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1. Introduction

Consider the second order elliptic partial differential equation
(11) L(u)_ Z a (au ]u) 0

whose coefficients a;; are Cl-functlons in a domain D of R". If G is another domain
in R" and if f: G—D is a C>-map whose jacobian J(x, f) is positive in G, then f
induces a similar elliptic operator f¥L in G with the property that uof is a
solution of f * L(v)=0 whenever u is a solution of L(u)=0. For this classical result
see e.g. [V1, p. 38]. If the functions a;; are merely L*-functions in D and if (1.1) is
interpreted in the weak sense, then a proper counterpart of the locally dif-
feomorphic C2-maps seems to be the class of locally bilipschitz maps. In this paper
we show that there is, however, a more general class of maps f: G— D which enjoy
the above invariance property and which are not necessarily locally injective. We
say that these maps are of bounded length distortion, abbreviated BLD. More
precisely, a continuous map f: G—R"is L-BLD for some L 21 if f is discrete, open
and sense-preserving and if for each path o in G we have

No/L =1 fo) = LU(or)-

Here /() denotes the length of the path «. Although a BLD map s locally lipschitz,

it need not be a local homeomorphism. A typical example is the map

(r.¢,2) > (r, 2¢, z) in the cylindrical coordinates of R*. This map is 2-BLD in R>.
We shall consider the second order elliptic differential equation

(12) V- A(x, Vu(x))=0

in divergence form with |A(x, h)| = |h|?~* for some p>1. For p=%2 the Eq. (1.2) is
hon-linear. The invariance property applies to the wider class of equations
}7' A= B.The Eq. (1.2) have been chosen for the sake of simplicity. They include the
'Mportant Euler equations of the variational integrals

{ F(x, Vu(x))dm(x)

Where F(x, h)~|hf?.
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The Laplace equation Au=0 in the plane is invariant under analytic and
antianalytic functions. This phenomenon has a proper counterpart for Eq. (1.2)
with p=n. Inall dimensions the invariance property is enjoyed by the quasiregular
(QR) maps, which form a generalization of the complex analytic functions to
higher dimensional euclidean spaces. This invariance property has been studied by
Reshetnyak [Re, ], see also [GLM]. The BLD maps form a proper subclass of QR
maps, and we shall use the theory of QR maps in several occasions. For the basic
properties of QR maps, see [MRV,].

In Sect. 2 we give several equivalent characterizations for BLD. For the study
of the aforementioned invariance property the most useful characterization is the
following: A continuous map f: G—R" is L-BLD if and only if (i) f is absolutely
continuous on lines (ACL), (ii) for almost every xe G

/L =1f"(x)hl = LIh|

for all he R and (iii) J(x, f)=0 a.e. in G.

Section 3 is devoted to the study of the Eq. (1.2) and the corresponding induced
equations V- f* 4=0. In particular, we show that if the equations V- 4 =0 and
V- f ¥ =0are both elliptic and satisfy a natural boundedness condition, then under
weak assumptions on the map f:G—D, f is BLD for p%n and QR for p=n.

Some properties of BLD maps are studied in Sect. 4. These include distortion,
normal families, boundary behavior and the multiplicity function

Ny, f, A)=card(Anf~"(»))

of a BLD map f. For example, we show that for every yeR", N(y, f,R)<L"
whenever f:R"-R" is L-BLD. An interesting problem associated with f is the
structure of the branch set B, of f. It turns out that B in the BLD case is somewhat
simpler than in the QR case; we show that R™\ B/ is a uniform domain [MS] fora
BLD map f:R"—R" On the other hand, for every n>3 and ¢>0 there is a BLD
map f: R"-R" such that the Hausdorff dimension of B, exceeds n—e.

As a by-product we obtain new examples of finite quasiconformal groups of X',
n=4, not quasiconformally conjugate to Mobius groups.

2. Definitions for BLD Maps

2.1, In this section we give various characterizations for BLD maps and also some
preliminary material needed in the later sections. The main results are given in
2.16. Throughout the paper, the notation f: G—R" will include the assumptions
that G is a domain in R", n 22, and that f is continuous. We start with the following
definition:

Let L=1. A map f:G—R" is said to be of L-bounded length distortion,
abbreviated L-BLD, if (i) f is ACL,

(ii) /L= f (x)hl < LIh|

for all he R" for almost every xe€ G, and (iii) J(x, f/)=0 a.e. in G. .

Here we use the notation and terminology of [MRV,]. Thus f'(x): R"-R"1
the formal derivative and J(x, ) the jacobian of f at x. Note that since f is ACL
[MRYV,, 2.16], the partial derivatives of f, and hence f’(x) and J(x, f), exist a.c.
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We shall frequently employ the theory of quasiregular (QR) maps. The basic
reference of this theory is [MRV, ]. We recall the definition. If T: R"-»R" is a linear
map, we let |T} and (T) denote the maximum and the minimum, respectively, of
|Th over all unit vectors he R". Amap f:G—-R"is K-QR, K21, if f is ACL" and if

22) L GN/K S J(x, f) KIS (x))
ae. in G. The first inequality alone guarantees that f is K* !-QR.

23. Lemma. Suppose that f:G—R" is L-BLD. Then:
(1) If the line segment [x,y] lies in G,

(24) lfX)—fISLix—yl.

Thus f is locally L-lipschitz.
(2) f is K-QR with K =I*®"D,

Proof. Suppose first that y=[x,y] is parallel to a coordinate axis, that [ is
absolutely continuous on y and that (ii) holds a.e. on y with respect to the linear
measure. Then (2.4) follows by integration. By continuity, (2.4) holds whenever y is
parallel to a coordinate axis. Hence f is locally nL-lipschitz. By the theorem of
Rademacher, f is differentiable a.e. Moreover, f is absolutely continuous on every
line segment in G. Hence we can repeat the argument and obtain (2.4) in the general
case.

To prove (2) we first observe that f is ACL® and hence ACL". The inequalities
(22) are true at every point x € G such that f is differentiable at x and (ii) holds. This
follows by a simple calculation involving the eigenvalues of f”(x)*f'(x), cf. [Vi,,
p.44].

_2.5. Remarks and Examples. (a) The condition (ii) of 2.1 is equivalent to the
Inequalities

IfGI=L,  {f'(N21/L.

These and (iii) imply that J(x, f)>0a.e.in G. This is also true but less trivial for QR
mZZIPS. A QR map is BLD if and only if | f(x)| is essentially bounded away from 0
and oo,

(b) Asnoted in the proof of 2.3, a BLD map is a.e. differentiable, and the formal
derivative f(x) is thus a.e. the ordinary derivative of f. Moreover, f is not only
ACL but absolutely continuous on every line segment, up to the boundary.

(c) Clearly every locally L-bilipschitz map f: G—R" is L-BLD. However, a
BLD map need not be a local homeomorphism. As a typical example we can
COr}sider the winding map f:R"—R" defined by f(r,¢,2z)=(r,k¢,z) in the
%lindrical coordinates, k=2, 3,.... This map is k-BLD.

(d) Suppose that n=2 and that f:G—R? is complex analytic. If f'(z)=0 for
Some ze G, f cannot be BLD. The function f(z)=e¢? is not BLD in R?, but its
festriction to the strip {(x, y): [x|<c} is ¢*-BLD.

) If f:G—R"is BLD and C?, the jacobian J(x, f) never vanishes. Hence f is a
loca] homeomorphism. For C' QR maps in dimensions n2 3, this is an open
question. However, this holds for C* QR maps and for C2 QR maps in dimensions
"=3and n2 4, respectively. This easily follows from [F, Theorem 3.4.3] and from
the fact that the (n—2)-measure of fB, is positive whenever B +.
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2.6. We recall some topological terminology. A map f: G—R" is open if it maps
open sets onto open sets. It is discrete if '~ () is a discrete set of points for every
yeR" It is sense-preserving if u(y, £, D)>0 for each yefD\f0D and for each
domain D CCG, that is, D is compact in G. Here p is the topological index. The
branch set B, of f is the set of all points xeG at which f is not a local
homeomorphism. For discrete open maps, the topological dimension of B, is at
most n—2. For the basic facts about these properties we refer to [MRV,

pp. 8-12].

2.7. Lemma. An L-BLD map f:G—R" has the following properties:
(1) f is discrete, open and sense-preserving.
(2) fIG\By is locally L-bilipschitz.
(3) If f is injective, f ~':fG—G is L-BLD.

Proof. By a result of Reshetnyak [Re, ], a QR map is either constant or discrete,
open and sense-preserving. Since a BLD map is not constant, (1) follows from
2.3(2).

To prove (2), fix an open ball BC G\B; such that f|B is injective. By 2.3, f|Bis
L-lipschitz. Moreover, f|B is quasiconformal, that is, an injective QR map. Hence
g=(f1B)"! is also quasiconformal and thus ACL and a.. differentiable. If f is
differentiable and satisfies (ii) at x € B and if g is differentiable at y = f(x), then g(y)
=f"(x)"", and thus

lgWI=L, Kg'(y)=1/L.

Since a lipschitz map preserves the property of being of measure zero, these
inequalities are true for almost every y € fB. Hence g is L-BLD and thus locally
L-lipschitz. This proves (2) and (3).

28. Lemma. If f:G—R" is BLD, then m(B;)=m(fB;)=0.

Proof. By [MRV,, 2.14], J(x, f) =0 whenever f is differentiable at a branch poi'nt
x€B,. Hence, by 2.5(a), m(B;)=0. Since f is locally lipschitz, this implies
m(fB;)=0. We remark that the result is also true for QR maps but considerably
deeper.

2.9. Path Lifting. We next recall some results on path lifting for discrete opet
maps. This is perhaps the most important tool in the theory of BLD maps. It will
frequently be used together with the inequalities of Lemma 2.15.

A path in R"is a continuous map «: 4— R" of an interval 4 C R'. In this paper 4
is of the type [a, b) or [a,b]. We formulate the results for half open intervals; the
obvious modifications for closed intervals are easy consequences.

Suppose that f: G— R"is discrete, open and sense-preserving. Let f:[4, b~k
be a path and let x e f ~1((a)). A maximal lift of f starting at x is a path «: [4, ) 6
such that a(a) =x, fx=p|[a,c) and a is not a proper subpath of another path with
these properties. There is always at least one maximal lift « of f starting at X-
c=b, x is called a total lift of B. If c< b, a(t)—>0G as t—c.

We let i(x, ) denote the local index of f at xe G. Let f:[a,b)—>R"bea path, et
X, ..., X be distinct points in f ~*(B(a)), and set

m=i(xy, f)+... +i{x, f).



Eliiptic Equations and Maps of Bounded Length Distortion 427

By [Ri,, Theorem 1], f has a maximal sequence «,,...,a, of lifts starting at
{x(, ---» X}. This means:

(i) o; is a maximal lift of B, 1 <j<m.

(i) card{j:afa)=x}=i(x;, f), 1Si<k.

(iii) card{j:aft)=x}=Si(x; f) for all xe G, te[a,b).

A domain D CCG is a normal domain of f if f6D=0fD. If, in addition, xe D
with Df ~(f(x))={x}, D is called a normal neighborhood of x. If xe G, we let
U(x, f,r) denote the x-component of f~'B(f(x),r). Here and later B(y,r) denotes
the open ball with center y and radius r. If U = U(x, f,r) CCG, U is a normal domain
of f and fU = B(f(x),r). There is ry > 0 such that U is a normal neighborhood of x
for r<rg.

If ACG, we write

N(y, f, A)=card(Anf~'(y)),
N(f, A)=sup{N(y, f, 4):yeR"},
N(f)=N(£.G).

If ACCG, N(f, A} is finite. If U is a normal neighborhood of x, N(V, f)=i(x, f) for
every neighborhood VCU of x. We give as a lemma a result of Rickman [Ri,,
Theorem 2], which will be useful in the sequel. We assume that f:G-oR" is
discrete, open and sense-preserving.

2.10. Lemma. Suppose that D is a normal domain of f and that fi:[a,b)—fD is a
path with locus |B|. Then Df ~!|B| can be expressed as the union of the loci of
N(f, D) total lifts o;:[a,b)—>D of B such that card{j:a{t)=x}=i(x, f) for every
xeDnf 1.

211. Corollary. Suppose that D is a normal neighborhood of x, that ye D and that
B:[a,b]-fD is a path joining f(x) to f(y). Then there is a lift a:[a,b]—D of B
Joining x to y.

If f: GHR" xeG, and r>0, we set as in [MRV, ]
LX(x,f,r)=sup{|ly—x|: yedU},
*(x, f,r)=inf{ly—x|:ye dU},
where U = U(x, f,r). We next estimate these numbers for normal neighborhoods U
of x. A more general situation will be considered in 4.20.
212. Lemma. Suppose that f:G—R" is L-BLD and that U=U(x, f,r) is a normal
neighborhood of x. Then
I¥x, f)SLr,  I¥x finzr/L.

5 ’300f. Choose ye U with |y — x| = [*(x, f, 7). Since the line segment [x, y] liesin G,
3 yields

r=|f(0)— O SLI*(x, £;1),
Which is the second inequality of 2.12.
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To prove the first inequality we consider a point ze S(f(x),r)= 0B(f(x),r) and
the radial path f8,:[0,r)—R" from f(x) to z, defined by

B.(0)=f(x)+t(z—f(x))/r.

By 2.10, Unf~!|B,] can be covered by m maximal lifts of B, starting at x,
=N(U, f)=i(x, ). From [MRYV,, 7.10] or from [Vd,, 2.6] it easily follows that
for almost every z, each lift a, is absolutely continuous on every interval [s, r], s> 0.
By 2.8, almost every |B,| meets fB/ in a set of linear measure zero. Since f|G\B, is
locally L-bilipschitz, we have then [(t)] < L for almost every t e [0,r). Hence

'az(t) - x' = |‘xz(t) - (Zz(O)l é Lr

for all t € [0, r) and for almost every z € S(f(x), r). Thus |y — x| < Lr for a dense set of
points ye U. This implies L¥(x, f,r)< Lr.
2.13. Corollary. If f:G—R"is L-BLD and if U(x, f,r) is a normal neighborhood of
X, then

ly—xl/L=lf()—f(®IsLly—x|
whenever |y —x|<r/L.
2.14. Lemma. If f:G—R" is L-BLD and if f is differentiable at xeG, then
xeG\By, |f' N =L, (f'(x)N21/L, and J(x, [)>0.

Proof. This follows directly from 2.7(1), 2.13 and [MRV,, 2.14].
If ais a path in R”, we let (o) denote its length We next prove the fundamental
property of BLD maps:

2.15. Lemma. If f:G~R"is L-BLD and if  is a path in G, then
ley/L=(fe) < Ll().

Proof. By 2.3, f islocally L-lipschitz. This implies the second inequality of 2.15. The
proof of the first inequality is somewhat harder. Setting f = fu we may assume that
I(f)< oo and that B:[0,)(B)]—R" is a parametrization by arc length. Let P be 2
partltlon of [0, [(8)]. From [MRV,, 2.9] it easily follows that there is a refinement
={to, ..., t;} of P and numbersr, > Osuch that foreachie {0, ..., k}, U(a(t), 1) )is
anormal nelghborhood of aft) and Blt;_,t]1CB;,_,UB, whereB = B(f(t), r:)- For
each i=1,...,k choose s;e[t;_,,t;] with f(s;)e B,_;nB;. Then 2 13 implies

[a(s) —ot; - NS Lis;—t;— 1), lolt) —ols)l S Lt —s))-

Hence

 lt)—alt )= Z (Jo(t)) — sl + o) — ot - 1))

"'M -

<L

((t;—s)+(s;—t;- 1)) =LIUP).

o

This yields i) =< LIp) as required.



Eliiptic Equations and Maps of Bounded Length Distortion 429

We conclude this section with a theorem which summarizes several results
above. We use the standard notation

Lix, f)—l1r;1_§;1p|f(ly) fl( , l(x,f)=liﬂanf—~|f(f2:£l(x)l.

2.16. Theorem. For . G- R" and L=1 the following conditions are equivalent:

1) fis L-BLD.

(2) For each x€ G there is r>0 such that

ly—xl/L=|f(1)— () S Lly—x|

for all ye B(x,r), and J(x, ) =0 a.e.

(3) f is discrete, open and sense-preserving, and

Ke)/L U fa) < Li{or)

for every path o in G.

@) Lix,NZL and Ux, f)=1/L for each xe G, and J(x, )20 a.e.

() fis QR and | X)L, (f'(x)21/L ae.
Proof. We first show that (1) = (2) = (4) = (5) = (1). Suppose that f is L-BLD.
By 2.7, f is discrete and open. Hence each x € G has a normal neighborhood, and
(2) follows from 2.13.

The implication (2) = (4) is trivial. If (4) holds, f is locally L-lipschitz and
hence ACL™. Moreover, Rademacher’s theorem implies that f is differentiable a.e.
and that |f'(x)| <L, (f'(x))=1/L a.e. Hence

|f Gl S LI f Gy S 2 (x, f)

ae, and f is thus QR. Since a QR map is ACL and has J(x, /)20 a.., the
implication (5) = (1) is clear.

Since (1) = (3) follows at once from 2.7 and 2.15, it remains to show that
(3) = (1). If the line segment y from x to y lies in G, (3) implies

IS —fISIfH) S L) =Lix—yl.

Thus f is locally L-lipschitz and consequently ACL®. Moreover f is differentiable
ac.and | f'(x)| < L a.e. Since f is sense-preserving, J(x, f)=0a.e,,see [MRV ,2.14].
Fix x € G such that f is differentiable at x. It suffices to show that | f(x)h| = |h|/L for
all he R". Suppose that this is false for some h=h,. Then

@17) |£()hol/hol =< 1/L.
We may assume that x =0=f(x). Let U=U(0, f,r) be a normal neighborhood
of 0. Now f has the expansion
18) S)=1"Oh+elhh,
Where g(h)—0 as h—0. Pick >0 so small that h=th,e U and
2.19) Ae(h)| <1/L—a.
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Let y be the line segment from 0 to f(h). By 2.11 there is a lift y* of y from 0 to j,
Then (3) implies
(2.20) Lf)=1(y) 2 i(y*)/Lz |hl/L.
On the other hand, (2.17), (2.18), and (2.19) yield
| f(B =1/ (O)hl+ [e(h)| |h| < alh +(1/L— o) |2/2
=(1/L+a)|h|/2<]|h|/L.
This contradicts (2.19) and completes the proof of the theorem.

3. Elliptic Equations

3.1. Suppose that D is a domain in R" and that p>1. Let A:DxR">R" be an
elliptic second order partial differential operator in divergence form, that is, 4
satisfies the following conditions:

(a) Foreach >0 there is a closed set F C D such that m(D\F)<e¢ and A[F xR
is continuous.

(b) There are positive numbers y,,y, such that for almost every xe D,

(3.2) |A(x, I 7,hP~!  (boundedness),
(3.3) A(x, ) B2y, )hf?  (ellipticity),

for all he R™.
An ACL?-function u:D—R! is a solution of the equation

3.4 V- A(x, Vu(x))=0
if
zf) A(x, Pu(x)) - Vd(x)dm(x)=0

for all ¢eCP(D). Note that we always assume that an ACL?-function is
continuous. We often write V- 4 =0 for the Eq. (3.4).

3.5. Remarks. (a) It is possible to consider equations ¥- A =B, which are more
general than (3.4). Here A and B may also depend on u; for conditions on 4 and B
see [Se, p. 247].

(b) If A also satisfies the inequality

(3.6) (A(x, hy)— A(x, hy)) - (hy —h;) >0

whenever h, % h, for almost every x € D, then the solutions of (3.4) can be used to
build a potential theory similar to the classical potential theory formed by
harmonic functions. In general, this theory is non-linear, see [GLM] and [HK]

() An important class of Eq.(3.4) is obtained as Euler equations of the
variational integrals

(j;F (o, Vu(x))dm(x),
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where F(x,h)~|haP. In particular, the case F(x,h)=h? gives the so-called
p-harmonic equation
V-(VulP~*Vu)=0.

3.7. Nextlet f be an ACL map of a domain G C R"into D. The pullback f * A of A is
defined by
(3.8) S HA y=J0x, [)f ()7 A(f(x), f(x)"Vh)
whenever x € G is such that J(x, f)=0. If J(x, f) does not exist or if J(x, f)=0, we
set

FHAx )=A(f(x),h).

However, this case does not play any role in the sequel. We recall that in (3.8), f'(x)
is the formal derivative of f at x, f’(x) ! isits inverse, and T* is the transpose of the
linear map T: R"— R". The main motivation to (3.8) is Theorem 3.17 below, which
shows that under suitable conditions, solutions of - 4 =0 give rise to solutions of
V-f*4=0.

We next investigate the relation between the operators 4 and f*A.
39. Theorem. Suppose that f:G—D is ACL, that J(x, f)>0 a.e. and that A and
[* A satisfy (a) and (b) of 3.1 in D and in G, respectively. Then

(1) fis L-BLD if p=*n,

(2) fis K-QR if p=n and if J(x, f) is locally integrable.

In both cases, L and K depend only on the constants for A and f* A and on p
and n.

Proof. Let v}, 7, be the constants for f* 4 in (3.2) and (3.3). Let E be the set of all
x& D which do not satisfy (3.2) and (3.3), and let E' C G be the corresponding set for
f*A. Then m(E)=m(E')=0. From [RR, Lemma 7, p.348] it follows that
J(x,f)=0 ae. in f~'E. Hence m(f 'E)=0. Fix xe G\(E'vf ~'E) such that
J(x, f)>0. Let he R" and write b’ =f'(x)*h. Then

J0e, Nyalhl? < J0e, NASx), ) - h=f* Alx, ) - I
<YilRP U=yl ) *hlP,
and choosing & such that |h|=1 and |f'(x)*h|=I(f'(x)) we obtain
(3.10) 72J(%, )=y (X))
On the other hand,
Je, )y bP 2 I(x, N)ASx), ) - h=f * A(x, H) - B
2Vl 1P =751 (x)*hP",
and choosing h such that h|=1 and |f'(x)*h|=|f"(x)| we obtain
(311) INCPESAVLES S
The inequalities (3.10) and (3.11) hold a.e. in G.
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If p=nand if J(x, f)is locally integrable, then these inequalities imply that f is
K-QR with K =max(y,/y3,71/72). Next assume that p+n. Now (3.10) and (3.11)
yield
(3.12) [/ IS HIf'(x))

a.. in G, where H =(y,7,/7,72)"/". Let first p<n. Then (3.10) gives
WG I, SIS ()P,
and hence
(3.13) If o) =iy P
a.. in G. By (3.11) we have
[fCNP L1 /Y)ICx S oy L
and hence
(3.14) S0z 0afy) P >0
a.e. in G; note that J(x, f)>0 a.e. Now (3.12), (3.13), and (3.14) yield
/=L, /' (x)=1/L

a.e. in G, where L= HK'~?, Hence f is L-BLD.
Next let p>n. Then (3.10) gives

VA XY Sy I (%, ) SVUS
and thus
(f Nz )"
a.e. in G. From (3.11) we obtain
Pl N 27106 )2Vl S P,
and hence
NS0/ ™
a.e. in G. Consequently,
fGI=L, )z 1/L

ae. in G, where L'=KY*~"_Hence f is L-BLD.
We next consider the converse of Theorem 3.9:

3.15. Theorem. Suppose that the Eq. (3.4) satisfies (a) and (b) of 3.1 and that G*’D
is L-BLD. Then the operator f* A also satisfies (a) and (b) in G with constants ¥ :2
depending only on the constants 4,7, of A and on L,p and n. In the case p=ril
suffices to assume that f is K-QR; then v,,7, depend on y,, v,, K, p, and n.

Proof. Suppose that f: G—Dis L-BLD. For every set E C G we have m(E)=0 if and
only if m(f E)=0. This follows from the local bilipschitz property of f|G\Bs and
from 2.8. Hence it is not difficult to show that f * 4 satisfies the condition (a) in 0
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To prove (b) let x € G be such that f is differentiable at x and that (3.2) and (3.3)
are true for A at f(x). Let he R" and write h*=f"(x) " '"h. With Lemma 2.14 we

obtain
Lf* A, B) = J(x, ) f(x) " A(f(), b*)|
SETHA(S(x), ) S Ly Jh*P
SR 2y |hpt

Similarly,
FHACR) - h=J(x, A(f(x), h*) - b*
2J(x, flyalh* P2y, L2 7" |hf? .

These inequalities hold a.e. in G. Thus f ¥4 satisfies (3.2) and (3.3) with
V=L Ry, =0Ty,
If p=nandif f: G- D is non-constant and K-QR, the proof for (a) is similar to
the above. For the property m(E)=0 < m(fE)=0, see [MRV,, 84]. The
inequalities in (b) follow as above from the quasiregularity conditions (2.2) with

11=K7,, ¥2=y,/K; note that J(x, f)>0 a.e. The case where f is a constant is
trivial.

3.16. Remark. If A satisfies (3.6), it is easy to see that f*4 also satisfies (3.6)
whenever f is BLD or, in the case p=n, QR.

The final theorem of this section states that a BLD map preserves the solutions
of 4 and f*A. In the QR case this question has been studied in [Re,] and in
[GLM]. We shall adopt the method of [GLM].

317. Theorem. Let f: G—D be L-BLD, and suppose that u is a solution of V- A=0
inD. Then v=uo f is a solution of V- f*A=0in G.

Proof. Approximating u by smooth functions we see that vis ACL?. To prove that v
is a solution of V- f * A =0 it suffices to show, by the partition of unity, that v is a
solution of V- f* 4 =0 in a normal neighborhood U = U(x,, £, r) of a point x, € G.
Set B=fU = B(f(x,), 7).

Let e CQ(U). We must show that

I=[f*Ax, Vu(x)) - Vyp(x)dm(x)=0.
v

Define 1p*: B—R! by

v)= ¥ ix Nwlx).
xef~lynU

Then y* e Co(U) by [Ma, 5.4]. Setting

k=N(£U), M=sup|Vip(x)
We next show that p* is kM L-lipschitz. Fix y, ze B, and let :[0,|z—y|]— B be the
Segmental path

z—y
lz—y

BO)=y+t
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Let a;: [0, |z—y|]] > U, 1 £j £k, be the lifts of § given by Lemma 2.10 (modified for
closed intervals). Since f is L-BLD, each a; is L-lipschitz, and hence yo o is
M L-lipschitz. Now

k
w*(B() = ,-;1 wlaft)
for all t[0,|z—y|], and hence

k
w*@)—-p*ls ,-;1 lplofiz—yD) — (e 0 S kM Ljz—y|.

Thus y* is kM L-lipschitz.

Since f defines a closed map of U onto B, the set V=B\f[UnB,] is open. If
B(y,r)isaballin ¥, then Unf ~!B(y, ') has exactly k components, each of which is
mapped homeomorphically onto B(y,r). We choose a sequence By, B,,... of
disjoint open balls in V which almost cover ¥ and hence B. Let U;,, ..., U;, be the
components of Unf ~ !B, let f;;: U;;— B; be the homeomorphism defined by £, and
set g;;=f;; !. If ze B,, we have

J
k
)= .Zl Y(gi2),
and hence =

k
(3.18) Vy*(z)= j;l S@if2) ™ T plgif2)
a.e. in B;. Since m(B;)=0 and since Vu(x)=f'(x}*Vu(f(x)) a.e. in U, we obtain

I=]Jx. /)1 (x)" LA(fGx), Pulf Ce)))- Pyp(x)dm(x)
J I, A G, Pu(f ) - f(x)” Py(x)dm(x)

k

L AG TS )™ Pl MmO,

i=1 j=

by the transformation formula for integrals. By (3.18) this yields

I= 5 1A 7uly)- Py )im()
= [ A Pu(3) -V * (M)

Since u is a solution of ¥- 4=0 and since * is a lipschitz function with compact
support in B, the last integral vanishes. Hence I=0 as required.

3.19. Remarks. (a) The conditions (b) of 3.1 did not play any role in the proof of
Theorem 3.17. Hence the theorem holds for all reasonable equations of the form
V-A=B.

(b) If p=n, it suffices to assume that f is QR in Theorem 3.16, cf. [GLM].

(c) Suppose that A and A, are operators which satisfy (a) and (b) of 3.1 i the
domains G and D, respectively. Let f:G—D. If uof is a solution of y-A=0
whenever u is a solution of ¥- 4, =0, is f BLD or constant for p=n and QR for
p=n?
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4. Properties of BLD Maps

4.1. In this section we study distortion, normal families, boundary behavior and
multiplicity functions of BLD maps. We pay a special attention to those properties
which distinguish BLD maps from QR maps.

4.2, Immersions. Suppose that f: G— R" is an immersion (local homeomorphism).
Then f is L-BLD ifand only if f islocally L-bilipschitz, see 2.5 and 2.7. These maps
have been rather extensively studied by several people under the name local quasi-
isometries or quasi-isometries, especially by John, Martio-Sarvas, Gehring, and
Gevirtz. The following basic result follows from [Jo,, Theorem III, p.93]; a
somewhat sharper result is given in [Jo,, p. 276]:

43. Lemma. If f: G—~R"isan L-BLD immersion and if B(x,r)CG, then f|B(x,r/L?)
is L-bilipschitz. Hence an L-BLD immersion f:R*—R" is an L-bilipschitz
homeomorphism onto R".

44. Remark. The analogue of 4.3 for QR maps is true for n=3 but false for n=2
[MRV,, 2.3].

4.5. Normal Families. Since BLD maps form a subclass of locally lipschitzian
maps, normal family properties of BLD maps are much easier than the
corresponding results in the QR case. We first need a lemma.

46. Lemma. If f:G—R"is L-BLD and if B(x,r)CG, then B(f(x),r/L)CfG.

Proof. If the lemma is false, then there is a boundary point b of fG with
lb— f(x) <r/L. Let o be a maximal lift starting at x of the segmental path B from
flx) to b, see 2.9. Then « converges to 4G and hence /()= r. Since

(fy =) <r/L/L,
this is impossible by 2.16(3).

4.7. Theorem. Let G be a domain in R" and let W,(G) denote the family of all L-BLD
maps f: G— R*. Then every sequence in W,(G) has a subsequence converging either to
% or to an L-BLD map, uniformly in compact sets.

Proof. Since each member of W,(G) is L-lipschitz in convex sets, W;(G) is
€quicontinuous. If F C G is compact, there is M < oo such that each pair of points in
F can be joined by a path of length at most M. This implies

(4.8) d(fF)SLM

for each fe W, (G).

Let J be a sequence in W,(G). If J has a subsequence J, converging to co at
Some point of G, then by (4.8), J, converges to co uniformly in compact sets.
Otherwise J is uniformly bounded in compact sets. By Ascoli’s theorem J has a
subsequence fis f2, ... converging to a map f:G-R" uniformly in compact
Sl_lbsets. Since every f; is L-lipschitz in convex sets, so is f Hence f is ae.
differentiable with |f'(x)| £ L. Moreover, f is sense-preserving [Vi,, 4.3], and
h§>nce J(x, f)=0 a.e. It remains to show that I(f(x,)) 2 1/L at every point x, of

ifferentiability.
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To this end assume that I f'(x,))=a< 1/L. Write
J(xo+h)=F(x0)+f'(xo)h+ |hle(h)
where &(h)—0 as h—0. Choose r>0 such that B(x,,r)CG and such that |e(h)
S(L'—a)/2=q for |h| <r. Then
fB(xq, ") Cf ' (x0)B(xq, 1)+ qrB" = A(r).

By 4.6, B(f{x,),r/L)Cf;B(xo,7) for all j. Since I(f"(xo))<1/L, there is a point
be S(f(x), r/L) such that d(b, A(r)) = gr. Hence we can choose points y;€ B(x,,?)
with d(f{y;), A(r))= gr. We may assume that y,—y € B(x,,r). Then f{y)-f(y), and
thus fi (y)¢A(r), a contradiction.

49. Remark. Observe that the limit map in 4.7 is never a finite constant. In this
respect BLD maps differ essentially from QR maps.

4.10. Multiplicity. We next derive upper bounds for the multiplicity numbers of
BLD maps, defined in 2.9. No corresponding results exist for QR maps. The
function f(z)=z* gives a counterexample for n=2 and for higher dimensions see
[MRYV,, 49].

Since an L-BLD map is I2¢~ D-QR, the following result follows directly from
[Ma, 6.11:

4.11. Theorem. If f:G—R" is L-BLD, then i(x, )< L*"~V for all xeG.
4.12. Theorem. If f:G—R" is L-BLD and if B(x,r)CG, then N(f,B(x,ar)
<I*1—a)™" for every a<1.
Proof. We show that

N(yaf;B(x’ ar))gLZ"(l __a)—n
for each ye R". We may assume that x=0=y and that r=1. Write

B(X a)r\f_ l(y)z{xl, ’xk} ’ k=N(y,f B(x ar))

Set b=(1—a)/L and define for each ec §"~! a segmental path f,:[0,b)—R" by
BAt)=te. Applying 2.9 we choose a maximal sequence («}, ...,aF) of lifts of B,
starting at x,,...,Xx,. Then

ey S LI fod) < LKB)=1—a

for every j. Hence of does not converge to dB", which implies that o is a total llft
defined on the whole interval [0,b). It follows that N(z, f, B")>m>k for all
ze B(b)\ fB;. Since m(fB,)=0 by 2.8, this yields

L I6x, fdm)= | NG, £, B)dm(z)

= | Nz, f, B"Ydm(z) 2km(B")b"

R™\ fBy

by a transformation formula for integrals, see [RR, p. 260]. Since J(x, /)< L' 2~
we obtain

k<Lb"=I2"(1—a)™".
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4.13. Theorem.If f: R"—R"is L-BLD, then N(f)< I?". Moreover, f is a closed map
onto R".

Proof. The inequality follows at once from 4.12 and the surjectivity from 4.6. If f is
not closed, then there is a sequence (x;) converging to co such that |x;—x;]=2
for i=j and such that f(x)—yeR" By 4.6, fB(x;1) contains the ball
B;=B(f(x;),1/L). Since ye B; for large j, f ~1(y) is infinite, a contradiction.

4.14. Theorem. Suppose that f:G—R" is L-BLD and that ACG is compact. Then

N(f, A) < c[?" ( 1+ (f?(;))n

where ¢ depends only on n.

Proof. Write d=d(A4, 6G) and assume first that  <2d(A). There is a constant ¢,
depending only on n such that A can be covered by balls B;=B(x; 6/2), 1 £j <k,
such that x;e A and k <c,(d(4)/d)". Since B(x;)CG, 4.12 gives N(f, Bj)§2"L2".
Hence
N(f, A) S2"[P"k < 2" "¢, (d(A)/0)",

and we choose ¢=2"c;.

Next assume that 6>2d(A4). Pick x,€4. Then ACB(x,,0/2) and since
B(x4,8)CG, 4.12 again gives N(f, A)<2"1?". Hence we can choose ¢=2" in this
case.

4.15. Normal Domains. We recall from 2.9 that a domain DCCG is a normal
domain of f: G—R"if f0D = df D. The x-component U(x, f,7) of f ~'B(f(x),r)is a
normal domain if and only if it has a compact closure in G. If, in addition, it meets
f7(f(x)) only at x, it is a normal neighborhood of x.

4.16. Lemma. Suppose that f:G—R" is L-BLD and that B(x,s)CG. If 1/q
26(n+1)L2"* 1 then U(x, £, gs)C B(x, s), and hence U(x, f, gs) is a normal domain of
I

Proof. We may assume that x=0=/(0) and that s=1. Set a=1/(n+1) and let
{ ts 0 X} = f ~10)n B(a) with x;=0. Then 4.12 implies 1 k< [2"(1 —a)™". For
J=1,..,kwelet V;denote the union of the loci of all maximal lifts of all radial paths
B: [0 q)—»R" B(t) te, ee S" 1, starting at x;. Then V;CB(x;, Lq).

We first show that the set W- B(a—Lg)n f 1B(g)iscovered by V,U...UW,. Let
yeW let y be the segmental path from f(y) to 0 and let « be a maximal lift of y
starting at y. Since l(oz)< Lg, « is a total lift with end point %(0) in B(a). Hence

o(0)=x, for some j=1, ..., k. Thus the inverse of « is one of the paths defining V;,
and consequently, ye V

Assume that U(x, f; q) ¢ B™. Then it is a connected set Jommg Oand $"*. Hence
W meets every sphere S(t),0 <t <a— Lg. Since d(V}) £2Lq and since V; C B(Lg), this
implies (2k — 1)Lq>a Lg, and hence

- < 2kL 20" N+ 1) (1 +1/n)" <2efn+ DL
4= a

<6(n+1)L2"“,

4 contradiction.
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For the next lemma we recall that the Hausdorff distance dg{4, B) of non-
empty compact sets 4, B in R" is

dy(A, B)=max (ma} d(x, B), maxd(y, A)) .
x€ yeB

4.17. Lemma. Suppose that f:G->R"is L-BLD, that x € G, and that U = U(x, f,r)is
a normal domain of f. Then dgl{Unf ~'(f(x)),6U)< Lr.

Proof. Set y=f(x). ¥ xoe Unf (), then 4.6 implies that d(x,, dU)< Lr. Next
assume that zedU. Choose s, 0<s<r, such that U,=Ul(z, f,s) is a normal
neighborhood of z. Set V=B(y,r)nB(f(z),s). By [MRV,, 2.5], f maps every
component of Unf~*¥V onto V. hence f[UnU,]=V. Choose a point
y,€Vnly, f(z)] and then x, e UnU;nf " !(y;). Choosing maximal lifts of the
segments [y,, f(z)] and [y,, y] starting at x, we find a total lift o: [0,7]— U of the
segment f defined by B(t)=f(z)+t(y— f(2))/r. Then a(r)=x,€ Unf ~Y(y), and

Ix;—z| (o) S LKB)=Lr.
Thus d(z, Unf ~Y(y)) € Lr and the result follows.

4.18. Distortion. The numbers I*(x, f,r) and L*(x, f,r) were estimated in 2.12 in the
case where U(x, f,r) is a normal neighborhood of x. With the aid of 4.16 we next
derive more general estimates for these numbers. A simple topological lemma is
needed.

4.19. Lemma. Suppose that f:G—R" is open, that x€ G and that U=U(x, f,r) is a
normal domain of § contained in a bounded domain D C G with connected boundary.
Then 0U is connected. .

Proof. Since 0D is connected, D has a connected complement CD. Hence CD is
contained in the unbounded component E of CU. Set F=CU\E and B=/U
= B(f(x),r). Then F is a compact subset of D. Since fis open, f F C fOF C foU = 0B,
which implies fF C B. Hence F =, since f cannot be open at the points of oF.

4.20. Theorem. For every L=1 and n=2 there are numbers c,,c,=1 with the
following properties: If f:G—R" is L-BLD and if B(x,c;r)CG, then U(x, f,r)isa
normal domain of f, and

(1) r/L<I¥(x, f,r < Lr,

(2) r/LSLXx, f,r)Scyr.

Proof. Let ¢, =6(n+ 1)[2"* 1, and suppose that B(x, cor)C G. By 4.16, U= U(x, /.7)
is a normal domain of / with UCB(x,c,, 7). Set y=f(x) and choose zdU with
|z —x}=I*(x,f, 7). Since the segment [z, x] lies in G, we have r=|f(z)— y| < Llz —Xl,
which is the first inequality of (1). From 4.17 we obtain

I*(x, /,r)=d(x,0U) £ Lr,

which is the second inequality of (1).

The first inequality of (2) is a trivial consequence of (1). To prove the second
inequality of (2) is more difficult. Setting K = 3L+ 2"*2[?"* ! we show that it is tru¢
for ¢, =max(cy, 2K) and for ¢, =K. Suppose that B(x,c¢,r)C G and that L*x, £7)
> Kr. Since U CB(x, ¢,r)CG, 4.19 implies that dU is connected. Hence, by (1)- U
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meets the spheres S(x, t) for all te[Lr, Kr]. Let m be the largest integer satisfying
(@m+1)L K. Then Kr/(2m+1)=s2 Lr. Now the spheres S(x, (2j+ 1)s) meet U
for j=0, ...,m. Thus 4.17 implies

N(y, f, B(x,Kr))=Nzm.
Since (2m+ 3)L> K, we obtain
N>(K-3L)2L=2"*1*.
On the other hand, since B(x,2Kr)CG, 4.12 yields N £2"I?", a contradiction.

421. Hausdorff Measures.If ACR" and 0 < p<n, we let m,(4) and dim, A denote
the p-dimensional Hausdorff measure and the Hausdorff dimension of A4,
respectively. We next show that m,(A4) is quasi-invariant and dimy A4 is invariant
under BLD maps. For bilipschitz maps these results are trivial and hence the
invariance of dimy A4 is clear whenever A4 lies outside B, because a BLD map
f:G-R"is locally bilipschitz in G\B,. Note that the QR analogues are false, see
[GV].

422. Theorem. Suppose that f: G—R"is L-BLD, that 0<p<nand that ACG. Then
m(fA)SPm(A). If ro(A)=d(A)/d(A,0G)< o, then m(fA)Zm(A)/c where c
depends only on L, p, n, and ry(A).

Proof. Since f is locally L-lipschitz, the first inequality is clear. To prove the second

inequality we choose t>0 and estimate the approximating measure m( fA). Set
0=d(A,3G), A,= A+ B(5/2) and

q= min(a/zcl) 5/21" t/CZ) ’
where ¢, and ¢, are given by 4.20. Let >0 and choose a countable covering of f4

by balls B;=B(y,,r)) such that r;<q, ¥ r?<m,(fA)+e and y,,y,, ... are distinct

pointsin fA. From 4.14 we obtain an estimate N(f, 4,) < ¢; with ¢; depending only
on L, n, and rg(A). Hence the sets Q;=A4,nf ~!(y;) have cardinalities at most c;.
Since ¢,r; < ¢,q < /2, 4.20 implies that U(x) = U(x, f,r;) is a normal domain of f for
¢ach xeQ;. Moreover,

R, =1Xx, fir)Sc,r;.

Weshow that the sets U(x),x€Q,,j=1,2,...,cover A.Ifae 4, then f(a) belongs
to some B;. Choose a maximal lift « of the segment from f(a) to y,, starting at a.
Then

(W= Lifla)—yjl<Lrj=d/2,

and hence o terminates at a point xe Q ; Thus ae U(x) as required.
Since R, < ¢,q<t, we obtain

my(A) é; Y{RE:xeQ;} < ; cycBre Scych(m,(f4)+e).
Since £>0 and ¢ >0 were arbitrary, this yields m,(4) < cscim,(fA).

423, Corollary. A BLD map preserves the Hausdorff dimension of every set.
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4.24. The Branch Set. The branch set B, of a K-QR map f: G—R" can be rather
complicated for n 2 3, even if K is relatively small. For example, there is a universa
K and K-QR maps f: R*— R? such that B, consists of an arbitrarily large number
of rays from the origin [Ri,, p. 264]. Our next result shows that this cannot happen
for BLD maps. Note that for n=2 the branch set B; of a QR map f:G—R?, and
hence that of a BLD map, is a discrete set of points in G. However, even for n=2
our result imposes metric conditions on B, in the BLD case. These conditions do
not hold for plane QR maps.

The concept of a uniform domain was introduced in [MS]. We recall the
definition. A domain D in R" is c-uniform if for each pair of points x, x, € D there is
a rectifiable path o : [0, [(x)]— D, parametrized by arc length, joining x, to x, with

o) <clx;—x,,
d(a(t),0D) = ~i—min(t, la)—t), te{0,(x)].

For a survey of different characterizations see [Vi,].

4.25. Theorem. If f:R"—R" is L-BLD, then CB and Cf B, are c-uniform domains
with ¢=c(n, L).

Proof. Since the topological dimension of B is at most n—2, D = CB  is connected
for every discrete and open map f: R"—R". Let L= 1 and let H; be the family of the
branch sets of all L-BLD maps f: R~ R". By [Vi,, 3.6] it suffices to show that H
is stable in the sense of [Vig, 3.1]. This means that (1) H, is invariant under
similarities of R" and that (2) the family H} ={4.e H, : {0,e,} C3A4} is compact in
the Hausdorff metric of R"=R"U{0}. Since ¢ fo¢ ! is L-BLD whenever f is
L-BLD and ¢ is a similarity, the condition (1) is clear. To prove (2), consider a
sequence of L-BLD maps f;: R"—R" such that their branch sets B, converge toa
set A and {0,¢,} C B;. We may assume that f{0)=0. By 4.7 we may assume that ()
converges uniformly in compact sets to an L-BLD map f: R"— R". Now [MR, 3.2]
yields B,=A. Hence A€ H;. The proof for By is similar.

4.26. Remark. An elaboration of the preceding proof shows that if G is c-uniform
and if f:G—>R" is L-BLD, then G\B; is c,-uniform with ¢, =¢;(n, L, ¢).

4.27. The Hausdorff Dimension of Bj. Suppose that f: G—R"is BLD with B fHD-
Then dimy fB,Zn—2, since this is true for all discrete and open maps [MRV;,
3.4]. By 4.23, this implies dimy B, = n—2. The corresponding QR result is only
known for n=2 and 3 [MR, 2.20]. To the other direction, dimyfB,=¢
=c(n, K)<n for every K-QR map f [Sa, 5.13]. Hence

dimHBf=dimeBf§C=C(n, LZ(H—I))

for L-BLD maps. Note that dimy B, =n—2=dimy f B, for all discrete and opeD
maps f with B,+{ in the plane.

We next show that if n> 3, then dimy B, can be arbitrarily close to n. Suppose
first that n=3. Let m=2 be an integer, and let g: R*— R? be the winding map
defined by g{r, ¢, x3)=(r, m¢, x3) in the cylindrical coordinates of R3. Then By is the
line Z={xeR*:x, =x, =0}. Let 0 <¢<2. Applying [GV, 20] we choose 2 K-QR
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homeomorphism, i.e. a K-quasiconformal map, h: R*-s R3 sending Z to a curve E
with dimgE=3—¢. By [TV, 7.12] we can choose h so that the map h|R*\Z onto
R3\E is L-bilipschitz with some L= L(K) in the quasihyperbolic metrics of R*\Z
and R*\E. The map f=hgh™": R®>R?is QR with B, = E. We show that f is BLD.
It suffices to show that | f'(x)| is a.e. bounded away from 0 and co.

If yo€ E and r>0, we let as usual L(y,, f,r) and (y,, f,r) denote the maximum
and minimum, respectively, of {f(y)—f(yo)l over yeS(yo,r). Since |g(x)—g(xo)|
=|x—x,| for all xo€Z and xe& R3, we obtain from [MS, 2.16] that

(4.28) L{yo.fir)< Hl(y,, ;1)

with H= H(K).

Suppose that y is a point in R*\E at which f'(y) exists. Choose y, e E with
ly—yol=d(y, E)=r, and then y, € E with |y, —y,|=r. Since f|E=id, we have
Kye, 1) Slyo— vl =r. Hence (4.28) yields

dfO),E) =1 /)=o)l SLyo, i) <Hr.

Since g is locally m-bilipschitz in R*\Z, f|R\E is locally L,-bilipschitz in the
quasihyperbolic metric of R*\E with L, =mI2. This implies

LSO, E) L,

df.E) ~
and thus | f'(y)| < L,H.
Alower bound | f'(y)| 2 q= q(K) is obtained similarly considering the numbers
X, I* instead of L,l. Hence f is BLD.
Ifn>3, we write R"=R? x R"~* and define f: R"-R" by f=f, x id where f, is
the BLD map of R® defined above. Then f is BLD and B r=ExR""3; thus
dlIl’lH Bf =pn-—=e.

4.29. Quasiconformal Groups. The method of 4.27 also gives new examples of
quasiconformal (in fact, bilipschitz) groups not quasiconformally conjugate to
M@bius groups. The first such example was given by Tukia [Tu]. Let T: R*—»R3 be
the rotation T(r, ¢, x3)=(r, d+2n/m,x;) in the cylindrical coordinates. Then
G={id, T,..., T~} is a finite cyclic group of rotations of R®. Let h be the
homeomorphism of 4.27. Then G,=hGh™! is a group of bilipschitz maps of
R°.If n2> 4, we write R"=R?x R*"3 and define the group G,={f xid:feG,}.
_Then G, is a finite bilipschitz group in R". The fixpoint set of each ge G,, g=+id,
18 Ex R"~3, This set cannot be mapped onto R”~2 by a quasiconformal map of
R*; this is due to the nonrectifiability of E and to [Tu, Lemma 4]. On the other
hand the fixpoint set of a Mdbius map is a sphere or an affine subspace. Hence G,
'S not quasiconformally conjugate to a Mdbius group. Note that for m=2 the
8roup G, is algebraically isomorphic to Z,, the simplest non-trivial group.

4.30, Boundary Behavior. Compared with QR maps, the boundary behavior of
D maps is considerably simpler. For example, if G is a convex domain, every
L-BLD map f: G- R" is L-lipschitz, and has thus a continuous extension to G.
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More generally, a BLD map f: G—R" has a limit at a boundary point be 4G if G i
rectifiably locally connected at b. By this we mean that for every >0 thereis 6>
such that each pair of points in D B(b, 6) can be joined in D by a path of length less
than . Indeed, we then have | f(x)— f(y)| < Le for all x, y e D B(b, §). For example,
a Jordan domain in R? with rectifiable boundary is rectifiably locally connected.
This can be proved either directly or by conformal mapping; cf. [Po, 10.3]. Also a
quasiball D in R, i.e. D is the image of B" or a half space under a quasiconformal
map g: R"*— R* is rectifiably locally connected at each boundary point. Indeed, for
a domain D C R" we have: quasiball = uniform domain = quasiextremal distance
domain = quasiconvex = rectifiably locally connected. For the concepts quasiex-
tremal distance domain and quasiconvex as well as for the middle implications, see
[GM]. The last implication is obvious, and the first one follows from [MS, 2.15].
Note that although the boundary of a quasiball in the plane is a Jordan curve, it
need not be rectifiable; in fact, its Hausdorff dimension can be arbitrary close to 2.

On the other hand, if D is the unit disk in R? minus the positive real axis, then it
is easy to see that for each L>1 there is an L-BLD map f:D—R" without
continuous extension to the boundary. More interesting examples can be
constructed using the following idea: Suppose that 4,, 4, CR? are open C? arcs of
infinite length, and that g: A, — A4, is a length preserving homeomorphism. For
x € A, let N,(x) be the line through x, orthogonal to A4,. There is a neighborhood U
of A, such that (1) N,(x)nU is connected for every x€ 4, and (2) N,(x)nN,()
AU =@ for x =+ y. Then we extend g to a continuous map f: U— R? so that for each
xeA,, fIN (x)nU is an isometry into the line N,(g(x)) orthogonal to A4,. The
restriction of f to a smaller neighborhood G of 4, is an L-BLD homeomorphism
onto a neighborhood of 4,. Moreover, L can be chosen to be arbitrarily close to
one.

For example, we can choose 4, and A, to be the graphs of the functions ¢,()
=tsin(1/f) and ¢ ,(t)=sin(1/t), 0<t <1, respectively. Then G can be chosen to bea
Jordan domain, and f: G- R? is a bounded injective BLD map with no limit at the
origin. Alternatively, letting 4, be a half line, we obtain an unbounded BLD map
of a Jordan domain.

We close this paper with a simple removability result.

4.31. Theorem. Suppose that G is a domain in R" and that E is a closed subset Of_ G
with m,_(E)=0. If f:G\E—R" is L-BLD, then f has an L-BLD extensiot
f*:G-R"

Proof. Since m,_ (E)=0, G\E is a domain. By the same reason almost every line
segment in G orthogonal to a coordinate plane omits E. Hence G\E is rectifiably
locally connected at each point b e E. Thus f has a continuous extension f* to G.
By the above segment property f* is ACL. Finally, since m,(E)=0, the doubl.e
inequality |h|/L <|f*(x)h| < L|h| holds a.e. in G. Since J(x, f*)= O a.c. as well, / *1s
L-BLD.

4.32. Remark. The same proof shows that 4.31 is also true for locally L-lipschitZ
maps.
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