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Let G be a Lie group, f# - its Lie algebra, Z C G - a smooth hypersurface, By the 
(left) Gauss map of Z we shall mean the map ~z: Z~P(fg*) which takes z e Z to the 
left translation to unity of the hyperplane TzZ C T~G. (see Definition 1.2 below). We 
shall be interested in the case when G is a complex algebraic group and Z is an 
algebraic hypersurface. We shall consider as well the case of singular hypersurfaces 
Z. Then, of course, the map ~z will be defined only on the set of smooth points of Z; 
in other words, ?z will be a rational map from Z to F((~*). Note that 
dimZ= dimP(~*). Thus we have the following natural problem. 

Problem 0.1. Classify algebraic hypersurfaces ZCG such that 7z:Z~F((~*) is a 
birational isomorphism. 

The present paper is devoted to the solution of this problem for the case when G 
is an algebraic torus (•*)=. It turns out (see Theorem 1.3 below) that equations of 
such hypersurfaces are exactly (up to killing inessential quasi-homogeneities) 
A-discriminants, introduced and studied in 1,7-10]. The class of A-discriminants 
includes classical discriminants and resultants of forms in several variables, 
determinants of square matrices, hyperdeterminants of multi-dimensional ma- 
trices I-7]. In papers 1,'8-10] Newton polytopes of A-discriminants were described. 
The Newton polytope of a (Laurent) polynomial F(xl ..... x J ,  see I-8] is not an 
intrinsic invariant of the hypersurface {F = 0}, but an extrinsic invariant of its 
embedding into the algebraic torus (1~*) m. So is the Gauss map. Therefore, non- 
trivial structure of the Newton polytope for A-discriminants reflects non-trivial 
way of embedding of corresponding hypersurfaces into the torus. 

The Gauss map for hypersurfaces in (~*)= will be called the logarithmic Gauss 
map, since explicit formulas for it involve logarithmic derivatives. Let us give some 
examples of hypersurfaces Z C (~*)= with birational ~z, provided by Theorem 1.3. 
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Example 0.2. a) The hypersurface ZC(C*) "~ consisting of (n x n)-matrices I[a;jll, 
a~j e C* such that 

i 1 1.--1 1 
det 1 a l l  ... a l ,  =0,  

1 ant . . .  ann 

has birational logarithmic Gauss map. 
b) The hypersurface ZC(r "-1 consisting of ( a t , . . . , a , _ O  such that the 

polynomial x" + x " -  ~ + a t x " -  2 + . . .  + a ,_  ~ has a multiple root, posesses birational 
logarithmic Gauss map. 

The proof of Theorem 1.3 is based on ideas of the paper [1 ] by Horn published 
in 1889. The point is that A-discriminantal hypersurfaces are singularity sets for 
general A-hypergeometric functions [5], [6], [8]. As shown in [6], there is a basis 
in the space of A-hypergeometric functions consisting of so called F-series which 
are in fact, hypergeometric series in the sense of Horn. More precisely, Horn [1] 
has called a power series ,1 v. ICv t  . . . . .  vmxl . . .xm hypergeometric if the ratios 

C 
u  �9 �9 - ,  v n ~  

are rational functions in vl, ..., v~. It is known that power series converge"up to first 
singularity". On the other hand, knowledge of the functions Ri enables one to 
determine the growth of coefficients and hence the convergence radius in any given 
direction. This yields an uniformisation of the set of singularities which we call 
Horn uniformisation (see [1]; a brief exposition of Horn's theory can be found in 
[4], Sect. 5.7). The cocycle conditions (2.3) satisfied by Ri imply that the Horn 
uniformisation is inverse to the logarithmic Gauss map (see Remark 2.4 below). 

So, the present paper could be written a hundred years ago. It relies heavily on 
[1]. The reason for presenting this "group-theoretical" characterization of 
A-discriminants is its simplicity and the fact that it suggests non-commutative 
generalizations, where the torus is replaced by an arbitrary reductive algebraic 
group G. The study of"non-commutative discriminants" i.e., solution of problem 
0.1 should perhaps lead to some non-commutative generalization of hyperge0- 
metric functions. 

This paper arose as a by-product of the work on general hypergeometric 
functions and discriminants carried on by Gelfand, Zelevinsky and the author 
[5--10]. The author is grateful to Gelfand and Zelevinsky for introducing him into 
this beautiful subject. 

During the final stage of preparation of this paper the author was a 
postdoctoral research associate at the Mathematical Sciences Institute of Cornell 
University. Hospitality and financial support of MSI are most gratefully 
acknowledged. 

1 A-discriminanCJl hypersurfaces and main theorem 

Let A C 7.,- t be a t'mite subset, N = IA[. We suppose that A affinely generates over 
the lattice Z ' -  t. To each point co = (oJt, ..., ~o,_ 1) e Z"-  1 we associate the Laurcnt 
monomial x ~ = x~~ ... x~"_.a ' in n -  1 variables. Denote by C A the space of Laurent 
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polynomials of the form f ( x )  = ~. atoxto, ato ~ lE. Consider the subvariety 
t o e A  

V o = {f~ lea : 3X ~ (lE*)"-I S.t. f ( x )  = d x f  = 0} C IE a 

of polynomials which have a critical point with critical value zero. Let V A be the 
closure of V ~ The algebraic variety VA is called the A-discriminantal variety. In the 
case when Va is a hypersurface, the equation of V a is called the A-discriminant and 
denoted Aa (see [7]-[10]). 

The torus (lE*)" = {(21 .. . . .  2,) E lE": ;t i 4= 0} acts on lea by the formula 

((Zl . . . . .  2.) f )  (xl . . . . .  x._ 1) = 2.f(21Xx .. . . .  2n- ix . -  1). 

preserving VA. This action comes from a homomorphism of tori ~o : (IE,)~(IE,)A 
�9 "~ t O n  - 1 ~0(21,. 2,),~=,~2~'1...2,_1 . Let tO*:ZA~Z" be the dual homomorphism of 

character lattices, and denote LA----Ker~* C Z A. The rank of L A equals N - n ,  
where N = lAb 

Lemma 1.1. LA is the lattice of all affine relations among elements of A i.e., of  
families (a,o),oEa, atO~Z such that ~ atOm=0, ZatO=0. 

t O E A  

Let T(LA) = Specie [La] = Hom(La, lE*) be the algebraic torus whose character 
lattice is L,t. Thus we have an exact sequence of tori 

1 ~ (lE*)" ~ (lE.)a ~ T(LA ) ~ 1. (1.1) 
- - ~o - p 

The variety Vac~(lE*) a, being (lE*)"-invadant, has the form p-1(fin) for some 
subvariety Va C T(LA), which is uniquely defined. The subvariety ~ will be called 
the reduced A-discriminantal variety. Clearly, codim 17a = codim 17 a. We shall be 
only interested Jn the case when Va and VA are hypersurfaces. 

Definition 1.2. Let G be an algebraic group with Lie algebra ~, Z C G be an 
algebraic hypersurface. For  each ge  G let Ig:h~gh be the left translation by g. The 
left Gauss map of the hypersurface Z is the rational map Yz: Z~la((#*), taking a 
smooth point z e Z to the hyperplane d(l~ 1) (T~Z) C T,G = f~. 

Now we state our main result. 

Theorem 1.3. Let G = (lE.)m be an algebraic torus, Z C G - an algebraic irreducible 
hypersurface. The Gauss map yz : Z ~ - 1  is birational if an only if there exist 
n > O, a finite subset A CZ"-  1 as above and an isomorphism of tori G ~  T(La) taking 
Z to the reduced A-discriminantal hypersurface ga. 

The part "if" will be proved in Sect. 2, part "only it" - in Sect. 3. 

2 The Horn uniformisation 

We conserve the notations of Sect. 1. Let us number elements of A: 
A = {co"J . . . .  , r where each co w is (og~J, ..., o9~_ t) e ~U'- 1. Correspondingly 
Identify 7..4 and lEA with Z N and lEN. Put m = N - n. Choose a Z-basis {a tl) . . . . .  a t~} 
of the lattice LA, where each a tp) is (attP), ..., a~ )) ~Z  N. Thus the torus T(LA) is 
identified with (lE*)". Define a rational map h: 1 ~ -  t _.,(lE.), taking a point with 
homogeneous coordinates 2 = (2t:.. .  :2m) to (T~(;0 .. . . .  Tin(2)), where 

~vk(21 . . . .  ,2~)= ~ a~ .k' . (2.1) 
j = l  p 
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Since for each a=(a 1 . . . .  ,an)eL A we have Zaj=O, each ~k is homogeneous of 
degree 0. We cal the map h the Horn uniformisation. 

Theorem 2.1. a) Under the identification (C*) m~ - T(LA) defined by the chosen base 
of  L~, the image of h : P ~ -  l ~(C,)m is identified with the reduced A-discriminantal 
variety ~rA C T(La). 

b) If-~A iS a hypersurface, then h : ~ - 1 . . +  ~r A is a birational isomorphism. The 
inverse to h coincides with the logarithmic Gnus map 2)f,,. 

Proof. Let us define h in more invariant terms. Consider the map (rational) 

h' : LA|  C*) = T(L) 

such that for (al .....  an)~La|  ay~C and (b,, ..., b~)~La, b, s Z  we have 
N 

h'(a 1 .....  a,)(b 1 .....  b,)= l-I ajb~. 
j = l  

Since Zbj=O for each b ~ L  A, h' descends to a rational map F(La| 
which we also denote h'. 

Lemma 2.2. Under the identification La| '~ defined by the chosen basis, h' is 
identified with h. [] 

Now consider a commutative diagram 

h 
LA| , T(LA)-- Hom(LA, C*) 

T 
C'4=~*1| 1;1 ' ( C * ) A = H o m ( ~ A ' c * ) '  

where H is given by the same formula as h': H(at,  ..., an) (b~ ..... bn) =Ha~J for each 
(al . . . .  , a , ) e C  "t,(bt . . . .  ,bn)eZ ~. 

Consider the action of (C*)" on V=(cA)  * dual to (1.1). Let Y be the closure of 
the orbit of the point e=(1, . . . ,1)  under this action. This is a conical (i.e., 
C*-invariant) subvariety in (Ca) * = V, It is easy to see (and shown in [7]) that VA 
( V* is the conical variety projecfively dual to Y; see [11]. Consider the diagram of 
rational maps 

= ~A, ~ F (N%)  ~ , Y, 

where N~jv is the conormal bundle to Y. If i? is a hypersufface, ~ is birational (cf. 
[11]). 

Also consider maps 

N~iv, ~. (C*)" • (LA@C) ~, C A, 

where e is the extension by (C*)n-equivafiance of the identification LA|  
and 6 is induced by the action of(C*)" on cA 3 L,~| (see 1"5]). It is clear that ~ is a 
birational isomorphism, and the image of 6 is V a (this is the first definition of the 
singularity set of A-hypergeometfic system from [5]). Part  a) and the first half of 
part b) of  Theorem 2.1 follow, therefore from the following lemma which we leave 
to the reader. 
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Lemma 2.3. The diagram 
. , C a  n , r  

(r174174162 ~N*/v/~'/' ,, ' !A 

iS commutative. [] 

The second half of part b) of Theorem 2.1 follows from the identities 

a l o g ~  = dlog~ej Vi, j =  1, ...,m (2.2) 
02 i a2, ' 

which can be verified immediately from formula (2.1). Having established (2.2), 
consider the Jacobian matrix J(21 .. . .  , 2 ~ =  Ilalog~Pta2jll. Since ~ j  and hence 
log ~i  are homogeneous of degree 0, we have 

~ 2 ~  0 log ~ j  
i=1 02~ = 0 ,  V j=I  .....  m. 

In other words, the matrix J(2t ..... 2=) annihilates the vector (21 .. . .  ,2m)'. Since the 
image of h is a hypersurface, the kernel of J(21 .. . . .  2,,) for generic (2t, ..., 2m) is one- 
dimensional and hence generated by (2~ ....  ,2~) t. 

On the other hand, the matrix J is symmetric by (2.2). Therefore Ira J(2) is the 
/ 

orthogonal complement (with respect to the form ~ x ~ ) t o  KerJ(2) 
k i = 1  / 

= Ii~.  ( 2 1 ,  . . . ,  ,~,,)t. In other words, 21 ..... 2,, are coefficients of the linear equation of 
the image of J(L). This image is nothing but the tangent space to log ffA at the point 
logh(2) (where by log we denote the logarithmic map from the torus T(LA) to its Lie 
algebra). Thus we have established that the logarithmic Gauss map is inverse to h. 
Theorem 2.1 is proved, as well as part "if' of Theorem 1.3. 

v ~ + a  
Remark2.4. L e t J = ( 3 l  . . . .  ,JN)elI~N be a vect~ and cp*(v) = ~ N 

,~L~ lq r(rj+aj+ l) 
j = l  

be the corresponding F-series [5-6] in variables v =(v 1 .. . . .  VN). Let IC {1 ..... N} be 
a base i.e., a n-element subset such that points co j, j ~ I are affinely independent. If 
~j e Z for j ~ I then as shown in [6], q~6(v) has a non-empty domain of convergence. 
Moreover, if the base I and the basis {a ~1) . . . .  , a ~*')} ofL a are compatible in the sense 
of [6], then, introducing variables xp = v ~ we can write ~,b~(v) in the form v ~ 

c,x ~ where the latter series converges for small [xpl. The series Y c~x ~ is 

Ypergeometric series in the sense of Horn. Let e~ 6 Z '~ be the i-th standard basis 
vector. Introduce the notation (x)o = F(x + a)/r(x). Then 

R,~v)=c, ,Jc,= ~1 1 +6j+ ~ a~)')vp 
j = 1 p = 1 /a(ji)  

is a rational function in v. We have 

~'~(vt .....  v , )=  lim Ri(tvl, ...,tyro) for all vtelr. 
/-~o0 
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The relations (2.2) are obtained, by passing to the limit, from the cocycle 
conditions 

R,(v) R,(v + e~) = Rj(v)R,(v + e~) (2.3) 

which follow directly from the definition of R~. The part "only it" of Theorem 1.3 
which will be proved in the next section, can be seen as an infinitesimal analog of 
the classical theorem due to Birkeland and Ore E2, 3] which states that each 
rational solution of (2.3) is cohomologous (as a cocycle) to such where all 
irreducible factors of all R~ are linear polynomials. 

Let us write explicity the primitive of the closed 1-form 3~ log ~d2~. Denote 

/7=1 

Proposition 2.5. We have log ~ = OS/d2 i where 

j = l  k = l  

Proof. The equality log ~i = (0/d2~)(~ 2k log ~k) follows from (2.2) and the homo- 

geneity conditions Y. 2g(8~Vjd2k) = 0, i =  1, ..., m. 
k 

Further, we have from (2.1) 

2klOg~k = ~ 2 k ~ a~k)logfj=~f~logf~ as required. []  
k = l  k = l  j = l  

The function S can be called entropy for obvious reason. It is homogeneous of 
degree 1. Proposition 2.5 means that the hypersurface log V is projectively dual to 
the graph of S in 02 m+l (whereas the A-discriminantal hypersurface V itself is 
projectively dual to a toric subvariety in the projective space). Entropy - like 
expressions of the form ~ a loga or I ] a  ~ are ubiquitous in the theory of 
discriminants (see, for example, the formula for boundary coefficients of principal 
A-determinant in [10], Theorem 3A.2). To find a conceptual (say, probabilistic) 
explanation of this fact is a challenging problem. 

3 Part "only if" of Theorem 13 

Let Z c(C*)" be hypersurface such that the logarithmic Gauss map ~o z: Z- - - ,F -  
is birational. Denote by ~v: ~ -  1 --,Z the inverse rational map. It is given by ra 
rational functions ~ 2 t  ..... 2~), i = 1,..., m, homogeneous of degree 0. Let us prove 
the relations (2.2) for ~j. 

Let d(~l . . . . .  ~ )  denote the Jacobian Matrix Ild log~/~;~jl] (depending on ~). 
Denote by log the (multi-valued) map from (C*) m to C m taking (xl, ...,x,,) to 
(logx 1 ..... logxm). The tangent space to log(Z) at the point z = log ~v(2) is the image 
of J(2), and the Kernel of J(2) contains the vector (21, ..., 2~y, (due to homogeneity 
of ~'~(2)). 

The hyperplane Im J(;t) is determined by its linear equation i. e., a linear functiola 
/~1r + . . .  +/~mr vanishing for (~1 .. . . .  ~m) elmJ(2).  

To say that 97 is inverse to the logarithmic Gauss map is equivalent to saying 
that for any 2 = (~-1 . . . . .  2,,) the above vector # = (p 1, ..., #m) is proportional to 2. But 
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# generates the 1-dimensional vector space KerJ'(2). Hence we have relations 

~ 2 i  Olog ~ 
,=1 82------~ = 0 ,  u (3.1) 

8 log 7~ 
2k = 0 ,  Yi, (3.2) 

k = 1 d2k 

where (3.2) is the homogeneity condition. This means that  J(2) and its transposed 
Jr(2) both annihilate 2'=(21 .. . . .  2,,)'. 

Let us prove the equality 

O (,=~ 2,log ~ , )  (3.3) log ~k = ~kk 

(cf. Proposition 2.5). 
Indeed, in the summands of (3.1) with i 4: k we can interchange 2i and a/d2k, and 

for i=  k we have 

8 d log ~k 
- -  (2k log 7"~) = 2 k - -  + l o g  ~ k  
02 k t~2 k 

whence (3.3). The Relations (2.2) follow from (3.3). 

The following proposition is essentially due to Horn [1]. 

Proposition 3.1. Suppose that rational functions ~i(21 . . . . .  2"), i= 1 . . . .  ,m are 
. . . . .  0 log 7ti t3 log ~j  

homogeneous of  degree ~ ana such treat . . . .  , i, j = 1 . . . .  , m. Then there 
02~ 02~ 

exist N > O, an integral (m • N)-matrix Ita~ p)[I, i= 1,. . . ,  N,  p = 1, . . . ,  m and constants 
~1 . . . .  , r  such that each ~kTJk has the form (2.1). 

Proof. Let fx . . . . .  f~r be all irreducible polynomials entering in the factorization of 
the numerator or denominator  ofat  least one ~. Polynomials fj  are homogeneous. 
Put d r = degf~. So, we have 

N 
~Irk(21 . . . . .  2")=~k 1--I fj(,~)ak~, ek6(l~* ' akj~7~, ' 

j= l  

Hence 

t31ogV~_ ~ ak,~Off fO2,)_OlogV~= ~. a,s(OfffO2k) (3.4) 
a 2 ,  j = ~ f j  82k j = ~ f j  

In each fraction in each of the sums in (3.4) the numerator  has the degree less than 
that of the denominator.  Hence 

Of 1 Y k = l  ..... m, j = l  . . . . .  N .  akj (3.5) 
= a r j  ~ k ,  

f f  

In other words, all (2 • 2) - minors of the (2 x m) matrix 

Ofj dfj Ofj vanish for each j .  
021' 022 .. . . .  02., 
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Thus the numerical vector (alj, ..., a,q) is proportional (with the coefficient from 
the field 112(21 . . . . .  2,) of rational functions) to the vector of polynomials 
(<  os,  

c9~, 1 . . . . .  0 2 J "  So, we have 

8fJ = 6j(),) apt (3.6) 
0),p 

for some polynomials 8j(a). By homogenity of fj  we have 

2p af~ =d ,  f j .  
p = l  

By (3.6) this means 

(~ 2pap~)6j{2) = d J j .  

If d r > 1 then deg6 i > 0 and this contradicts the irreducibility offj. Hence dj = 1 for 
all j. So fj  are homogeneous linear functions, say 

p = l  

From (3.6) we find that bpj=6? apj where l i l lE*.  Hence 

)-, 
as required. [] 

Now let us finish the proof of Theorem 1.3. Since Z is a hypersurface, the rank of 
the matrix II a! p) II, i = 1, . . . ,  N ,  p = 1 . . . . .  m, equals m i. e., the rows a tp) e Z N are linearly 
independent over Q. Denote by LC Z N the free Abelian subgroup generated by a% 
Then L i s a  primitive lattice, i.e. L = (L| ~r In fact, otherwise the map 5 t' given 
by (2.1) would be a v-sheeted cover of A, where v=[(L|  By 

N 
homogeneity of ~uj, for each a e L we have ~ aj = 0. So the claim is a consequence 
of the following lemma. J = 1 

N 

Lemma 3.2. Let L ( Z N be a primitive subgroup of rank m such that ~, a t = 0 for any 
j = l  

a eL.  Then there is a finite set A = {col . . . . .  coN} CZ  ~ - "  such that L is the lattice of 
affine relations among elements of  A, and A affinely generates Z s - m -  1 over Z. 

Proof. Put E=ZN/L.  It is a free abelian group rank N - m .  Let co~EE be the 
image of the i-th basis vector o f Z  N. Since each a ~ L has ~ a t = 0, all coj lie on some 
affine hyperplane {h(u)= 1}, where h:ZN-'~--+Q is a homomorphism. Since ~0j 
generate E as an Abelian group, this hyperplane is primitive, i.e., in fact we have 
h : ;EN-"~Z.  So, identifying {ue E:h(u)= 1} with 7. N - " -  1 we find the required 
conditions. [] 

Theorem 1.3 is proved. 
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