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1 Introduction 

In this paper we study the existence of positive cont inuous  solutions to the 
following semilinear elliptic equat ion with Dirichlet bounda ry  conditions: 

(1.1) �89 + F(x, u) = --g(x)  for x~D , 

(1.2) u[x] = qS(x) for xe~D , 

lim u(x) = ~ when D is u n b o u n d e d ,  
(1.3) Ix l -~  

x E D  

where A denotes the Laplacian in IR a (d >= 3), D is a regular domain  in IR a with 
boundary  dD, q5 is a non-negat ive  con t inuous  real-valued function defined 
on c3D, ct is a non-negat ive  constant  such that when 0D is unbounded ,  
limlxi . . . . .  eo4~(x) = ~,.q is a non-negat ive  Green-t ight  function on  D, and  F is 
a real-valued Borel measurable  function defined on D • (0, b) for some be(0,  zo] 
such that F(x , . )  is cont inuous  on (0, b) for each x~D and  - U(x)u < F(x, u) <= 
V(x) f (u)  for all (x, u)cD x (0, b), where U and  V are non-negat ive  Green-t ight  
functions on D a n d f  is a non-negat ive  Borel measurable  function defined on  (0, b). 
In order for our  theorems on existence of positive solut ions for (1.1)-(1.3) to apply, 
we shall need further restrictions on j~ y and  ~b, which are specified precisely in 
Theorems 1.1 and 1.2. 

Here a positive solut ion means  a solut ion that is strictly positive on D and  
non-negat ive on D. We paraphrase (1.3) by saying that  u has limit c~ at infinity when 
D is unbounded .  It is implicit here that the convergence is uniform as Ixl--, ~ .  As 
with all solut ions of partial  differential equat ions  discussed in this paper, solut ions 
of (1.1) are to be interpreted in the sense of dis t r ibut ions I-4, Chap. 2]. The factor of 
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�89 appears in front of A in (1. l) because our method of proof  uses Brownian motion 
which has �89 as its infinitesimal generator. The domain D may be bounded or 
unbounded,  it may even be all of IR a. The regularity of D is in the usual sense of the 
Dirichlet problem. This is equivalent to the condition that Brownian motion hits 
the complement of D immediately after time zero when started from any point on 
the boundary t~D [3, Chap. 4]. The notion of a Green-tight function on D is defined 
precisely in Sect. 2 below and examples of conditions that imply Green-tightness 
are given there. In particular, it is shown that a function w is Green-tight on D if 
and only if low is in the space K~ of Kato class functions on IRa that satisfy 
a uniform integrability condition with respect to the free space Green's function at 
infinity when D is unbounded. We note here that a function w that is Green-tight 
on D satisfies 

(1.4) t[ w ]]o = sup ! Iw(Y)l ~,~v 1x77~-  zdy< cto. 

An example of the kind of function F(x, u) satisfying the assumptions above is 
a finite linear combinat ion of functions of the form w(x) u p wherc w is a Green-tight 
function on D and p > 1. 

We shall consider two cases, namely, 
(i) either g is strictly positive on some set of positive Lebesgue measure in D, or 
~b is strictly positive on the whole of ~D and ~ > 0 if D is unbounded, 
(ii) D is a Lipschitz domain with compact  boundary,  g - 0 on D, and either 4~ is not 
identically zero on OD + ~J or D is unbounded and ~ > 0. 

To state our main result for these two cases, we need the following estimates. 
Let G denote the Green's function for one half of the Laplacian on the domain D. 
Then [3, p. 1811, 

(1.5) G(x, y) = 0 for x~?D, y s D ,  

(1.6) O ~ G ( x , y ) ~ c l l x - y l  2-a for a l l x ,  y e D .  

where cl = F ~ - 1 2~ n/z. In particular, if D is unbounded, 

(1.7) lim G(x, y) = 0 for each y~D . 
x ~ D  

For  case (ii) we shall need the following "3G-inequality" which holds for a Lipschitz 
domain D with compact  boundary:  

(1.8) G(x ,y )G(y , z )<_2([x_y lZ  ~ + l Y _ z l  z a) for a t lx ,  y, zGO 
G(x, z) - 

where e2 is a positive constant  that depends on D. The inequality (1.8) was proved 
by Cranston, Fabes and Zhao [5] for a bounded Lipschitz domain. The proof 
employed in Herbst  and Zhao [10, Theorem B.2], for A - 2, 2 > 0, can be adapted 
to establish it also for an unbounded Lipschitz domain in IRa(d > 3) with compact 
boundary.  It is an open question as to whether this inequality holds for any 
Lipschitz domain.  

F rom the fact that  9 is Green-tight  on D and the properties of G, it can be 
shown in a similar manner  to that in the proof  of Theorem 3.2 in [4] (with the 



Positive solutions of semilinear elliptic equations 545 

assumption of Green-tightness on D in place of the assumption of being in the class 
J c~ L~(D) used there), that 

(1.9) (Gg)(x) - S G(x, y)o(y)dy, x e D  , 
D 

defines a bounded continuous function on D such that Gg is zero on 0D and G o 
goes to zero at infinity if D is unbounded. Furthermore,  by Proposi t ion 2.10 of [4], 
Gg satisfies the equation: 

(1.10) � 8 9  in D .  

Now for i = 1, 2, let 

(1.11) c ,(f ,  v, D) = ~sup ~e(0, b): sup f ( y )  < . 

Here sup ~ -= 0 and 1/0 - + ~ .  We shall only be interested in those cases where 
Ci(f, V, D) > 0 for at least one i~{1, 2}. Observe that in the special case where 
f (u) = u p for p > 1, or f (u )  = u and [I Vllo is sufficiently small, then Ci(f, V, D) is 
strictly positive for i = 1, 2. 

In the sequel, the conditions stated in the first paragraph of this paper are 
assumed to hold. In particular,  tk, ct and g are non-negative. So that we may treat 
the cases of D bounded and unbounded simultaneously, we define 0D~ to equal ~D 
if D is bounded, and if D is unbounded, it is defined to equal 0D w {3}, where 

denotes the point at infinity in the one-point  compactification of IR a and c3D 6 has 
the topology induced by this compactification. When D is unbounded,  we extend 
qb continuously to t3D~ by defining ~b(3) = ~. 

Let Cb(D) denote the Banach space of continuous, bounded,  real-valued func- 
tions defined on D with the supremum norm. The notat ion II" ]] ~ will denote the 
supremum norm of a real-valued function over its domain of definition. In particu- 
lar, IIqSll~ = sup~ooJq~(x)l and I[agll ~ = sup~6 ](Gg)(x)l. 

Theorem 1.1 Suppose the followin 9 conditions hold: 
(a) either 9 > 0 on some set of  positive Lebesgue measure in D or ~b > 0 on the 

whole o f  dD~, 
(b) llGgll~ + I1~11o~ < C~(J~ V,D). 

Then the Dirichlet boundary value problem specified by (1.1)-(1.3) has a solution 
usCb(D) such that u > 0 on D. 

Theorem 1.2 Assume that D is a Lipschitz domain with compact boundary and 9 - 0 
on D. Suppose that the foIlowin 9 conditions hold: 

(a) ~b ~ 0 on i?D6, 
(b) II ~ II ~ < c2(f ,  v, D). 

Then the Dirichlet boundary value problem specified by (1.1)-(1.3) has a solution 
u~Cb(D) such that u > 0 on D. 

Remark 1. Observe that the above theorems only have content if Ci(j~ V, D) > O. 
The cases where F(x, u) < 0 or 9 -= 0 or D = IR a are interesting special cases. 

Remark 2. For  the existence of solutions, the situation where F(x, u) <-_ 0 is simpler 
than that where F(x, u) may be positive, because the former corresponds to killing 
a Brownian motion, whereas the latter allows for creation and one has to avoid 
explosion of mass. 
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R e m a r k  3. In general, we do not know that there is uniqueness for the solutions 
found in Theorems 1.1 and 1.2. However, if F(x ,  u) is monotone decreasing as 
a function of ue(0, b) for each fixed x e D ,  then it follows from a maximum principle 
argument (cf. [7], Theorem 0.5) that for a given ~b, a and g, there is uniqueness of 
continuous bounded solutions to (1.1)-(1.3). 

R e m a r k  4. Theorem 1.2 covers the case treated previously by Zhao [18] where 
D is an unbounded Lipschitz domain with compact boundary, g = 0 on D and 
4~ = 0  on OD. 

Our method of proof uses an implicit probabilistic representation for positive 
solutions of (1.1)-(1.3) (see (3.18)), together with Schauder's fixed point theorem. 
Whilst it may be possible to translate our proof into a purely analytic one, perhaps 
with some further restrictions, we feel that it is our method of proof, with its use of 
a probabilistic representation, that is especially interesting. To keep the exposition 
as transparent as possible, we have not attempted to optimize the bound on 
[]Ggll| + 114'11~o. Further elaboration on our method of proof is postponed until 
after the probabilistic representation (3.18) has been introduced. 

There is a wealth of literature on semilinear elliptic equations. However, we 
could not find results that entirely subsumed ours. In particular, we allow F to be 
locally unbounded and to take positive as well as negative values. We shall confine 
our comments on the literature to some papers illustrating applications and to 
papers giving probabilistic approaches to the solution of semilinear elliptic equa- 
tions. With D = IR a, g - 0 and F ( x ,  u) = - k ( x ) u  + w ( x ) u  p where p > 1, k > 0 and 
slightly stronger assumptions are made on k and w than Green-tightness on D, (1.1) 
has been studied by Kenig and Ni [11] and other authors in connection with the 
problem of conformal deformation of metrics in Riemannian geometry. Equations 
of the form (1.1) with a certain class of non-positive F's which includes those of the 
form F ( x ,  u) = - w ( x ) u  p, w a non-negative, bounded Borel function and pE(1, 2], 
have appeared in connection with the study of superprocesses (see Dynkin [7] for 
example). In [9], Glover and McKenna used techniques of probabilistic potential 
theory to develop a refinement of the usual method of sub- and super-solutions for 
solving semilinear elliptic and parabolic differential equations on IRd. Ma and Song 
[13] adapted the method of Glover and McKenna [9] to elliptic equations in 
bounded domains with Dirichlet, Neumann, or mixed boundary conditions. When 
the results of [9] and [13] are applied to the situation in (1.1)-(1.3) with a view to 
finding non-negative solutions, the hypotheses of these papers in particular require 
that F = F(u)  and on each fixed compact u-interval there is a positive constant 
A such that 

(1.12) - -  A u  ~ F(u)  < O . 

The lower constraint on F is slightly weaker than ours in the case treated by Glover 
and McKenna of D = p a. However, this leads to the possibility that their solution 
may be identically zero when g = 0. In fact, in [2] we show that our method can be 
adapted to recover the existence of non-negative solutions of (1.1)-(1.3) under the 
conditions of Glover and McKenna [9] or Ma and Song [13]. Freidlin [8] has 
used an implicit probabilistic representation together with a contraction mapping 
argument (or Picard iteration) to obtain continuous solutions for (degenerate) 
elliptic quasilinear equations with Dirichlet boundary conditions, where the co- 
efficients are bounded Lipschitz continuous and the boundary is regular. In [18], 
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Zhao used an implicit probabilistic representation together with Schauder's fixed 
point theorem to obtain positive solutions of the equation (1.1)-(1.3) under some 
conditions with y = 0, ~b = 0, F(x, u) = V(x) f (u)  where V is Green-tight on D, f is 
continuous and neither V nor f need be non-negative, and D is an unbounded 
Lipschitz domain with compact boundary. Both Freidlin and Zhao used the 
implicit probabilistic representation, but Zhao used the potentially broader mech- 
anism of Schauder's fixed point theorem rather than a contraction argument. The 
present work uses some ideas from Zhao's  paper, but additional features are 
needed to handle non-zero g and 4,. Furthermore, in Theorem 1.1, we relax the 
Lipschitz and compact boundary condition on D to that of a regular domain. 

In a separate paper [1] we consider the equation (1.1) with Neumann and 
mixed boundary conditions in place of the Dirichlet conditions considered here. In 
particular, the boundary conditions may include nonlinear terms depending on 
x and u. 

2 Green-tight and Kato class functions 

In this section, prior to Proposition 2.3, D may be any domain in R d where d > 3. 
For Proposition 2.3 we assume that D is a regular domain, as in the Introduction. 

Definition 2.1 A fimction w is Green-tight on D if and only if w is a real-valued 
Borel measurable function defined on D such that the family of functions 
{w ( - ) / I x - "  I d- 2, x~ D} is uniformly integrable, i.e., w satisfies 

I ]w(y)] 
(2.1) lim s u p !  ] x -  yl a -zdy~  = 0 ,  

m(A)~O ~.xeD 
A c D  

and (if D is unbounded), 

(2.2) lira t s u p  ~ ]w(Y)l d y } = 0  
M~oo  k xeO lYI>M JX - -  y l  a -  2 

TeD 

where m denotes Lebesgue measure on IR a. Note that the limit in (2.1) is uniform in 
sets A ~ D  such that re(A)-~ O. It follows easily from (2.1)-(2.2) that [1.4) holds for 
any w that is Green-tight on D. 

We shall relate the class of Green-tight functions on D to the class K~ defined 
below. For this we need the following lemma. 

Lemma 2.1 A real-valued Borel measurable fimction w defined on D is Green- 
tight on D if and only if low is Green-tight on IRa. 

Proof. Without loss of generality, we may assume D = IR e. For  any Borel set A c D, 
by Fatou's  lemma we have 

Iw(y)l 
(2.3) s u p !  ]w(Y)_~l dy = sups  Ix----Y~ --2dy 

x~O I x -- Yl a-2 xEDA 

For each z E R d \ D ,  there is x~e~D such that [x~ - zl = inf~D[x - z]. Then for each 
y~D, 

(2.4) I x ~ -  Yt < I x ~ -  zl + I z -  y[ < 2 l z -  yJ,  
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and so 

Iw(y)l . Iw(y)l , 2 a - 2 s u p f  Iw(y)F 
(2.5) ! l z~_7~-  zay<--2a-Z!lx 77(a_iay<= ~,~z) a lx__~f~_idy .  

Combining (2.3) and (2.5), we obtain 

! Iw(y)t 2a ! [w(y)l 
(2.6) sup [z_yla 2dY < Zsup - dv 

z ~ ~  ~ o  I x -  y ~ - 2  - 

The desired equivalence follows immediately from this and the definition of Green- 
tightness on D and IR a. [] 

The Kato class Kd consists of all those real-valued Borel measurable functions 
w defined on IRa such that 

]w(y)[ ] 
(2.7) l i m I s u  p ~ i x ~ y [ a  2dY = 0 .  

r~O I . _ x c R  d [x-yl<r 

A real-valued Borel measurable function w defined on •a is in K~ ~ if and only if 
1BweKa for each bounded ball B in IRa The class K~' is defined by 

{ F ] } (2.8) K 2 =  w~K~~ lim sup ~ [x_y la  zdy = 0  . 
M ~  L x e ~  a lYl>M 

Remark. It is easy to see that K~ ~ can be replaced with Ka in the above definition 
of K~ ~ 

The following lemma was stated in [18] without a complete proof. The lemma 
above provides the missing step. 

Lemma 2.2 A real-valued Borel measurable function w defined on D is Green- 
tioht on D if and only if 1Dw is in the class K~. 

Proof It was shown in [18], Proposition 2, that a function is Green-tight on IRd if 
and only if it is in K~ ~ Combining this with Lemma 2.1 above yields the desired 
result. [] 

Remark. If D is bounded, a real-valued Borel measurable function w defined on 
D is Green-tight on D if and only if low is in Ka or equivalently K~~ Examples of 
functions in Ka and K~ ~ may be found in [15]. In particular, it follows from 
Example E on page 456 of [15] that when D is bounded, any function in LP(D)for 
p > d/2 is Green-tight on D. If D is unbounded, by [18], Proposition l, a sufficient 
condition for a real-valued Borel measurable function w to be Green-tight on D is 
that lowsK~ ~ and there is L > 0 such that 

(2.9) I(1Dw)(x)t < ff(Ixl) = ~ for ~ll Ixl ->-- L ,  

where ~, is a positive function defined on the interval [L, oo) such that 
~2 r - 1@ (r) d r <  0o. 

Let Co(D) denote the subspace of Q(/9) given by 

~ueQ(b):u(x)  = 0 oil OD, and if D is unbounded, lira u(x)= 0~. 
t [xl~ oo ) 

x E D  
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For any function w that is Green-tight on D, let 

(2.10) Fw = { v : O ~  ~ ,  v is Borel measurable and Iv(x)l _-< [w(x)l for all x e D } .  

The following proposit ion plays a key role in our proof  of Theorems 1.1 and 1.2. 
Here we revert to the assumption that D is a regular domain in IR d, d > 3. 

Proposition 2.3 For any Green-tight function w on D, the family of  functions 
{Gv : v e l ~ }  is uniformly bounded and equicontinuous in Co(D), and consequently, it is 
relatively compact in Co(D). 

Proof The proof given in [18] for an unbounded Lipschitz domain carries over 
without modification, since the Lipschitz assumption in [18] was only used to 
ensure that the domain was regular and the unboundedness assumption did not 
play a role. (7 

For  further properties of Kato  class and Green-tight functions, we refer the reader 
to [4], [15] and [18]. 

3 Proof of Theorem 1.1 

Let ~b, 9 satisfy the hypotheses of Theorem 1.1. For  each xe / ) ,  let {X(t), t > 0} 
under the probabil i ty measure px be a d-dimensional Brownian motion starting 
from x. We use E x to denote expectation under px and let z o =  
inf{t > O:X( t ) r  When D is unbounded,  on {to = oo} we let X(zD)= 6 and 
then cb(X(vo)) = (9(6) =- ~. 

For any real-valued Borel measurable function w defined on D such that 
il w II o < ~ ,  for each x e/5, PX-a.s. the following stopped Feynman-Kac  functional 
is well defined, positive and finite for all t ~ 0 [4, Chap. 3], 

(3.1) ew(t) - exp w(X(s) )ds  . 

We shall consider such functionals with w = - U, V, etc. Now for each x ~ / )  let 

(3.2) ho(x) = E ~ e_ v(t) o (X( t ) )d t  , 

1 (3.3) h,(x)  = E ~ g iX( t ) )d t  , 
L O  .J 

(3.4) hz(x) = E x [q$(X(zo))] , 

(3.5) h(x) = hi(x) + h2(x). 

Note that h~ = Gg, and by our convention, 

(3.6) h2(x ) = E ~ [~b(X(zo)); ro < ~ ]  + ~ PX(zn = co). 

It is well known (cf. [3, Sect. 4.4]) that h2 is a bounded continuous function on 
/~ which is harmonic in D, equals 4b on the boundary  of D (since D is regular), and if 
D is unbounded has limit of ~b(fi) = 0r at infinity. Combining these properties with 
those of GO we see that h is a bounded continuous function on b which agrees with 
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q~ on 0D, has limit of e at infinity if D is unbounded, and satisfies the following 
equation: 

(3.7) � 8 9  i n D .  

I fg  is positive on a set of positive Lebesgue measure in D, then since such a set is of 
positive potential for Brownian motion killed on exit from D, it follows that hi > 0 
on D and similarly, since also P~-a.s., e-v( t )  > 0 for all t ~ 0, we have ho > 0 on D. 
On the other hand, if 4) > 0 on OD~, then h2 > '/0 > 0 o n / ) ,  where 

(3.8) Yo -= min {~(x):x~3D~} . 

Furthermore,  hi < IIGgI!~ and h2 <= ][~bll~ o n  /), Let 

(3.9) fl = clllUIIo, ~1 = I1@11~ + 114,11~, 

and define 

(3.10) A = {ueQ(l~):ho + e-#yo < u < 271 o n / ) }  . 

Note that ho + e-#7o > 0  on D since either h 0 > 0 on D or ~0 > 0, by assump- 
tion (a) of the theorem. Now, by assumption (b), 271 < 2C~(f, V, D) and so for 
ueA,  using the definition (1.11) of C~(f, V,D) and properties of F, we have 
that 

F(x, u(x)) 
(3.11) q.(x) -- 

u(x) 

is well defined for all xeD,  and 

(3.12) - U ( x )  < q.(x) < V(x) f (u(x))  < V(x) = = - - -  17(x)  o n D ,  
u(x) = 2Cl II Vilo 

and so 

1 
(3.13) IIq~llo ~ IIUIIo + I1 ~llD 5 IlUIlo + - -  

2cl 

By (1.6) we have for any ueA  and xeD,  

(3.14) E ~ X( t ) )d t  = [G(x , y )  ~'(y)dy 
D 

and similarly, 

(3.15) 

<__ c~I P(y)lx - yl 2 "dy  
D 

_<- cl 11Vllo 

_ 1  
- - 2 ,  

E x U(X(t ) )d t  ~ cxlIUIL~ = f t .  
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By (3.12), (3.14)-(3.15), together with Jensen's inequality applied on the left and 
Khasminskii's lemma [4, Sect. 3.2] on the right, we have the following estimate for 
each x~D: 

(3.16) e -~ < EX[e V(ZD)] < EX[equ(~co)] ~ E~[e~,(zo)] < 2 . 

Furthermore, by using ordinary calculus, Fubini's theorem for non-negative inte- 
grands, and the Markov property, we have for all xED, 

(3.17) E~[i~ ~ E~[ie~(t)g(X(t))dt  1 

= EX[i~ - 1)g(X(t ) )dt l+ E~[i 'g(X(t))dt  1 

= E x ei,(s) V(X(s s g(X(t))dt + hl(x ) 

= E x ec,(s) V(X(s)) o(X(t))dt s + hi(x) 

= EX[?De~(s)V(X(s))EX'~'[ig(X(t))dtJds]+h,(x) 

Pi 1 = E x ep(s) P(X(s))hl(X(s))ds + hi(x) 
L0 A 

< Ilhx II ~ g x [e~(zo)] 

< 2 IIh~ll~, 

where the last inequality follows from (3.16). Combining (3.16), (3.17), and using the 
regularity of D, we see that the following expression is well defined and finite for all 
x~D: 

t3.18) (Tu)(x) = E ~ e,,(t)g(X(t))dt + E~[e,~(rD)q~(X(~o))] . 

It is convenient at this point to explain the strategy of our method of proof. If 
u~A were a solution of (1.1)-(1.3), it would also be a positive solution of 

(3.19) � 8 9  i n D .  

By thinking of q, as a known function of x, results [4] for the linear reduced 
Schr6dinger equation would yield the representation u = Tu in D. Thus u would be 
a fixed point of T. The idea of our proof is to reverse this procedure, that is, to show 
that the mapping T has a fixed point in A and then to verify using the results of [4] 
that this fixed point is a solution of (3.19) (and hence of (1.1)), together with the 
boundary conditions (1.2) and (1.3). 

For ueA and each x~D, let 

(3.20) v,(x) = E ~ eq,(t)g(X(t))dt , 
LO _.1 

(3.21) v2(x) = E ~ [e~,(zD) ~b(X('rn))] . 
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Using (3.12), (3._16), (3.17), the non-negativity of g, and the regularity of D, we can 
show that on D, 

(3.22) ho < vl < 2 [Iht tl ~ = 2 Ilagll~, 

(3.23) e-P?o 6 v2 _-< 211 q5 It 0o �9 

Now, by ordinary calculus, Fubini's theorem (the required absolute integrability 
being implied by ]Jqul]o < oo), the Markov property, and the regularity of D, we 
have for each xeD, 

(3.24) vl (x ) -h , (x )= EX[?~ (t))dt] 

= E x ~ ~qu(X(s))(eq,,(s)) -1 ds equ(t)g(X(t))dt 
I_O\O 

= E x q,(X(s))(e,~(s)) -t %(t)o(X(t)jdt ds 
0 

= r x  u s X(s) equ i l t ~s 

0 L O  A J 

= G(q, vl). 

It follows from the boundedness of vi, (3.12), and the fact that U and V are 
Green-tight on D, that q~vl is Green-tight on D and hence by the same reasoning as 
for Gg in Sect. 1, G(q~vl)e Co(D) and it satisfies (1.10) with q~v~ in place of g there. 
Combining (3.24) with the properties of G(q~v~) and ht we see that Vx eCo(/)) and it 
satisfies the following equation: 

(3.25) �89 + q, vl = - g  in D .  

Similarly, for v2 we have for each x e b ,  

(3.26) o2(x) - h2(x) = E x [{eq~(zo) - 1}0(X(zo))] 

[*iq (X(t)) p(~(q (X( ))d )~b(X( ))dt] = E x u ex u s s Z- D 

= EX[?'qu(X(t))EXtt)[e..(zo)qb(X(zo))]dt 1 

= G(q, v2). 

It follows that v2~Cb(D), it agrees with ~b on OD, it has limit e at infinity if D is 
unbounded, and it satisfies the following equation: 

(3.27) �89 i n D .  
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Now Tu = v~ + v2 and so from the above  proper t ies  of vl and  vz we conclude that  
Tu~Cb(/5), 

(3.28) h o + e-~'yo < Tu < 27t  on 15, 

and v = Tu is a solut ion of 

(3.29) ~Av + q,v = - O  in D , 

(3.30) v = qb on c~D, 

(3.31} lira v(x) = ~ if D is unbounded  . 

x~i D 

In par t icular ,  for any u6A, TuEA, and so 

(3.32) TA c A . 

By (3.24), (3.26), we have for each u e A ,  

(3.33) (Tu)(x) - h ( x ) :  G(q, Tu) for all x ~ / 5 .  

F r o m  (3.12) and (3.28) we have 

(3.34) Iq,(x)(Tu)(x)[ < ','1 2U(x) + c~ II VIIoJ for all x ~ D  . 

Since U and V are Green- t ight  on D, it follows from (3.34) and Propos i t ion  2.3 that  
as u ranges over  all functions ueA ,  the right member  of (3.33) defines a family of 
functions in Co(D) that  is uniformly bounded  and equicont inuous.  N o w  h is 
bounded  and uniformly cont inuous  on /5 with l imit  of ~ at infinity if D is 
unbounded .  Combin ing  the above,  it follows by a s imple_modif icat ion of the 
Ascoli-Arzela theorem that  TA is relatively compac t  in Cb(D). 

Suppose  that  ueA and {uo}=A with ] ) u , - u l ] ~ 0  as n ~  ~ .  Since F(x, .)  
is cont inuous  on (0, b) for each x6D, h o + e  ~ o > 0  on D, and 
2~ < 2C1(.s V, D) < b, it follows from (3.10)-(3.11) that  as n-~  ~ ,  

(3.35) q, .  --* q, pointwise  on D . 

Now by (3.12), for any v~A, 

(3.36) j Iq,,(X(s))las ~ ~. ( u ( x ( s ) )  + ~'(X(s)))ds , 
0 0 

where for x~D, by (3.14)-(3.15), 

(3.37) E ~ (U(X(s)) + P(X(s)))ds 5 l~ + ~ .  
L O  

It follows from (3.35), and the domina ted  convergence afforded by (3.36) (3.37), 
that  for each x e D  and te[O, oe], 

t A r ~  t amp  

(3.38) ~ q, , (X(s))ds-~ ~ q,(X(s))ds P~-a.s. as n ~  ~ . 
0 O 
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Now for yeA,  by (3.12) we have for each x e D  and te[0,  ~ ] ,  

(3.39) eq~,(t A zo) < e~(t /x ~o) . 

By (3.16)-(3.17), we have for each xeD,  

E~[e~(ro)] < 2 , (3.40) 

and 

['i ] (3.41) E x e~( t )o(X( t ) )d t  < 2 [Ih~l[~ 

Then by (3.18) and the dominated convergence afforded by (3.38)-(3.41) and the 
boundedness of ~b, we have that (Tu,)(x) --* (Tu)(x) as n --* oo for each xe/5 (note 
that Tu = Tu, on dD by the regularity of OD). Since TA is relatively compact,  the 
pointwise convergence implies uniform convergence, and so we have 
) l T u , -  Tull~-- ,0 as n--.oo. Thus, we have proved that T is a compact and 
continuous mapping from the non-empty,  convex, closed, bounded set A c Cb(/5) 
into itself. Hence by the Schauder fixed point theorem (see Theorem 2.A, Sect. 2.6 of 
[17]), there exists a function uoeA such that Tuo = Uo. It then follows from 
(3.29) (3.31) that uo is a solution of(1.1) (1.3). [] 

4 Proof of Theorem 1.2 

Theorem 1.2 can be proved in a very similar manner to Theorem 1.1. The main 
difference is that in the definition of A, 70 is replaced by h2 (3.6). The fact that h2 > 0 
on D is ensured by the maximum principle and assumption (a) of Theorem 1.2, 
since 4) ~ 0 being continuous is either strictly positive on a set of positive capacity 
in the Lipschitz boundary  OD (for Brownian motion absorbed on c~D), or D is 
unbounded and ~ = q~(6) > 0. 

We indicate below the modifications that need to be made to the proof  of 
Theorem 1.1 in order to prove Theorem 1.2. Replace cl, Cl ( f ,  V, D), ~'o and A, by 
C2, C2( f V, D), h2, and 

(4.1) A~= {u~Cb(D):e-~h2 < u < 271 o n / ) } ,  

respectively. (Note that g is assumed to be identically zero.) The key difference in 
the proof  involves showing that  T maps A into itself. For this, we need to use 
conditioned Brownian motion on D, together with the estimate (1.8). For the 
development of this, we observe that since D is a Lipschitz domain with compact  
boundary,  dDa is the Mart in boundary of D. Fix x0 in D and let K denote the 
associated Martin kernel for D defined by 

(4.2) K(x,  z) = lim G(x, y) for all x~D,  zEOD~. 
y ~  G(xo, y) 
y~D 

By taking limits in (1.8) we obtain: 

(4.3) 
G(x, y ) K ( y , z )  .< ~ ( I x  - yl 2-a + lY--  zl 2-d) for all x, y eD ,  zet~D~, 

K(x ,  z) = Z 
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where the last term in the right member is zero ifz = 6. For  each (x, z) ~D x c3D~, let 
P~ and E~ denote the probabili ty and expectation, respectively, under which X is 
Brownian motion starting at x conditioned to converge to z as tTro [6]. Now for 
u~A we have 

(4.4) [~f ] G(x, y)V(y)K(y, z) 
E2 ~'(X(t))dt = [ K(x, z) dy 

LO d o 

c~[! 17(y) , P(Y) d ] 
<= ~ i x _  Yla-2aY + ~ l y _  zta-2 YJ 

=�89 

where I 7 -  V , Similarly, 
2czll Vilv 

(4.5) E U(X(t))dt < f l -  c2LIUIh, < ~  - 

Then in the same manner that (3.16) was derived, but with E x in place of E*, we 
have for each xeD and zeOD~, 

(4.6) e ~ < E~[e-v(ro)] < E~[eq~(~o)] < E~[ep(zD)] <= 2 . 

Note that by integrating out over the conditioning variable z, we see that (4.6) also 
holds with E * in place of E~. 

For  each x~D, let H(x, dz) denote the harmonic measure on OD~ relative to x, 
i.e., for each Borel set AcQDo, 

(4.7) H(x, A) = E ~ [ l a (X(zo) ) ]  

= E~[la(X(zo)); to < oo] + la(,~)W(ro = oo). 

Then for each x~D, 

(4.9) hz(x) = ~ dp(z)H(x, dz),  
OD~ 

and [4, Chap. 5], 

(4.10) vz(x) = ~ E;[eq.('c,)]c~(z)H(x, dz). 

It then follows from (4.6) and the regularity of D that 

(4.11) e-Ph2 ~ v2 =< 2 [{~b[]~o o n / ) .  

Thus we have as in the proof of Theorem 1.1 that Tmaps  A into itself. The rest of 
the proof  of Theorem 1.2 proceeds as for Theorem 1.1. [] 
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5 Extensions 

The results of this paper  can be extended to second order  uniformly elliptic 
operators  of divergence form, in place of the Laplacian.  Propert ies  of the Green ' s  
funct ions for such operators  on  regular domains  can be found in [12] and  [16]. 
The associated 3G inequal i ty  on  b o u n d ed  Lipschitz domains  can be found in [5] 
and  it can be extended to u n b o u n d e d  Lipschitz domains  with compact  bounda ry  
using the me thod  in [10]. 

Some of the results in this paper,  especially for the case where D is bounded ,  can 
be extended to d imens ions  d = 1, 2, by mak ing  suitable modif icat ions according to 
the difference in the potent ia l  theory between higher (d >-- 3) and  lower (d < 2) 
d imens iona l  spaces. 
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