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1 Introduction 

An array of invariants for closed 3-manifolds and for links in 3-manifolds has been 
revealed by Witten [17] using the inspiration of quantum field theory. When the 
3-manifold is the 3-sphere, these link invariants are essentially the Jones 
polynomial (or one of its generalisations) of the link, evaluated at various complex 
roots of unity. A proof of the existence of such invariants has been given by 
Reshetikhin and Turaev 1-14]. Building on Kirby's theorem [7] concerning the 
different ways of obtaining a 3-manifold via surgery on the 3-sphere, they use deep 
results from the theory of quantum groups and the representation theory of Lie 
algebras. This paper gives an alternative approach, based on only the general 
outline of their method. The result obtained here establishes those new invariants 
that, in other interpretations, correspond to the Lie group SU(2). This proof of the 
invariants' existence, which also starts with Kirby's theorem, uses Kauffman's 
(easy) bracket invariant [-5] of regular isotopy classes of planar link diagrams. The 
behaviour of this invariant at roots of unity is explored using the discipline of the 
Temperley-Lieb algebra I-1, 6] (that is also used in statistical mechanics in the 
calculation of the partition function of the Ports model), and the results are 
blended with some of the elementary tricks of linear skein theory [11]. The results 
needed (and here proved) from the Temperley-Lieb algebra are implicit in work of 
Jones [4] which appeared before the advent of his Jones polynomial (see also [3]). 
Of course, the Kauffman bracket is but a clever reformulation of the Jones 
polynomial. The nature of the 3-manifold invariants is described in a fairly simple 
way, but calculations are by no means easy and will not be attempted here. Some 
of these calculations have been performed and discussed by Kirby and Melvin 18] 
using some of the few (sixteen) roots of unity at which the Jones polynomial can be 
expressed in terms of more classical invariants; they do at least show that the 
invariants are not trivial. 

The paper is, apart from its use of Kirby's surgery theorem, intended to be 
entirely elementary and self-contained. Much of it is but an exercise in elementary 
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linear algebra. It is a pleasure to record gratitude to V.F.R.  Jones for 
correspondence, to H. Wenzl for very helpful conversation, and to K. H. Ko and 
L. Smolinsky for their result [9] that confirmed the conviction that the general 
methods of this paper would work. An early version of this paper using their work 
has appeared elsewhere [13]. 

2 The invariant described 

The statement of the main result of this paper will be in terms of the bracket 
polynomial invariant of Kauffman [5, 12]. The bracket is a function 

( ) : {Diagrams in R 2 u  oo of unoriented links} ~ Z [ A  • 1] 

that is defined by three properties: 

(i) < ~ > = 1 ;  
(fi) ( D u U ) = f ( D ) ,  where U is a component with no crossing at all and 

3 = - A - Z - A 2 ;  
(iii) < ~ > = A< ~ > + A-I< 2~ C >, where this refers to three diagrams 

identical except where shown. 
[The normalisation of (i) is not entirely standard.] It is very easy to show 
(see [5] or [12]) that (D)  is a regular isotopy invariant (that is, it is unchanged 
by both the second and third type of Reidemeister move shown in Fig. 1) and 
that its interaction with the third type of move is described by the equation 
<>~> -- -A3<)>. Further, if D1 and D2 are disjoint diagrams it is clear that 
(DtuD2) =(DI)(D2).  

Fig. 1 Type 1 Type 2 Type 3 

If L is an oriented link in S 3 represented by the diagram D, let w(D), the writhe of 
D, be the sum of the signs (+  I) of the crossings. For reference only, the Jones 
polynomial V(L), usually expressed with variable t = A-4, can be defined by the 
equation 

,5 V(L) = ( -  A)- aw(m(D). 

This is invariant under all three types of Reidemeister move and so is an invariant 
of the oriented link~ 

Various planar diagrams of links and parts of links will appear in what follows. 
A non-negative integer i beside a curve will signify the presence of i copies of that 
curve, all parallel in the plane. That is illustrated in Fig. 2. 

Figure 3 shows a pair of diagrams (of the Hopf link of i + j  components) which are 
regularly isotopic and so have the same bracket polynomial; let T~+~ denote the 
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bracket polynomial of either of these diagrams. 
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The bracket takes values in the Laurent polynomial ring ~[A• but in what 
follows it will be evaluated when A is a specific root of unity, so that the bracket 
may be thought of as having complex number values. 

It is well known [10] that any closed oriented 3-manifold M 3 can be obtained 
from the 3-sphere S 3 by surgery on a framed (unoriented) link (L, f). Thus, to each 
component L, of L is assigned a "framing" which is an integer f(s). M 3 can be 
constructed by the following process. Remove a small open solid torus neighbour- 
hood of each L,. On each resulting toral boundary component consider the simple 
closed curve that represents f(s) meridians and one longitude of Ls; attach new 
solid tori so that each of these (framing) curves now bounds a disc. A link diagram 
D in R 2 u ~ will be said to represent (L, f )  if D is a diagram for L in the usual sense, 
and, denoting by D, the part of D corresponding to the component L,, w(D~) =f(s) 
for each s. [Note that w(D~) is independent of any choice of orientation as D, 
represents a single link-component.] Thus for each component the sum of the 
signs of the crossings encodes the framing of that component. Of course, any 
diagram for L can be modified, by inserting small "kinks" in its components, to 
represent (L, f). Framed links (L, f )  and (L', f ' )  in S 3 are ambient isotopic if there is 
an ambient isotopy (that is, a movement of the "strings" in 3-space) sending L to L' 
such that the framings on corresponding components are equal. The following 
useful result follows at once from a theorem of Trace [15]. 

Proposition 1. Suppose that framed links (L, f )  and (L',f ') are represented by 
diagrams D and D'. Then (L, f )  and (L', f ' )  are ambient isotopic in S 3 if  and only if  D 
and D' are regularly isotopic in R2uoe .  

Hence the bracket polynomial of a diagram of (L, f )  is an ambient isotopy 
invariant of the framed link (L, f). 

It is convenient to explain some notation before stating the theorem. If D is a 
link diagram with D 1, D2, ..., D, corresponding to the link's components, and c is a 
function, c:{1, 2 .... , n}~Z+,  let c * D be the diagram in which each D~ has been 
replaced by c(s) copies all parallel in the plane to D,. Note that if D and D' are 
regularly isotopic then so are c * D and c * D'. Usually c will be restricted to C(n, r), 
the set of all functions c: { 1,2 ..... n} ~ {0, 1,..., r -  2}. If the framed link (L, f )  is 
given an orientation, the linking numbers of the pairs of its components form a 
symmetric matrix in which f(s) is taken to the linking number of L~ with itself. The 
signature and nullity of this matrix are independent of the choice of orientations. 
The nullity of the matrix is, in fact, the first Betti number of the 3-manifold 
obtained by surgery along (L,f) .  Recall that T~+j is the bracket of the diagram 
shown twice in Fig. 3. 

The following theorem is, then, a version of part of the results of Witten [17] as 
interpreted by Reshetikhin and Turaev. For any primitive 4r ~h root of unity it 
produces an invariant of 3-manifolds, a complex number that is, in fact, in the field 
over the rational numbers generated by the 4r th roots of unity. 
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Theorem. Let r be a ( f ixed) integer, r>__3, and let J =  - A - 2 - A  2 where A is a 
primitive 4 f  h root of unity. 

(i) There is a unique solution ,~o, 2t . . . . .  At- 2 in the complex numbers to the set of 
linear equations 

r - - 2  

y, 2~Ti+j =/P,  j=O, 1 . . . . .  r - 2 .  
i = 0  

(ii) Suppose that M 3 is obtained from S 3 by surgery on an n-component framed 
link (L,f) ,  for which tr and v are the signature and nullity of the linking matrix; 
suppose that (L, f )  is represented by the diagram D. Then the expression 

~ + v - - n  

~: 2 ~ ).c(1)2c~2)... 2ct.~(c* D) ,  
c~C(n,r) 

r - 2  

where x = ~ 2i~, is an invariant of the 3-manifold, a complex number independent 
i = 0  

of the choice of (L, f )  or of O. 

Notice that, in calculating the invariant as described in this theorem, it is 
necessary to calculate (c * D). If r = 6 and D is just the 3-crossing knot, a diagram 
of four parallel copies of the knot has at least 48 crossings; naive calculation of the 
bracket polynomial (direct from its definition) would then involve 248 operations. 
Of course, for particular types of link, and also for special values of r, there are 
more subtle methods; nevertheless, calculation often poses considerable problems. 

The theorem of Kirby [7] describes how framed links are related if they 
represent (via surgery) the same 3-manifold. That theorem, as refined by Fenn and 
Rourke [-2], will now be interpreted by means of diagrams. It asserts that framed 
links correspond to the same 3-manifold if and only if any diagrams that represent 
them are related by regular isotopy and by the equivalence relation generated by 
moves of two kinds. In the first move diagram D is related to D' as shown in Fig. 4i; 
D' is obtained from D by inserting an extra unknotted component D',+ 1, with 
w(D', + 1) = 1, and adding a positive twist in the strands linked by this component in 
the way depicted. In the second kind of move, shown in Fig. 4ii, D is related to O" 
where D" is D together with an extra component D~+ ~ that is unknotted and 
disjoint from D, with w(D~ + 1) = -- 1. (The moves of [2] include a "negative" version 
of the first move; a proof of the above simplification, due to Turaev, appears in 
[13].) Employing this result, a 3-manifold invariant comes at once from any 
quantity associated to link diagrams in S 2 that is invariant under regular isotopy 
and under the two types of move described above. The proposed invariant of the 
theorem is not changed by regular isotopy as the bracket is invariant under regular 
isotopy. Thus, invariance under the two (Kirby) moves is all that has to be proved. 
This will be established in the final section of the paper. The proof will use a 
combination oflinear skein theory [11] and some (possibly surprising) facts about 
the bracket polynomial when the variable A is a root of unity. These ideas will be 
developed in the next section. 

Fig. 4 (ii) D ~ - - ]  

D' 

D" 

JL r  P_d 
Dn+l 
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3 The Temperley-Lieb algebra 

A simple version of linear skein theory (see [11]) will now be described. Consider a 
square in R2w ~ with m specified points on its left edge and m such points on its 
right edge. Consider all tangle diagrams in the square (i.e. link diagrams in which 
components may be arcs) with the specified points as boundary. Figure 5 shows an 
example when m = 3. 

Fig. 5 

Let V,, be the module over 7Z[A -+1] freely generated by all such diagrams 
quotiented by relations of the form 

(i) D u U = f D ,  where as usual 6 = - A - 2 - - A  2, 

(ii) (~"~) = A ( ~ )  + A ' I ( )  C). 

As before, in (i) U is a closed component of the diagram that contains no crossing 
(one such component is in Fig. 5), and in (ii) the diagrams in parentheses are the 
same except where shown. Of course, equalities in this module are thought of as 
partial calculations of bracket polynomials, and regularly isotopic diagrams 
(keeping the boundary fixed) represent the same element of Vm. When a non-zero 
complex number is substituted for A, Vm becomes a vector space over the complex 
numbers. The placing of one diagram beside another, as in Fig. 6, produces at once 
a third diagram of the same nature. 

Fig. 6 

This operation induces a bilinear map VI X V,,~ Vm so that, with respect to this 
product, V,, becomes an algebra. Now as a vector space, Vm has a base consisting of 
all (elements represented by) diagrams in the square with no crossing and no closed 
component. Although it is not needed here, observe that the dimension d,, of V,, is 

1 (2mm) That i s s o s i n c e d , + l =  ~d ,d , , _ i andhence ,  if the Catalan number m + 1 " i=o 

~(z) denotes the generating function ~ diz i, then z~b(z)2 = q~(z)-1. Thus 2z~b(z) 
i=0 

- 1 - [/1 - 4z and the formula follows from the binomial expansion. For 1"3 the 
base is shown in Fig. 7. Vo has dimension one, the empty diagram, denoted lo, 
being a base; any link diagram in R 2 can be regarded as being an element of Vo. 

Fig. 7 

13 e 1 e2 e le2  e2e 1 
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As an algebra I'm is generated by the elements 1 m, el, e2,..., era- ~ that are shown in 

Fig. 8 

lrl 

Ira 

i - 1  

e i 

Figure 8, so every element of V,, is expressible as a linear combination of products 
of these elements. 

For i, j = 1, 2,...,  m - 1 ,  these generators satisfy the relations 

lme~=ei=e~lm , 

e 2 =~ei, 

e~ej= eje~ if li--jl > 2, 

eiei• 1el----- ei provided ei• 1 is defined. 

Up to scaling, V m is the m th Temperley-Lieb algebra, 6 being a parameter in r  
Following Wenzl [16] and Jones [4] (see also [3]) and guided also by Ko and 

Smolinsky [9], consider for each n > - 1, the polynomial function A. of degree n in 
6 defined recursively by 

A . = t A . - 1 - A n - 2 ,  A0=I  and A_I=O. 

This A. is, in fact, the n th renormalised Chebyshev polynomial of the second kind. 
For each n < m - 1, provided A (and hence 6) is chosen in IE so that A ~ A z--- A, ~e 0, 
define f .  e Vm by fo =lm and 

f .  =f . -x  --(An_ x/A.)f.- le, f , -1 .  

It follows easily, by induction, that f . - l .  is in the (proper) subalgebra 
~(el,  e2 . . . .  , e.) generated by el, e2 . . . . .  e.. In particular, f ,  commutes with each of 
e . +  2 ,  e .  + 3 ,  �9 � 9  era- 1 �9 

Lemma 2 116]. Suppose 6 is such that, for some n < m - 1 ,  31Ae . . . 3 ,~0 .  Then 
in Vm, 

(1,) f2  = f , ,  

(2.) elf  ~ =0 for all i-<n, 

(3.) (e.+lf.)2=(A.+l/A.)e,+lf. provided n<-m-2 .  

Proof. The lemma is clearly true when n = 0. Inductively suppose it is true for a 
given n, and then suppose that n + 1 < m - 1 and A 1A 2... d .  + 14: 0. This means that 
f l ,  f2, ..., f .  + 1 are all defined. 

(1.+ I)f"+ ~=(L-(A./A.+ OLe,+ lf.) 2 
=f .-2(A./A.+OLe.+IL+(AJA.+O2f.e.+~Le.+~f.  (by 1.) 

=L-(A./A.+I)f.e.+~L (using 3.) 

= f . +  1 �9 
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(2.+1) If i<n, then 

eif.+ l = ei(f. - (A./A. + 1)f.e. + 1 f.) = 0 (from 2.), 

e .+l f ,+ l=e .+lL- (A . /A .+O(e .+lL)2=O (from 3.). 

(3.+ ~) Suppose that n+  1 < m - 2 .  Recall that e.+ 2f. =f ,e .+ z and note that (by 
1.) f . f .  + 1 = f .  + i, Then 

2 (e.+ 2fn+ 1) =e.+z{f.--(A./A.+l)f.e.+~f.}e.+2f.+l 
=fe.+ 2f.+ l - (A . /A .+  OLe.+ 2e.+ le.+ zL+ l 

=(6- (A. /A .+ l))e.+ Ef.+ l 

=(A.+2/A.+Oe.+zf.+l, using the definition of A.. 

In this context, the above lemma might be regarded as technical. Its usefulness 
will be seen in its interaction with the Markov trace on the Temperley-Lieb algebra 
Vm defined in the following simple way. If D is a tangle diagram in the square 
having m endpoints on each of the left and right edges of the square, D represents 
an element [D] of Vm. Then tr[D] is the bracket polynomial, evaluated at the 
chosen value of A in I~, of the link diagram formed from D by joining the points on 
the left edge of the square to those on the right by arcs outside the square that 
introduce no new crossing. This idea (analogous to the closure of a braid) is 
illustrated in Fig. 9. 

This clearly induces a well-defined linear map on the vector space V.,, because the 
relations used to define V,. are essentially the formulae that characterise the 
bracket polynomial. It is then clear that this trace function has the following 
properties. 

tr: Vm--*C is linear, 

tr(xy) = tr(yx), 

tr(lm)=6 m, 

6tr(xe,)=tr(x) if x~g2(l~,et, e2 .. . . .  e.-1). 

The following lemma calculates tile trace of the element f .  constructed above. 

Lemma 3 [ 16]. Suppose ~ is such that, for some n <= m - 1, A 1A 2--- A, 4= 0, and f .  is 
the element of I'm defined above. Then 

tr(f.) = 6 " - " -  1A.+ 1. 

Proof. 

tr(f.) = tr(f.  _ 1) -- (A._ 1/A.) tr(f~ _ le.f .  - 1) 

= tr(f .  _ 1) - (A. _ 1/A.) tr(f. 2- le.) 

= { 1 - ( A . _ J f A . ) } t r ( f . _ O ,  as f.-~zg.I(1.,,el, e2 ... . .  e . - 0 .  
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So 

tr(f.)= (A.+ d6A.) tr(f._ t) 
= (A.+ 1/6 "+ l)tr(fo)= 6 m-"- 1A.+ 1. 

It is now time to check up on when A. is zero, so the following elementary lemma is 
included here for completeness (it is also proved and used in [9] and [3]). 

Proof. Recall  that A . = 6 A . _  t - -A , - z ,  A - I  = 0  and Ao= 1. Clearly A. is a monic 
polynomial of degree n in 6. The substitution 6 = x + x  -~ makes A. a rational 
function of x, and 

A n  - -  x A n -  1 = X - I ( A  n _ 1 - xA._ 2). 

Repeating this n times gives 

A n - -  X A n _  I = X - n .  

Using the symmetry between x and x -  

A n - - x - l A n _ l  = x  n ,  

so that ( x - x -  1)A,-- x "+ 1 _ x-~"+ t~. Thus .4 is certainly zero when x" + 1 ~--- X-(n + 1) 
but x :~ x -  t. This occurs when x = e i~k/'+ 1, and hence when 6 = 2coskg/n + 1, for 
k-- 1, 2, .... n. (Note that 

/6 1 1 
1 6 1 

A.(6) = det  1 and A . ( - 2 c o s 0 ) -  ( -1 ) " s in (n+ l )0  

1 

The above lemmas now combine to give the result needed in the linear skein 
theory applications. It will be important to consider 1~.: Vm~C the element in the 
dual space of Vm dual to the base element 1..; so that, in particular, 1" maps any 
diagram in the square to the coefficient of 1,. in its expansion as a linear sum of 
diagrams with no crossing and no loop. Also of key significance is the bilinear form 

( ,  > : v.,x V.,--,r 

defined from the trace in the usual way by (x ,y>=tr(xy) .  This, in the case of 
diagrams in the square, can be thought of as the operation of placing one diagram 
inside a square, the other outside the square, and calculating the bracket 
polynomial of the resulting link diagram using the prescribed complex value for A. 

Proposition 5. Suppose that, for some r > 2, A is a primitive 4r th root of unity. 
O) For m < r - - 2 ,  let p(m)=(Am)-t  fm-1 ~ I'm and p(O)= 1 o. Then 

<, p(m)> = 1~,. 
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(ii) I f  m>>_r-1 let q(m)=(lm--f,-2)s Vm. Then q(m) is in the sub-algebra 
~l(el,e2 . . . .  ,er-2) of Vm, the bilinear form <, ):Vmx V,.~IE is degenerate, and 
<, q(m)> = <, I,.>. 

Proof. Firstn~ k: l  l~I - 2 ( c o s 0 + c o s  k ~ - ~ ) . S o i f - n < 0 < n  

A, is zero if and only if 0=  +kn/(n + 1) for k=  n, n - 1 , . . . ,  1. Thus, when A 2 is a 
primitive 2r th root of unity (r~2) A1A2 ... A,-2 ~=0 but A,-1 =0. 

(i) For 1 <re<r-2 ,  consider the element f,._ 1 in V,, defined previously; the 
definition is valid because A1A2 ... A~,_ t #0.  From Lemma 2, eifm-1=0 for 
i = 1, 2 . . . .  , m -  1. If b is any base element other than 1,, of V,, (qua vector space), b is 
some product of these % Thus <b, fro-1> = tr(bf,,_ 1)=0. On the other hand, 

<1,,, fro- 1 > = tr(1 mf~,- l) = tr(fm- 1) = A m, 

by Lemma 3, and this is not zero since m < r - 2 .  Hence p(m) has the required 
property. 

(ii) When r - l < m ,  AtA2 ... A,_2#0, so that the element f~-2 is defined in 
V,_ 1- As before, if b is any base element other than 1,_ 1 of V~_ 1, <b, f,_ 2> = 0 and 
( l r -  1, f , -2> =At_ 1 =0. Hence <, f r -  z) is the zero map V~_ 1 ~ll]. If now re>r -  1, 
there is a natural inclusion of V,_~ into V,, induced by taking a diagram 
representing an element of V~_ 1 and adding m - r +  1 parallel horizontal arcs 
immediately above. In this context the el and f~ notations are unambiguous for 
i <- r -  2. If then D is a diagram representing [D] in V,,, let D' be the diagram shown 
in Fig. 10 representing the element [D'] in V,_ i. Then 

<[D],f,-E>=<[O'],f,-2)=O 

(where the first use of <, > is in Vm, the second in V,_ O. 

m-r+l 

Fig. 10 

Hence <, f ,_ 2> is the zero map V,, ~ r so that, as f r -  2 is non-zero, the bilinear form 
is degenerate. Hence q(m)=(lm-f,-2) has the required property. 

4 The invariant established 

There are two parts to the statement of the theorem. The first, concerning the 
existence of a unique solution to some linear equations, requires that a certain 
square matrix be shown to be non-singular. This will be proved in Proposition 8. A 
preparatory lemma now follows. Let x~ be the element of V,, shown at the 
beginning of Fig. 11. 

Lemma 6. I f  A2=e i~ then, for all m>0,  l~,(x,,)--- - 2 c o s ( m +  I)0. 
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Proof. Consider the equalities in V, depicted in Fig. 11. 

W. B. R. L i c k o r i s h  

Fig.  l l  = (1 -A4)A 2 + ( l - A 4 ) ( 1 - ' ~ ' )  + A-2 

Now 1~, is clearly zero on the middle of the three terms in the last line of Fig. 11 
because any further expansion will never achieve m arcs going from the left edge to 
the right. Thus there results the following recurrence relation (by repealing, on the 
first term of the last line of Fig. 11, the last expansion m - 2  times) 

1 " ( x . )  = (1 - A 4) (A 2),. - ~ + A - 21 ~, -1  (xm - 1  ), 

where l~(Xo) is to be taken as 6. The solution to this recurrence relation is 

l~,(x,,) = - A  2"+2 - A  -2"~-2 = - 2 c o s ( m +  1)0. 

[Note that when e *~ is a primitive 2r  th root of unity the l'(Xm) are distinct for 
m=0,  1, ..., r - 2 . ]  

Corollary 7. l~,(xk) = ( -  2cos(m + 1)0) i. 
i Proof. This is immediate because an expansion of xm as a linear sum of basis 

elements can be started by expanding each x~, factor. Only the 1m-term in xm can 
i contribute to the lm-term in xm. 

Proposition& When A is a primitive 4r th root of unity the matrix 
{ Ti +i; 0 < i, j =< r -  2} is non-singular. 

Proof. Recall that T~+j is the bracket of either of the link diagrams of Fig. 3. 
Suppose the matrix { T~ + j; 0 =< i, j =< r -  2} is singular. Then there exist ~ ~ C, not all 
zero, such that 

r - -2  
~ # i T i + j = 0  foral l  j = 0 , 1  . . . .  , r - 2 .  

i = 0  

Consider the elements of Vj shown in Fig. 12. 

Fig. ~2 

zj zf 1 Yj.i x; 

Now, T~+j= (1~, zyj . t ) ,  so 
r - - 2  

E ~i<]j'zjYj, i> =0 
i = 0  

for all j = 0 , 1  .. . . .  r - 2 .  
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Suppose that b is any base element of Vj. Consider the annulus, shown in Fig. 13, 
containing a square with j parallel ares joining the left and right sides of the square 
as shown. 

Fig. 13 

Inserting b into this square would produce a configuration of disjoint simple 
closed curves. These may be isotoped in the annulus to ~, say, standard mutually 
parallel curves encircling the annulus and fl small nul-homotopic curves (which 
may be nested). Note that ~-<j. But, (b, zyi,~) is the bracket of the diagram 
obtained by inserting b into the square of Fig. 14. 

Fig. 14 

Then (b, z yj,  i) = ( 1 ~, z~y~, ~)6 ~. This is because the isotopy in the above prototype 
annulus induces a regular isotopy in an immersed annulus (a neighbourhood of 
the j strands and the square) in the diagram consisting of Fig. 14 with b inserted; at 
the end of the regular isotopy there are e strands going around the immersed 
annulus and fl small circles with no crossing. (This annulus trick will be used 
several times more.) Thus 

t - 2  r - 2  

Y, #i(b, ziYi,,) = ~ l~i(l,,z,Y,,i)6 ~=0. 
i=O i = 0  

r - 2  

This means that, for all j = 0, 1, ..., r -  2, ~ Pi(,  zyj,  i) is the zero map V ~ C .  But 
i = 0  

z~ lz i and lj have regularly isotopic representing diagrams so z}-lzj= lj. Thus 
r - 2  r - 2  

0= Y ~,(z/~,zYJ.,> = Z ~,Oj, yj.,>. 
~---0 i=O 

This means that { (1 ~, y j, i); 0 < i, j < r -  2} is a singular matrix. But 

( l  j, Y2,i> = (,li, zixj) 

and so {(lj ,  zjx}); O<=i,j<___r-2} is singular. Hence for some visC,  not all zero, 

r - -2  

y" v,<lj, zjx}>=O. 
i = 0  

Exactly the same argument as before, using the annulus trick, shows that 
r - -2  

~o vi( ,  zjx}) is the zero map. Hence if a is any element of Vj, 

r - 2  r - 2  

0 = Y, vi(az]- 1, z~x}> = Z vi(a, x}>, for all j = 0,1 .....  r -  2. 
i=O i=O 
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So far, no specific value of A has been used. If n o w  A 2 is e i~ a primitive 2r  th root of 
unity, take for a the element p(j) defined in Proposition 5. Then 

r - - 2  r - - 2  

0 = Y  ' ~ v~(l'j(xj)) = E vi(- 2 cos (j + 1)0) i 
i = 0  i = O  

for all f = 0 , 1 , . . . , r - 2 ,  using the result of Corollary 7. Hence the matrix 
{ ( - 2  cos (j + 1)0)i; 0 < i, j < r -  2} is singular. However, as e i~ is a primitive 2r th root 
of unity, the {cos( j+l)0 ,  j = 0 , 1 , . . . , r - 2 }  are all distinct. The matrix 
{(-2cos(j+l)O)i; 0 < i , j < r - 2 }  is then a Vandermonde matrix with non-zero 
determinant 

I-I 2(cos(j + 1 ) 0 -  cos(k + 1)0). 
O~ j , k _ ~ r - 2  

j *k  

This, of course, contradicts the assertion that this matrix was singular. 

Proposition 9. Suppose that A is a primitive 4r  th root of unity (r>2), and that 
2o,21 ..... '~,-2 are such that 

r - - 2  

~, 2iTi+;=6 j, j = 0 , 1  ..... r - 2 .  
i = 0  

r - 2  

Then, for every j>=O, ~ 2i( ,  zjyy.i) and ( ,  l~> are equal maps Vi~C. 
i=O 

Proof. As Tf+i= ( l  j, zjyj.i), the choice of the 2~ means that for j =  1,2 ..... r - 2 ,  
r - - 2  

Z 2i(lj, ziY.h ~) = 6i = ( l i ,  l i ) .  
i = 0  

Suppose that, for j <  r - 2 ,  b is any base element of Vj and that inserting b into the 
square in the annulus of Fig. 13 produces a curves encircling the annulus and/~ 
small nul-homotopic curves with ~ < j. Then the annulus trick mentioned in the 
proof of Proposition 8 shows that 

r - 2  r - 2  

~, 2,(b, zY.~.i)= Z 2i(1,,z,Y~,i)gtJ=f'+a=( b, 1:). 
t = 0  i = 0  

r - 2  

Thus, Z ' t i( ,  zjYLi>=<' 1i> as maps of Vj for j<r--2.  
i = O  

The proposition is, then, true for j < r - 2 .  Suppose that r -  1 < m and suppose, 
inductively, that the proposition has been proved for all j < m. Let b be a base 
element of V,, other than l m. Once again, inserting b into the square in the annulus 
of Fig. 13 [where j is replaced by m) produces ~t curves encircling the annulus and fl 
small nul-homotopic curves; here a is strictly less than m (because b # 1,). Then, 
using the annulus trick yet again, and the inductive hypothesis, 

r - 2  r - 2  

y' 2i(b, zmy=,i)= ~ 2~(l~,z~Y~,i)~a=(l~,l~)~ # 
t = 0  i = 0  

= 6~+P= (b, lm). 

Now, as r -  1 s m, the element q(m) of Proposition 5 exists. It is in the sub-algebra 
9.I(el, e2 ..... e,-2) and so is a linear sum of base elements other than 1,,. Thus by 
taking that relevant linear sum, q(m) can be substituted for b above. However, from 
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r - -2  
Proposition 5 (q(m), ) =  (1,,, ). Hence Z '~(1,,,z~Y,.i)=(1,,, lm) and so the 

r - 2  i = 0  

linear maps ~, 2i(,  Zr, Y~,i) and ( ,  lm) agree on all the base elements of Vm and 
i = 0  

hence are equal on Vm. This completes the induction step and the proof of the 
proposition. 

Proof of  the Theorem. The existence and uniqueness of the 2~ have been proved in 
Proposition 8. Also it has been noted that the expression for the proposed 
invariant, given in the statement of the theorem, is indeed unchanged by ambient 
isotopy of the framed link (L, f). Suppose now that (L, f )  and (U, f ' )  are framed 
links with diagrams D and D' related as in Fig. 4i, L having n components. If 
c ~ C(n, r), let c' i e C(n + 1, r) be defined by c'i(s ) = c(s) for s < n, and c;(n + 1) = i. From 
Proposition 9 

r - - 2  
Z ;~<c'~,O'>=<c,O). 

i = 0  

Multiplying this by 2c(1)2c(2)... 2c(n) and adding gives 

Z ,~c,(1)2c'(2)-..2c'(n+l)(c'*D') = E 2c(1)2c(2)."2ct.)(c*D)" 
c' eC(n+ 1,r) csCln, r) 

Thus, if X(D) denotes the expression on the right of this equation, X(D')= X(D). 
It remains to consider the other basic move on framed link diagrams, namely 

when D is changed to D", a new framed link that is equal to D except for the 
insertion of an extra unknotted component, disjoint in the diagram from the 
original components, and with writhe - 1 (see Fig.4 ii). However, if diagrams D1 
and D 2 are disjoint in ~ x 2 U ( X 3 ,  then ( D 1 u D 2 ) - - - ( D 1 ) ( D 2 ) .  Hence 

r - 2  

X(O")=X(O) ~, 2 ~ .  
i = 0  

This is because the complex conjugate of T/+j is the bracket of the reflection of the 
diagram of Fig. 3 (when A is a root unity). Thus X(D")= KX(D). But the n • n 
linking matrix of L has signature ~r and nullity v, so �89 ~r-v) is the number of 
negative entries in a diagonalisation of the matrix. That number is unchanged 
when (L, f )  with diagram D is changed (as in the first move above) to (L', f ' )  with 
diagram D' and increases by one if the change is to (L", f") with diagram D". Hence 

t r + v - n  

s: 2 X(D) is invariant under both types of move, and the proof is complete. 
The above ideas generalise at once to give invariants of framed links in the 

3-manifold M3: Suppose that L is a framed m-component link in M 3 where, as 
before, M 3 is obtained by surgery on the framed n-component link (L, f )  in S a. 
Then L can be regarded as a link with framing f in S a - L  2 Suppose that the 
diagram DuB represents the framed link (LuL, f u r )  and c:{1, 2 ..... m}~Z+. 
Then an invariant of the framed coloured link (L, f ,  d) in M ~ is given by the 
expression 

cr+v--n 

/~ 2 Z /~C(1)/~C{2) . . .  2~(.)((cud) * (DUO)) 
c~C(n,r) 

evaluated at a value of A that is a primitive 4r th root of unity. Of course, if d has all 
values 1 and M 3 is S 3, this reduces to (/)). 
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