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G.M. Henkin informed me on a question of M. Gromov: whether the Teichmfiller 
space Tp for closed Riemann surfaces of a fixed genus p is strengthenly 
pseudoconvex, that means does there exist a plurisubharmonic function Q on Tp 
such that Q~0 for x ~ o o ?  

That is interesting by itself also, since, on one hand, the Teichmiiller spaces are 
not strongly pseudoconvex and, on the other hand, in some questions, in particular 
in complex potential theory, in fact the strengthening pseudoconvexity is essential 
(see, for example [9]). 

It turns out that the answer is affirmative for all finite-dimensional Teichmfiller 
spaces T(p, n) (which correspond to the Riemann surfaces of finite conforrnal type 
(p, n) with rn= 3 p - 3  + n > 0), moreover in a stronger form: 

Theorem. On any space T(p, n) there exists a continuous plurisubharrnonic function 
Q(x) which tends to zero for x ~  oo (in the Teichrniiller-Kobayashi metric). Under 
hoiornorphic imbedding of T(p, n) as a bounded subdornain in ff~m this function 
becomes continuous on the closure of T(p, n) also. 

Proof. Fix a base point in T(p, n) and model T(p, n) as Teichmtiller space T(F) of 
corresponding finitely generated Fuchsian group F of the first kind without 
torsion which acts discontinuously in A~A*, where 

A={zeC~:lzl<l},  A * = { z e C ~ = ~ u { ~ } : l z l > l } .  

Let us denote by Bz(F) the complex space of holomorphie F-automorphic forms of 
the weight - 4  with the supports in A*, i.e. of the holomorphic functions ~p in A* 
such that (~p o ~)?,z = q~ for all ~ 6 F and ~p(z) = o(Izl- 4) for z ~ 0% with the norm I[ ~p [I 
= sup (Izl 2 - 1) 2 I~p(z)l; here dimBz(F)=rn. 

A* 
Consider now those ~p e B2(F) which are the Schwarzian derivatives 

S f=( f " / f ' ) ' - ( f " / f ' ) 2 /2  

of the univalent functions f (z) = z + ~', aqz-qwithquasiconformalextensiononto 
q=l  

z~ (also compatible with F). These Schwarzians fill a bounded arcwise connected 
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domain in B2(F ) which is (up to biholomorphic isomorphism) a standard model of 
T(F). Fixing a basis in B2(F ), we obtain a corresponding bounded domain in ~E = 
and then the coordinatewise convergence in ~E "~ is equivalent to the convergence of 
the e lements ,  in B2(F ). In what follows, we will not distinguish these two domains 
and T(F). 

It is well-known (see, for example [7, 8]) that a holomorphic function f in A* 
with the expansion f ( z )=z+aaz-1+ ... is univalent in A* if and only if 

p,~q=l [//~O~pqXpXq ~-~ p=l ~ [Xp[2' (1) 

where ap~ are the Grunsky coefficients of the function f, which are defined from the 
expansion 

l o g f ( z l - f ( O = - -  ~ cep~z-V~ -q 
g -  ~ p,q= 1 

(a branch of logarithm is taken which is equal to zero for z=~= ~), and 
x =(xl, x2,...) is an arbitrary element from the complex Hilbert space 12, i.e. ~ Ixpl 2 
= IIxll2< oo. 

For the functions with k-quasiconformal extension onto ,] the inequality (1) 
can be easily made more precise, namely 

]p,q~=, V ~ % ; c ~ ,  <klixll 2 (2) 

(in fact the factor k in the right-hand part of (2) may be changed by a smaller one, 
see [4]). On the other hand, according to Pommerenke's result [8], the validity of 
(2) (for all x ~ t 2) ensures k -quasiconformal extension of f to r with some k > k, 
which depends on k only. 

Due to our assumed normalization, the function f and its Grunsky coefficients 
a M are determined by Schwarzian tp = Sr uniquely, therefore one can write a~,,(~p) 
and f~,. Here all ,tpq(tp) are holomorphic with respect to ~p in T(F) and continuous 
on closure of T(F). 

It is sufficient to take in (1) the elements x E12 with Itxll = 1, and that will be 
assumed further; then (1) becomes of the form 

I E i/~p,(q~)x~x, 1, r(r). (1') __< tp 
p,q= 1 

For a given x=(xl ,  x 2 ....  )~1 z with IIxll = 1 we set 

and let v'~= 

u(~o)= sup Ihx(~p)l. 
IIxl[=l 

Any function h:,(~p) is holomorphic on T(F). 
Our main goal is to show that the function 

O(tp)= sup log]hx(tp)l 
Ilxll = 1 

satisfies the statement of the theorem. Obviously, that from (1') O(tp)_-< 0 on T ~  
a n d  O ( 0 ) =  - -  oo. 
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(a) Continuity of Q on T(F). Let us notice, first of all, that by known results of 
complex analysis (based on the connection of the Grunsky matrice with Fredholm 
eigenvalues of the boundary curve f(dA)) it follows only that Q is lower, but not 
upper semicontinuous (see [11, 5, 10]). But we need not use the upper semicon- 
tinuous regularization Q*(qo)= lim sup ~(v;), because of the specific features of the 

finite-dimensional case give a possibility to establish the continuity of Q. 
It is sufficient to establish the continuity of the function u(cp) on T(F). Let us 

denote 
L~= f~(Izl= l), G*= f~(A*)=extLq,, G~=~\G*=intL~,. 

Consider for the curve L~, the smallest positive Fredholm eigenvalue 2~,, which is 
defined by the equality 

1 IDG~(h)-Do~(h)[ 
2-~ =sup  DG,(h)+ Do.~h ) , (3) 

where Do(h) = ~ j (Ih~lZ + i hrl2)dxdy is the Dirichlet integral and supremum is taken 
G 

over all functions h continuous in (~ and harmonic in ~ \ L , ,  with O < Do~(h) 
+ Do.~h ) < ~ ;  we denote the family of such functions by H r. (In the case of smooth 
curve that is an eigenvalue ofhomogeneus integral equation with the double-layer 
potential over L~, and 2~0 = oo for a circle.) 

Due to known Schiffer-Kiihnau result [10, 5], 2~, is connected with u(qJ) by the 
equality 

1/2~ = u(tp), (4) 

and we will prove the continuity of 2~,. For this we will use certain considerations 
employed in Schober's paper [11]. 

Let us associate with the curve L~, also the functional 

x(G,G*)= sup Do~(h) 
hEfI. Oo~h)' 

then, by virtue of (3) and (4), 

max {• G*), u(G*, G~,)} - 1 
u(~o) = max {x(G~,, G*), x(G*, Gr + 1" 

We prove that for any sequence {~.} C T(F), which converges to ~o o e T(F), the 
equality 

lira u(~0.) = u(tP0) 
n ~ o o  

holds. It is sufficient to establish that 

lira x(G., G.) = x(Go, Go), lim ~(G*, G,) = x(G*, Go) (5) 
n...~ oo /1--* 0o 

(the continuity of the functional x), where, for the sake of simplicity of notations, it 
is denoted G.=G,., G*=G*. Analogously, let be L.=L,., H.=H,., f .=f , ,  
(n=0,1,2 . . . .  ). 

Consider the mappings 

g*=f~ofol:G*-~G *, n = l , 2  ....  , 

which are conformal in G~, and take their Teichmiiller extremal extensions ~* to 
whole sphere ~ ,  compatible with Fo =foFfo ~ (on which the Teichmiiller distance 
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in T(F) between cp, and ~Po is realized), ~*lGo =gn. Then their quasiconformality 
coefficients (maximal dilatations) 

u(~*)  = I I ( lad*l  + l a d * l ) l ( l ~ d * l - l a d * l ) l l  ~ - ~.*, 

where, as usually, d, = �89 a~ = �89  it3s) tend to 1 for n--too. 
Now fix h, ~ H n and define h o as h, o g* in G~ and as harmonic extension of 

h, o g*lLo into G o. Then h o ~ H o and, due to conformality of g* in G~, we have 
D ~(ho) = D~(h.). Further, by the Difichlet principle, D ~o(ho) <= DGo(h, o ~*~), and on 
the other hand, the quasiinvariance of the Dirichlet integral under quasiconformal 

o * ~ * mappings gives that Doo(h ~ :,~)= K~ D~.(h~). Hence we obtain 

O~(ho) OG~(hit) Dc~(h,,) > D~(h,,) 
x(G~, Go)> D~o(ho ) = D~o(ho ) > D~o(h,o g,) = K*D~.(h,,) 

and, consequently, for any n = 1,2 . . . .  

, 1 , 
x(Go, Go)> ~ • G,), 

and since we have lira K* = l, we get 
i t--c00 

u(G*, Go)> lim sup u(G*, Git). (6) 
rl -~  r 

We now establish that 

lim inf • G~) > u(G*, Go), (7) 
I t -~  oo 

and that together with (6) gives us the second equality from (5). 
Taking into account the definition of the functional u, we choose for a given 

> 0  a function ho ~ Ho such that 

D6~(ho) > u(G*, Go)-- e. 
Doo(ho) 

Then we transform ho, by analogy with the proof of the inequality (6), into the 
functions hit e H., setting h~ to be equal h o o ~*-1 in (~* and in G, be equal to 
harmonic function with boundary values ho o g~*-l on Lit. Then we have 

o * - - 1  , ~  * DGt(h.)=DG~(ho) and D~.(h,)<D~.(ho ~ )=K~O~o(ho) 

That gives now 
u(G*, Gn) >- O~t(hit) = O~(ho) > O~t~ho) 

- D~,~(hit) Oo.(h,,) = K*O~o(ho) 
1 . 

>->_ ~ (~(Go, Go)-~) 
and, consequently, 

tim inf ~(G~, G,) = x(G~, Go)- ~. 
n~O0 

From this, since ~ is arbitrary, it follows the validity of (7). 
To obtain analogous relations for u(Gn, G*~) we must construct the quasicon- 

formal extensions ~, of conformal mappings from Go onto Git with K(~,)-+I for 
n~ co. In compare with the mappings g~ considered above in this case a difference 
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arises caused by the fact that any quasi-Fuchsian group 

l'~=Lrf~ -1 (n=0 ,1 ,2  . . . .  ) 

(with invariant quasicircle L.) uniformized two Riemann surfaces G,/F~ and G*/F~, 
which are different if f ~ .  id; we shall consider these surfaces as marked surfaces, 
i.e. shall distinguish their canonical dissections. While all the surfaces G*/F~ are 
conformally equivalent, for G./F. it is not true, and thus we need to exploit the 
another arguments. 

It will be more convenient for us to pass from A and A* to upper and lower 
halfplanes U = { I m z > 0 }  and U*={Imz<0}  correspondendly, using the 
transformation 

~ : z ~--~i(1 + z)/(l - z ) .  

To avoid the complication of the notations, we will preserve for the corresponding 
group in Uu  U* and for the mappings U* --+G* instead of TFz- 1 and f ,  o ~- 1 the 
above notations F and f,. 

Let us take a fixed canonical system of generators 71 ... . .  V, r=2p+n ,  of the 
group F; they satisfy the relation 

fi 7j=1, 
. / = 1  j = 2 p + l  

where V l . . . . .  72p are hyperbolic and 72~+ ~,.--, 7, are parabolic elements (it is 
possible that p =  0 or n =0), and define a canonical dissection of the surface U*/F 
(and of U/F). The image of this system in F~ is the system of generators 

7s.,1 =fn ~ 7t of.- 1,..., ?j , . ,  = f , o  7, ~  ~" (8) 

Consider the Fuchsian equivalents 2;. = w~- ~F~w, of the groups F~ in U, where 
w. are conformal mappings from U onto G.; we normalize these mappings by 
conditions 

w.(i) = 0, w'.(i) > 0, n = 0, 1, 2 . . . . .  
Now let 

g. = w. o wff I : GO ~ Gn (9) 

and notice that w. are homeomorphic in t.7 and g. homeomorphic in Go, also 

lim IIw.-wollc(o)=0, lim Ilg.-gollc(~o)=O. (10) 
/i.-~ oo i1-~ oo 

In the group Z. the system of generators 

a .a=w;1  oTy.,1 o w" . . . . .  o . = w ~  1 o yy.,. o w. (11) 

corresponds to the system (8). 
Assume that the entries of all linear-fractional automorphisms of �9 considered 

here are choosen so that determinants are equal to one and the traces are positive; 
for example, let 

ajz + bj 
7j = cjz + d~' 

a.jz + b,j 
GnJ ~-" CnjZ "~ dnj 

q = l ,  ...,r). 

a j d j -  bjcj = 1, aj + dj > O, 

anfllnj -- bnfnj = 1, an/+ dnj > 0 
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We need to construct the quasiconformal homeomorphisms t, : U*/F--, U*/,Y,. 
(with K(t.)~ l for n ~  oo) which realize geometrically the isomorphisms t* : F--*2:., 
and which are defined on the generators (8), (11) by 

t*(79=~.1, j = l  .....  r. (12) 

Geometrically that means the marking of the surfaces U*/F and U*/Z, or, 
equivalently, the choice of a homotopic class of homeomorphisms. 

The existence of such quasiconformal homeomorphisms follows from the 
general theory of Teichmtiller spaces, and the procedure of their construction is 
well-known (see, for example [1]). The groups F and Z, are normalized as needed, 
then for p > 0 the quantities 

at, bl, cl, ..., a2p-2, b2p-2, C2p-2, a2p+ 1, c2p+ 1,-.., at, cr; (13) 

a.l,b.t,c.1, ...,an.2p_2, bn. 2p_2,r 2p_2, an,2p+ l, Cn.2r+ l, ...,anr, Cnr (14) 

and, for p = 0 (and n > 3) the quantities 

azp+ 1,c2p+.'", a,,c,; (13') 

an, zp + 1, c., zp + x .. . .  , a.,, c.r (14') 

are taken as Fricke coordinates of the groups F and Z. (n = 0, 1 . . . .  ). Using these 
coordinates one can construct for any isomorphism t* the Teichmtiller extremal 
quasiconformal homeomorphism t, which conjugates F and 2;,, i.e., a mapping 
from U"/F onto U*/2~, compatible with given markings of these surfaces. By virtue 
of (10) these Teichmiiller mappings and their quasiconformality coefficients depend 
continuously from the coordinates (14) or (14'). 

On the other hand, as is well-known also (see [2, Chap. YI.A]), a choosing of a 
homotopic class of homeomorphisms t. : U*/F~ U*/,Y,. (modulo ideal boundary) 
is equivalent to the fixing of boundary values of the liftings t'. to U* of these 
homeomorphisms. 

As a result, we get for any n = 1,2 ....  two mappings: conformal w.: U~G. and 
quasiconformal f .  o t'.- ~ : U * ~  G*, which are glued continuously on the unit circle, 
and hence these mappings form an unit quasiconformal automorphism of the 
whole sphere ~ .  

It follows from the above also, that the extremal Teichmfiller extension ~, to (~ 
of the mapping g. from (9), that is conformal in Go, has quasiconformality 
coefficient K(~.) for which lim K(g.)= 1. 

n"* Q0 

We may now consider functionals z(G., G*) and obtain for them the relations, 
analogous to (6), (7). Thus we state the validity of the first equality from (5) also. It 
completes the proof of continuity of the functions u and 0. Notice, that 
lim O(~o) = - oo = O0). 
r  

We pass to proof  of the remaining conclusions of the theorem. 
(b) The plurisubharmonity of ~? in T(F) is now trivial, because it is the envelope 

sup loglhx(q~)l of plurisubharmonic functions and is upper semicontinuous. 
Ilxll=l 

(c) Let us show that 
0(q~)~0 for ~p~T(r)  (q, ER(/3) .  (15) 

Assume that there exists a sequence {~0.} C T(F) which converges to a boundary 
point q~o, such that 

lira 0(q~.) = a < 0 
R.--~ oo 
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(one can obtain this by passing to a subsequence). Then, taking a0 e (a, 0) for 
n >= no(ao), we have Q(q~,)< a o < 0. Hence, for such n, 

sup [hx(tp.)[ < e a~ < 1, 
IIxH = 1 

and then, using the Pommerenke's result mentioned after (2), we conclude that the 
correspondend functions fr admit k-quasiconformal extensions re.  to the whole 
sphere ~ with k < 1, which depends only from ao. From this by virtue of the 
compactness of the class of normalized k-quasiconformal automorphisms of the 
plane and since r converge to q~o, it follows immediately that the limit function 
f~,o : A * ~  must be also a restriction to A* of some k-quasiconformal automor- 
phism o f~ ,  but it is impossible, because ego is, by assumption, a boundary point of 
T(F) and, consequently, Of~,o(A* ) can not be a quasicircle. The derivered 
contradiction proves (15). 

(d) It remains to remark that after biholomorphic imbedding of T(F) into 
B:(F), the Kleinian groups f~,oFf~ 1 with one invariant simply connected 
component fr corresponding by the Bers-Maskit theorem [3, 6] to the 
boundary points q~o e t3 T(F), the functions fro are also univalent in A*, so O (q~o) < 0 
is defined. Analogously to (c) we obtain that the case O(q)o)<0 is excluded, so 
a(9o) = 0 in all boundary points ~Oo. Together with (15) this gives the continuity of Q 
on the boundary of T(F) also. The theorem is proved completely. 

The constructed function O is continuous as a mapping T(p, n)-*R_ u { -  oo}; 
it is equal to - o o  in a single point from T(p, n) only. 

It is interesting to know, whether a(x) is maximal among all nonpositive 
plurisubharmonic functions on T(F) with given logarithmic singularity at the 
origin and equal to zero on the boundary of T(F). 

I would like to thank the referee for his useful remarks. 
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