  n is said to be of L-bounded length distortion, 
abbreviated L-BLD, if (i) f is ACL, 

(ii) [hilL <-<_ I f'(x)hl ~ Z lh[ 

for all h e R  n for almost every x s  G, and (iii) J(x , f )>O a.e. in G. 
Here we use the notation and terminology of [MRV1]. Thus i f(x) :R n~R" is 

the formal derivative and J(x, f )  the jacobian of f at x. Note that since f is ACL 
[MRV1, 2.16], the partial derivatives of f, and hence f ' (x) and J(x, f) ,  exist a.e. 
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We shall frequently employ the theory of quasiregular (QR) maps. The basic 
reference of this theory is I-MRV~]. We recall the definition. If T: R n ~ R  ~ is a linear 
map, we let IT[ and l(T) denote the maximum and the minimum, respectively, of 
IT hi over all unit vectors h ~ R ~. A map f :  G ~ R  ~ is K-QR, K > 1, i f f  is ACL ~ and if 

(2.2) If'(x)ln/g < J(x, f )  < Kl(f'(x)) ~ 

a.e. in G. The first inequality alone guarantees that f is K ~- 1-QR. 

2.3. Lemma. Suppose that f :  G~R"  is L-BLD. Then: 
(1) I f  the line segment [x,y] lies in G, 

(2.4) If(x)-f(y)[  N L I x -  Yl. 

Thus f is locally L-lipschitz. 
(2) f is K-QR with K = L 2~- 1) 

Proof Suppose first that 7=Ix ,  y] is parallel to a coordinate axis, that f is 
absolutely continuous on 7 and that (ii) holds a.e. on ~ with respect to the linear 
measure. Then (2.4) follows by integration. By continuity, (2.4) holds whenever 7 is 
parallel to a coordinate axis. Hence f is locally nL-lipschitz. By the theorem of 
Rademacher, f is differentiable a.e. Moreover, f is absolutely continuous on every 
line segment in G. Hence we can repeat the argument and obtain (2.4) in the general 
case. 

To prove (2) we first observe that f is ACL | and hence ACL ~. The inequalities 
(2.2) are true at every point x e G such that f is differentiable at x and (ii) holds. This 
follows by a simple calculation involving the eigenvalues of f'(x)*f'(x), cf. [V/i 2, 
p. 44]. 

2.5. Remarks and Examples. (a) The condition (ii) of 2.1 is equivalent to the 
inequalities 

[f'(x)l < L,  l(f'(x)) >= 1/L. 

These and (iii) imply that J(x, f )  > 0 a.e. in G. This is also true but less trivial for QR 
maps. A QR map is BLD if and only if If'(x)l is essentially bounded away from 0 
and oo. 

(b) As noted in the proof of 2.3, a BLD map is a.e. differentiable, and the formal 
derivative f '(x) is thus a.e. the ordinary derivative of f. Moreover, f is not only 
ACL but absolutely continuous on every line segment, up to the boundary. 

(c) Clearly every locally L-bilipschitz map f :  G ~ R "  is L-BLD. However, a 
BLD map need not be a local homeomorphism. As a typical example we can 
consider the winding map f : R n ~ R  n, defined by f(r,~),z)=(r, kq~,z) in the 
cylindrical coordinates, k = 2, 3 . . . . .  This map is k-BLD. 

(d) Suppose that n = 2  and that f :  G--*R 2 is complex analytic. If f ' (z)=O for 
SOme z ~ G, f cannot be BLD. The function f ( z )= e ~ is not BLD in R 2, but its 
restriction to the strip {(x, y): Ix[ < c} is eC-BLD. 

(e) If f :  G ~ R  ~ is BLD and C ~, thejacobian J(x, f )  never vanishes. Hence f is a 
local homeomorphism. For  C ~ QR maps in dimensions n >  3, this is an open 
question. However, this holds for C 3 QR maps and for C 2 QR maps in dimensions 

= 3 and n_> 4, resnectivelv This easily follows from I-F, Theorem 3.4.3] and from t t - ~ ,. 
ne fact that the ( n -  2)-measure of f B y  is positive whenever B I ~ 0. 
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2.6. We recall some topological terminology. A map f :  G~R" is open if it maps 
open sets onto open sets. It is discrete if f -  l(y) is a discrete set of points for every 
yr It is sense-preserving if #(y, f D ) > 0  for each y~fD~['OD and for each 
domain D Es G, that is,/3 is compact in G. Here ~ is the topological index. The 
branch set B j- of f is the set of all points x r G at which f is not a local 
homeomorphism. For discrete open maps, the topological dimension of B s is at 
most n - 2 .  For the basic facts about  these properties we refer to [MRV~, 
pp. 8-12]. 

2.7. Lemma. An L-BLD map f :  G~R" has the following properties: 
(1) f is discrete, open and sense-preserving. 
{2) fJGkB s is locally L-bilipsehitz. 
(3) I f  f is injective, f - i  : f G ~ G  is L-BLD. 

Proof By a result of Reshetnyak IRe1], a QR map is either constant or discrete, 
open and sense-preserving. Since a BLD map is not constant, (1) follows from 
2.3 (2). 

To prove (2), fix an open ball B C G\Br such that f iB is injective. By 2.3, fiB is 
L-lipschitz. Moreover, f iB  is quasiconformal, that is, an injective QR map. Hence 
g=(flB)-1 is also quasiconformal and thus ACL and a.e. differentiable. If f is 
differentiable and satisfies (ii) at x E B and if g is differentiable at y =f(x),  then g'(y) 
=f ' (x ) -1 ,  and thus 

Ig'(Y)l < L, l(g'(y)) > 1/L. 

Since a lipschitz map preserves the property of being of measure zero, these 
inequalities are true for almost every y ~fB. Hence g is L-BLD and thus locally 
L-lipschitz. This proves (2) and (3). 

2.8. Lemma. I f  f :  G~R" is BLD, then m(By)=m(fBf)=O. 

Proof. By [MRV 1, 2.14], J(x, f )  = 0 whenever f is differentiable at a branch point 
xr162 Hence, by 2.5(a), m(Bfl=0. Since f is locally lipschitz, this implies 
m(fBf) =0. We remark that the result is also true for QR maps but considerably 
deeper. 

2.9. Path Lifting. We next recall some results on path lifting for discrete open 
maps. This is perhaps the most important tool in the theory of BLD maps. It will 
frequently be used together with the inequalities of Lemma 2.15. 

A path in R" is a continuous map ~: A--,R" of an interval A C R 1. In this paper 3 
is of the type [a, b) or [a, b]. We formulate the results for half open intervals; the 
obvious modifications for closed intervals are easy consequences. 

Suppose that f :  G ~ R "  is discrete, open and sense-preserving. Let/~: [a, b)-+g" 
be a path and let x e f -  1(/3(@. A maximal lift of/3 starting at x is a path ~: [a, c)~6 
such that ~ a ) =  x, f~ =/~l[a, c) and at is not a proper subpath of another path with 
these properties. There is always at least one maximal lift a of/3 starting at x. If 
c=b, ~ is called a total lift of/L If c<b, ~(t)--*dG as t~c.  

We let i(x, f )  denote the local index o f f  at x r G. Let/3: I-a, b)~R" be a path, let 
xl , . . . ,  xk be distinct points in f-~(/3(a)), and set 

m= i(xl, f )  + ... + i(xk, f )  . 
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By [Ri2, Theorem 1], f has a maximal sequence ~1 ... . .  a~ of lifts starting at 
{xl, ..., Xk}. This means: 

(i) aj is a maximal lift of fl, 1 <j<m.  
(ii) card{j: aj(a)--xi} = i(xi, f ) ,  1 <_ i<k. 

(iii) card{j : ~:(t) =x} < i(xi, f )  for all x ~ G, t ~ [a, b). 
A domain D CC G is a normal domain of f if fdD = afD. If, in addition, x e D 

with D ~ f -  l(f(x)) = {x}, D is called a normal neighborhood of x. If x ~ G, we let 
U(x, f, r) denote the x-component of f - i B ( f ( x ) ,  r). Here and later B(y, r) denotes 
the open ball with center y and radius r. If U-- U(x, f, r) CC G, U is a normal domain 
of f  and f U  = B(f(x), r). There is r o > 0 such that U is a normal neighborhood of x 
for r<ro. 

If A C G, we write 

N(y, f, A) = card(A c~f- ~(y)), 

N(f, A) = sup {N(y, f, A): y ~ R*}, 

N ( f )  = N(f ,  G). 

If A (C G, N(f, A) is finite. If U is a normal neighborhood of x, N(V, f )  = i(x, f )  for 
every neighborhood VC U of x. We give as a lemma a result of Rickman [Ri 2, 
Theorem 2], which will be useful in the sequel. We assume that f :  G ~ R "  is 
discrete, open and sense-preserving. 

2.10. Lemma. Suppose that D is a normal domain of  f and that fl : [a, b ) ~ f D  is a 
path with locus I/~l. Then Dc~f-llfll  can be expressed as the union of  the loci of 
N(f,D) total lifts o~j: [a, b )~D of  fl such that card{j:  ej(t)=x} =i(x , f )  for every 
x e D ~ f  - ~lfll. 

2.11. Corollary. Suppose that D is a normal neighborhood of x, that y e D and that 
/~: [a, b] ~ f D  is a path joining f(x) to f(y). Then there is a lift ct:[a, b-I-*D of fl 
joining x to y. 

If f :  G ~ R  n, xEG,  and r>0 ,  we set as in I-MRV1] 

L*(x,f, r) = sup {[Y-  xl: y e dU}, 

l*(x, f, r) = in f{ ly-  xl : y ~ 9U} , 

where U = U(x, f, r). We next estimate these numbers for normal neighborhoods U 
of x. A more general situation will be considered in 4.20. 

2.12. Lemma. Suppose that f :  G ~  R n is L-BLD and that U= U(x, f, r) is a normal 
neighborhood of  x. Then 

L*(x, f r) <_ Lr,  l*(x, f r) > r/L. 

Proof Choose y e ~ U with [ y -  xl = l*(x, f r). Since the line segment [x, y] lies in G, 
2.3 yields 

r = [f(Y)-f(x)l  < Ll*(x, f, r), 

Which is the second inequality of 2.12. 
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To prove the first inequality we consider a point z e S( f(x) ,  r) = OB(f(x), r) and 
the radial pa th /~ :  [0, r)--*R" from f ( x )  to z, defined by 

flz(t) = f (x )  + t ( z - f ( x ) ) / r .  

By 2.10, Unf-llflA can be covered by m maximal lifts of fl, starting at x, 
m = N(U,  f )  = i(x, f ) .  From [MRV1, 7.10] or from [V/i s, 2.6] it easily follows that 
for almost every z, each lift ~ is absolutely continuous on every interval Is, r], s > 0. 
By 2.8, almost every Iflzl meets f 8  s in a set of linear measure zero. Since f l G \ B f  is 
locally L-bilipschitz, we have then I~'Jt)l < L for almost every t ~ [0, r). Hence 

I ~ ( t )  - xl = ]c~(t)- ctz(0)l _-< Lr 

for all t ~ [0, r) and for almost every z ~ S(f(x) ,  r). Thus lY- xl _- Lr  for a dense set of 
points y e U. This implies L*(x, f ,  r) < Lr. 

2.13. Corollary. I f  f :  G-*R" is L-BLD and i f  U(x, f, r) is a normal neighborhood of 
x, then 

l y -  xI/L < [ f (Y)  - f (x) l  < L l y - x l  

whenever ] y -  x] N r/L. 

2.14. Lemma. I f  f : G - . R "  is L-BLD and if f is differentiable at x e G ,  then 
x ~ G \ B  s, ]f'(x)] < L, l(f '(x)) > 1/L, and J(x, f )  > O. 

Proof. This follows directly from 2.7(1), 2.13 and [MRV1, 2.14]. 
If �9 is a path in R", we let l(e) denote its length. We next prove the fundamental 

property of BLD maps: 

2.15. Lemma. I f  f :G-- .R ~ is L-BLD and if ct is a path in G, then 

t(~)/L ~ l(f~t) < Lt(~) . 

Proo f  By 2.3, f is locally L-lipschitz. This implies the second inequality of2.15. The 
proof of  the first inequality is somewhat harder. Setting fl = f~  we may assume that 
/(fi) < 0o and that fl: [0, l(fl)] ~ R "  is a parametrization by arc length. Let P be a 
partition of [0, l(fl)]. From [MRV~, 2.9] it easily follows that there is a refinement 
P'  = {to . . . .  , tk} of P and numbers r i > 0 such that for each i e {0,..., k}, U(ot(ti), f ,  ri)is 
a normal neighborhood of 0t(tt) and f l[t i-  x, ti] C Bi -  i w Bi, where Bi = B(fl(ti), ri). For 
each i = 1,..., k choose si e Its_ 1, t J  with fl(s~) ~ B~_ 1 nB~. Then 2.13 implies 

Ia(s,)- =(t~_ 01 ---- L(si- t i-  1)' Icr 0~(S~)I =< L(t,-- s~). 
H e n c e  

k k 

T. I~(q) - ~(t~_ 1)1 < Z ([~(ti)- ~(si)l + I~(si) - 0c(ti_ 1)1) 
i = 1  i = 1  

k 

L Z ((ti-- Si) ~- (Si-- ti- 1)) = Ll(fl). 
i - 1  

This yields l(e)< Ll(fl) as required. 
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We conclude this section with a theorem which summarizes several results 
above. We use the standard notation 

L(x , f )  l imsu ]f(Y)-f(x)l  l ( x , f )= l imin f l f ( y ) - f ( x ) l  
= y-,~P ~--~1 ' y~x l y - x l  " 

2.16. Theorem. For f :  G~R"  and L >  1 the following conditions are equivalent: 
(1) f is L-BED. 
(2) For each x ~ G there is r > 0 such that 

l Y -  xl/L < If(Y)-f(x)[ < Ely - x] 

for all y ~ B(x, r), and J(x, f )  > 0 a.e. 
(3) f is discrete, open and sense-preserving, and 

l(cO/L N l(fe) N Ll(e) 

for every path �9 in G. 
(4) L ( x , f ) N L  and l (x , f )> 1/L for each xeG,  and J (x , f )>O a.e. 

, < (5) f is QR and [ f  (x)[=L, l(f'(x))> l /L a.e. 

Proof. We first show that (1) =:- (2) =,- (4) =~ (5) => (1). Suppose that f is L-BLD. 
By 2.7, f is discrete and open. Hence each x e G has a normal neighborhood, and 
(2) follows from 2.13. 

The implication (2) =~ (4) is trivial. If (4) holds, f is locally L-lipschitz and 
hence ACL*. Moreover, Rademacher's theorem implies that f is differentiable a.e. 
and that ]f'(x)[ < L, l(f'(x))> 1/L a.e. Hence 

[f'(x)l n < L2"l(f'(x))" < L2nJ(x, f )  

a.e., and f is thus QR. Since a QR map is ACL and has J(x, f ) >  0 a.e., the 
implication (5) =, (11 is clear. 

Since (1) =, (3) follows at once from 2.7 and 2.15, it remains to show that 
(3) =~ (1). If the line segment y from x to y lies in G, (3) implies 

If(Y)-f(x)l < l(f7) <= LI(r) = L I x -  Yl . 

Thus f is locally L-lipschitz and consequently ACL ~. Moreover f is differentiable 
a.e. and ]f'(x)l N L a.e. Since f is sense-preserving, J(x, f )  >= 0 a.e., see [MRV1, 2.14]. 
Fix x e G such that f is differentiable at x. It suffices to show that [f'(x)h] > [h[/L for 
all h E R ". Suppose that this is false for some h = ho. Then 

(2.17) If'(x)hol/lhol = ~ < lIE.  

We may assume that x = 0 =f(x). Let U = U(0, f,  r) be a normal neighborhood 
of 0. Now f has the expansion 

(2.18) f(h) = f '(O)h + e(h)h, 

Where e(h)~O as h~0 .  Pick t > 0  so small that h=tho~ U and 

(2.19) 21e(h)l < 1/Z-o~. 
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Let ), be the line segment from 0 to f(h). By 2.11 there is a lift 7* of 7 from 0 to h. 
Then (3) implies 

(2.20) [f(h)l = I(7) > I(),*)/L >= rhl/L. 

On the other hand, (2.17), (2.18), and (2.19) yield 

If(h)l < lf'(0)h[ + le(h)l lhl < ~lhl + ( 1 / Z -  ~t)Ihl/2 

=(1/L + ~)}hi~2 < Ihl/L. 

This contradicts (2.19) and completes the proof of the theorem. 

3. EHiptic Equations 

3.1. Suppose that D is a domain in R" and that p >  1. Let A :D x R"~R" be an 
elliptic second order partial differential operator in divergence form, that is, A 
satisfies the following conditions: 

(a) For each e > 0 there is a closed set F C O such that m(D\F) < e and A[F x R" 
is continuous. 

(b) There are positive numbers 71, 72 such that for almost every x e D, 

(3.2) [A(x,h)l<Yl[h[ p -  1 (boundedness), 

(3.3) A(x, h) . h >= 721hl p (ellipticity), 

for all h e R". 
An ACLP-function u : D ~ R  ~ is a solution of the equation 

(3.4) V. A(x, Vu(x)) = 0 

if 

j A(x, Vu(x)). V~(x)dm(x)-- 0 
D 

for all ~ C~(D). Note  that we always assume that an ACLP-function is 
continuous. We often write V- A = 0 for the Eq. (3.4). 

3.5. Remarks. (a) It is possible to consider equations V-A =B,  which are more 
general than (3.4). Here A and B may also depend on u; for conditions on A and B 
see [Se, p. 247]. 

(b) If A also satisfies the inequality 

(3.6) (A(x, h O -  A(x, h2)). (hi - h2) > 0 

whenever hi 4:h2 for almost every x ~ D, then the solutions of (3.4) can be used to 
build a potential theory similar to the classical potential theory formed by 
harmonic functions. In general, this theory is non-linear, see [ G L M ]  and [HK]. 

(c) An important class of Eq. (3.4) is obtained as Euler equations of the 
variational integrals 

j F(x, Vu(x))dm(x), 
G 
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where F(x,h)~,lhl p. In particular, the case F(x ,h)=h p gives the so-called 
p-harmonic equation 

v.  (I Vul' -  2 Cu) = o .  

3.7. Next let f be an ACL map of a domain G C R" into D. The pullback f *  A of A is 
defined by 

(3.8) f *  A(x, h) = J(x, f ) f ' ( x ) -  I A(f(x),  f ' (x)  - t'h) 

whenever x e G is such that J(x, f )  ~ 0. If J(x, f )  does not exist or if J(x, f )  = 0, we 
set 

f *  A(x, h) = A(f(x),  h). 

However, this case does not play any role in the sequel. We recall that in (3.8), f ' (x)  
is the formal derivative o f f  at x, f ' ( x ) -  1 is its inverse, and T* is the transpose of the 
linear map T: R " ~ R ' .  The main motivation to (3.8) is Theorem 3.17 below, which 
shows that under suitable conditions, solutions of V. A = 0 give rise to solutions of 
g . f # A  =0. 

We next investigate the relation between the operators A and f * A .  

3.9. Theorem. Suppose that f :  G ~ D  is ACL, that d ( x , f ) > 0  a.e. and that A and 
f*  A satisfy (a) and (b) of 3.1 in D and in G, respectively. Then 

(1) f is L - B L D / f  p # n ,  
(2) f is K-QR if  p = n and if J(x, f )  is locally integrable. 
In both cases, L and K depend only on the constants for A and f *  A and on p 

and n. 

Proof Let y], 7~ be the constants for f * A  in (3.2) and (3.3). Let E be the set of all 
x e D which do not satisfy (3.2) and (3.3), and let E' C G be the corresponding set for 
f l A .  Then m(E)=m(E')=O. From [RR, Lemma7,  p. 348] it follows that 
J (x , f )=0  a.e. in f - l E .  Hence m ( f - l E ) = O .  Fix x ~ G k ( E ' u f - l E )  such that 
J(x,f)>0.  Let h e R  ~ and write h'=f'(x)*h.  Then 

J(x, f)y2lh[ p < J(x, f ) A ( f  (x), h) . h = f * A(x, h') . h' 

< y~lh'l p- ~lh'l = ~'~lf'(x)*hl p, 

and choosing h such that Ihl = 1 and If'(x)*hl = l(f'(x)) we obtain 
t , p (3.1 O) 72J(x, f )  = 3~1 l ( f  (x)) . 

On the other hand, 

J(x, f)Yl ]h]p > J(x, f )A( f (x), h) . h = f * A(x, h') . h' 

~'~lh'l' = 7~[f'(x)*hl', 

and choosing h such that Ihl--1 and [f'(x)*hl = If'(x)l we obtain 
> ; r p (3.11) ?lJ(x, f )  = Y21f (x)[ . 

The inequalities (3.10) and (3.1 1) hold a.e. in G. 
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Ifp = n and if J(x, f )  is locally integrable, then these inequalities imply that f is 
K-QR with K=max(71/7'2,y'l/T2). Next assume that p4=n. Now (3.10) and (3.11) 
yield 

(3.12) lY'(x)l < HI ( f  '(x)) 

a.e. in G, where H=(717'~/727'2) lip. Let first p<n.  Then (3.10) gives 

l(f'(x)) ~ < J(x, f )  < (Ti/7 2)l(f'(x)) e , 

and hence 

(3.13) l(f'(x)) < (7't/72)1 ;~. - ,~ 

a.e. in G. By (3.11) we have 
p .<  , < ' I f  (x)l = (n/e2)J(x, Y) = (71/72)lY'(x)l", 

and hence 

(3.14) If'(x)[ > (7~/r 1) ~/r 0 

a.e. in G; note that J ( x , f ) > O  a.e. Now (3.12), (3.13), and (3.14) yield 

If'(x)l < L ,  I(y'(x)) > 1/Z 

a.e. in G, where L = H K  t/C~-p~. Hence f is L-BLD. 
Next let p >n. Then (3.10) gives 

7 21(f'(x)) ~ < 72J( x, f )  < 71 l(f'(x)) v , 

and thus 

t(f'(x)) >_ (72/Y'1)1/tv- ~) 

a.e. in G. From (3.11) we obtain 

711f'(x)l" > 7xJ(x, f )  > 7~lf'(x)F, 

and hence 

a.e. in G. Consequently, 

If'(x)l 5 (71/y'2) 1/~v- ") 

]f '(x)l<L',  l( f ' (x))> l/L' 

a.e. in G, where l d = K  1/~v-"). Hence f is E-BLD. 
We next consider the converse of Theorem 3.9: 

3.15. Theorem. Suppose that the Eq. (3.4) satisfies (a) and (b) of  3.1 and that f :  G-~ D 
is L-BLD. Then the operator f * A also satisfies (a) and (b) in G with constants 7't, "~": 
depending only on the constants 71,72 of  A and on L,p and n. In the case p--n it 
suffices to assume that f is K-QR;  then 7'1,7'2 depend on 71, 72, K, p, and n. 

Proof. Suppose that f :  G-4D is L-BLD. For every set E C G we have mlE) = 0 if and 
only if re(f  E)= O. This follows from the local bilipschitz property of f iG\By  and 
from 2.8. Hence it is not difficult to show that f * A  satisfies the condition (a) in G. 
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To prove (b) let x ~ G be such that f is differentiable at x and that (3.2) and (3.3) 
are true for A at f(x).  Let h ~ R  ~ and write h*=f '(x)- l*h.  With Lemma 2.14 we 
obtain 

I f  ~ A(x, h)l = IJ(x, f )  f ' ( x ) -  a A(f(x), h*)[ 

<L"-  llh(f(x),  h*)l <L" -  1Talh*lP- 1 

< L,+ p- 27 dhl~- I 

Similarly, 

f *  A(x, h). h = J(x, f )A( f (x) ,  h*). h* 

J(x, f)~2 Ih*W ~ T2 L2 -=-Plhl p . 

These inequalities hold a.e. in G. Thus f ~ A  satisfies (3.2) and (3.3) with 

7]=L"+p-E~a, e~=L2-"-P72. 

If p=  n and if f :  G ~ D  is non-constant and K-QR, the proof for (a) is similar to 
the above. For  the property m(E)=0r see [MRVI, 8.4]. The 
inequalities in (b) follow as above from the quasiregularity conditions (2.2) with 

! , 7'1=K71, 72=~2/K, note that J ( x , f ) > O  a.e. The case where f is a constant is 
trivial. 

3.16. Remark. If A satisfies (3.6), it is easy to see that f * A  also satisfies (3.6) 
whenever f is BLD or, in the case p = n, QR. 

The final theorem of this section states that a BLD map preserves the solutions 
of A and f * A .  In the QR case this question has been studied in [-Re2] and in 
[GLM]. We shall adopt the method of [GLM].  

3.17. Theorem. Let f :  G ~ D  be L-BLD, and suppose that u is a solution of V. A = 0 
in D. Then v = u o f  is a solution of V . f ~  A=O in G. 

proof. Approximating u by smooth functions we see that v is ACL p. To prove that v 
is a solution of V . f * A  = 0  it suffices to show, by the partition of unity, that v is a 
solution of 17. f # A = 0 in a normal neighborhood U = U(xo, f r) of a point x o e G. 
Set B = f U  = B(f(xo) , r). 

Let ~p ~ C~(U). We must show that 

I = ~ f * A ( x ,  Vv(x)). Vtp(x)dm(x) = O. 
O 

Define lp* : B ~ R  1 by 

~*(Y) = x~y-~y)~v i(x, f )~(x ) .  

Then ~p*e Co(U) by [Ma, 5.4]. Setting 

k = N(f, U), M = sup I V~(x)l 
x ~ U  

we next show that ~p* is kML-lipschitz. Fix y, z ~ B, and let fl" [0, I z -  Yl]--'B be the 
segmental path 

z - - y  
fl(t) = y + t 'z-- l 
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and hence 

(3.18) 

Let ~t~: [0, Iz--ylJ~U, 1 <j<k,  be the lifts of/? given by Lemma 2.10 (modified for 
closed intervals). Since f is L-BLD, each ~i is L-lipschitz, and hence ~ ~ is 
ML-lipschitz. Now 

k 

tp*(/~(t))= Z tp(%(t)) 
j = l  

for all t ~ [0, Iz-y[] ,  and hence 

k 

I~*(z)- ~p*(y)l < Y, I~p(=:(Iz- yL))- w(%(0))l < kMLIz -- Yl. 
j = l  

Thus ~p* is kML-lipschitz. 
Since f defines a closed map of U onto B, the set V=B~f[UnBr is open. If 

B(y, r') is a ball in V, then Uc~f- 1B(y, r') has exactly k components, each of which is 
mapped homeomorphically onto B(y, r'). We choose a sequence B 1 , B  2 . . . .  of 
disjoint open balls in V which almost cover V and hence B. Let U ,  .....  U~k be the 
components of U n f -  1Bi, let f~j: U~j---rB i be the homeomorphism defined by f and 
set g~i =f~i 1. If z ~ B~, we have 

k 
Z 

j = l  

k 

vv*(z )  = y 
j = l  

a.e. in B i. Since m(B~)=O and since Vv(x)=f'(x)*Vu(f(x)) a.e. in U, we obtain 

I = I J(x, f)f '(x) - 1A(f(x), Vu(f(x))). V~(x)dm(x) 
U 

= ~ ~ [.J(x,f)A(f(x),gu(f(x))).f '(x)-'Ttp(x)dm(x) 
i = 1  j = l  Uij 

k 

= ~ Z ~ A(y, Vu(y))"f'(giJY))- X'V~p(gij(y))dm(Y), 
i = 1  j = l  Bi 

by the transformation formula for integrals. By (3.18) this yields 

1= ~ (. A(y, Vu(y)). V~v*(y)drn(y) 
i : l  gi 

= ~ A(y, Vu(y)). V~p*(y)dm(y). 
B 

Since u is a solution of V. A = 0 and since lp* is a lipschitz function with compact 
support  in B, the last integral vanishes. Hence I = 0 as required. 

3.19. Remarks. (a) The conditions (b) of 3,1 did not play any role in the proof of 
Theorem 3.17. Hence the theorem holds for all reasonable equations of the forna 
V . A = B .  

(b) I f p = n ,  it suffices to assume that f is QR in Theorem 3.16, of. [-GLM]. 
(c) Suppose that A and At are operators which satisfy (a) and (b) of 3.1 in the 

domains G and D, respectively. Let f:G--,D. If u o f  is a solution of V "A=O 
whenever u is a solution of V- A 1 =0,  is f BLD or constant for p . n  and QR for 
p=n? 
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4. Properties of BLD Maps 

4.1. In this section we study distortion, normal families, boundary behavior and 
multiplicity functions of BLD maps. We pay a special attention to those properties 
which distinguish BLD maps from QR maps. 

4.2. Immersions. Suppose that f :  G ~ R "  is an immersion (local homeomorphism). 
Then f is L-BLD if and only i f f  is locally L-bilipschitz, see 2.5 and 2.7. These maps 
have been rather extensively studied by several people under the name local quasi- 
isometrics or quasi-isometrics, especially by John, Martio-Sarvas, Gehring, and 
Gevirtz. The following basic result follows from [Jol, Theorem III, p. 93]; a 
somewhat sharper result is given in [Jo2, p. 276]: 

4.3. Lemma. I f  f :  G ~ R  n is an L-BLD immersion and if B(x, r) C G, then f iB(x,  r/L 2) 
is L-bilipschitz. Hence an L-BLD immersion f : R " ~ R  ~ is an L-bilipschitz 
homepmorphism onto R ~. 

4.4. Remark. The analogue of 4.3 for QR maps is true for n > 3 but false for n = 2 
[MRV2, 2.3]. 

4.5. Normal Families. Since BLD maps form a subclass of locally lipschitzian 
maps, normal family properties of BLD maps are much easier than the 
corresponding results in the QR case. We first need a lemma. 

4.6. Lemma. I f  f :  G ~ R  ~ is L-BLD and if B(x,r)CG, then B(f(x) ,r /L)CfG. 

Proof. If the lemma is false, then there is a boundary point b of f G  with 
[b-f(x)[ <r/L. Let ~ be a maximal lift starting at x of the segmental path fl from 
f(x) to b, see 2.9. Then ~ converges to dG and hence l(~)> r. Since 

l(f~) <= l(fl) < r/L < I(a)/L , 

this is impossible by 2.16 (3). 

4.7. Theorem. Let G be a domain in R" and let WL(G ) denote the family of all L-BLD 
maps f :  G-~ R". Then every sequence in WL( G) has a subsequence converging either to 

or to an L-BLD map, uniformly in compact sets. 

Proof. Since each member of WL(G) is L-lipschitz in convex sets, WL(G) is 
equicontinuous. I fF  C G is compact, there is M < ~ such that each pair of points in 
F can be joined by a path of length at most M. This implies 

(4.81 d( f  F) < L M  

for each f e WL(G ). 
Let J be a sequence in WL(G ). If J has a subsequence J1 converging to oo at 

some point of G, then by (4.8), J t  converges to ~ uniformly in compact sets. 
Otherwise J is uniformly bounded in compact sets. By Ascoli's theorem J has a 
subsequence f t , f2 ,  ... converging to a map f : G ~ R  ~ uniformly in compact 
subsets. Since every fj  is L-lipschitz in convex sets, so is f. Hence f is a.e. 
differentiable with I f ' (x)l<L. Moreover, f is sense-preserving [V/ix, 4.3], and 
hence J(x, f)>_ 0 a.e. It remains to show that l(f'(xo))>= 1/L at every point x o of 
differentiability. 
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To this end assume that l ( f ' (xo )  ) = a < 1 /L.  Write 

f(Xo + h) =f(x0) + f'(xo)h + lhle(h) 

where e(h)---,0 as h~0 .  Choose r > 0  such that B(xo, r)CG and such that le(h)l 
< (L- ~ - a)/2 = q for Ihl ~ r. Then 

f B(Xo, r) c f '(xo)B(x o, r) + qr B" = A(r) . 

By 4.6, B(fj(Xo),r/L)Cf~B(xo, r) for all j. Since l(f '(xo))<l/L, there is a point 
b e S(f(xo), r/L) such that d(b, A(r)) > qr. Hence we can choose points y~ ~ B(xo, r) 
with d(fj&j), A(r)) > qr. We may assume that yj--, y ~ B(xo, r). Then f j(yj)~ f(y), and 
thus f (y )r  A(r), a contradiction. 

4.9. Remark. Observe that the limit map in 4.7 is never a finite constant. In this 
respect BLD maps differ essentially from QR maps. 

4.10. Multiplicity. We next derive upper bounds for the multiplicity numbers of 
BLD maps, defined in 2.9. No corresponding results exist for QR maps. The 
function f(z) = z k gives a counterexample for n = 2 and for higher dimensions see 
[MRV2, 4.9]. 

Since an L-BLD map is L 2c"- 1)-QR, the following result follows directly from 
[Ma, 6.1]: 

4.11. Theorem. I f  f :  G--,R ~ is L-BLD, then i (x , f )< L 2("-~) for all xeG.  

4.12. Theorem. I f  f:G--*R ~ is L-BLD and if B(x,r)CG, then N( fB(x ,  ar)) 
<L2"(1 - a ) - "  for every a < l .  

Proof We show that 

Nty, f, B(x, ar)) < L2"(1 -- a)-" 

for each y e R". We may assume that x = 0 = y and that r = 1. Write 

B(x, a ) n f -  '(y) = {xl .. . . .  Xk}, k = N(y, f B(x, ar)). 

Set b=(1- -a ) /L  and define for each e e S  "-a a segmental path fie: [0,b)-~R" by 
fie(t)= te. Applying 2.9 we choose a maximal sequence (~  . . . . .  ~ )  of lifts of/~, 
starting at xl , . . . ,  xk. Then 

l(o~) < Ll(fot~) < LI([3~) = 1 - a 

for everyj. Hence 0t~ does not converge to dB", which implies that ~ is a total lift 
defined on the whole interval [0, b). It follows that N ( z , f  B")>m >k for all 
zeB(b) \ fB f .  Since m(fBs)=O by 2.8, this yields 

J(x, f)dm(x) = ~ U(z, f B")dm(z) 
8 .  R n 

= ~ N(z, fB")dm(z)>=km(B")b" 
R"\fBI 

by a transformation formula for integrals, see [RR, p. 260]. Since J(x, f)<-_ L" a.e., 
we obtain 

k<_L,/b,=L2,(1-a) - . .  
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4.13. Theorem. I f  f :  R" ~ R "  is L-BLD, then N( f )  < L 2". Moreover, f is a closed map 
onto R". 

Proof The inequality follows at once from 4.12 and the surjectivity from 4.6. I f f  is 
not closed, then there is a sequence (x j) converging to ~ such that Ixi-xj l  > 2 
for i~:j and such that f ( x j ) ~ y e R " .  By 4.6, fB(xj,  1) contains the ball 
Bj= B(f(x:), ILL). Since y e Bj for large j, f -  a(y) is infinite, a contradiction. 

4.14. Theorem. Suppose that f :  G ~ R" is L-BLD and that A C G is compact. Then 

N( fA)<_eL2,(  1+ d(A) _~" 
- \ d(a, OG),/ 

where c depends only on n. 

proof. Write 6=d(A, OG) and assume first that 6 <2d(A). There is a constant ca 
depending only on n such that A can be covered by balls B i = B(xj, 6/2), 1 <j < k, 
such that x i ~ A and k < cl(d(A)/6)". Since B(xj, 6) C G, 4.12 gives N ( f  B~) < 2"L 2". 
Hence 

N ( f  A) <= 2"L2"k < 2"L2"c,(d(A)/6)", 

and we choose c = 2nc1. 
Next assume that 6 > 2d(A). Pick Xo e A. Then A C B(xo,6/2) and since 

B(xo, 6)C G, 4.12 again gives N(f, A)< 2"L z". Hence we can choose c = 2" in this 
case. 

4.15. Normal Domains. We recall from 2.9 that a domain D c c G  is a normal 
domain of f :  G---, R" if fOD = OfD. The x-component U(x, f, r) of f - x B(f(x), r) is a 
normal domain if and only if it has a compact closure in G. If, in addition, it meets 
f - l ( f (x) )  only at x, it is a normal neighborhood of x. 

4.16. Lemma. Suppose that f :G-oR"  is L-BLD and that B(x,s)CG. I f  1/q 
> 6(n + 1)L 2" + 1, then U(x, f, qs) C B(x, s), and hence U(x, f, qs) is a normal domain of  
f. 

Proof. We may assume that x = 0 = f ( 0 )  and that s = l .  Set a=l / (n+ 1) and let 
{x t .... , Xk} = f - l(O)nB(a) with x 1 = 0. Then 4.12 implies 1 < k < L2"(1 - a) -". For  
j--- l . . . .  , k we let Vj denote the union of the loci of all maximal lifts of all radial paths 
fl: [0, q) ~R",  fl(t) = te, e ~ S"- 1, starting at xj. Then Vj C B(xj, Lq). 

We first show that the set W= B ( a -  Lq)c~f- 1B(q) is covered by VI u . . .  w Vk. Let 
y ~ W, let y be the segmental path from f(y) to 0 and let ~ be a maximal lift of 
starting at y. Since l(~t)<Lq, ~ is a total lift with end point ~(0) in B(a). Hence 
a(0) = xj for some j = 1, ..., k. Thus the inverse of a is one of the paths defining Vj, 
and consequently, y e Vj. 

Assume that U(x, f, q) r B". Then it is a connected set joining 0 and S"- 1. Hence 
W meets every sphere S(t), 0 < t < a - Lq. Since d(Vg) < 2Lq and since V1 C B(Lq), this 
amplies ( 2 k -  1)Lq > a -  Lq, and hence 

1 2kL - <  <2L2"+l(n+l)( l+l /n)"<2e(n+l)L 2"+1 
q a 

< 6(n+ 1)L 2"+1 , 

a contradiction. 
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For  the next lemma we recall that the Hausdorff distance du(A , B) of non- 
empty compact sets A, B in R" is 

dn(A, B)= max (max d(x, B), maxy~n d(y, A)~.] 

4.17. Lemma. Suppose that f :  G ~ R n is L-BLD, that x ~ G, and that U = U(x, f, r)is 
a normal domain of f Then dn(Unf - l ( f ( x ) ) ,  OU)<Lr. 

Proof Set y=f(x) .  If Xo~ U n f - t ( y ) ,  then 4.6 implies that d(xo, OU)<Lr. Next 
assume that z~OU. Choose s, 0 < s < r ,  such that Ul=U(z , f , s )  is a normal 
neighborhood of z. Set V=B(y,r)nB(f(z),s).  By [MRV1, 2.5], f maps every 
component of U n f - l V  onto V; hence f [Uc~U~]=V. Choose a point 
Yl ~ Vn[y, f (z)]  and then x lE  U n U l n f - l ( y l ) .  Choosing maximal lifts of the 
segments [_vl, f(z)] and [y 1, Y] starting at x 1 we find a total lift a : [0, r] ~ t7 of the 
segment fl defined by fl(t)=f(z)+ t(y-f(z))/r.  Then ot(r)=x2 ~ U n f - l ( y ) ,  and 

Ix2 - zl < l(a) < Ll(fl) = Lr. 

Thus d(z, U n f - l ( y ) ) < L r  and the result follows. 

4.18. Distortion. The numbers l*(x, f, r) and L*(x, f, r) were estimated in 2.12 in the 
case where U(x, f, r) is a normal neighborhood of x. With the aid of 4.16 we next 
derive more general estimates for these numbers. A simple topological lemma is 
needed. 

4.19. Lemma. Suppose that f :  G ~  R ~ is open, that x ~ G and that U = U(x, f, r) is a 
normal domain of f contained in a bounded domain D C G with connected boundary. 
Then aU is connected. 

Proof Since ~D is connected, D has a connected complement CD. Hence CO is 
contained in the unbounded component E of CU. Set F =  CU\E  and B=fU 
= B(f(x), r). Then F is a compact subset of D. Since f is open, afF c f ~ F  cf~  U --- ~B, 
which implies f F  C B. Hence F = 0, since f cannot be open at the points of 0F. 

4.20. Theorem. For every L >  I and n>=2 there are numbers cl,c2>-1 with the 
following properties: I f  f :  G ~ R  ~ is L-BLD and if  B(x, clr)C G, then U(x,f, r) is a 
normal domain of  f, and 

(1) r/L <l*(x , f , r )~Lr ,  
(2) r/L <=L*(x, fr)<___czr. 

Proof Let c o = 6(n + 1)L 2" + 1, and suppose that B(x, Co r) C G. By 4.16, U = U(x, f, r) 
is a normal domain o f f  with UCB(x, co, r ). Set y=f ( x )  and choose z~OU with 
I z - x l  = l*(x,f r). Since the segment [z, x] lies in G, we have r = t f (z ) -y l  <LIz-xl,  
which is the first inequality of (1). From 4.17 we obtain 

l*(x, f r) = d(x, OU) < Lr , 

which is the second inequality of (1). 
The first inequality of (2) is a trivial consequence of (1). To prove the second 

inequality of(2) is more difficult. Setting K = 3L + 2 * + 2LZ~ + ~ we show that it is true 
for cj =max(co, 2K) and for c2 = K .  Suppose that B(x, clr)C G and that L*(x, fi r) 
>Kr. Since UCB(x,c~r)EG, 4.19 implies that ~U is connected. Hence, by (1), ~U 
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meets the spheres S(x, t) for all t ~ [Lr, Kr]. Let m be the largest integer satisfying 
(2m + 1)L N K. Then Kr/(2m + 1) = s > Lr. Now the spheres S(x, (2j + 1)s) meet 0U 
for j = 0 .. . . .  m. Thus 4.17 implies 

N(y, f, B(x, Kr)) = N > m . 

Since (2m+ 3)L> K, we obtain 

N > (K - 3L)/2L = 2 "+ ~L z" . 

On the other hand, since B(x, 2Kr)C G, 4.12 yields N < 2"L 2", a contradiction. 

4.21. Hausdorff Measures. If A C R" and 0 < p < n, we let mr(A ) and dimn A denote 
the p-dimensional Hausdorff measure and the Hausdorff dimension of A, 
respectively. We next show that mr(A ) is quasi-invariant and dimuA is invariant 
under BLD maps. For  bilipschitz maps these results are trivial and hence the 
invariance of dim~A is clear whenever A lies outside B I because a BLD map 
f: G ~ R "  is locally bilipschitz in G\Bf .  Note that the QR analogues are false, see 
[GV]. 

4.22. Theorem. Suppose that f :  G ~ R" is L-BLD, that 0 < p < n and that A C G. Then 
mp(fA)<Lrmr(A ). I f  rG(A)=d(A) /d(A,~G)<~,  then mr(fA)>=mp(A)/c where c 
depends only on L, p, n, and rG(A ). 

Proof. Since f is locally L-lipschitz, the first inequality is clear. To prove the second 
inequality we choose t > 0  and estimate the approximating measure m~(fA). Set 
6 = d(A, OG), A 1 = A + B(6/2) and 

q = min(b/2el, 6/2L, t/c2), 

where Cl and c z are given by 4.20. Let e > 0 and choose a countable covering of f A  
by balls B j = B(y j, r j) such that r j < q, y r~<mp(fA)+~ and Y ~ , Y 2 . . . .  are distinct 
points in fA.  From 4.14 we obtain an estimate N(f ,  At)  < c3 with ca depending only 
on L, n, and r~(A). Hence the sets Q ~ = A t n f - t ( y j )  have cardinalities at most e 3. 
Since carj < c lq < J/2, 4.20 implies that U(x) = U(x, f, r )  is a normal domain o f f  for 
each x~ Qj. Moreover, 

R~ = L*(x, f r )  < czr j . 

We show that the sets U(x), x ~ Qj, j = 1, 2 ..... cover A. Ifa s A, then f(a) belongs 
to some By. Choose a maximal lift ~ of the segment from f (a)  to yj, starting at a. 
Then 

l(~) < L I f ( a ) -  Y~I < Lr j < 6t2, 

and hence ~ terminates at a point x ~ Qj. Thus a ~ U(x) as required. 
Since Rx < c2q <= t, we obtain 

m~( A ) <~. • { R~ : x ~ Q~} < ~. e3cPzry <-_ c3c~(mr(f A ) + e). 
J J 

Since e > 0 and t > 0 were arbitrary, this yields rap(A)< c3c~mr(fA). 

4.23. Corollary. A BLD map preserves the Hausdorff dimension of every set. 
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4.24. The Branch Set. The branch set By of a K-QR map f :  G-OR" can be rather 
complicated for n ~ 3, even if K is relatively small. For  example, there is a universal 
K and K-QR maps f :  R3-OR a such that B:  consists of an arbitrarily large number 
of rays from the origin [Ril, P- 264]. Our next result shows that this cannot happen 
for BLD maps. Note  that for n = 2  the branch set By ofa  QR map f :  G-OR 2, and 
hence that of a BLD map, is a discrete set of points in G. However, even for n = 2 
our result imposes metric conditions on B:  in the BLD case. These conditions do 
not hold for plane QR maps. 

The concept of a uniform domain was introduced in [MS]. We recall the 
definition. A domain D in R" is c-uniform if for each pair of points x t, x2 ~ D there is 
a rectifiable path ~t: [0, l(~)]-oD, parametrized by arc length, joining x i to x 2 with 

1(o0 < clxl -- x2[ , 

d(a(t), OD) R ! min(t, l(~)-- t), t e [0,/(~)]. 

For  a survey of different characterizations see IV/i,]. 

4.25. Theorem. I f  f :  R"-. R" is L-BLD, then C B l and Cf B l are c-uniform domains 
with c = c(n, L). 

Proof Since the topological dimension of B:  is at most n -  2, D = CB: is connected 
for every discrete and open map f :  R"-* R". Let L > 1 and let HL be the family of the 
branch sets of all L-BLD maps f :  R"-*R". By [Vfi4, 3.6] it suffices to show that HL 
is stable in the sense of [Vfi4, 3.1]. This means that (1) HL is invariant under 
similarities of R" and that (2) the family H 2 = {A~ HL: {0, e~} C dA} is compact in 
the Hausdorff metric o f / ~ " = R " w { ~ } .  Since ~b ofo qS- 1 is L-BLD whenever f is 
L-BLD and ~ is a similarity, the condition (1) is clear. To prove (2), consider a 
sequence of L-BLD maps f j :  R"-OR" such that their branch sets B:j converge to a 
set A and {0, el } C Bfj. We may assume that fj{0) = 0. By 4.7 we may assume that (fi) 
converges uniformly in compact sets to an L-BLD map f :  R"-*R". Now [MR, 3.2] 
yields B:  = A. Hence A e H v  The proof  for fBr is similar. 

4.26. Remark. An elaboration of the preceding proof shows that if G is c-uniform 
and if f :  G-+R" is L-BLD, then G\B: is cl-uniform with c~ = q(n, L, c). 

4.27. The Hausdorff Dimension of By. Suppose that f :  G-oR" is BLD with By+l). 
Then d im~tfBs> n - 2 ,  since this is true for all discrete and open maps [MRVz, 
3.4]. By 4.23, this implies d i m u B : > n - 2 .  The corresponding QR result is only 
known for n = 2  and 3 [MR, 2.20]. To the other direction, dimnfB: <c 
=c(n,K)<n for every K-QR map f [Sa, 5.13]. Hence 

dimta B f = dimH f B $ <= c = c(n, L 2~n- 1)) 
for L-BLD maps. Note  that dimBB: = n - 2  = d i m n f B :  for all discrete and open 
maps f with Bf ~ 0 in the plane. 

We next show that if n > 3, then d imnB:  can be arbitrarily close to n. Suppose 
first that n=3 .  Let m > 2  be an integer, and let g :R3-oR  a be the winding map, 
defined by g(r, ~, x3) = (r, m~b, xa) in the cylindrical coordinates of R 3. Then B is the 
line Z = {x e R 3 : xl = x2 = 0}. Let 0 < e < 2. Applying [GV, 20] we choose a ~(-QR 
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homeomorphism, i.e. a K-quasiconformal map, h : R3-'-~R 3 sending Z to a curve E 
with dimt~E = 3 - e .  By I-TV, 7.12] we can choose h so that the map hlR3\Z onto 
Ra\E is L-bilipschitz with some L = L(K) in the quasihyperbolic metrics of R3\Z 
and R3\E. The map f =  hgh- ~ : R 3 --.R 3 is QR with B I = E. We show that f is BLD. 
It suffices to show that [f'(x)l is a.e. bounded away from 0 and oo. 

If Y0 ~ E and r > 0, we let as usual L(Yo, f, r) and l(yo, f, r) denote the maximum 
and minimum, respectively, of If(Y)-f(Yo)l over y eS(yo, r). Since Ig(x)-g(Xo) I 
=[X-Xol for all xo~Z and x e R  a, we obtain from [-MS, 2.16] that 

(4.28) L(yo,f, r) < Hl(yo, f, r) 

with H = H(K). 
Suppose that y is a point in R3\E at which if(y) exists. Choose Yo e E with 

ly-yot--d(y,E)--r, and then y l e E  with [ y l - y o [ = r .  Since f t E = i d ,  we have 
/(Yo, f, r) < [Yo - Y x l = r. Hence (4.28) yields 

d( f (y), E) <= If(Y)-f(Y0)l ~ L(y o, f, r) < Hr. 

Since g is locally m-bilipschitz in Ra\z,  f{R3\E is locally L~-bilipschitz in the 
quasihyperbolic metric of R3\E with Lt =mL 2. This implies 

If'(y)ld(y, E) 
d(f(y), E) < L1 

and thus If'(Y)l <LIH. 
A lower bound If'(Y)l > q = q(K) is obtained similarly considering the numbers 

L*, l* instead of L, 1. Hence f is BLD. 
If n > 3, we write R" = R 3 x R"-  3 and define f :  R" ~R" by f=fo  x id where fo is 

the BLD map of R 3 defined above. Then f is BLD and BI=E• thus 
dirnn By = n - e. 

4.29. Quasiconformal Groups. The method of 4.27 also gives new examples of 
quasiconformal (in fact, bilipschitz) groups not quasiconformally conjugate to 
M6bius groups. The first such example was given by Tukia [Tu]. Let T: R 3 ---~R 3 be 
the rotation T(r, 4, x3) = (r, q5 + 2n/m, x3) in the cylindrical coordinates. Then 
G-{id, T, . . . ,T "-1} is a finite cyclic group of rotations of R 3. Let h be the 
horneomorphism of 4.27. Then Gt=hGh -~ is a group of bilipschitz maps of 
R 3. If n>4,  we write R"=R3• R n-3 and define the group G2={fx id: feG1}.  
Then G2 is a finite bilipschitz group in R". The fixpoint set of each g ~ G2, g 4: id, 
is E x R"- a. This set cannot be mapped onto R"- 2 by a quasiconformal map of 
R"; this is due to the nonrectifiability of E and to [Tu, Lemma 4]. On the other 
hand the fixpoint set of a M6bius map is a sphere or an affine subspace. Hence G 2 
is not quasiconformally conjugate to a M6bius group. Note that for m=  2 the 
group G2 is algebraically isomorphic to Z2, the simplest non-trivial group. 

4.30. Boundary Behavior. Compared with QR maps, the boundary behavior of 
BLD maps is considerably simpler. For  example, if G is a convex domain, every 
L-BLD map f :  G-,R" is L-lipschitz, and has thus a continuous extension to G. 
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More  generally, a BLD map f :  G~R"  has a limit at a boundary point b E 0G if G is 
rectifiably locally connected at b. By this we mean that for every e > 0 there is 6 > 0 
such that each pair of points in DnB(b, 6) can be joined in D by a path of length less 
than e. Indeed, we then have I f (x ) - f (y ) l  < Le for all x, y e DnB(b, 6). For  example, 
a Jordan domain in R 2 with rectifiable boundary is rectifiably locally connected. 
This can be proved either directly or by conformal mapping; of. [Po, 10.3]. Also a 
quasiball D in R ", i.e. D is the image of B ~ or a half space under a quasiconformal 
map g: R*---, R ~, is rectifiably locally connected at each boundary point. Indeed, for 
a domain D C R" we have: quasiball =~ uniform domain => quasiextremal distance 
domain =~ quasiconvex =.- rectifiably locally connected. For  the concepts quasie• 
tremal distance domain and quasiconvex as well as for the middle implications, see 
[GM].  The last implication is obvious, and the first one follows from [MS, 2.15]. 
Note  that although the boundary of a quasiball in the plane is a Jordan curve, it 
need not be rectifiable; in fact, its Hausdorff  dimension can be arbitrary close to 2. 

On the other hand, ifD is the unit disk in R 2 minus the positive real axis, then it 
is easy to see that for each L > I  there is an L-BLD map f : D ~ R "  without 
continuous extension to the boundary. More interesting examples can be 
constructed using the following idea: Suppose that A1, A2 CR 2 are open C 2 arcs of 
infinite length, and that g:Aa--*A 2 is a length preserving homeomorphism. For 
x e A1 let Nl(x) be the line through x, orthogonal to A1. There is a neighborhood U 
of  A1 such that (1) Nl (x )nU is connected for every x e A 1 and (2) N~(x)nNl(y) 
n U = ~ for x 4= y. Then we extend g to a continuous map f :  U---, R 2 so that for each 
x ~ A1, f lN l ( x )n  U is an isometry into the line N2(g(x)) orthogonal to A 2. The 
restriction of f to a smaller neighborhood G of A 1 is an L-BLD homeomorphism 
onto  a neighborhood of A2. Moreover, L can be chosen to be arbitrarily close to 
one. 

For  example, we can choose A~ and A 2 to be the graphs of the functions ~l(t) 
= t sin(l/t) and q~2(t) = sin(l/t), 0 < t < 1, respectively. Then G can be chosen to be a 
Jordan domain, and f :  G ~ R  2 is a bounded injective BLD map with no limit at the 
origin. Alternatively, letting A2 be a half line, we obtain an unbounded BLD map 
of a Jordan domain. 

We close this paper with a simple removability result. 

4.31. Theorem. Suppose that G is a domain in R" and that E is a closed subset of 6 
with mn_l(E)=0. I f  f : G \ E ~ R  ~ is L-BLD, then f has an L-BLD extension 
f *  : G ~ R  n. 

Proof Since m,_ I(E) = 0, G\E is a domain. By the same reason almost every line 
segment in G orthogonal to a coordinate plane omits E. Hence G\E is rectifiably 
locally connected at each point b e E. Thus f has a continuous extension f*  to G. 
By the above segment property f *  is ACL. Finally, since m,(E)= 0, the double 
inequality Ihl/L < If*'(x)hl < LIh[ holds a.e. in G. Since J(x, f*)  > 0 a.e. as well, f*  is 
L-BLD. 

4.32. Remark. The same proof shows that 4.31 is also true for locally L-lipschitz 
maps. 
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