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0 Introduction 

Let X be a complex manifold of dimension n and u : X ~ R  a twice differentiable 
plurisubharmonic function. The (homogeneous, complex) Monge-Amp6re equa- 
tion for u is 

(d~-u)" = 0 ,  (0.1) 

or, in local coordinates zl, ..., zn on X, 

det d2u/ Oz ja~k = O . 

When n = 1, the above equations reduce to Laplace's equation Au = 0, and, indeed, 
the Monge-Amp6re equation is the most natural extension of the Laplace equation 
to higher dimensional complex manifolds. It first appeared in a paper by 
Bremermann [4]. For an extensive reference about work on the Monge-Amp6re 
equation see a survey paper by Bedford [1]. 

Here we shall address the following question. To what extent is a solution u of 
(0.1), or even X, determined if certain global conditions are imposed on u? We shall 
consider plurisubharmonic solutions u(z) of (0.1) that go to infinity as z E X  
diverges in X, or, more precisely, such that for any c 6 R  

{z ~ X :  u(z) < c} is compact.  (0.2) 

In this case u is an exhaustion function of X. A little more generally we shall also 
consider bounded exhaustion functions u, i.e. when (0.2) is required to hold only 
for c < sup u < ~ .  In this generality there are too many solutions u. For  example if 
X = Y x Z with Y compact and Z Stein, any smooth plurisubharmonic exhaustion 
function v on Z defines a solution u(y, z) = v(z). To eliminate such examples we shall 
assume X itself is Stein. Then, however, it turns out that there are no everywhere 
smooth exhaustion functions u that would solve (0.1) (see Theorem 1.1). This 
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naturally leads us to admit u that have some type of singularities on a set M C X. In 
fact, as Theorem !.1 shows, this set M must be related to the minimum set of u. 

That a global condition, type of singularity, and the Monge-Amp6re equation 
may uniquely characterize complex manifolds X and functions u on them was first 
observed by Stoll. In [12] he considered the situation when M reduces to a point, 
in which case the natural (in some sense, minimal) singularity to prescribe is a 
logarithmic pole. He proved that in this case X is biholomorphic to ~n and u is 
equivalent to log ]z I. See also [5, 15]. (Actually, Stoll did not a priori assume that M 
was a single point, but showed that logarithmic singularity already implies this.) 

Later,Patrizio and Wong considered the other extreme, when the singular set 
M is an n real dimensional manifold. Here the natural (minimal) singularity to 
assume is a "square root singularity", in a sense to be made precise in Chap. 2, see 
[11]. They conjectured that in certain cases the mere knowledge of the 
differentiable manifold M determines X and u (viz. when M is diffeomorphic to a 
simply connected compact symmetric space of rank 1). They could settle this 
conjecture only under the assumption that a more precise information about the 
singular behavior of u is available. Also, they constructed examples of X and u with 
M a compact symmetric space of rank 1, or a torus. Apart from that, the main 
contribution of [11 ] is the description of the rich geometry that is determined by u. 
(That there is an interesting geometry associated with a solution of the Monge- 
Ampbre equation was, of course, first discovered by Stoll and Burns.) 

Further examples of solutions of the Monge-Amp6re equation with square root 
singularity were found by the first named author, see [10]. In those examples M is a 
hyperbolic manifold, and the function u is a bounded exhaustion function of X. 

The primary objects of study in this paper are unbounded exhaustion functions 
u on Stein manifolds X that satisfy (0.1) and have square root singularity along a 
smooth manifold M, dimRM=dimcX. Following [11], we shall introduce a 
Kfihler metric on X and its restriction, a Riemannian metric on M. By studying 
these metrics, we shall prove that X and u are determined (up to biholomor- 
phism) by the metric on M (even when u is bounded). This extends the result of [11] 
that applies when M with the above metric becomes a compact symmetric space 
of rank 1. This result can also be regarded as defining canonical complexific- 
ations of Riemannian manifolds (with real analytic metrics). 

We shall also prove that when u is unbounded, the metric on M must be 
nonnegatively curved. From this we shall conclude that when M is diffeomorphir 
to a torus, X and u are almost uniquely determined: they must be one of the 
examples found by Patrizio and Wong. However, the original conjecture 
mentioned above does not hold: as shown in a subsequent paper of the second 
named author, there is a two-parameter family of inequivalent examples with 
singularity set diffeomorphic to the sphere S 2. (See note added in proof.) 

1 The singularity 

Theorem 1.1, On a Stein manifold there is no nonconstant, bounded or unbounded 
smooth plurisubharmonic exhaustion function that satisfies the Monge.Amp~re 
equation (0.1). 

Proof Suppose u is a nonconstant smooth exhaustion function on a Stein manifold 
X and (0.1) is satisfied. It can be assumed that minu=0.  Put 

M = { z  ~ X : u(z)  = 0 } .  
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Since u is nonconstant, there is a number 2 such that 0 < 2 < s u p u .  Put 
D = { z s X : u ( z ) < 2 } .  Let v be a positive, strictly plurisubharmonic unbounded 
exhaustion function of X. If ~ > 0 is sufficiently small, ev < u on dD. Hence by the 
minimum principle of Bedford and Taylor, see [31, ev < u on D. (In [3] the 
minimum principle is proved only on domains in ~", however, the proof, especially 
in the case of smooth functions, applies with C" replaced by any complex 
manifold.) Thus we came to a contradiction since on M ev > u = O. 

Thus we see that an (exhaustive) solution u of the M onge-Amprre equation (0.1) 
must have singularities; moreover, the singular set is connected with the minimum 
set M ofu. In fact, it turns out that the (singular) behaviour ofu at M is by and large 
determined by M. 

Theorem 1.2. Let u 1 and u z be nonnegative, continuous, plurisubharmonic (bounded 
or unbounded) exhaustion functions on a Stein manifold X.  Assume that their 
minimum sets agree: 

{ut = 0)  = {u2 = 0} = M ( ,  0) ,  

and both u~ and u2 are smooth outside M and satisfy the Monge-Ampdre equation 
(0.1) there. Then there is a positive constant C such that in a neighbourhood of  M 

U l / C  ~ u 2 ~_~ C u  t . (1.1) 

Proof. Let 2 > 0 be less than sup u2 and D = {z e X : Uz(Z) < 4}. There is a C > 0 such 
that 

u2<Cu~ on ~D. 

For any e > 0  M has arbitrarily small neighbourhoods U~ such that on dUB 

u2 < Cut + e . (1.2) 

The minimum principle now implies that (1.2) holds on D\U~, hence also on D \ M .  
Letting e ~ 0  the second inequality of (1.1) is obtained. The first is proved by 
reversing the roles of ul and u2. 

In this paper we shall assume that the minimum set M is an n real dimensional 
smooth submanifold (n =dirnr X). When, in addition, M is real analytic and totally 
real, one can construct a u~ as above that is comparable to the distance to M. (For 
that one may have to shrink X to a small neighbourhood of M.) This follows from 
Example 2.1 if M is diffeomorphic to a compact quotient o f ~  n by a discrete group 
of isometries; and in general from the construction in [14]. Therefore, by 
Theorem 1.2, any u~ as above is comparable to the distance to M. 

In the sequel we shall assume a slightly stronger property of the singularity at 
M; namely that u: is smooth (even on M). This corresponds with the assumption in 
Stolrs theorem from [12], where the singularity ofu is assumed to be such that e" is 
smooth. As we shall see, our smoothness assumption connects equation (0.1) with 
Riemannian geometry on M. A less restrictive class of singularities for u would lead 
us to Finsler geometry on M, a direction we shall not pursue here. 

2 Formulation of the problem and the main results 

Considerations in chapter 1 lead us to the following set up. Let X be a complex 
manifold, M a smooth submanifold, dims M = dimcX; u a nonnegative bounded 
or unbounded exhaustion function of X, (u = 0} = M. We shall assume that u 2 is 
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smooth and strictly plurisubharmonic, and that u satisfies the Monge-Amp6re 
equation 

[~Eu)n---0 on X \ M .  (2.1) 

In this case we shaU say that the triple (X, M, u) is a Monge-Amp6re model (of 
bounded type, if u is bounded; no further specifications if u is unbounded). 

Example 2.1. Let F be a discrete group of motions of ~n such that IRn/F is a 
compact manifold. F also acts on Cn and ~n/F is a complex manifold. It is easy to 

/ , "~1/2 
check that the function ~j=~'a (Im zi)2} on C ~ is F invariant so that it descends to 

a function u o on ~n/F. A straightforward computation shows that (r P,'/F, uo) 
is a Monge-Amp6re model (see [13]). 

We would like to classify all Monge-Amp~re models with given "center" M. 
This could not be carried through completely, but for certain types of centers M we 
do have definitive results. Here are the main results. 

Theorem 2.2. Suppose that the center M of a Monge-Ampbre model (X, M, u) is 
dfffeomorphic to a compact flat manifold. Then X is biholomorphic to a manifold 
C"/F as in Example 2.1, and, moreover, the biholomorphism can be chosen so that 
under it u and u o of Example 2.1 correspond. 

Theorem 2.3. I f  (X, M, u) is a Monge-Ampdre model then M admits a Riemannian 
metric of nonnegative curvature. 

Thus, when n = 2, only the torus, the Klein bottle, the sphere, and the projective 
plane can occur as centers of Monge-Amp~re models. That  they do occur as 
centers follows from Example 2.1 for the first two surfaces and from [11] for the 
last two. 

Theorem 2.3 can be made more precise if, following [11 ] we introduce a K/ihler 
metric on X whose K[ihler form is - i8Ju z. Call this metric h and its restriction to 
M g .  

Theorem 2.4. Let (X, M, u) be a Monge-Amp~re model of bounded type, R = sup u. 
Then the sectional curvatures of the metric g are > -r~z/(4R2). 

The estimate in the theorem is sharp, although we shall not prove this. When 
n = 2, the cases where equality in the above estimate is attained can be described. 
According to [13], 2 dimensional models for which the curvature of g equals 
_ n2/(4R2) in one point of M are in one-to-one correspondence with 2 dimensional 
compact space forms of curvature - lt2/(4R2). When n > 2, cases of equality are not 
so easy to characterize but it is still true that compact space forms give rise to 
models that show the sharpness of the curvature estimate. 

In Theorems 2.2 and 2.3 the aim was to find Monge-Amp~re models once M 
and the zero order behaviour of u at M is known (i. e., that u = 0 on M). If also the 
first order behaviour of u at M is given, then the model can always be 
reconstructed. Observe that first order behaviour of u at M translates to second 
order behaviour of u 2, which contains enough information to determine the metric 
g on M. We shall prove 

Theorem 2.5. Suppose (X, M, u) and (X', M', u') are two Monge-Amp~re models 
(possibly of bounded type). Let g,g' be the metrics on M respectively M' 
associated with u, u'. Assume ( M, g) and ( M', g') are isometric and sup u = sup u'. Then 
there is a biholomorphic map F : X ~ X '  such that u=u'o F. 
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This theorem is proved in [11] in the special ease when (X, M, u) is a model 
constructed from a compact symmetric space of rank 1. 

3 Reduction to the tangent bundle 

The aim of this chapter is to show that any Monge-AmpSre model (X, M, u) is 
equivalent to a model (Xo, M, Uo) where Xo is an open subset of TM, endowed with 
a certain complex structure, which complex structure and uo are determined by the 
metric g on M. 

Thus, let (X, M, u) be a Monge-Amp~re model (eventually of bounded type), 
sup u = R. Since u 2 is strictly plurisubharmonic and u satisfies (2.1), rk O~u = n - 1  
on X \ M .  Therefore ker 0~-u is a smooth rank 1 subbundle of the complex vector 
bundle T(X\M) ,  and defines a smooth foliation of X \ M  by Riemann surfaces (see 
[2]), called the Monge-Amp&e foliation. The characteristic property of this foli- 
ation is that Ou, restricted to any leaf L is a hotomorphic section of (TI'~ 

On the other hand, if (M, g) is any compact - or even complete - Riemannian 
manifold, in particular, if it is the center of a Monge-Ampbre model, T M \ M  also 
carries a natural foliation by Riemann surfaces defined as follows. For v ~ R denote 
by N~: TM--* T M  the smooth mapping defined by multiplication by v in the fibers. 
If V:R--*M is a geodesic, define an immersion ~p~:tE~TM by 

~p~(tr + iv) = U,~(o) . (3.1) 

If for two geodesics, 7, 6 v~y(IE\R) and ~p~(r intersect each other, then ~ and 6 
are the same geodesic traversed with different velocities, hence u2r(C)=lp~(~). 
Therefore the images of r  under the mappings ~pr define a smooth foliation of 
T M \ M  by surfaces. Moreover, each leaf has a complex structure that it inherits 
from I~ via tp~. (One can check that if ~pr(C\~.)= tpj(IE\F,) then u2~ and ~ define 
identical complex structures on this leaf.) The leaves, along with their complex 
structure extend across M but, of course, on M the foliation becomes singular. We 
shall refer to the above foliation as the Riemann foliation. 

Returning to the model (X, M, u) and metric g on M as before, denote by 2E the 
smooth function on T M  which is g-length squared (i.e., E is the "energy"), and put 

TR M = {v e T M : 2E(v) <R2}. (3.2) 

Theorem 3.1, Let (X, M, u) be a Monge-Ampdre model, eventually of bounded type, 
R=supu=< oo. With notation as above, there exists a diffeomorphism d~ : T a M ~ X  
such that 

1 ~ c~ maps leaves of the Riemann foliation biholomorphically onto leaves of the 
Monge-Ampdre foliation; 

2 ~ 2E = (u o ~b) 2. 

This theorem is essentially contained in [11]. Although it is never formulated 
there as a theorem, the steps to prove it, that we shall briefly present here since [113 
has not been published, are all contained in [11]. See also [13]. 

So, let (X, M, u) be as in the theorem; the K/ihler metric h is defined on X by 

h(V, W)= (_iOJuZ, J V  ^ Vg) , V, W~(E|  TpX 

(here ] is the almost complex tensor of X and I,i" denotes the conjugate of W). g is 
the restriction of h to TM. Let Y denote the gradient field of u 2. 

Proposition 3.2. The length of Y is 2u. 
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Proof. A corresponding statement with u 2 replaced by exp u (both in the definition 
of the metric and that of Y) is proved in Stoll [12]. The computations for u 2 are 
completely analogous and will be omitted. Also, Patrizio and Wong in [1 1 ] do the 
computations for any function F(u) of u. 

Proposition 3.3. Y is tangential to the leaves of  the Monge-Amp&e foliation, that is, 
trajectories of  Y lie on leaves. 

Proof. See the analogous proposition in [12], or in [11]. 

Proposition 3.4. The leaves of  the Monge-Amp~re foliation are totally geodesic, 
fiat submanifolds of  X \ M .  

Proof. Total geodesy (in the case ofexp u) was discovered by Burns, see [5], or [12]. 
The same proof applies in our case, see [11 ]. Flatness is also contained in [11] but 
the computations there can simply be bypassed by the following considerations. 
The metric on a leaf L is given by the K/ihler form -it3~(UZ]L). Since au is 
holomorphic along L, ul/. is harmonic. Hence locally a holomorphic coordinate 
tr + ix can be introduced on L such that u(a + iz) = z. In this coordinate - i~(U21L) 
= da Adz, whence the metric is Euclidean. 

Proposition 3.5. I f  0 < a < b < R, the distance between the level surfaces {u = a} and 
{u=b} is b - a .  The distance minimizing unit speed geodesics between these two 
hypersurfaces are the trajectories of the normalized gradient field Y/I//h(Y,, Y) 
= Y/(2u). 

Proof. (See also [11].) Let 3': [0, T-J ~ X  be a curve, u(7(0)) = a, u(~(T)) = b, such that 
~(t) is of unit length for 0 < t < T. Then 

ff--~ u(7(t)) = du2~t(t))/(2u(,(t))) 

= h(~(t), Y(~(t))) <1 
2u(y(t)) - 

by Proposition 3.2. Hence for the length T of ? we have 

d T> r -~ u(7(t)) d t = b - a .  
o 

Equality occurs ff$(0 is parallel to Y(y(t)) for every t, whence y is a trajectory of the 
normalized gradient field. 

Letting a--.0 we obtain 

Corollary 3.6. TrajectoriesofY/(2u)areunitspeedgeodesicsT(t)issuingfrompoints 
of  M in directions perpendicular to M. For every t, 0 < t < R, they minimize distance 
between M and y(t), and this distance is u(y(t)). 

Let us introduce the normal bundle W M  C TXJM of M in X, and 

.A/'RM = {V E.ArM : h(v, v) < Rz}. 

The exponential map exp is defined on some open subset of Y M  containing M 
and maps it into X. 

Prol~sition3.7. The exponential map is defined on A/'RM and maps sV RM 
diffeomorphically onto X. 
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Proof(cf. [ 11]). Corollary 3.6 and the exhaustive property of u show that exp maps 
Y R M  into X. Because the trajectory of the normalized gradient field starting in 
any point p of X \ M  eventually arrives at a point m(p)eM, and then per- 
pendicularly to M, the exponential mapping is onto X and one-to-one. Also, exp is 
smooth (this holds generally). What needs to be proved is that its inverse is also 
smooth. 

Denote by -vfp)  the velocity vector in re(p) of the minimizing unit speed 
geodesic from p to m(p). The inverse e of the exponential map is given by 

X ~ p ~-~e(p) = u(p)v(p) ~ Jt:M. 

It is known that in general the exponential map is a diffeomorphism on a 
neighbourhood of M in JI:M; hence e is smooth on a neighborhood of a tube 

X~={p~X:u(p )<a} ,  a > 0 .  

On X \ X o  the normalized gradient field is smooth, so if for p ~ X \X~  ~(p) denotes 
the point where the trajectory through p hits dX a, then ~ : X\Xa-~dX a is a smooth 
mapping. Since 

u(p) 
e(p) = - -  e(ot(p)), 

u(~O~)) 
it follows that e is smooth on X\Xa,  hence on the whole of X. 

Proposition 3.8. M is a Lagrangean submanifold of X, i.e. J T M  =..,VM. 

Proof (cf. [-11]). By a simple result due to Harvey and Wells [7], in a 
neighbourhood of any point 0 s M one can introduce holomorphic coordinates on 
X, z 1 . . . .  , z~, such that 

u2(z)= ~ (1-2j)(Rezj)2+ ~ (l+2j)(Imzj)2+O(lzla), (3.3) 
j=l j=l 

�9 with 2j > 0. Simple computation shows that the Monge-Amptre equation (2.1) can 
be rewritten for u 2 as 

U 2 ( ~ U 2 )  n ~--- ndu 2 A ~'U 2 A (d~-U2) n - 1. (3.4) 

Plugging (3.3) into this, we conclude 2j = 1 ( j=  1 . . . .  , n), i.e. 

u2(z) = 2 E (Imz) 2 + O(Iz]2) �9 

Hence the metric h at 0 agrees with the Euclidean metric and ToM agrees with Rn 
( C  n, which is a Lagrangean subspace: J R  n is orthogonal to R n. 

Proposition 3.9. M is totally geodesic. 

Proof (cf. [11]). In coordinates as above, write 

u2(z) = 2 ~, (Irnzj) z + Re (E ajuzJzkzz + E bjjjZkZl) + O([Zl4)" (3.5) 

Replacing z~ by z) where 
n 

zj = z~-  k ~ bjklZ'kZ't 
, = 1  

we can assume that b~u = 0. Substituting (3.5) into (3.4) we find that ajk~ = 0. Thus 

u2(z)-- 2 E (Imzj) z + O(Izl4) ' 
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This implies that M and R n C I~" agree at 0 to third order, and not only the metric h 
but also the connection of h at 0 is the same as the Euclidean connection. Therefore 
the restriction of the connection ofh  to M at 0 is the same as the connection of the 
metric him at 0, i.e. M is totally geodesic. 

By virtue of Propositions 3.7 and 3.8, we have a diffeomorphism ~b: T R M ~ X  
defined by 

(v) = exp Jr ,  v ~ T R M .  (3.6) 

Corollary 3.6 implies that u(c~(v))= ~ ,  i.e. 2 ~ of Theorem 3.1 holds. To prove 
1 ~ one more step is needed: 

Proposition 3.10 (cf. [11]). Let y : R ~ M  be a, say, unit speed geodesic. Let  

~p~(a + iv) = exp JN,~(tr) = dp(N~(a)), (3.7) 

a + iz ~ll?., [zl<R. Then r is a holomorphic mapping into X .  

Recall that on the right hand side of(3.7) N~: T M ~  T M  is multiplication by z in 
the fibers of T M .  

Proof  For brevity, put r = tp. We need to show that 

= o 9  

J 0tr 0z ' 

or, equivalently, 

jay= (3.8) d~ ~ga'" 

We shall prove (3.8) when a =  0 and ~ > 0. Put 

Otp(ix)/O~ = ~(~), (O~o(tr + iz)/Oa), = o = V(z). 

By Proposition 3.3 the geodesic tp(i0 (0 < z < R) lies on a leaf L of the Monge- 
Ampere foliation. Since L is a complex submanifold of X, J8 is tangential to L. 
Also, since ~ is parallel along ~p(iz), and the metric h is K/ihler, J8  is parallel, too. 
Recall that Lis flat and totally geodesic (Proposition 3.4), which impfies that J8 is a 
Jacobi field along ~p(iz). It satisfies the intial conditions 

- v (0d  = o .  (3.9) 

Next consider E From its definition as a variation of geodesics it follows that it 
is a Jacobi field along cp(iz), and 

V(O)=~(O). (3.10) 

Since the vector fields &o(~z + i~:)/da and &p(a + iz)/az commute, we also have 

Va(o)V= Vv(o ) -~  = Vv(o)J~(a) ' JVv(o)~(a)=O , (3.11) 

where we used that J is parallel and that ~ is a geodesic not only in M, but in X, too, 
so that ~ is parallel. 

Now (3.9), (3.10), and (3.11) show that the Jacobi fields J8  and - V satisfy the 
same initial conditions, hence they agree for every z, 0 < z < R; that is, (3.7) holds. 
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Proof of Theorem 3.1. As observed before, ~b defined by (3.6) is a diffeomorphism: 
T~M ~ X that satisfies 2 ~ Also q5 o lp~ = ~p~ is holomorphic for unit speed geodesics 
7 by Proposition 3.10, and then by a simple change of variables for any geodesic 7. 
Hence ~b is holomorphic on the leaves of the Riemann foliation. 

Choose now a geodesic 7 : R ~ M .  The corresponding leafmap lp r is defined on a 
domain 

D =  {tr + iz e IE: I~1 <R/~)}. 
Put D+ ={a+iz~D:z>O} and q~ =q5 o~pr. As in the proof of Proposition 3.10, 
there is a leaf L of the Monge-Amp~re foliation such that Lc~q~(D§ contains a 
trajectory of the field Y. Since both L and tpr(D+) are holomorphically immersed 
connected Riemann surfaces, it follows by a simple argument involving analytic 
continuation that L =  ~pr(D+), which then completes the proof. 

4 Complex structures on tangent bundles 

Theorem 3.1 reduces the study of Monge-Amp6re models to the study of certain 
complex structures on the tangent bundle of the center. Namely, the pull back of the 
complex structure of X by q5 will be an "adapted" complex structure on TaM in the 
sense of the following definition: 

Definition 4.1. Let (M,g) be a compact Riemannian manifold, E the energy 
function on TM, 0 < R < oo, and TaM defined as in (3.2). A (smooth) complex 
structure on TaM will be called adapted if the leaves of the Riemann foliation (with 
their complex structure defined in Chap. 3) are complex submanifolds in this 
structure. 

Because of Theorem 3.1, Theorem 2.5 follows from 

Theorem 4.2. Given a compact Riemannian manifold (M, g) and R, 0 < R < oo, there 
is at most one adapted complex structure on TaM. 

More precisely, we shall see how to reconstruct the almost complex tensor J on 
TaM in terms of Jacobi fields on M. We mention here that when (M, g) is analytic, 
and R is sufficiently small, then there does exist a (by Theorem 4.2) unique adapted 
complex structure on TaM (see [14]). In fact, it seems that analyticity of (M, g) is 
necessary in order to have an adapted complex structure on TaM; but we could 
not completely prove that. According to Corollary 5.8 M must have a real analytic 
structure such that the geodesics of g in this structure are real analytic curves, and 
more analyticity will follow from results in Chap. 5, but this is still not enough to 
conclude that g is analytic (equivalently, that in any eventually bounded Monge- 
Amp6re model u has to be real analytic). 

Because of Theorem 3.1, Theorem 2.4, and therefore also Theorem 2.3, follow 
from 

Theorem 4.3. Let ( M, g) be a compact Riemannian manifold such that on TaM there 
is an adapted complex structure for some R, 0 < R - <  ~ .  Then the sectional 
curvatures of g are bounded from below by -n2/(4R2). 

It is not hard to show that when g has constant negative curvature -zc:/(4R 2) 
then T~M does admit an adapted complex structure. For this a construction in 
[10] has to be slightly extended. 
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Similarly, Theorem 2.2 follows from Theorem 3.1, Theorem 4.2, and 

Theorem 4.4. Suppose that on the entire tangent bundle of a compact Riemann 
manifold (M, g) there exists an adapted complex structure, and M is diffeomorphic to 
a flat manifold. Then g is flat. 

Theorem 4.2 is proved in the next chapter, while the proof of Theorems 4.3 and 
4.4 is concluded in Chap. 7. 

We shall end this chapter by fixing notation concerning the symplectic 
structure on the tangent bundle n : T M  ~ M  of a Riemannian manifold (M, g). The 
canonical (or tautological) one form O on T M  is defined by 

(O, v) = g(z, rt,v), v ~ T~(TM). (4.1) 

f2=dO is a symptectic form, and the geodesic flow q~t: T M - - , T M  ( t eR)  is the 
Hamfltonian flow induced by the Hamiltonian E (see [8] as a general source of 
information about geodesics). 

5 Proof of Theorem 4.2 

We shall begin with some remarks about tangent bundles of complex manifolds X. 
The real tangent bundle T X  and the complex (1,0) tangent bundle TI~176 a r e  

isomorphic as real vector bundles. If J is the almost complex tensor on X, an 
isomorphism is given by 

T X  ~ r ~ ~1. o = �89 iJr ~ T 1" ~  (5.1) 

For a holomorphic function F on X we have ~F= ~I'~ 
We shall need the following simple 

Proposition 5.1. Let U C ~ be an open set and for - e < t < ~  ft: U ~ X holomorphic 
mappings that depend differentiably on t. Let 

= d f , / d t l ,  = o ;  

this is a section of f * T X .  Then 41'~ is a holomorphic section of f ~ T l " ~  

Proof. Let F be any holomorphic function defined on a neighbourhood (in X) of 
some point of fo(U). To show that ~1.o is holomorphic it suffices to prove that 
~l '~ is holomorphic. Now 

{a,OF={F = d(F ~f,) , 
dt t=o 

which is clearly holomorphic. 

Proof of Theorem 4.2. We have to show that the almost complex tensor J that 
defines an adapted structure on T R M \ M  is determined by the metric g. Let 
z ~ T R M \ M ,  and ~ T~(TM) be the tangent vector at z of a smooth curve z(t) e TM, 
z(0) = z. (In ~ the bar, of course, does not mean complex conjugation.) Denote by 
gt : R ~ M  the geodesic such that ~t(0)=z(t) (dot meaning differentiation with 
respect to the parametrization of the geodesic). For every t the mapping ~pr, 
defined by 
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(cf. (3.1)) are holomorphic from open subsets of ~ to TM (e.g., ~Pro is defined on 
{o-+ i~ :H  < R / ~ } ) ,  and tpr~(i) = z(t). Put 

d lp~ t=o . 

Then ~(/)= ~-and by Proposition 5.1 ~ ,o  is a holomorphic section of T~'~ 
along lpro. Vector fields like ~ will be called parallel (along ~Pro, or along a leaf of the 
Riemann foliation). ~ is obviously determined by ~, and the correspondence ~ ~  
is linear. We can also identify ~IR. Indeed, 

= d  
~(a)= ~ N~176 ~-~,(o'),=o, (5.2) 

hence ~IR is a Jacobi field along ~o. 
In the special situation when ~-is tangent to the Riemann foliation, ~'t can be 

chosen to be reparametrizations of ~o; then also ~ will be tangent to the Riemann 
foliation and ~]R will be a Jacobi field parallel to ~o. Also J~-is tangent to the 
Riemann foliation, hence the restriction of the corresponding vector field ~' to P,~ 
will be another Jacobi field parallel to ~o- 

Choose now n vectors ~-1 ..... ~-~ e T,(TM) so that the vectors ~" o, ..., ~ .  o span 
T~I'~ Then ~-1, d~-i ..... ~~, J~~ span T~(TM) over R.  We can assume that ~-, is 
tangent to the Riemann foliation. To these vectors construct parallel vector fields 
~ along ~P.zo as above. By taking linear combinations of the ~-fs (j = 1,..., n -  1) with 

and d~, we can achieve that the Jacobi fields ~iIF-~ ( j= 1 ....  , n - 1 )  are all 
orthogonal to the geodesic ~o (such fields are called normal Jacobi fields). 

Choose next n further vectors V/1 ..... f/, ~ T~(TM) so that together with ~-j they 
form a basis, and extend them to parallel vector fields q,, . . . ,  r/, along ~0ro. We can 
again assume that f/, is tangential to the Riemann foliation (in fact, since J is known 
on the tangents of the Riemann foliation, we can put ~. = J~~), and that the Jacobi 
fields t/~llR are normal (j = 1 ..... n -  1). We shall now show how to express J ~  in 
terms of the basis (~-3, f/,). The holomorphic sections ~ '  o .... , ~], o are independent 
in the point i~l~ (which corresponds to z~ TM), hence they are pointwise 
independent except on a discrete subset of D = {a + iz : Irl < R / ~ } .  Therefore 
there are meromorphic functions f~  on D such that 

(5.3) 
j = l  

Because of the independence of the vector fields ~J' ~ except for a discrete set on 
R, the Jacobi fields ~ I R  ..... r are also independent, so there are smooth real 
valued functions q~  defined on R \ a  discrete set such that 

q~l~= Z ~ o ~ .  (5.4) 
j = l  

Hence 

It follows that 

, , , o l .  = , . o  q'jk j 
j = ,  

f~klR = ~0i~. (5.5) 
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Substituting i e D into (5.3) and separating real and imaginary parts we obtain 

Y/k= ~ (Ref~k(i))(i+ ~ (Imfjk(i))J( i. (5.6) 
j = l  j=~ 

Since both 2n-tuples (~, Y/k) and (~, J~-h) are independent, the matrix (Im fjk(i)) must 
be invertible; let 

(ejk) = (Im fjk(i)) -1 (5.7) 

Then from (5.6) 

J( =k__21 k -  E kli �9 (5.8) 
j= 

Formuta (5.8) defines the action of J purely in terms of the geometry of M. 
Indeed, given ~j, F/k, the fields ~, qk are determined by (M, g); hence by (5.4) so are 
the functions ~0jk. (5.5) now determines fjk as (unique) meromorphic extensions of 
~Pjk (to D), and eik are then determined by (5.7). This proves Theorem 4.2. 

Remark 5.2. Because ~1 ..... ~.-  1, ql . . . .  , q , -  a restricted to R are normal, while ~,IR 
and q,IR are tangential Jacobi fields, in (5.4) we have ~,k -- q~j,-- 0, hence f,k ---- f:, 
--0 and e,k=e~,-=0 for 1 <j ,  k < n - 1 .  

Theorem 5.3. I f  TR M is endowed with an adapted complex structure and O is the 
canonical 1-form on T M  (see Chap. 4) then for ze  T R M \ M  

V~ = ker O,c~ker (dE), s T~(TM) (5.9) 

is a J invariant subspace. 

Proof First observe that dim V~ = 2 n -  2. Indeed, choose local coordinates {qi) on 
M and corresponding local coordinates "(qJ, Pl} on T M  (i.e. a vector 
v = 2~pj~O/Oqj e T~M has coordinates coming from the coordinates of q e M, and p j). 
Then 

0 = Z, gij(q)pidq j 

and 

so that 

E = �89 Sg,j(q)p~pj, 

dE = ~,go(q) pidpj + �89 E P~P flgo(q)" 

Thus kerO and kerdE are transverse (off M), whence dim V~= 2 n - 2 .  
In what follows, we shall use the same notation as in the proof of Theorem 4.2. 

By virtue of Remark 5.2, (5.8) becomes 

J(h = ~ ek* Refjk(i ) , h = l , . . . ,  n -  1. (5.10) 
k=l 1 

Thus to prove the theorem it suffices to prove that ~-1, ..., ~-,- 1, Y/I . . . . .  Y/,- 1, belong 
to the space V~ in (5.9). Let ~- be any of the above vectors, ~ the corresponding 
parallel vector field along v2~ o. Then ~IR is a normal Jacobi field along Yo, and z is 
tangent to ?o. Hence, by (4.1) and (5.2) 

(O, ( )  = g(z, n.~') = g(z, ~(n(z))= 0 (5.1 l) 

(note that n = No !) 



Global solutions of the homogeneous complex Monge-Amp6re equation 701 

On the other hand, since ~IR = (d?t/dO, = o is normal, the velocity of y~ is the same 
as that of ?o plus 0(t2), i.e. 

(.) 
t = O  

Since :,(0)= z(t), this implies 

d )  E(z(t)) = 0. (5.12) 

(5.11) and (5.12) mean that ~-r V~, and we are done. 

Remark 5.4. Above we have established that if for a vector field ~, parallel along a 
leaf of the Riemann foliation, the restriction ~IR is a normal Jacobi field, then 
~r V=. The converse also holds: if ~~ V z then r is a normal Jacobi field. To see 
this, observe that if r is a tangential Jacobi field then ~ is tangential to the 
Riemann foliation, whence the claim follows by counting dimensions. 

Corollary 5.5. On T M  

and 

J E - o e = i o  (5.13) 

i 

Proof Let z ~ T M \ M .  Because of Theorem 5.3, if 

~ kerOzc~ker(dE)z 

then 

<gE-0E, ~-> =0=  <io, ~->. 

Next, with notation as before, we have 

E(tP~o(a + iz)) = g(N,:o(a)) = z 2 E(z). 

Since %~ is holomorphic, 

lp*o(JE- dE) = E(z) (Oz 2 - O '~ 2 )  = 2iE(z) zda . 

Therefore, if 

a bO__ O=~Oro,V, v=a-~a + dz ~ Ti~ 

then 

0 
Q~E-t~E, Fl> = \2iE(z)da, a -~  

= 2iE(z)a. 

A simple computation gives rc.tT= a:0(0) = az, so that 

( iO, Fl ) = ig(z, r~,F1) = 2iE(z)a . 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 
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Since Tz(TM) is spanned by vectors ~-as in (5.16) and fi as m (5.17), comparing 
(5.16), (5.18), and (5.19), (5.13) foltows (first only in points z ~ T M \ M ,  and then, by 
continuity, all over TM).  

Finally (5.14) is obtained by taking d of both sides of (5.13). 

Theorem 5.6. E is strictly plurisubharmonic in an adapted complex structure on 
T e M .  V ~ is plurisubharmonic and satisfies the Monge-Amp~re equation 

on 7"aM\ . 

Proof  First we shall prove strict plurisubharmonicity of E in points z e M. Let 0 
4= v ~ T,(TM).  Strict plurisubharmonicity means that for some (or any) complex 
curve C through z in the direction v Elc is strictly subharmonic in z. If the two-plane 
spanned by v, Jv is transverse to M, then so is C, and EIc has a nondegenerate 
minimum in z. Hence EJc is strictly subharmonic in z. Otherwise we can take C to 
be the closure of a leaf of the Riemann foliation determined by a geodesic 7- Then 
E(ip~(a + iz))=const 17 2, whence EIc is strictly subharmonic everywhere. 

Thus E is strictly plurisubharmonic along M. Since by 5.14 d~-E is nowhere 
degenerate, E must stay strictly plurisubharmonic all through T a M .  

Next we shall prove (0~YVE)"= 0. Because of (3.4) this is equivalent to 

2E(a~-E) n = ridE ^ ~E ^ (d~-E)"- 1. (5.20) 

In local coordinates as in Theorem 5.3, using also Corollary 5.5, the right hand 
side can be written as 

( d E + ~ E ) A ( ~ E - d E ) ^ ( ~ ; Y E ) " - [ =  ~ d E ^ i O  ^ f2 

i " 1 

^ (Zgodpi ^ dqj + ~p~dg 0 ^ dqj) n- 1 

= n ~g~jp~dp~ ^ Zgijp~dqj ^ (Zgodp ~ ̂  dqj)" - 1, 

since dg~ contains only dq~ terms. In any particular point we can assume g~ = 6~j, 
p~ = 1, N=O (j=2, ..., n), and in that point the right hand side of (5.20) is then 

n dpl  ^ dql A (Sdp~ ^ dqj) n- 1 = (~,dpj ^ dqi) ~ . 

This proves (5.20). 
Finally it suffices to prove plurisubharmonicity of V ~ off M. There V ~ is 

smooth and 0~-1/~ can have only one nonpositive eigenvalue, which by virtue of 
the Monge-Amp6re equation is 0. Thus - i~-V~ is positive semidefinite, and we 
are done. 

Theorem 5.6 shows that finding Monge-Amp6re models and finding adapted 
complex structures are completely equivalent. 

Adapted complex structures on T a M  have an important (although fairly 
obvious) symmetry: 

Theorem 5.7. / f  T a M  is endowed with an adapted complex structure, then the 
diffeomorphism N_ I : T M - ~ T M  is antiholomorphic. 
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Proof. It suffices to prove that N_ 1 is antiholomorphic on T M \ M .  Thus, let 
z ~ T M \ M ,  ~ T~(TM), w = N_ l z(= - z ) ,  g = N_ 1, ~ Tw(TM). The problem is to 
relate J~ to N _ I , J ( .  Accordingly, we shall have to go through the steps of the 
proof of Theorem 4.2 and see how the objects connected with w, g are related to the 
corresponding objects connected with z, (. We shall adopt the notation of the 
proof of Theorem 4.2. 

Let ~ : R ~ M  be the geodesic determined by w: ~(0) = w. Then 6(a) = ~ ( -  a), so 
that 

~po(a + ix) = N~(a )  = - N, f~(-  a) = ~or( - o -  ix). 

If r denotes the parallel extension of g along u then this implies 

r(a + is) = ~(- ~r- is). (5.21) 

With ~-j, Ok, C j, r/k as before, define 

gj=N-1,~, 2-k =N- 1,rl~, 

and let xj, 2 k be the parallel extensions of ~j resp. 2" k. As in (5.21), we have 

xj(tr + is) = ~ : ( -  a -  ix), 2k(a + ~) = ~Ik( -- tr-- ix). (5.22) 

If now hjk denote the meromorphic functions on D such that 

2~'~ ~ hi~xJ "~ ( k = l  .....  n) 
j = l  

[cf. (5.3)], then (5.3) and (5.22), restricted to z = 0 imply hjk(a ) = f~k(--a), hence 

h jk(a -F ix) = f jk( -- tr -- ix). 

Therefore, as in (5.6) 

Z~= ~ (Rehj~(i))gj+ ~ (Imhjk(i))Jgj 
j = l  j = l  

= ~ Refjk(--i)ffj+ ~ Imfik(-- i )Jg j. (5.23) 
j=l j = l  

Now fjk is real on the real line I-cf. (5.5)], so that by the reflection principle 

aefik( -- i) = Refjk(i ) , Imfjk ( -- i) = -- Imfjk(i). 

Substituting this into (5.23) and solving for Jgj  we obtain 

J g ' = - - k ~ l  ek,(;?,--~=~ Ref~k(i)gj). 

Comparing this with (5.8): 

J~'h = - -  N_ 1, J ~ h ,  

i.e. 

J N - 1 ,  = - N - 1 , J ,  

which is precisely the statement that N_ 1 is antiholomorphic. 

Corollary 5.8. M is a real analytic submanifold o f  the complex manifold TR M, and 
the geodesics ~ : R ~ M  are real analytic mappings. 
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Proof M is real analytic since it is the fixed set of an antiholomorphic mapping. 
The geodesics ~ are real analytic since they are restrictions of holomorphic 
mappings ~ :  D ~ T M  to R.  

6 Special Jacobi fields 

The aim of the present chapter is to show that when the parallel vector fields 
41 ..... 4,, rh .. . . .  ~/, in the proof of Theorem 4.2 are carefully chosen, the mero- 
morphic matrix (fjk) in (5.3) becomes very simple and will be directly connected with 
the sectional curvatures of g. Much of what is to be discussed here would be 
substantially simpler in the case n = 2. 

Proposition 6.1. Suppose ~ is a parallel vector field along a leaf of  the Riemann 
foliation. Then for any s e R  

N~,~ = ~, (6.1) 

and 

~b,, 4 = 4. (6.2) 

(Recall that c~s is the geodesic flow.) 

Proof Let ~, be a family of geodesics such that 4 =(d~r,/dt)t=o. From 

[cf. (3.1)] follow 

Nsu2~,(a + ix) = Ns,~,(tr) = tp~t(a + is~), (6.3) 

q~stp~(a + ix) = N~,(a  + sz) = tp~(tr + s~ + it). (6.4) 

Taking (d/dOt= o of these equations we obtain 

N~,{(a + ix)= ~(tr + is~), (6.5) 

~ ,  ~(a + ix) = 4(a + s~ + ix), (6.6) 

which prove (6.1), (6.2). 

Proposition 6,2. Let ~,r l be parallel vector fields along a teaf of  the Riemann 
foliation. I f  for a number % + iz o ~ IE\R 

I2(4(a 0 + ire), ~l(ao + ire)) = 0 ,  

then Q(~,tl)=O along the whole leafi 

Proof Because ~b, is a Hamiltonian flow, it leaves 12 invariant. Simple compu- 
tations also show that N*~g2=sfl. Since by (6.3), (6.4) the orbit of the point 
~p~(ao + ire) under repeated applications of N, and ~b, is the whole leaf, Proposi- 
tion 6.1 implies I2(~,r/)_=0. 

In the sequel we shall need the notion of the connection map. The metric g 
defines the Levi-Civita connection on TM, i.e. a splitting of T~(TM) (z ~ TM) into 
vertical and horizontal subspaces. The vertical subspace is T~(~)M, which 
canonically sits in T~(TM); the datum of a complementary horizontal subspace is 
equivalent to the datum of a projection T~(TM)~ T~(~)M. The collection of these 
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projections for every z ~ T M  is the connection map K:  T ( T M ) ~  TM.  K is related 
to I2 by the formula 

f2( ~-, ~) = g(Tz. ~-, KP1)--g(n.fl, K O ,  (6.7) 

see [8]. We shall also need 

Proposition 6.3. Let ~ be a parallel vector field along a leaf of  the Riemann foliation 
determined by -(~ Tz(TM), z ~ T M k M .  Then the covariant derivative of the Jacobi 
field ~IF, at ~r is K~(~r + i). 

Proof. With notation as in the proof of Theorem 4.2 the covariant derivative in 
question is 

\ dt / I , = o = K ~  ~'(a)['=~162 

After these generalities, let us return to an adapted complex structure on T~M. 
Choose a point z ~ TRM\M,  and let ~ be the geodesic determined by z (i.e. ~(0) = z). 
Select an orthonormal n-tuple of vectors vl . . . . .  vn in T~to~M, and lift them to 
horizontal vectors ~-1 ..... (n e T~(TM). These vectors define parallel vector fields 
e t ..... ~ along ~vr: D ~ TM,  where D = {a + iz :ITI < R/~/2E(z)}. (j  being hori- 
zontal, (6.7)implies O(~., ~-k)=0. By Proposition 6.2, therefore 

I2(r ~k) = 0, 1 <j ,  k < n. (6.8) 

Proposition 6.4. The 2n vectors ~j, Jr are independent on D \ ~ .  Hence on DkF.~ the 
rectors ~).o= �89162  are independent over IF.. 

Proof. First observe that since f2 is of type (1, 1) (cf. Corollary 5.5) (6.8) implies 

O(J~j, J~k)  -~ O. (6.9) 

Suppose now that a nontrivial combination ~ = ~,aj~j belongs to the span of Jr in 
a point tr + iz e DkR. Since the vectors ~i are independent off the real axis, ~ 4: 0. On 
the other hand, in this point ( - 2idSE, ~ ̂  J~> = 12(~, JO = Eajt2(r Jr = 0 by (6.9), 
contradicting the strict plurisubharmonicity of E. 

As discussed above, T~)M can be regarded as a subspace of T=(TM). Thus 
vj = ~ , ~  T~(~)M determines a vertical vector f/j e T~(TM): 

n ,q j=  O, KFIj=v j . (6.10) 

Extend f/j to a parallel vector field r/i along tpr 

Proposition 6.5. The 2n vectors ~, r/k are independent in points ~ + iz 6 DkR.  

Proof. By (6.10) and n , ~  = % K ~  =0, the vectors ~, ~ are independent. Therefore 
so are their parallel extensions r r/~, off R .  

Proposition 6.6. f2(r/~, r/k)-- O, 1 ~j ,  k_--< n. 

Proof. By (6.7), (6.10), and Proposition 6.2, 0 =  f2(r~j, f/k)=t2(r/j, r/k ). q.e.d. 

Consider now the n-tuples 

-~=(~,,...,~), H=(r/1,...,r/~), 
and holomorphic n-tuples 

,_,~1, o i,~1, o ,g 1, o'1 /../'1,o /~1, o . 1,o~ 
-~-~bl , ' " , ' ~ n  Y, "" ~ r l l  , . . . , t i n  ) .  
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Proposition 6.4 implies that t/~' 0 is in the span of t, o ~i , at least off 1L but more 
generally, where the ~J' ~ are independent: on D minus a discrete set S of reals. We 
shall need the fact that 06 S. Indeed, ~j<0)= vie T,~(~)M C T~(,)(TM), while J~k(0)'S 
are vertical. Hence the 2n vectors r and J~k(0) are independent, and therefore so 
are ~J' ~ 

Thus we can express tt~' 0 as meromorphic linear combinations ,. o o f ~  ,i.e.,there 
is an n x n matrix valued meromorphic function f on D such that 

H l ' ~ 1 7 6  (6.11) 

The poles of f are restricted to S C R.  As in the proof of Theorem 4.2 we have that 
f i r  is real valued (cf. (5.4), (5.5)), hence, taking real parts 

H(a) = ~(a)f(a), a ~ R \ S .  (6.12) 

Lemma 6.'/. I f  a + iTe D, a > 0  then I m f ( a + i z )  is a symmetric, positive definite 
matrix. 

The proof will require several steps. 

Proposition 6.8. I f  a + iz e D, a 4:0 then I m f ( a  + iT) is invertible. 

Proof. Suppose there is a nonzero column vector v=(v2)e]R" such that 
Imf (a+iz )v=O,  i.e., #=(flk)=f(tr+i'c)veR". From (6.11), in the point tr+iz 

t/1 51 ,~  j '~176 ~ ~'O#k. 

Taking real parts 

Y~ rbvj = Y~ ~,gk,  

in contradiction with Proposition 6.5. 
For  tre R \ S  we can view 2(a), H(a) as linear mappings ]R"~ Tr~,)M given by 

n 

R ~ ~ (w i) = w ~ - ~ ( ~ ) w  = E wj~(~r) ~ T~,~ 
1 

and similarly for H(a). This is consistent with (6.12). We shall denote covariant 
differentiation along ? by a prime, e.g. H'(tr). In the case of a mapping of R into 
some fixed space (like f l R : R \ S - - * E n d R  ~) prime will also be used to denote 
ordinary differentiation with respect to tr, as if(a). 

Proposition 6.9. f(O) = O, f'(O) = Id. 

Proof. Put a = O  in (6.12). Since ~](O)=~$~j=O (cf. (6.10)), and ~:(O)=rc,~-j=vj, 
1 _~j-< n, which are independent, we obtain f(O)=O. 

On the other hand, covariant differentiation of (6.12) in a = O  yields 

H'(0) = S(0)f'(0). 

By Proposition 6.3, ~/~(0)=Kf0=vj= Cj(0), i.e., H'(0)=5(0), so that f '(O)=Id, as 
claimed. 

Denote the adjoint of a linear mapping R " ~  T~(,)M by star (adjoint defined 
using the euclidean scalar product on R * and the Riemann metric on Tr( J .  

Proposition 6.10. For a e R \ S 

2'*(a)E(a)-- ~*(~)Z'(~) = H'*(a)H(a) -- H*(a)H'(a) = O. 
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Proof According to (6.7) and (6.8) 

0 = f2(~, ~k) = g(r ~) - -  g(r ~k), (6.13) 

where we have omitted the argument ~r. Using the standard orthonormal basis {e j} 
of R", we have 

g(~j, r = g(~ej, S' ek) = (~'*~e~, ek), 

( , )  standing for Euclidean scalar product. Thus (6.13) can be written 

0 = ( (S '*~-  S*S') e~, e~), 1 <=j,k<n, 

i.e. 

E ' * ~ - S * ~ ' = 0  on ]R\S. 

Similarly, by Proposition 6.6 

0 = ~(,t~, ~), 
whence we obtain exactly as in the case of ~ that 

H ' * H - H * H ' = O  on ~,.\S. (6.14) 

q.e.d. 

Proposition 6,11. f(tT) is a symmetric matrix for small a ~.~. 

Proof If (6.12) is substituted into (6.14), straightforward calculations show 

f '*F.*Sf  - f*.~*.~f'=O. (6.15) 

Now we bring the Jacobi equation 

~"(a) + R,(a) r = 0 (6.16) 

into play. Here ~ is any Jacobi field along ? and Rr(a ) : Tr(~)--* T~(,) is the "curvature 
operator along ?": if ~ is the curvature tensor of g, then 

R~(a)v = ~(v, ~(a)) ~,(a), v e T~r (6.17) 

(6.16) holds for r @a) and r Hence 

0 = S " + R ~ E ,  (6.18) 

O=H" + R f l = ( S f ) "  + R , ~ f  =2~' f '  + ~.f", (6.19) 

where we used (6.18). 
Next compute 

(S*Sf') '  = S*'Ef '  + S*S' f '  + S*~f" ,  

which, by (6.19) and Proposition 6.10 equals 

~ * ' S f ' - ~ * ~ ' f '  =0 .  

Hence ~*(a)E(a)f'(a) is a constant mapping R"---,F,," for small a e R. Now E(0) 
maps the orthonormal basis {ej} of R" into an orthonormal basis {v~} of T,(oj, so 
that S*(0)~(0)= Id. Since, according to Proposition 6.9, i f(0)= Id, we have 

~*(a)E(a) f ' (a)= ld.  
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Substituting this into (6.15) we obtain f * ( a ) - f ( o ) =  0, which proves our claim. 

Remark 6.12. Much of the above computation comes from I-6]. 
We are now ready to prove Lemma 6.7. 

Proof of Lemma 6.7. From Proposition 6.11 follows by analytic continuation that 
f is symmetric in every point of D, therefore so is Imf. For small positive z, using 
Proposition 6.9 

Imf ( i z )  = Im(f(0) + irf'(O)) + 0(172)) 

= zld + O(z2), 

which is obviously positive definite. Since I m f  is nondegenerate on D \ R  by 
Proposition6.8, its signature cannot change on { a + i z e D : z > O } .  Therefore 
Imf (a  + iz) is positive definite for z > 0. 

7 The curvature estimates 

We shall use the notation introduced in the previous chapter. 

P r o p o s i t i o n  7.1. On • \ S  the curvature operator can be expressed as 

R - • = r  r r 1 ~-  2 ~ t J . ,  __~(f, ,f ,-1)2)~-l.  (7.1) 

Remark 7.2. When n = 1, ~ and E-  t above cancel and the right hand side becomes 
the Schwarz derivative of f. Then Proposition 7.1 reduces to the well known 
relationship between the ratio of two solutions of the scalar Sturm-Liouville 
equation y" + Ry = 0 and R itself. The proof of the matrix valued version is much 
the same: 

Proof From (6.19) 

- • ~ r  r , -  1 ( 7 . 2 )  
~ s -  2 ~ " J  J . 

Differentiating (6.19) and using (7.2) and (6.18): 

0 = 2S"f '  + 3~'f" + ~f '"  
= _  ~ , i f , ,  2gr,-,'f - ~2 ~ , f " f ' -  +,F,f'", 

whence (7.1) follows. 

Coronary 73.  R+(0) = �89 1. 

Proof. Since ~ is a horizontal vector, by Proposition 6.3, +~(0) = K~-j = 0. Thus S'(0) 
= 0, whence (7.2) gives 

f"(0)=0.  (7.3) 

According to Proposition 6.9, f ' (O)=ld,  so that (7.1) reduces to the equation in 
Corollary 7.3. 

As we saw in the proof of Proposition 6.11, ~*(0)~(0)=Id, i.e., 3(0) is an 
isometry, so estimation of the curvature operator Rr(0 ) is the same as estimation of 
f"'(0). To get the desired estimate we shall use Lemma 6.7. We shall also need 
certain facts about representations of holomorphic functions in the upper half 
plane. 
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Proposition 7.4. Let F be an n x n matrix valued holomorphic function on the upper 
half plane ~+ = {(e ~ : I m  ( >  0} that has a holomorphic extension to a nei ghbour- 
hood of 1. Suppose for every ( ~ ~+ ImF(0  is a symmetric, positive definite matrix, 
whereas for ( ~ R near 1 ImF(0  = O. Then there is an n x n symmetric matrix # = (#jk) 
whose entries are real valued, signed Borel measures on ~ such that 

1 ~ 1 ~supp#ik; 

2 ~ ~ td~ik(x)t < ~ ;  
_~ l + x  2 

3 ~ p is positive semidefinite in the sense that for any (wj)EN" the measure 
Xwjwdijk is nonnegative; 

4 ~ F'(0 = A + -~  ( (_  x) 2 
dl~(X) 

where A is a symmetric, positive semidefinite constant matrix. 

Proof  Let Fig denote the entries of F. Since the diagonal entries ImFij are 
nonnegative harmonic functions on C +, Fatou's representation theorem (trans- 
planted from the disc to C +; cf. [9]) implies the existence of nonnegative measures 
#jj and nonnegative numbers A j; (the latters corresponding to mass at oo) such that 
ld#~j~x)/(1 +x2)<  oo and 

ImFjj(() = A# Im ~ + 1 ~ Im ( 
-zc - o~ (Re ( -- x) 2 + (Im 0 2 dg~j(x). 

For  any j, k 

[Im Fjk(0[ < (Im Fjj(() Im FRk(O) 1/2, 

because ImF(0  is semidefinite. Since both ImFii and ImF~k belong to the Hardy 
space h1(C +) corresponding to the weight (1+X2)-1~ it follows that 
ImFsk~hl(C+); hence we also have a Poisson representation 

imFik( ( )=Ajk lm~+ 1 ~ Im~ 
-oo (Re(--x)2+(Im()  2 dllik(x)' (7.4) 

with the/ljk'S satisfying 2 ~ of Proposition 7.4. Taking O/Oz of(7.4) we obtain 4 ~ The 
matrix A = (Ark) is symmetric positive semidefinite since 

A =  lim ImF(iy)/y. 
y - ,  + co 

Finally, since d#(x) is the weak limit of ImF(x + iy) as y-~ + 0, 1 ~ and 3 ~ are also 
satisfied. For more details, cf. [13]. 

Proposition 7.5. Let F be as in Proposition 7.4. Assume, in addition, that F'(1) = aid, 
F"(l)=bld,  a, b e R .  Then for w=(wj)~R ~ 

'" 3b2 y, ~v]. (7.5) 
j , k = l  1 

Proof Put v = Z, WjWk#jk. This is a nonnegative measure. Put also G = XF~kWjWk. 
Then the left hand side of(7.5) is G'"(1). Since by analytic continuation the formula 
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4 ~ in Proposition 7.5 holds in a neighbourhood of 1, by differentiation we obtain 

dr(x) (7.6) a~w]=G'(1)> lrt -o~ ~ ( l - x )  2 

bE 2_G, , (1)=2 ~ dr(x) 
w j -  ~ -~o ( 1 - x )  3 (7.7) 

6 ~ dr(x) 
G'"(l)= J 7r - oo (1 - x) 4" (7.8) 

By Schwarz's inequality 

( l - x )  4 ( l - x )  2 = - ( i - x ) 3 /  �9 ~ o o  ~ o o  

Estimating respectively replacing the integrals here by what is obtained from 
(7.6)...(7.8), we get (7.5). 

Proof of Theorem 4.3. Choose a point p~M and two orthogonal vectors 
v, z E TpM. We want to estimate the sectional curvature K(v, z) of g in the direction 
determined by v, z. It can be assumed that z~ TRM, i.e. that 

Issue a geodesic ~ from p such that ~(0)=z, and perform the construction in 
Chap. 6 to obtain the matrix valued meromorphic function f on 

D= {( + ir ~CE : lzl <r} , 

with poles on a set ScIR\(0) .  Assuming for simplicity that the length of v is 1, 
K(v, z) is related to the curvature operator Rr(0) by (see (6.17)) 

K(v, z ) =  

= g(R~(0) v, v)/(2E(z)). (7.9) 

By Corollary 7.3 

1 �9 ~ " ,2. t rain g(R~(O)v, v) = - mm _ ~. , (7.10) 9(~.~)= 1 2 {~.k=l fj~'(O)wJwk:(wj)eR"'Zw'=I 
J 

since ~(0) is an isometry. Thus we have to estimate f'"(0). 
Let log ~ for ~ etE § denote the branch of logarithm such that 0 < Im log ( <  re, 

and put F ( 0 =  f ( r  log~).  

By Lemma 6.7, this F satisfies the assumptions of Proposition 7.4. Moreover, 

F'(1)= r f'(0) = LId,  
7t 

2 
F " 0 ) =  ~ f " ( 0 ) -  r - f ' (0)=  - r_ Id,  

/g 7g 

r3 __~ 3 
F'"(1)= ~-~f'"(0)+ f ' (0 )=  ur-~ f ' " (0)+ 2r~r Id, 
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by the chain rule, Proposi t ion  6.9, and (7.3). Thus  F even satisfies the extra 
assumptions of  Proposi t ion  7.5 with a = r/~, b = - r/n. According to this propo-  
sition, if 2;w~ = 1 : 

,,, r 3 2r 
27t3r =< y~ F~ (O)wjw k < ~ Z fj~'(O)WjWk + --Tt 

whence 

By (7.10) 

and by (7.9) 

7T 2 
2r z < Zfj~'(O)WjWk. 

/.~2 7~2 

g(Rr(O)v, v)>  - ~r~r z = - ~ 2E(z), 

7~ 2 

K(v, z) >= 4R 2 . 

Thus the theorem is proved. 

Proof of Theorem 4.4. In  this case R = ~ so that g is nonnegatively curved. It  is 
well known that  on a compact  flat manifold any nonnegatively curved metric is 
itself fiat, as claimed by the theorem. (The proof  of  this fact goes as follows: Let 
(T", ~) be a torus that  covers (M, g), see [16]. Choose  n independent  ha rmonic  one 
forms o9~ .. . . .  co, on T", and let X1 .. . . .  X ,  be dual vector fields. Weizenb6ck 's  
formula gives 

A~(X i, X j) = 2 Ric ~(Xj, X~) + 2~( Vcoj, Vcoj) > O, 

i.e. ~(Xj, Xi) is subharmonic ,  hence constant.  Therefore the left hand  side above is 
0, and lZcoj = 0. Thus coj is parallel and so is Xj. The existence of  n independent  
parallel vector fields then implies the flatness of  ~; hence also g is fiat.) 
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Note added in proof. Recently we have learned that related problems have been investigated by 
V. GuiUemin and M. Stenzel. They consider certain complex structures on (co)tangent bundles of 
Riemannian manifolds. Although their formal definitions are different from ours, they recover 
the same complex manifolds X and functions u as we do. See their joint papers "Grauert tubes 
and the homogeneous complex Monge-Amprre equation, I, II", and also the thesis of Stenzel. In 
another development, a version of [11] has appeared in the meantime, in this journal, 289, 
355-382 (1991). 


