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Introduction 

We consider a compact Lie group G and two closed subgroups H and K of G. The 
abstract product K x H operates on G by g. (k, h) = k -  lgh. If this operation happens 
to be free, the quotient K \ G / H  is a compact manifold, which we call a double coset 
manifold. These manifolds have attracted the attention of several differential 
geometers: Gromol] and Meyer [GrM] for instance described an exotic 7-sphere as 
a double coset manifold. Therefore the class of double coset manifolds is strictly 
larger than that of homogeneous spaces since Borel observed long ago that a homo- 
geneous space which is homeomorphic to a sphere is actually diffeomorphic to it. 

A serious study of double coset manifolds was made by Eschenburg [E1-E4]. 
He showed that some of them admit Riemannian metrics with strictly positive 
sectional curvature; he obtained a classification of certain types of double coset 
manifolds and computed the cohomology of some of them. 

The objective of the present paper is to show that in many respects the topology 
of double coset manifolds is as easy to handle as that of homogeneous spaces. 

To compute the cohomology of G/H, the best way is to look at the fibration 

G/H ~ BH ~ BG . 

In Sect. 2 we observe that, for double coset manifolds, there is a diagram 

K \ G / H  . . . . . .  , BH 

(1) 1 1 
BK , BG 

which is, up to homotopy, a fibre square. The Eilenberg-Moore spectral sequence 
of (1) collapses quite often and 

(2) H*(K\G/H) ~ Torn.cs~)(n*(BK), H*(BH)) 

under reasonable torsion hypotheses. 
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Borel and Hirzebruch [BH] based their computation of the characteristic classes 
of homogeneous manifolds on a description of the tangent bundle of G/H which goes 
as follows: H operates on G/H from the left fixing o = ell. Therefore we obtain 
a representation 1 of H on the tangent space To(G/B), and the tangent bundle of G/H 
is G x n To(G/H). It is obvious that this description cannot be immediately generaliz- 
ed to double coset manifolds since in general there is no natural group operation on 
K\G/H. However, in Sect. 3, we derive a formula for the tangent bundle of K\G/H 
which is similar in spirit and which is perfectly sufficient for the computation of 
Pontrjagin classes and Stiefel-Whitney classes in Sect. 4. 

These considerations show how some properties of homogeneous spaces gener- 
alize to the larger class of double coset manifolds while others don't: For instance, 
when H is a maximal torus of G then G/H admits a complex structure and is stably 
paraltelizable [BH]. We find that K\G/H is at least stably almost complex when 
K and H are tori but that it may have non-vanishing Pontrjagin classes. 

A fundamental property of homogeneous spaces is that their Euler character- 
istic is given in terms of the orders of the Weyl groups by 

fl w(a)l/I W(H)I, if r k H  = r k G ,  
(3) x(G/H) 

0 otherwise. 

This formula generalizes in the most straightforward way: 

[W(G)[ i f r k K + r k H = r k G  
(4) •(K\G/H)= I W(K)I ' IW(H)I '  

0 otherwise. 

We prove formula (4) in Sect. 5 using the isomorphism (2). 
In Sect. 6 we take a closer look at (2). We find in particular that 

(5) Tor~t,~Ba)(H*(BK), H*(BH)) = 0 for s < rk K + rl~ H - rk G.  

(In the special case of homogeneous spaces, this result is due to Baum [Ba].) As 
a consequence, for rk K + rk H = rk G, we have 

H*(K\G/H) = H*(BK) | 

as algebras under the usual torsion hypotheses. In fact, we obtain a vanishing result 
which is much better than (5). It implies the vanishing of characteristic classes in 
high dimensions and shows that, if rk K + rk H < rk G, all Pontrjagin numbers of 
K\G/H are zero so that K\H/G is rationally null-cobordant. Finally, in Sect. 7, 
following a suggestion of the referee, we treat a concrete example. 

1 General properties of double coset manifolds 

(1.1) Let G be any group and H, K subgroups of G. Then the following 5 condi- 
tions are equivalent: 
!. K x H operates freely from the right on G by 

#.(k, h) = k-lgh. 

2. K operates freely from the left on G/H. 
3. H operates freely from the right on K\G. 
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4. G operates freely from the right on (K\G) x (G/H) by 

(Kg, g'H). x = (Kgx, x -  * g'H) 

5. If h s H and k e K are elements which are conjugated in G then h = k = 1. 

If these conditions are satisfied, we will say that the subgroups H, K satisfy the 
double coset condition. 

From now on we will assume that G is a compact connected Lie group and that 
H and K are closed subgroups. Then, if H, K satisfy the double coset condition, we 
obtain a compact differentiable manifold K\G/H which, by conditions 2., 3., and 4., 
is the basis of 3 principal fibrations with structure groups K, H, and G respectively. 
In particular, there is the principal G-bundle 

K\G x G/H ~ K\G/H 

(Kg, g'H) ~ Kgg'H . 

The following facts are easy consequences of the various forms of the double coset 
condition: 

(1.2) Let H, K satisfy the double coset condition and denote the Lie algebras of 
H and K by I) and f, respectively. Then 

D c~ Ad(g) . f  = 0 for g e G .  

(1.3) Suppose that H' is conjugated to H and K'  conjugated to K. Then K\G/H 
and K'\G/H' are diffeomorphic. 

(1.4) If H and K are connected and Tn, TK are their maximal tori, then the 
subgroups H, K satisfy the double coset condition if and only if TH, TK do. If this is 
the case, we may assume by (1.3) that TH and TK arc both contained in a maximal 
torus T~ of G. 

(1.5) If H, K satisfy the double coset condition then 

r k H  + r k K  < r k G .  

(1.6) If H, K (and G, as always) are connected with rk H § rk K = rk G and if H, K 
satisfy the double coset condition then K\G/H is 1-connected. 

(1.7) Very often, double coset manifolds appear in the following disguise: Let U be 
a dosed subgroup of G x G operating freely on G via 

g . ( x , y ) = x - l g y  f o r g e G ,  ( x , y )~U.  

Then the quotient G/U is diffeomorphic to the double coset manifold 
U\(G x G)/AG with AG = {(g, g)lge G}. I am grateful to J.-H. Eschenburg for this 
remark. 

2 The eohomology of double coset manifolds 

(2.1) We fix a universal G-bundle with total space EG and base space 
BG = (EG)/G; as classifying spaces for H and K, we take BH:= (EG)/H and 
BK:= (EG)/K. Then there are fibrations 

G/H ~ BH --r BG , 

G/K ~ BK ~ BG. 
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The inclusion of the fibre G/H -~ BH is a classifying map for the principal H-bundle 
G-~G/H.  Composing the inclusion G / K - , B K  with the diffeomorphism 
K 0 w, g - l K  of K \ G  onto G/K, we obtain a classifying map for the principal 
K-bundle G ~ K\G.  Assume now that H, K satisfy the double coset condition. The 
principal bundles K\G-- ,  KkG/H and G/H ~ KkG/H admit classifying maps 
K \ G / H  - ,  BH and KkG/H ~ BK, and since these two bundles have as pull-backs 
the principal bundles G - ,  G/H resp. G-~ K\G,  we have the following two 
diagrams which are commutative up to homotopy: 

G/H r \  

K\GtH/ " KXG/H / 
In the sequel, unnamed maps between the spaces appearing in (2.1) are the natural 
maps just introduced. 

(2.2) l~oposifion. The diagram 

K \ G / H  ,, BH 
(*) 

BK ~ BG 

is, up to homotopy, a fibre square, and the composition 

K \  G/tt  -* BG 

is a classifyin O map for the principal G-bundle K \ G  x G/H ~ K \ G / H  introduced 
in (1.1), 
That (*) is, up to homotopy, a fibre square, is to mean the fo!lowing: The diagram 
(*) is commutative up to homotopy, and if X is the actual fibre product of BK and 
B H  over BG, then there is a homotopy equivalence X ~ KkG/H which makes the 
following diagram homotopy commutative: 

(**) X , , K \ G / H  

The proof of (2.2) is completely elementary: 
a) It is ob~ous that (K\G) x u  G and K \ G  x G/H are G-diffeomorphic. This means 
that the composition 

K \ G / H  -., BH -~ BG 

is a classifying map for the G-bundle K \ G  x G/H -~ K\G/H.  The same thing holds 
for the composition 

KkG/H ~ BK  ~ BG.  

AS a oanS~lUenc~, ( , )  is commutative. 
b) It is easy to verify that the fibre product X of BK and BH over BG may be 
identified with 

(K\G x EG x G/H)IG 
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where G operates on K \ G  x EG x G/H by 

(Kg, z, g'H). x = (Kgx, zx, x -  tg'H) . 

Since G operates freely on K \ G  x G/H, we obtain a homotopy equivalence 

(K\G x EG x G/H) ~ K \ G / H  

[Kg, z, g'H] ~ Kgg'H . 

c) The commutativity of (**) is easily seen by considering the induced principal 
bundles. This completes the proof of (2.2). 

(2.3) The fibre square ( . )  has an Eilenberg-Moore spectral sequence (E,) which 
converges to H*(K\G/H) and has E2-term 

E** = Tor**tBG)(H*(BK), H*(BH)) . 

This is a spectral sequence in the second quadrant. As for the Serre spectral 
sequence, its differentials d, are of degree (r, - r + 1), and the modules E~ t with 
s + t = n form the quotients of a filtration of Hn(K\G/H). In Sect. 6 we shall find 
a rather small parallelogram B in the (s, t)-plane such that E, ~'' = 0 for (s, t) outside 
B. It is quite frequent that this spectral sequence collapses and that there are no 
additive extension problems. (See [GUM, HMS, Mu, We]; reference [Mu] is the 
most convenient to extract the information we need.) We obtain: 

(2.4) Theorem. Let G be a compact connected Lie group and let H, K be closed 
connected subgroups satisfying the double coset condition. We consider cohomology 
with coefficients in a principal ideal domain R and assume that H*(BG), H*(BH), and 
H*(BK) are polynomial algebras with generators of  even dimensions. Then 

(1) H*(K\G/H)  ~- Torn.~Bo,(H*(BK), H*(BH)) 

as graded R-modules. Moreover, the natural maps from K \  G/H to BK and BH induce 
a ring homomorphism 

(2) p : H*(BK) | ~ H*(K\G/H)  

which is injective. The isomorphism (1) may be chosen in such a way that the direct 
summand of H*(K\G/H)  corresponding to Tor ~ equals imp. 

The isomorphism (1) is a special case of the main theorem of IMu]. Given (1), the 
additional assertions are just an interpretation of the edge homomorphism of the 
Eilenberg-Moore spectral sequence. This interpretation is an easy consequence of 
naturality properties. (See [Sm, Propositions 1.4 and 1.4'] for the case that R is 
a field; the same arguments apply in our situation.) 

(2.5) Remark. If 2 is invertible in the ring R, then (1) is an isomorphism of 
R-algebras [Hu]. 

3 The tangent bundle of double coset manifolds 

(3.1) As observed in (1.1), the manifold K\G/H is the basis of the three principal 
bundles G/H, K\G and K\G x G/H. 
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If V, W, and U are finite-dimensional representations of H, K, and G, respectively, 
we obtain vector bundles 

c~(V): ( K \ G ) x u V  ~ K \ G / H ,  

~tc(W): ( G / H ) x x W  --~ K \ G / H ,  

a~(U): ( K \ G x G / H ) •  ~ K \G /H  

(with operations of H, K, and G on the first factors as in (1.1)). 

(3.2) Proposition. The tangent bundle of K \  G/H fits into the following canonical 
short exact sequence of vector bundles: 

0 ~ ~tu (Adn) ~ ~x(Ad~) ~ ~to(Ad~) ~ z(K\G/H) ~ O. 

Proof. Let X = K \ G / H  and denote the total space of %(Ado) by E. For  
x = KgH ~ X,  let Ex be the fibre of E over x. We obtain isomorphisms 

qTg : g - - ,  Ex 

by ~g(u) = [Ko, H, u] and ~g(u) = [K, gH, u]. If we denote the total space of 
atu(Adn) by E' and that of ~tr(Adx) by E", we get morphisms of vector bundles 
f ' :  E' ~ E  and f " : E " ~ E b y  

f ' [K g ,  v] = [Kg, H, v] , f " [ g n ,  w] = [K, gH, w] . 

Then, for x = KoH, we have 

f~(E~,) = ft,(! . f',,(E',,) = d/,(l)) , " " ) 

Therefore, f '  and f "  are injective, and since 

r  n = o 

by (1.2), we conclude that ~ u ( A d u ) ~  ~r(Adr) may be identified with the sub- 
bundle F of E with fibre 

F~ = qJg(b) @ qTg(f) for x = K g H .  

It remains to identify z(X) with E/F. We consider the submersion p: G x G ~ X 
with P(O, g') = Kgo'H and its derivative p .  : TG x TG -~ TX. To describe the kernel 
of p , ,  we introduce the isomorphism of vector bundles 

G x G x g x g  ~ T G x T G  

(g,g' ,u,u')  w-~ (u .g ,g ' .u ' )~TgGxTg, .G.  

Obviously, ker p ,  =_ ker m, where m: G • G --+ G is the multiplication, and 

ker(m, ~ = {(g, g', u, - A d ( g o ' ) - a u l o ,  g' e G, u eg }  . 

Moreover, ke rp ,  _D ker/~, where ~: G • G ~ K \ G  • G/H is the natural projection, 
and 

ker(i~, ~ = {(g, O', w, v)lg, g' e G, v~b, w e t }  . 

By (1.2), we conclude that ker(m, o2)m ker( /3 ,o~)= 0. Hence, for dimensional 
reasons, ker (p ,  o 2) = N where N is the subset of G • G • g • g consisting of the 
elements 

(O, g', w + u, v -- Ad(gg')-  lu) 

with uGg, veD, wet .  
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Therefore we may identify TX with/~ = (G x G • g x g ) / ~  where ~ is the 
equivalence relation generated by 

( g, g', u, u') ,,~ (kg~, O- l g'h, Ad(k)u, Ad(h- 1)u ') 

for ~ G ,  k~K,  h e H  and 

(g, g', u, u') --~ (g, g', u + w + ~, u' + v - Ad(gg')- lt~) 

for ~ g ,  veb, wet .  
Define a: E = (K\G • G/H) • ~g ~ / ~  by 

a[Kg, g'H, u] = [g, g', Ad(g)u, Ad(g')-  l u ] .  

Then ~r is an epimorphism of vector bundles with kernel F. 

(3.3) Remark. If V is a representation of H, we have also the vector bundle a~ (V) 
over BH with total space EG • n V. If r K\G/H ~ BH is the natural map, we 
have 

~ ( v )  = ~o*(~(v) )  ; 

similarly for K and G. Hence (3.2) may be rephrased as follows: 
p 

"c(K\G/H) (9 r @ ch~h(Adn) ~ ~o,~G(Ad~). 

Therefore, if G, H, and K are connected, we have wl (K\G/H) = O. 

(3.4) Corollary. I f  H and K are connected then K \G/H is orientable. 

(3.5) Corollary. I f  H and K are tori then K \ G / H  is stably almost complex. 

Proof. By (3.3) we know that r(K\G/H) is stably equivalent to tp~ct~(AdG), and by 
commutativity of the diagram ( , )  in (2.2) this bundle is isomorphic to ~0*(fl) with 
fl = ~(AdG tH). Obviously fl is stably equivalent to the bundle underlying a com- 
plex vector bundle. 

4 Characteristic classes of double coset manifolds 

The computation of the Pontrjagin classes of homogeneous spaces in [BH] is 
based on the following easy lemma. 

(4.1) Let Tbe  a maximal torus of G and ~k: B T ~  BG the natural map. Let p be 
a real representation of G. The weights (~  0) of the complexification Pc of p are of 
the form + b~ (1 < i < k) where the b~ are considered as elements of H2(BT). As in 
(3.3), we have the vector bundle ~ ( p )  over BH. Its total Pontrjagin class satisfies 

* p 

~k p(a~(p)) = I-I (1 + b~). 
i 

In particular, if _+ fli are the roots of G, we have 
, t 

r p ( ~ ( A d ~ ) )  -- I-[ (1 + B~). 
i 

Together with (3.3), this leads immediately to the following description of the total 
Pontrjagin class of K\G/H: 
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(4.2) Theorem. Let H, K be closed connected subgroups of G satisfying the double 
coset condition. Choose maximal tori TG, Tit, Tx of G,H, K and let ~k~: BT~ 
--* BG, ~ka, ~K be the natural maps. Moreover, we have the natural maps ~po, opts, ~0~ 

from K\G/H to BG, BH, BK. Let +flieH2(BTa), -t-y~H2(BTn), and 
++_tSkEH2(BTx) be the roots of G, H,K. Then there exist (invertible) elements 

b ~ H*(BG), c ~ H*(BH), and d ~ H* (BK) such that 

(1) p(K\G/H) = q~*(d- 1)~o~(b)q>~(c- ~) , 

(2) g,*(b) = 11(1 + f12), ~ ( c )  = 17[(1 + y}), ~k~(d) = VI(1 + 52). 
i j k 

(4.3) Example. Let G = SU(4), let H be the 2-dimensional torus 
{diag(s, t ,s- l t - l , l ) l  s , t r  l} and let K be the 1-dimensional torus 
{diag(t, t-~,t , t-~)ltr  }. Then H,K satisfy the double coset condition. The 
cohomology of the 12-dimensional manifold K\G/H and its Pontrjagin classes can 
be easily calculated by (2.4) and (4.2); we find that 

p, (K\G/H) @ O. 

Recall that, on the contrary, if T is a torus in any Lie group G, the homogeneous 
space G/T is stably parallelizable. 

(4.4) Example. Let G = Sp(3), H = Sp(1) x Sp(l) ~ Sp(2) ~ Sp(3) and K = 
ASp(l), where ,t: Sp(1) ~ Sp(3) is the diagonal embedding. Then H, K satisfy the 
double coset condition. The manifold K\G/H was called M~2 by Eschenburg [E2]; 
he showed that M~z has the same cohomology as Y:= Sp(3)/(Sp(1)) 3 and conjec- 
tured that M12 and Yare not diffeomorphic. We find that H4(M~2) is a free abelian 
group with 2 generators y and z and p~ (M~2) = 8y. Since Yis stably parallelizable 
[SW], M~2 is not diffeomorphie to Y. (This was also shown by Stolz.) Moreover, 
Pl(M12) rood24 is a homotopy invariant [Hi]. Therefore Mr2 is not even 
homotopy equivalent to Y. 

(4.5) Remark. As in [BHJ, there is a result on Stiefel-Whitney classes which is 
formally very similar to (4.2): One has to replace maximal tori by maximal 2-tori 
and the squares of the positive roots by the 2-roots. 

5 The Eider characteristics of double coset manifolds 

(5.1) Theorem. Let G be a compact connected Lie oroup, and let H, K be closed 
connected subgroups of G satisfying the double coset condition. Then 

( I W(G)l 
)~(K\G/H)= ~IW(K-~'tVv'(H)I if r k K  + r k K =  r k G ,  

( 0  /f r k K  + r k H  < r k G .  

Proof By the multiplicativity of Z in fibrations, it suffices to assume that K, H are 
toil. Furthermore, we may assume that there is a maximal torus T of G with 
K, H c_ T. Then there is a further torus S _~ T such that the map 

K x H •  

(k, h, s) ~ kl~ 
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is an isomorphism. There are then natural numbers n, r, s with 

l < r < s < n  

such that 
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We put 

/~:= ~ )  b;P ,  u:= d i m / ~ E ~ l  . 
j = l  

H*(BT)  = QExl . . . . .  xn] = : Z ,  

H*(BK) = Q[x t  . . . . .  xr] = : A ,  

U * ( • n )  = Q [ x  . . . . .  , x ~ ]  = : e  

and that the homomorphisms which are induced by the inclusions are the natural 
projections Z ~ A and Z ~ P. (Of course, cohomology is always with rational 
coefficients in this proof.) 

It is well known that ~:= H*(BG) is a subring of Z such that Z is a free 
Z-module with w:= I W(G)I generators bl . . . . .  bw, where bj is in dimension 2mj, 
say. By (2.4), 

H * ( K \  G/H) '~ Tore(A, P ) .  

Our conventions concerning Tor will be those of [Ba]. To compute Tor~(A, P), we 
use a free z~-resolution of A obtained as follows: As a free Z-resolution of A we take 
the Koszul complex 

( . )  O--r R(-(n-r))--* . . . ~ R(-1) ~ R~O) ~ A ~ O  

where R (- v) is the free Z-module with basis {al } with 

I = ( i l  . . . .  , ip) ,  1 < i 1 <  . . .  < i p < n - - r ;  

the element a~ has degree 2p. Now ( . )  is also a free S-resolution of A, and 
Tor~(A, P) is the homology of the complex 

(**) 0 ~ R  ( ' - " ) |  ~ R  ~ - I ) | 1 7 6 1 7 4  

The term R (-p) |  is the graded Q-vector space (~) lx l=pt~=t  a,b~P which is 
concentrated in even dimensions. 

Since Hi(K\G/H)  = 0 for large values of i, the complex (**) is exact in high 
dimensions. For any graded Q-vector space A = (A2v)v_> 0, we introduce the notation 

N 

AtN]:= O Azv " 
v=0 

Then Tor~(A, P) is, for N >> 0, the homology of 

0 ~ (R (r-~) |  "* �9 �9 �9 ~ ( R~- ~) | ~ (Rt~ |  ~ 0 .  

Since every vector space (R c-p~ | has finite dimension, we conclude: 

rl--r 
z ( K \ G / H )  = ~ ( -  1) v dim~(Rt-p) |  �9 

p~aO 
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Then we have 

dim(R'-P)| ) 

and therefore 

. .  r ) z(K\G/H) ~ (-- 1)" = 0~- ~. dimff2N-2~ 
p=O P v = ~  

- ) 
= E ( -1 )  p+' E dimff2N-2, 

p = O  v=O 

= ~ (_1)~+ 1 n r dim/~z~_2~ 
v=O I_ p = v + l  

= 2 (--1) v dim/~N_2~. 
v=O V 

Now we have 

dim/~2v = ~ dim (bjP)z~ = 
j = l  

and hence 

~dimPzv_2m = ~  ( n - 2 + v - m J )  
j = l  j = l  n - - s  

z(KkG/H)= ~ ~ ( - I )  ~ 
j = l  v = 0  V n - -  S 

Finally, there is the following identity for binomial coefficients [Ri, p. 16]: 

v m+p 
This yields 

~=~ r +1 - s if s =  r +1 . 

(5.2) Corollary. Let U be a closed connected subgroup of G x G operating freely 
on G via 

g . ( x , y ) = x - l g y  for g~G 
Then 

z(GtU) = r ~1 W(G)]/I W(U)] 
0 

This follows immediately from (5.1) and (1.7). 

and (x, y)~U . 

/f rk U = rkG ,  
/f rkU < rkG.  

6 More about the cohomology of double coset manifolds 

(6.1) In this section, G is a compact connected Lie group, and H, K are closed 
connected subgroups of G satisfying the double coset condition. We denote by TH 
and TK maximal tori of H and K, respectively. All cohomology groups are with 
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coefficients in a principal ideal domain  R, and we assume throughout  the section 
that H*(BG), H*(BK), and H*(BH) are polynomial  algebras over R with gener- 
ators in even dimensions�9 

(6.2) Lemma.  We consider the graded R-alyebras A : = R [ x l , . . . , x k ]  and 
A ' : =  R[x l  . . . . .  xk-1] with degx~ = 2 and the natural projection p: A ~ A'. Let 
X be a graded commutative R-algebra and go: X ~ A a homomorphism of graded 
R-algebras. Via go (resp. p o go), we make A (resp. A') into a X-module. Let M be 
a further graded X-module, and assume that the following two conditions hold: 

a) Tor~t(A, M)  = O for t >> O. 
b) There exist integers n,n' ~ 0  such that the set of pairs (s,t) with 
Tor~'t(A ', M) # 0 is contained in the following closed parallelogram B: 

\ 
\ 

\ 
\ 

B 
\ 

\ 

\ 
\ 

\ 

Then, for every pair (s, t) with T o r y ' ( A ,  M)  =t= 0, we have (s, t )~B and s > - n .  

Proof We abbreviate Tor~'t(A, M)  by Tor  ~'t and Tor~r(A ', M )  by 'Tor  s''. Denot-  
ing the kernel of p by 1, we get a short exact sequence of  X-modules 

(1) O"+ I ~ A ~ A' -* O . 

Since I = Xk A, we have 

(2) Tor~ ' ( l ,  M)  - Tor  ~'t-2 . 

Hence (cf. [Ma,  p. 299]) the Tor-sequence of (1) reads 

(3) �9 . . ~ ' T o r , -  1. , ~ TorS, t-2 ~ Tor  ,,, ~ 'Tor , ,  t ._, . . . 

N o w  assume that  s < - n .  By hypothesis b), we conclude from (3): 

rn: Tor  s'' ---}Tor ' , '+2 is injective for all t ~ Z .  

This, together with hypothesis a), implies that Tor  sa = 0. Similar arguments  yield 
that  To t  ~'' = 0 i f  t < - 2s or t > - 2 s  + n'.  

(6.3) Lemma.  Tor~BG)(H*(BTr), H*(BTn))  

"~ H*(TK\ K) |  Tor~8~j(H*(BK),  H*(BH)) |  H*(H/Tu)  . 
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Proof. Immediate generalisation of the proof of [Ba, Lemma 7.2]. 

(6.4) Proposition. Let us write 

n:= r k G - r k K -  r k H ,  

m:= dim K \ G / H ,  

n ~ : ~  m -- n . 

Then we have n' ~ O, and the pairs (s, t) with 

S,! ~ B Tor~~ ( K ) ,  H*(BH)) ~ 0 

are contained in the parallelogram B of(6.2). In particular, 

Tor~.IB~(H (BK), H*CBH)) = 0 for s < r k K  + rkH - rkG 

Proof. By (6.3) we may assume that K and H are themselves tori. We proceed by 
induction on r k K  + rkH:  For r k K  + r k H  = 0, the assertion is true by our 
assumption on the structure of H*(BG). For  the inductive step, we may assume 
that dim K > 0. Choose a torus K' in K with dim K' + I = dim K. Then apply 
(6.2): to check hypothesis a) of (6.2), we use of course (2.4). 

For  a pair of subgroups of maximal rank, (6.4) means the following: 

(6.5) Theorem. Assume that rk K + rk H = rk G. Then 

H*(K\G/H) = H*(BK) | 

as an algebra. In particular: 
1. The odd Betti numbers of K\G/H are zero. 
2. I f  H and K are tori, the algebra H*(K\G/H) zs #enerated by H2(K\G/H). 

Finally, combining our computation of Pontrjagin classes with (6.4), we obtain 
a vanishing result for characteristic classes and a result on Pontrjagin numbers; in 
the special case of homogeneous spaces, the latter was obtained in [HIS] using the 
Atiyah-Bott-Singer index formula. 

(6.6) Proposition. Characteristic classes of K\G/H in H~(K\G/H; R) vanish for 

i > dim(K\G/H) - (rkG - r k K  - r k H ) .  

(6.7) Proposition. l f  rk K + rk H < rk G, all Pontrjagin numbers of K \  G/H vanish, 
and the oriented manifold K \  G/H is rationally null-cobordant. 

W. Singhof 

7 An example 

(7.1) To illustrate the results of the previous sections, we consider the special 
situation G =  U(n) and K =  U(m), m<=n, with the standard inclusion 
U(m) ~ U(n). For the moment, H is still allowed to be an arbitrary dosed 
connected subgroup of U(n) such that H and U(m) satisfy the double coset 
condition and such that H*(BH; R) is a polynomial algebra with generators of 
even degrees. To compute Tor~.cBv~,~(H*(BU(m)), H*(BH)), we use of course the 
Koszul resolution of H*(BU(m)) = R[cl . . . . .  cm] over H*(BU(n)) = 
R[cx . . . .  , c,'l, with deg(ci) = 2i. 
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We consider the R-algebra 

A := AR (era + 1 . . . . .  en) | H*(BH) ,  

where Ax(em+l . . . . .  en) is the exterior algebra generated by indeterminates 
em+l . . . . .  en and define a bigrading on A by 

d e g ( e j |  f o r j = m + l  . . . . .  n ,  

deg(l | x) = (0, deg(x)) for x e H * ( B H ) .  

A differential d of degree (1, 0) on A is defined by 

d(1 |  = 0 for x e H * ( B H ) ,  

d(ej | 1) = 1 | cp*(cj), 

where qJ*:H*(BU(n))--+ H*(BH) is the homomorphism induced by the inclusion 
H ~ U(n). 

The homology H(A, d) is again a bigraded R-algebra; we consider it as simply 
graded by the total degree, i.e. by adding the two components of the bidegree. Then 

(1) H*(U(m)\U(n)/H; R) ~- H(A, d) . 

In general, (1) is an isomorphism of graded R-modules; if R is however a field with 
char R 4= 2, it is an isomorphism of algebras. 

(7.2) Two subgroups H, K of U(n) satisfy the double coset condition if and only if 
for all x e K\{ 1 } and all y ~ H \  { 1} the eigenvalues of x are different from those of y. 
Given two natural numbers n and k, the subgroups K = U(n - 1) and H = An U(k) 
of U(kn) therefore satisfy the double coset condition; An: U(k) --+ U(kn) is the n-fold 
diagonal mapping. 

(7.3) Let us now further specialize the situation of (7.1) by taking G = U(2n), 
K = U(n - 1 )  and H = An(U(2)). We write H*(BH) = R[x l ,  x2] with deg(xt) = 
2i. An easy calculation shows that 

A completely explicit computation of the cohomology of 

X, := U(n - 1)\Ut2n)/An U(2) 

using (1) and (2) is of course rather cumbersome and unilluminating. However, for 
R = ~ ,  it is easy to see that the direct summand 

B* := H*(BU(n - 1)) * | (BAn U(2)) 

of H* (X,), which is important because it contains the characteristic classes of X~, is 
generated by the elements 

v # 
X1X2, V "[- ~.I < n , 

as a Q-vector space. 
In particular, B i = 0 for i > 4n - 4. For the rational Pontrjagin classes, this 

implies 
pt(X~)= O for i ~ n . 
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(7.4) Let  us finally consider the very special case n = 2. The manifold X2 has 
dimension 11. Because of (6.4), we have 

H*(X2)  = T o r ~  T o r - i  

According to (7.3), T o r ~  B* has the basis 1, x l ,  xz; and x~ = - 2 x 2 .  Further-  
more,  we have 

Tor  ~ = HeVcn(X2), Tor  -1 = H O d d ( X 2 ) .  

Hence, by Poincar~ duality, 

H*(X~; ~)  = ~Eaz, a~ ]/(a~, a~ ) 

with deg ai = i. Finally, we see f rom (4.2) that  

Pl (X2) # 0, 
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