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Introduction 

In [Si-4] we studied the uniqueness problem for certain Monge-Amp6re equations 
on a compact, simply connected, projectively flat manifold M. We now solve the 
corresponding existence problem by a systematic study of Codazzi-relations 
between projective and conformal structures in Sects. 1-3. In Sect. 4 we apply this 
to the given existence problem for certain Monge-Amp6re operators on manifolds 
diffeomorphic to the unit sphere S". The key for our global study is the following 
statement in (1.7): Any projectively fiat structure on S" coincides with the canonical 
projectively fiat structure generated by the constant curvature metric. This lemma, 
together with the transformation Lemma 4.2 for Monge-Amp6re operators, allows 
the transformation of the existence problem from projectively flat structures to 
constant curvature structures on M; for these spaces the existence problem was 
solved in [O-S]. 

As an application we present another affine version of the Euclidean 
Minkowski problem for ovaloids in Sect. 5. Blaschke already pointed out that the 
Minkowski problem is in fact an affine problem; see the references in the Blaschke 
commentary [Si- i, Sect. I11.2]. For  related local affine considerations see the recent 
paper [L-N-W-]. 

i Projective structures 

Let M be a C~-manifold of dimension n > 2 which is connected and oriented. We 
consider affine connections on M which we always assume to be torsionless. Our  
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definition of the sign of the curvature tensor R and the Ricci tensor Ric, resp., of 
such an affine connection follows [K-N].  

1.1 Projective equivalence. Two affine connections 17, 17'~ are called projectively 
equivalent if their unparametrized geodesics coincide. This is equivalent to the fact 
that there exists a 1-form 0 on M such that 

(1.1.1) V~ ~, w - V~,w = O(v)w + O(w)v 

for all tangent vector fields v, w. 

1.2 Ricci-symmetric connections. (i) An affine connection is called Ricci-symmetric 
if its Ricci tensor Ric is symmetric. This is equivalent to the fact that V locally 
admits a parallel volume form co; that means Vu~ = 0. This form co is unique up to 
a constant nonzero factor; we denote the equivalence class of such volume forms by 
[o;]. If M is simply connected the form co is globally defined. (Some authors call 
V equiaffine instead of Ricci-symmetric. We avoid this terminology to prevent 
confusion with geometric quantities which are invariant under the equiaffine 
(unimodular) transformation group which we consider below). We call such a pair 
V and [col compatible if Vco = 0 for e) ~ Ion]. 
(ii) Let E V ~ be projectively equivalent and Ricci-symmetric. Then the 1-form 0 is 
closed: dO = 0. If the parallel volume elements (o and coe are locally related by 
co s = 2co for a posiifive function 2 e C'~(M), then (n + 1)0 = dlog(2). We define 
a positive function f l e C k s ( M )  by f t , + t =  2. Then 0 = dlog(#).  (See e.g. IN-S, 
(9.4)]). If M is simply connected, 0 is exact which means that 0 = dlog(/3) holds 
globally. 

1.3 Projective structures. (i) A projective structure ~r on M is given by an open 
covering {U,} together with a family {V~} of torsionless atfine connections, where 
V, is defined on U~, such that V, and V# arc projectively equivalent on 
U~ c~ U# 4 = ~ .  It is obvious when two such projective structures coincide. 
(ii) It is known that, for a given projective structure .tJ' on M, one can find 
a torsionless affine connection V on M such that, for each pair { U,,V~} from (i), 
g a n d  V, are projectively equivalent; see l-N-P-2, Proposition 1]. 
(iii) For  any torsionless altine connection Vand a given volume form co on M there 
exists a unique torsionless affine connection V # on M with the following 
properties: 
(1) V and V # are projectively equivalent; 
(2) 17~o = 0. 
See [Eis, p. 104] or [-Schou, p. 288]. 
(iv) If ~ '  is a projective structure on M and o~ a volume form then there exists 
a unique Ricci-symmetric, torsionless affine connection I7 which induces the given 
projective structure go' and satisfies 17~0 = 0; [N-P-2, Proposit ion 4]. 
(v) In the following, for a given projective structure go' on M, we consider the 
subclass go of torsionless, Ricci-symmetric affine connections which are mutually 
projectively equivalent. 
(vi) Let M be simply connected, let co be a volume form on M and [co] the 
equivalence class from (1.2). Denote by ~2' the set of such equivalence classes of 
volume forms, and by (~ the set of positively oriented classes on M. Following (1.2.i) 
and (1.3.iv), there is a bijective correspondence go --* f2 defined by compatibility. 
(vii) Let 17e ga. Then the projective curvature tensor P of g is given by 

(n - l )P(u ,v )w := (n - 1)R(u,v)w - {Ric(v ,w)u - Ric(u,w)v} . 
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P was introduced by H. Weyl. P is an invariant  of the class ~.  

1.4 Codazzi-tensors. A symmetric (0.2) tensor h is called a Codazzi tensor relative 
to an affine connection V if Codazzi  equat ions  are satisfied: 

( 17. h)(t,, w) = ( V,~ h)(u,  w) . 

We also say that  { I7, h } satisfy Codazzi  equat ions or { V, h} form a Codazzi  pair. 

1.5 Projective flatness. (i) M carries a flat projective structure if there exists an 
atlas ~ U,, qo~} on M with the following properties:  (a) A chart  (U, ~0) maps the open 
set U ~ M diffeomorphically onto an open set q~(U) ~ IRP". (b) F o r  U~ r~ U~ # 
~ ,  the transit ion function 

r  ~: 0,(U~ c~ Utj)--, c~dU ~ ~ U ~) 

is a restriction of a projective t ransformat ion of IRP" to r c~ Up). 
(ii) 17a g,~ is called projectively fiat on M if Vlocal ly  is projectively equivalent to 
a liar alline connection. Thus a projective structure {U~,17,} is projectively fiat if 
each V, is projectively fiat on U,. 
(iii) Fol lowing a result of Weyl, a connection 17~ .~a is projcctively fiat if and only if 
17 satisfies the following two conditions: 
(PF.1) P -= 0 on M; 
(PF.2) the Ricci tensor Ric of 17 satisfies Codazzi  equat ions relative to I 7. 
See [Eis, p. 95], and [Schou, p. 289]. 
(vi) It is well known that, for n > 3, (PF.1) implies (PF.2). In dimension n = 2 one 
has P = 0 for any torsionfree connection, thus, for n = 2, (PF.2) is necessary and 
sufficient for 17e g,) to be projectively fiat. 

1.6 Projectit,ely.flat metric connections. An affine connection 17is called metric if 
17is the Levi-Civita connect ion 17(h) o f a  semi-Riemannian metric h on M. It is well 
known (and easily to be verified) that a connection is at the same t ime metric and 
projectivey fiat if and only if the metric is of constant  sectional curvature. 

1.7 Projectivelyflat structures on S". Let M be a connected, simply connected and 
compact  projectively fiat manifold of dimension n. We sketch the proof  of the 
well-known fact that  M must  be projectively equivalent  to S" equipped with the 
projective structure coming from the s tandard metric: Choose  an open set U = M 
and a projective diffeomorphism 60: U --* V c S". Using arguments  familiar from 
the theory of analytic cont inuat ion in complex analysis and using the simply 
connectedness of M we can extend 6o to a local diffeomorphism 6 : M  ~ S" 
preserving the projective structure. By the compactness  of M, 6 is a covering map,  
hence (since S" is simply connected) a diffeomorphism. 

In part icular ,  up to projective diffeomorphisms, there is only one projectively 
flat structure on S". 

Consider  an ovaloid x : M  ~ E embedded into (n + D-space E and let S" ~ E 
be the unit sphere. The Gauss  map/2 induces on S" a metric of constant  curvature 1, 
corresponding to the third fundamental  form of x. The geodesics of this metric on 
S" are the great circles. The connect ion 17(lII) of the third fundamental  form metric 
l l I  is projectively flat and generates the canonical  subclass ~a on M, but  different 
ovaloids generally induce different connections of this type on M. The Gauss map  
induces a dif feomorphism q ' :x (M)  -~ S"(1). The images of the great circles under  
q~-L can be interpreted as shadow lines (see [Si - l ,  p. 51], for references). 
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2 Codazzi-tensors on projectively flat manifolds 

We defined the notion of Codazzi tensors and a Codazzi pair {V,h} in (1.4). It is 
well known that Codazzi tensors locally can be generated by functions on constant 
curvature spaces [Fe]; for global results see [O-S]. Norden much earlier stated the 
local result in (2.3) below (see his appendix in [Schi, p. 232]). 

2.1 Tensors generated by functions. Let f ~  C~(M)  and V be a Ricci-symmetric, 
affine connection. We recall the notion of the covariant Hessian of a function 

(2.1.1) Hess(f)(v,w):= w(v(f))  - (Vwv)f 

for tangent fields v, w on M and define the symmetric (0.2) tensor field h( f )  by 

(2.1.2) h(f)(v,w) := Hess(f)(v,w) + n ~  j" Ric(v, w). 

We say that fgenerates h(f) .  Examples are given in [O-S]. 

2.2 Affine harmonic functions. Let V be Ricci-symmetric and projectively flat. 
(i) If F e C ~ ( M )  satisfies 

1 
(2.2.l) h(F) = Hess(F) + F Ric = 0 

n - 1  

on M then F is said to be an affine harmonic function on (M, g). If V is given as 
above then locally there always exists a non-trivial solution F of the system 
h ( F ) - - 0  because the integrability conditions are satisfied from the projective 
flatness of V. 
(ii) L e t f f ' e  C~(M)  generate the same tensor h ( f ) - -  h(f').  Then the difference 
f -  f '  obviously satisfies (2.2.1). 
(iii) The concept of affine-harmonic functions generalizes the notion of spherical 
harmonics of first order. Namely, on S"(c) with constant curvature c, the metric 
g satisfies Ric = (n - 1)cg, thus (2.2.1) reads 

Hess(F) + cFg = 0 ,  

where the Hessian is now defined with respect to the Levi-Civita connection 17(9 ). 
This last system characterizes the first eigenfunctions of the Laplacian A = A (g) on 
S"(c). 

2.3 Norden's lemma. Let V be Ricci-symmetric and projectively flat on M. Then 
(i) for any function f ~  C ~'(M), the pair { 17, h(f)} satisfies Codazzi equations; 

(ii) if M is simply connected and h a given Codazzi tensor relative to V then locally 
there exists f ~ C~'(M) such that h can be generated by,(, which means h = h(f); the 
generating.function is unique up to an additive affine-harmonic function on (M,V). 

Proof (i) and (ii) follow directly from the projective flatness of V. This property 
gives the integrability condition for the equation h = h(.f) in (ii) for a given Codazzi 
tensor h. 

3 Conformal and projective structures 

In this section we assume the manifold M to be connected, simply connected and 
oriented. On M we consider the following two geometric structures and study their 
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"compatibi l i ty",  namely a conformal  class of symmetric (02) tensor fields (which in 
this section might be degenerate} and a projective structure. In later  appl icat ions 
the conformal  class will be non-degenerate,  which means that  the class is a con- 
formal structure defined by a class of semi-Riemannian metrics. 

3.1.a. Conformal class. Let Ig' be a conformal class on M, which means a class of 
mutual ly  conformally related symmetric (0.2) tensor fields such that  any two tensor 
fields h, h ~ differ by a positive function q ~ C~(M) ,  say 

h ~ = qh . 

We identify elements of r  which differ only by a constant  posit ive factor and 
denote the set of equivalence class by G. 

3.1.b. Projective class. Let r be a class of torsionless, Ricci-symmetric,  mutual ly  
projectively equivalent affine connections on M. As M is simply connected,  follow- 
ing (1.1) and (1.2.ii), for 17, V ~ el;) the l -form 0 in 

E,* w - V,w = O(v)w + O(w)v 

is exact and satisfies globally 0 = d log(/~) for some positive function f l e  C ~ (M). If 
v3 is parallel  relative to V~ g,) then co ~ =/3"+te)  is parallel  to V '~ e~.). We call 
/3 a t ransi t ion function within the projective class. Two affine connect ion V, V # ~ go 
determine their t ransi t ion function uniquely modulo  a constant  factor. 

3.2 Transjbrmation of  Codazzi equations. Let M be as above with given structures 
and ~;,) as in (3.1). 

(3.2.1) Lemma.  Let 17, W e  t,) with transition fiowtion [J, see (3.l.b), Assume that 
h e fs and h e := [~h. Then 

(V~ ~ h ~ )(v,w) - (V,, ~ h ~ )(u,w) = [l{(V,h)(v,w) - (V,,h)(u,w)} . 

Proof Straightforward calculation using (1.1.1) and (3.1). 

(3.2.2) Corollary.  For g,, tY,' and ~;) as br the following statements are equivalent: 
6) there exists a Codazzi pair {V,h} e ,~9 x g;': 

(ii) there exists a bijective mapping B: ( , )~  ~ such that any pair {V,h} where 
h ~ B(V), satisfies Codazzi equations. 

ProoJl We have to show that  (i) implies (ii). Let { I7, h} be the given pair  and assume 
V* e ~,~ to be arbitrary.  F rom (3.1.b) there exists a positive transi t ion function 
f l ~ C ~ ( M )  such that,  for 0 = dlog(fl) ,  the connect ions V and V # satisfy (1.1.1). 
Define the mapping  B by B(V) :=  h and B ( V e ) : =  flh =: h '~. We have 0 = 0 if and 
only iffl -= const  > 0, thus B is injective. But B is also surjective, namely, for h' ~ fg', 
there exists a posit ive function ~' e C~'(M) such that  h' = fl'h. Now define V' by 
V~Iw:-- V~w + O'(v)w + O'(w)v, where 0 ' : - -d log( /~ ' )  and B ( V ' ) =  h'. From (3.2.1) 
the pair  { V',h'} satisfies Codazzi  equations.  

(3.2.3) Definition and remarks.  (i) Let ~:~ and (2 be given as in (3.1). We  call ~ and 
Codazzi-compatible if there exists a pair  { V,h} ~ ~ x ft.' satisfying Codazzi  

equations. 
(ii) A pair  { 17, h}, where 17 is an affine connect ion without  torsion and h a semi- 
Riemannian manifold,  is sometimes called a statistical manifold if {17,h} is 
a Codazzi  pair. If M is simply connected and I7is Ricci-symmetric,  (3.2.2) immedi-  
ately gives the possibil i ty of construct ing a whole class of statistical manifolds. 
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(iii) Codazzi equations play an important role in local and global differential 
geometry as systems of pde's. From the point of view of differential eqs. 
(3.2.1-3.2.2) admit a "transformation" of Codazzi equations. The following section 
gives an interesting example. 

3.3 Bilinearforms generated by functions. As before, let M be simply connected. In 
Sect. 2 we recalled that, for a given projectively flat connection V, any Codazzi- 
tensor h can be generated by functions. We study the transformation of tensors of 
the form h( f )  in (2.1.2) under a projective change of the connection, without 
assuming the class g~9 from (3.1.b) being projectively flat. 

(3.3.1) First transformation lemma. Let M be connected, simply connected and 17, 
V # ~ ~ be related by the transition function fl as in (3.1.b). F o r f e  C ~ (M), define h ( f )  
with respect to V as in (2.1.2), and h* ( f )  with respect to V #, correspondingly. Then 

h* ( f l f )  = f l h ( f ) .  

Proof The technical proof is straightforward with the following steps: 
(i) The curvature tensors of V, V ~, respectively, satisfy (see [Eis, Sect. 32]): 

R ~ (u,v)w = R(u,v)w + fi[ness(fl-l)(v,w)u - Hess(fl-1)(u,w)v] . 

(ii) The Ricci tensors satisfy: 

Ric * (v,w) = Ric(v,w) + (n - l)flHess(fl- 1)(v,w) . 

(iii) The eovariant Hessians are related by: 

(Hess* f)(u,v) = (Hess f)(u,v) - fl- l[dfl(u)df(v) + dfl(v)d f(u)] . 

(iv) For 7e  c a ( m )  

(Hess(Tf))(u,v) = ),(Hess f)(u,v) + f (Hess  7)(u,v) + dy(u)df(v) + dTiv)df(u). 

(v) From (iii) and (iv) we verify 

(Hess ~ (flf))(u,v) = fl(Hess f)(u,v) -ff iZ(Hess(fl-1))(u,v) 

which together with (i) gives the assertion. 

(3.3.2) Codazzi equations as pde's. Let M be simply connected and V, V # ~ ~ again 
be related by a transition function fl as (3.1.b). Let h be a symmetric (0.2) tensor 
field. Then: 
(i) The function f e  C~(M)  is a solution of the second order pde 

(3.3.2.a) h( f )  = h 

if and only if the function f * : =  flfis a solution of 

(3.3.2.b) h # ( f  * ) = f lh. 

(ii) If Vis projectively flat and { 17, h} a Codazzi pair then both systems (3.3.2.a) and 
(3.3.2.b) are locally solvable; in particular we have: 
F is an affine-harmonic function on (M, V) if and only if F ~ = flF is an affine- 
harmonic on (M, V*). 

3.4 Diagram. We summarize in the following diagram the relations we considered 
so far. Let ~, ~, g2 be compatible structures as in (3.2.3) and (1.2) and let C ~ + (M)[_ 
denote the set of all positive (transition) functions on M which are identified if they 
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differ only by a constant positive factor. Starting with arbitrary but fixed compat- 
ible elements 17, [h], [~o] we define bijections B3, B4, B5 by the following relations: 

B3:h# := flh, B4: V, Y w:= V~,w + O(v)w + O(w)v 

with 0 = dlog(fl), B5 :e/~:= fi"+~e; . 

The mappings B3, 34, B5 induce bijective mappings B1, B 2 such that the diagram 
below is commutative. 

Then we have: B~, B2 are the bijections considered in (1.31 and (3.2.2), resp., 
which means that the images of the class [fl] of transition functions under B3, B4, 
B5 are compatible in the sense of (1.2) and 3.2.3). 

B! 

[h" 

B2 

' "  /bo" ] 
/ 
/ /~ 

c ~ + (M)i-  
U~] 

4 Monge-Ampere operators 

Similarly to the study of Codazzi equations we investigate now certain Monge- 
Amp6re equations. We consider the projective class ~,~ defined in (3.1.b). 

4.1 Definition of a Monge-Amp6re operator. Let V~ ~a with parallel volume form 
(1~; recall from (1.2) that this form is unique up to a non-zero constant factor. 
(i) We define a Monge-Amp6re operator ~[4, acting on functions fE C ~(M), with 
respect to a local Gauss basis field 0 1 , . . . ,  ~,: 

ogZ(f):= det(h(f)(8~, 8fl) 
( ~ o ( G  . . . . .  G ) )  2 " 

This definition is independent of the local representation. The connection V 
determines the operator d'[ uniquely up to a positive constant factor. 
(ii) Let (p ~ C ~ (M) be a positive function. We call J'~ C ~ (M) an elliptic solution o f  

o ~ ( f )  = ~0 

1 
if the tensor h ( f )  = Hess(f)  + n -  i f  Ric is definite. 

4.2 Second transformation iemma. Let 17, V ~ ~ ga be given as in (3.1.b) with parallel 
~olume forms o9, co ~ related by to ~ = fl'+lco. Then 

, a *  ( f l f )  = fl-'"+ 2)odg(f) , 

where jig# corresponds to V #. 
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The proof immediately follows from the transformation lemma for h ( f )  in (3.3.1). 

4.3 Equivalence of  solutions. Let M be simply connected and the operators Jr', Jg* 
defined as in (4.2). For  ~0 e C~(M)  positive, define q0#:= fl-(,+z)~p which again is 
positive. 
(i) f solves the Monge-Amp6re equation 

(4.3.1) J [ ( f )  = q~ 

if and only if the function f '~ := ]~fsolves the corresponding equation 

(4.3.2) ~ / e ( f # )  = ~p* 

Moreover, f i s  an elliptic solution if and only if f *  is an elliptic solution. 
(ii) We recall the situation that a given connection Ve go is projectively flat and 
metric. Then g is the Levi-Civita connection g(g) where (M,g) is a space of 
constant curvature c. The Monge-Amp6re equation now reads 

(4.3.3) det (Hess(f )  + cfg) 
det(g) = ~o. 

The existence and uniqueness of global solutions on closed (compact without 
boundary) constant curvature manifolds was investigated in [O-S]. We recall in 
particular the case that M is simply connected and c > 0 (see ibid., Theorem 3.4). In 
this case, (4.3.3) has an elliptic solution if and only if q~ satisfies the integrability 
condition 

~oFco = 0  
M 

where M = S"(c), F is a first eigenfunction of the Laplacian and (~ = •J(g) the 
Riemannian volume element. As a first eigenfunction F satisfies the system of pde's 

1 
Hess(F) + F Ric = Hess(F) + cFg = 0 

n - ]  

on M; hat means F is affine-harmonic on (M, V(g)). 
(iii) Having the situation in (ii) as a motivation in mind we consider integrands of 
the type ~oFco under a projective change of the connection. Let V, V a 6 ~ be related 
by the transition function fl as in (3.l.b) and let F,F  ~, where F ~ =  fiF, be 
affine-harmonic functions, resp. (see (3.3.2.ii)). Let (p,q~* e C'~(M) be related by 
~o~ = fl-(,+2)(p. Then 

oFco = ~o~F ~co ~ 

or, in terms of Monge-Amp6re operators: 

J t ( f )Foo  = J / #  ( fa)Feco ~ , 

where f #  = f l f  again. 

4.4 Global solutions of Monge-Amp~re equations. Let M be diffeomorphic to S~(I) 
and let V be a torsionfree, Ricci-symmetric, projectively flat connection on M with 
parallel volume form co. Let  ~p ~ C oo (M) be positive. 
(i) Existence. The Monge-Amp~re equation 

J i ' ( f )  = (p 
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has an elliptic solution f if and only if 

S ~pFeo=O 
M 

for any affine-harmonic function F on (M, V). 
(ii) Uniqueness. The d~erence f - f f  of any two elliptic solutions of ~r( f )  = r is an 
a~ne-harmonic.function on (M, V). 

Proof Existence. We consider the class ~o of all torsionless alfine connections on 
M which are Rieci-symmetric and projectively equivalent to V. The induced 
projective structure is flat on M. Following (1.7), there exists a metric ~ of constant 
positive curvature c > 0 on M such that V* := V(9)E ~. As M is simply connected 
there exists a positive transition function f lsC~'(M) for V and V* as in (3.1.b). 
Define as before the function r * := fl- ~" § 2~r which is positive on M. (4.3.iii) implies 
that 

r : ~ r162 = 0 
M M 

for any first eigenfunction F * of the Laplacian A(ff) on M; these functions are 
exactly the affine-harmonic functions on (M, 9); see (4.3.ii). Thus 

o/[[# ( f~)  = (0" 

has an elliptic solut ionf  # on (M, g); see (4.3.ii) and [O-S, Theorem 3.4]. This means 
that Jr  = (p* has an elliptic solution on (M, V#). Then o # ( f )  = ~0 has an 
elliptic solution f on (M, V) from (4.3), namely f =  f l - i f , .  

Uniqueness. L e t f f '  be elliptic solutions o f , g ( f )  = tO in (4.3.1). Then f *  = flfand 
f ' * =  fiJ" are elliptic solutions of .g t*( f  #) =-(o* in (4.3.2), and from [O-S, 
Theorem 3.4], their difference f *  - f ' *  is a first eigenfunction of the Laplacian. As 
above, t h e n f - f '  = f l - a ( f ,  _ f , , )  is affine-harmonic on (M, V). 

For a different proof of the uniqueness problem see [Si-4]. 

5 An affine version of the Minkowski problem 

In the introduction we referred to known results about the relations between the 
Euclidean Minkowski problem and affine hypersurface theory. We will now apply 
the results of the foregoing section to this topic. 

For an introduction to relative hypersurfaee theory we refer to one of the 
lecture notes [N] or [S-S-V] or to I-N-P-l]. For the uniqueness part of the 
following theorem see also [Si-2, Si-3, Si-4]. 

We denote by A a real affine space of dimension n + 1, n > 2, with associated 
vector space V, V* its dual, and ( , )  : V* x V--* • the canonical scalar product. Let 

x:M---~ A 

be a non-degenerate hypersurfaee immersion with relative normalization { Y, y}. 
That means Y denotes a eonormal field Y:M---, V*, (Y,  dx(v))= 0 for any 
tangential field v, and y: M --* Y is transversal to x satisfying 

( Y , y ) = l  and ( u  
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A relative normalization is called equiaffine if y is the equiaffine normal of x (see 
IS-S-V, Sect. 6.2]). 

A relative normalization { Y, y} induces a triple { V, h, V* } on M, where I7, V* are 
two affine connections without torsion conjugate to the relative metric h. Vis called 
the connection induced by y, V* is called the conormal connection induced by 
Y IS-S-V, Sect. 4.4-1. Recall that the relative metric h is generated by the class of 
relative support functions p of{x, Y, y}, which means h = h(p). Any two generating 
functions pl,P2, satisfying h(p l )= h(p2), differ by an affine harmonic function 
F :=  Pl -- P2 on (M, V*), which can be represented in the form F = ( Y, b), b e V(see 
(2.1) above; IS-S-V, Sect. 4.13]). 

We state Radon's fundamental theorem of relative hypersurface theory in 
a modified version of [D-N-V];  see IS-S-V, (4.1 l)]: 

5.1 Fundamental theorem. Let M be a connected, simply connected and oriented 
C~ of dimension n > 2. 
Existence. Let V* be a #iven affine connection without torsion and Ricci-symmetric, 
and h a 9iven semi-Riemannian metric. There exists a non-deyenerate hypersurface 
x with relative normalization {Y,y} such that h is the relative metric and V* the 
conormal connection of  {x, Y, y} if and only if 
(i) V* is projectively fiat; 

(ii) h satisfies Codazzi equations relative to g*. 
Uniqueness. The triple {x, Y, y} is unique modulo affine equivalences of the affine 
space. 

We are now able to prove the following affine version of the Euclidean Minkowski 
problem. 

5.2. Theorem. Affine version of the Minkowski problem. Let M be the unit sphere 
S" and let ~a be the subclass of Ricci-symmetric, torsionless connections of  the 
canonical projectively flat structure of  M. 
Existence. Let V* e go be 9iven with parallel volume Jorm ~o*. There exists a 
hyperovaloid x with V* as equiaffine conormal connection if and only if any affine- 
harmonic function F* on (M, V*) satisfies 

F*o~* = 0 .  x 
M 

Uniqueness. The hyperovaloid x is uniquely determined modulo affne equivalences. 

Proof. Existence: Let V*~ ga be given. From (1.6-1.7) there exists a metric connec- 
tion V~ go, and the metric is of constant positive sectional curvature c. Following 
(3.1.b) there exists a positive transition function fl satisfying 

V~*w - V~w = (dlog(fl))(v)w + (dlog(fl))(w)v ; 

moreover, from (4.3) the positive function ~0 ~ :=/3" + 2 satisfies 

go~ F~ c) ~ = F'co* . 

We know from (4.3) that the equation 

M*(p)  = 1 

has a solution p if and only if 

M ~  ~ = ~a ~ 
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has a solut ion f ~  and  p = f l f~ As h ~ has cons tan t  sect ional  curvature ,  the Levi- 
Civi ta  connect ion  V ~ determines  the metr ic  

Ric ~' = c(n - l )h  ~ . 

Moreover ,  for a n y f e C ~ ( M ) ,  

1 
H e s s ~  cfh ~ = H e s s ~  R i c ~  

n - 1  

It is known [O-S,  Theorem 3.4] tha t  on spaces of cons tant  posit ive curvature  the 
Monge -Amp6re  equa t ion  J t ' ~  ~ = (p~ > 0, which now is of the form in (4.3.3), has 
an elliptic solut ion f o if and  only if 

S (P~176176 
M 

for any aff ine-harmonic  function F ~ on (M, V"); see (4.4). But this in tegrabi l i ty  
condi t ion  is equivalent  to 

S F ' e ) *  = 0 
M 

for any aff ine-harmonic  function F *  on (M, g*); see (4.3.iii). Thus the assumpt ions  
gaurantee  the existence of an elliptic solut ion p : = f o f M * ( p )  = 1. The function p or 
[ -  Pl generates  a posit ive definite tensor  h(p) which is a Codazz i  tensor  relat ive to 
V*. As V* is project ively flat there exists a hypersurface  immers ion  x : M - ,  A with 
relative normal i za t ion  { K y} satisfying (5.1). The relative metr ic  h(p) is posi t ive 
definite and M ~ S", thus x(M)  is a hyperova lo id .  Cons ider  the Riemannian  vo lume 
form o (h ) :=  ~o(h(p)) and the class [co*] of vo lume forms which satisfy V'co* = 0. 
The Monge -Amp6re  equa t ion  

det(h(p)(c'~, d j)) 
1 = . . . , l t * ( p )  = 

(co*(81 . . . . .  a,)) 2 

implies that  there exists co*e [(~*] such that  co*=  co(h); this means  tha t  the 
relative normal i za t ion  { Y, y} is equiaffine (see IS-S-V, Sect. 6.2]). One  easily verifies 
that  V* is the conormal  connect ion  of {x, Ky} .  This  proves  the existence part .  

Uniqueness:  Fo l lowing  (4.4), any  two ell iptic solut ions  p, p# o f . . g* (p )  = 1 differ by 
a V*-aff ine-harmonic  function,  thus h(p)= h(p#). But then {x, Y,y} is unique 
modu lo  affine t r ans format ions  of A; see (5.l). 
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