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1. Imtroduction.

The stability of geodesics in Riemannian space was first discussed
simultaneously and independently by Levi-Civita!) and myself?). The
tensorial equation obtained may bhe written

(1.1) 7 Grpen2™ 2™ =0,
where %7 is the infinitesimal vector joining a point on the fundamental
geodesic to the corresponding point of a neighbouring geodesic, x":%,
where a* is the coordinate system, Gy, is the mized curvature tensor
1) Sur Péeart géodésique, Math. Annalen 97 (1926), p. 201—320. Cf. also Levi-
Civita, ,The Absolute Differential Calgulus,“ English Translation (1927).
3 ,0n the Geometry of Dynamics,“ Phil. Trans. Roy. Soc, A, 226 (1926),
p 31—106. That paper will be referred to as GD. The dynamical problem of ,Stabi-

lity in the action sense,“ discussed in GD., Chap. IX, is precisely the geometrical
problem of the stability of geodesics in Riemsnnian space.
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of the manifold, and the operation denoted by superimposed bars is
defined (for any vector given along a curve) by

_f__er T mdm"
X *Taz+{m}x Ts

= dX’ 7 | wmdz*
X -'a?“f”{mn}x FTR

(1.2)

The question of stability for systems subject to non-holonomic eonstraints
was not discussed in these papers. Subsequently a number of papers have
appeared dealing with geodesic stability and non-holonomic constraints?),

The method of Vranceanu, in dealing with non-holonomie systems,
differs essentially from mine, as developed in G'D. and in the present
paper. He has employed a set of vectors #n the element in which motion
subject to the constraint is possible, whereas I have employed a set of
vectors normal to that element. We have therefore been led to different
analytical expressions for the equations of motion of a non-holonomic
conservative system (or, geometrically, the differential equations of con-
strained geodesics), his equations consisting*) for a system with N coordi-
nates and M constraints, of (2N — M) equations of the first order for
the N coordinates and the (N — M) components of the unit tangent
vector along his fundamental vectors of constraint, whereas my equations®)
consist of a set of N equations of the second order for the N coordinates,
M particular first integrals of these equations being known, viz., the
equations of constraint. The expressions given by him are invariant with
respect to coordinate transformations and tensorial with respect to trans-
formations of the constraint vectors, while the expresgions which I shall
develop are tensorial with respect to coordinate transformations and
invariant with respect to transformations of the constraint vectors.

In the paper last cited, Vranceanu discusses the stability of geodesics.
It appears to me, however, that his argument is incorrect, for he assumes
that the infinitesimal displacement from the fundamental geodesic to the

) G. Vranceanu, ,Sur les espaces nan holonomes,“ Comptes Rendus 183 (1926),
p. 852~854; ,8ur le caleul différentiel absolu pour les variéiés non holonomes, ibid.,
p. 1083—1085; ,Sopra una classe di sistemi anolonomi, Rend. Ace. Lincei (6) 3 (1926),
p. 548—553; ,Sopra le equazioni del moto di un sistema anolonomo,” ibid, 4 (1926),
p- 508—511; ,Sopra la stabilith geodetiea®, ibid. 5 (1927), p, 107—110. T. Boggio,
»Sullo scostamento geodetico,“ Rend. Ace. Lincei (6) 4 (1926), p. 255—261. U. Crudeh,
»Su lo scostamento geodetico elementare; procedimento di estensione della equazione
di Jacobi ad una qunalsiasi varietd riemannians, Rend. Acc. Lincei (6) 5 (1927),
p. 248—251. E. Cartan, ,Sur Pécart géodésique et quelques notions connexes, Rend.
Acc. Lincei (6) 5 (1927), p. 609—613.

4 ,Sopra la stabilith geodetica,® p. 107.

%) GD,, p. 58, Theorem XVII (A),

47*
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neighbouring geodesic is consistent with the constraints. In general, -this
cannot continue to be true along the geodesic®).

In the present paper the equations of constrained geodesics are
derived from a variational principle, and equations for geodesic separation
are obtained. The mode of development is geometrical, the dynamical
significance being indicated in § 8. The line-element is assumed to be
positive definite,

2. The eonstraint.

Let N be the number of dimensions of the manifold and M the
number of constraints.
The following conventions will be observed:

1. Small italic indices unrepeated imply a range of values from 1
to N, and, when repeated in a single term, summation over that range.

2. Greek indices unrepeated imply a range of values from 1 to M,
and, when repeated?) in a single term, summation over that range.

8. Those indices (other than powers), which do not imply tensorial
character with respect to coordinate transformations, are enclosed in brackets®).
4. The Christoffel symbol of the second kind is denoted by {ﬂ:‘n},
instead of {”:"} as in GD.?).
Let 7 be the coordinate system, and let the line-element be given by
{2.1) ds*=g, . dz"dz",
which form we suppose to be positive definite. Let the constraint be
given by
(2.2) Apndr™ =0,
which we suppose, in general, to possess no integrable combination. Equa-
tions (2.2) can always be replaced by
(2-3) B(e)mdx,n':(),

where B, are M mutually orthogonal unit vectors'?). These vectors will
be called the constraint vectors and the linear M-space defined by them
the M-space of constraint. Any curve satisfying (2.3) will be called a

% Cf. Cartan, loc, cit.

%) It is not necessary that one should occur as a superscript and the other as a
subscript.

%) This rule is not observed in the case of I',, defined in (4. 81),

%) The present notation is used by Eisenhart, Riemannian Geometry (1926).

) GD,, p. 54
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constrained curve. A curve is a constrained curve if and only if it is
perpendicular at every point to every vector lying in the M-space of
constraint.

It is of course well kmown that the non-integrable character of the
equations (2.8) implies that the congruences B(, are not normal con-
groences; the fact that there exists no integrable combination implies
that there is no normal congruence having at every point a direction
contained in the M-space of constraint. If, on the other hand, there did
exist an integrable combination, then the totality of curves passing through
any assigned point of the manifold and satisfying that equation at every
point would build up a subspace of (N —1) dimensions, from which it
would be impossible to depart if one always followe& a constrained curve.
But under the given conditions of non-holonomicity it will be possible in
general to reach any point of the manifold by travelling along a con-
strained curve from an arbitrarily assigned point.

It is possible to write down a single function whose vanishing is
necessary and sufficient for the satisfaction of the constraint by a given
curve. Let A" denote the unit vector tangent to the curve, and let @ be
defined as the positive quantity given by

(2.4) =B, By, A" 1" =By ui™ +Baymi™ + .- +(Bapwi™) ™
Thus ¢ vanishes if and only if all the equations of constraint are satisfied.

It is pot difficult to see the geometrical meaning of w. Let B” denote
any unit vector in the M-space of constraint, so that

(2.41) B"=0,Bg, Bnly=1,

and let ¢ denote the angle between 1™ and B”. Then

(2.42) cos o = B, 1" =0, By, 4"

If, by variation of 0,, we vary the direction of B, we have
(2.43) dcos 9 = B, 1780,

(2.44) 8008, = 0;

if cos @ has a stationary value for all such variations, we must have
(2.5) By, A" = kb,

where k is undetermined. Multiplying by 6, and summing as indicated,
we find, by (2.42),

(2.6) k=cos .
If we square (2.5) and sum for o from 1 to M, we find
(2.7) o'=k=cos’¢p.
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Thus the stationary values of cos @ are + w, the two signs corresponding
to opposed unit vectors B” in the M-space of constraint. In fact, w is
the cosine of the angle which the vector i’ makes with the M-space of
constraint, this angle being defined as the smallest angle made by 1" with
any vector in the M-space of constraint. We shall call w the constraint
function. Its importance is due to the fact that its value is independent
of the choice of orthogonal unit vectors B, in the M-space of constraint.
If we write

(2'8) Con= B(e)mB(e)n

then C,, is a symmetrical covariant tensor of the second order with
respect to coordinate transformations, and is independent of the choice
of the constraint vectors. We shall call O, the constraini tensor. Any
vector 2", which satisfies the constraints, satisfies

(2.9) 0, A"=0.

3. Equations of constrained geodesies derived from a variational
prineiple.

We shall now define a constratned geodesic'') as a constrained curve
whose length is stationary for all varations which vanish at the end points
and satisfy the equations of constraint.

It is to be noted that it is the vardation, and not the varied curve,
that satisfies the equations of constraint, This definition is adopted
because constrained geodesics, so defined, have a dynamical significance.
From a purely geometrical point of view there are two possible generali-
sations of the concept of surface geodesics when the constraint is non-
holonomie, viz., curves defined as above, and curves of stationary length
with respect to variations which make the varied curve satisfy the equa-
tions of constraint. We shall reserve the name constrasned geodesics for
curves defined in the former sense.

For any variation dz* with fixed end points we have'?)

(3.1) 8fds=— [g,  xmsards,

where »7 is the first curvature vector,
d®zr r \dz* dx»
T LT pubalilieil
(3.11) = e +{mn} ds ds ~
1) Geodesics in non-holonomic geometry have been defined by Vranceana,
Comptes Rendus 183 (1926), p. 854, but he has not connected his definition with a
variational principle. However it is not difficult o derive his equations from the
variational principle here adopted. The curves defined by him are therefore identical

with those of the present paper, but the notation is entirely different.
2} Proc. London Math. Soc. (2) 26 (1926), p. 253.
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In order that a constrained curve may be geodesic, it is necessary and
sufficient that & [ds should vanish for all variations consistent with

(3.12) B, 02"=0,
and vanishing at the end points. Hence we must have
(8.2) %, 02" =k, B, 0z",
where [k, are undetermined. Hence
(3 21) Hy = k(g) B(e)ra 2T = k(e)B(;).
Now by differentiation of the equations of constraint
dx™
(3.8) Biym 77 =10,
which are satisfied along the curve, we obtain
dz™ dz*
(8’ 31) B(a)m%m_’"B(o)mnvd;—ég_:O’
where B,,,, is the covariant derivative of B, . Hence, substituting

for xm from (3.21), and remembering that the constraint vectors, being
unit vectors and mutually orthogonal, satisfy

1, for o=p
3. 32 BamBmzaﬁz b 3
( ) ehm 2 = Te {0, for oo,
we find
. dz™ da*
(3.33) kg = ”‘B(o)mnﬁ'.{?;'

Substitution in (3.21) gives
(3. 4) 7= — B(z,) Boymn

dzm dar
ds ds°

We may state the following result:
Theorem I. Bvery constrained geodesic satisfies the equations

(3.5) %’?H{ . }+B<2>B@m)%?%=0-

mn

Geometrically, the first curvature veclor of a constrained geodesic lies in
the M-space of constraint, and has components ——B@m%;%‘g: in the
directions of the vectors By, respeciively.

We shall call (8.5) the first form of the equations of constrained
geodesies.

Along any curve we have
d dx™ dx™ dz*
(3.51) BE(Bte)mTz?)’—”'B(ezm””*i“BtemuTz: a5

which vanishes if the carve satisfies (3.5). Thus we have the result:
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Theorem II. The differential equations (8.5) have ihe first inlegrals
dx™
(8.52) B, om gs
The differential equations (3.5) define a unique curve passing through
an arbitrarily assigned point in an arbitrarily assigned direction. From
the theorem just established we see that all solutions of (8.5), whose
initial directions satisfy the equations of constraint, are constrained geodesics.
It may be remarked that the equations

== constant.

(-6) 2 A+ ({ra} Bl Bama) S S =0
do not in general possess the first integral

(3.61) o 82 . constant.

For we find

d dx” dx* dixr ¢ Ydz™ dx™ dz*
3.62) (055 70) =20 (Gux + {mn}“f; Fe
8o that for a curve satistying (3.6) we have

a dxr dz dz dz” dx*
Ja(gn“é;?&z = =284, 735 Bome gy au

This will vanish, giving the first integral (8.61), if the equations of
constraint are satisfied, but nof in general.

(3.63)

4. Second form of the equations of constrained geodesies,

The equations (3.5) for constrained geodesics suffer from the defect
that they are not independent of the choice of the orthogonal unit con-
straint vectors in the M-space of constraint. We shall now obtain equations
which have the requisite independence.

Since all along any eonstrained curve we have

dzm™

(4.1) Byw - —0,
it follows that a constrained ‘geodesic (which satisfies (3.5)) also satisfies

dx™ dz*

&tar
(4.2) *ggaf; + ({”:n} + By Bioms + Big.n B(g)m) o 3 =0
where
(4- 21) 3(2).,; = 9“ B(e)xﬁ .

It we take the covariant derivative of the constraint temsor C,, defined
by (2.8) and then raise the first subseript, we have (changing the indices)

(4:. 25) Cfmn = B(:)) B(e)ma -+ B{B).» B(g)m .
Thus we have the result:
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Theorem III. Ewery consirained geodesic salisfies

d¥ e dz™ dx*
(4.3) ds’ +Ulmn gy ds d.s =0,
where
(4. 31) P,rm,,=={n:n}+0,rm,;.

Since the constraint temsor is independent of the particular choice of
constraint vectors, it follows that we have in (4.3) a form having the
requisite independence. We shall call (4. 3) the second form of the equations
of constrained geodesics.

Unlike the first form (8.5), the second form (4.3) does not possess
the first integrals (8.52). We find, for any curve satisfying (4.3),

d dax” r dx® dx* dz* da*
(44)  7(BorTe) = —BorClmass 2o + Buorn'gs 25
dx™ dx®

= [B(e)mn - B(e)r (B(a) B(v)nm + B(o) nB(a)m)] ds ds °
dz™ dx*
= — Biyr Boya Bom—; 7+

This will not vanish in general, but will vanish at a point if the equations
of constraint are satisfied at that point. We may state the result:

Theorem IV. The differential equations (4.3) possess the particular
first iniegrals
dx™
(4.5) Bipm s =0.
Constrained geodesics are a particular class of curves belonging to
the more general system deﬁned by

7 dx™ dz* —
(4.6) M G =0,

I have not discovered the geometncal meaning of this system.

5. Parallel (I') propagation.

The guantities I',, are not the components of a tensor; if we trans-
form from the coordinate system z* to the coordinate system ‘z’, the
formulse of transformation are easily seen to be

Py 6 8'z” 9z° 9z’ %z 8'xr
. I = e
(5.1) =Tl e T e o
Thus, if & contravariant vector X" is given along any curve, the quantities
= dXxr dz*
(5.2) X =t M X"

are the components of a contravariant vector. The coefficients I",, are
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competent to define a type of parallel propagation!®), which we shall call
parallel (I') propagation, defined by the equations

(5.21) Xr=o0.
This is to be distingunished from the ordinary parallel propagation,
wr_ dX" r m dz*
(5.22) X =7;+{mn}X T =0.
We have, in fact,
~ — dx®
(5.23) X=X+ Olpa X"

It is obvions that the unit tangent vector to a constrained geodesic
undergoes parallel (I') propagation. If 1" denotes the unit tangent vector,
the equations of a constrained geodesic may be written in either of the
forms

(5.3) ir=o,
(5.81) A= O W AT A"

An interesting feature of the present work is the natural appearance
In a discussion immediately suggested by classical dynamical theory of a
type of geometry whose physical interpretation is usually connected with
electromagnetic theory in the general theory of relativity. Equations (4.3),
however, are not as general as the paths of Eisenhart and Veblent),
because our I',, are defined by (4.81), in which C7,,, is not an arbitrary
mixed tensor of the type indicated.

It is to be remembered that C7,, is-not, in general, symmetrical
in m and n; hence I, is not, in general, symmetrical in these indices.

6. Geodesic stability for a general correspondence.

In the present section there is first discussed a problem slightly
more general than that of the stability of constrained geodesics, The
work up to and including equation (6.837) is a discussion of the stability
of the curves defined by the equations

. d*x dz™ dx*
(61) _d'z?é”*‘rrmw'd"%%zo (Prmu#rrnm%
with the particular first integral
dx™ dx*
(6.11) Imn Gu au =1+

%) This definition differs from the definition of parallel propagation given by
Vranceanu, Comptes Rendus 183 (1926), p. 853, which applies only to vectors satisfying
the constraints.

14} Proc. Nat. Acad. Sci. 8 (1922), p. 19.
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The facts that I'7,, are defined by {4.31) and that the curves under
discussion are constrained curves are not introduced until after (6.37).
In the work prior to that equation I, may be any functions of
position, subject only to the condition that (6.11) is true. We shall refer
to any curve satisfying (6.1) and (6.11) as a path. On account of the
existence of (6.11), we may put z=s in (6. 1).

Let ¢ and C* (Fig. 1) be two neighbouring paths, and let a corre-
spondence be established in some manner
between the points of C and the points £
of C*. Let O correspond to O, and let
P* correspond to P. Regarding O, 0 as
fixed and P, P* as variable, let us write
s* =0 P* s=0P. The correspondence
between the points of the two paths may be expressed by a relation of
the form

(6.2) s* =g f(8).

Now, if 2’ denotes the unit vector tangent to € and %’ the infini-
tesimal displacement PP*, we have %)

Vi fd P¥

(6.21) f(s)=s*—s=fgmﬂlmv‘)“ds
Hence

(6.22) F(8) =g, A"%",

and

(6.23) 7(8)= o A" "+ G A7

Let z* denote the coordinates of P. Then the coordinates of P*
are (27 4-7). Since O* is a path, we have

(6.3) (a7 + 1)+ (Dmnt 17 5 Do) (20 + 20V (% 4 220) =0

Assuming the function f{s) and its derivatives to be infinitesimals of the
order of 57, and neglecting squares and higher powers of such infinitesimals,
we have

(6.81) N VO
(6.32) o == 2P ()] s — ()

Thus (6.3) may be written

15} Cf. Proo. London Math. Soc. (2) 25 (1926), p. 252.
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(6.33)  [1—27" () [ (4 1) + (Drmn+ 7% 52s Tn)
dz* . dng™\ /d 7"
(E+&) @+ EF]-roz-o

or, since C is a path,

a2 r d n n r
(6.84) SE + (Mmnt Dlam) o 4"+ 9* 32" o Dl — £ (8)

Now

- dn*
(6.35) T =" Tl g™ A",
and
= 6
(6.36)  Hr =S 4y 20 L Dl T 2 (7™ — T " 27)

N +F.Tmn"7 (ln""r.ablal)‘f"r.mn‘-mlﬂ,
or, since A" =0,

e, r
(6.365) = 4 2T A
a v 7
—f" ﬂmlnls<‘5; Ffmn"" F.anr‘.zms_ F.mapf"n.s)-

Substituting for d°%"/ds® in (6.34), we obtain

(6.87) | 57" — 287" A" 4 Frpan ™0 2" — 7 (8)2" =0,
where

(6. 38) Sfmu='%'(1w.rmn_P.rnm)=';‘(0.rmn" Cf’nm),

the torsion tensor of Cartan, and

2 2
ozt ox™

(6' 39) FTmsn= I‘Tnm"' FT:m—I‘ F'.lnml—'?m"" F?su-lﬂ.-na:

a curvature tensor of the manifold with respect to I, .
Equation (6.37) is the first tensorial equation for the disturbance
vector n*. These equations are linear differential equations of the second order.
When we think of ¢ and O* as constrained geodesics, instead of
general paths, we must add the conditions that they should be constrained
curves, These conditions are

? n_ dg"
(6.4) B,,A"=0, (B@n‘f"?’“g;;B@n)(l +%>=0’
which give
(6.41) Bign" + Bigpmn™A"=0,

or

(6' 42) (Q)ﬂ’z + ( (Oynm B(e)ao.:mﬂ)’?miﬁz 0.



(6'52) —r+(0 mn+0 m)nmln+(Grman+0 ms)lm i f”(s)l”:(j,

where

(6.53
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To investigate the stability of the constrained geodesic C, it is necessary
to solve (6.37) and consider only those solutions which satisfy (6.42).

We shall now express (6.37) in another form. We have, analogous
to (6.36),

@8 TG e L e {G )
= {a)e )+

or, by virtue of (5.31),

(6.51) T = +2 {mn} m yn

+v”‘2“1’(ais{m’n}-{Jn}{;s}—{,:a}{:s}) =22} O

Substitution for d®y7/ds® in (6.34) gives

) men=2e o} = 55l {mHlf (ol

the curvature tensor of the manifold, and

(6.54) Clums= 53 Clum — GTam{n“s} — Cre {,,‘fs} + Of‘nm{;a},

the covariant derivative of C7, .

Equation (6.52) is the second tensorial eguation for the disturbance
vector n7. Its left hand side is precisely the left hand side of (6.37)
expressed in a different manner. We note that, in the case of no con-
straint, (6.52) reduces immediately to the equation of Levi-Civita *¢).

We shall now obtain from (6.52) an invariant equation for the
magnitude of the disturbance vector. Let u” be a urit vector codirectional
with %7, so that

(6' 6) 77’=’70ur’ g:muu ”’n =
Then

- d —
(6.61) qr= "L ur+ pr,
and 17)

= dg —
(6.62) N =g — R

18 Math. Annalen 97 (1926), p. 315, equation (42).
1) Cf. GD,, equation (9, 21).
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Hence, multiplying (6.52) by u, and summing as indicated, we obtain

a? — 7 n
(6.68) LT — 57+ (Clmat Clum) (3L 1am -+ nam) 2,

+(G1.'msn+omms)’7 mﬂsdn,ur ’(s)lflu,r:()’
or

ds? + 72ml“”(07mﬂ + 01"12”&)

+ 7] [(Grm8n+ Tﬂms) ﬂrlm”sln—!_ (Ormn+ Crnm) ﬂrlmﬁn— ﬁz]
— f"(8) A", = 0.

(6.64)

This is the ‘nwvariant equation for the magnitude of the disturbance vecior.

7. Isometric and normal correspondences.

So far we have been considering a general correspondence, given by
the function f(s), between the points of €' and C*. When there are no
constraints, ¢ and C* being then free geodesics, there exists a corre-
spondence of obvious simplicity. This correspondence is obtained by
putting f(s)=0; it makes s* —s, and also makes PP* normal to C,
provided that OO has been chosen normal to (. In the case of paths
(or constrained geodesics) it is no longer possible to obtain a correspon-
dence which combines these two features, and we are led to consider two
types of correspondence:

1. The isometric correspondence, defined by s*=gs. This gives
(7.1) f(s)=0.

2. The normal correspondence, defined by the condition that PP*
ghould be normal to ¢. The analytical expression for this condition is
(7.2) : In A" =0,

The reductions in (6.87), (6.52) and (6.64) in the case of the
isometric correspondence are very simple. The lagt term is to be omitted
from each of these equations. We also know, by (6.22), that the parti-
cular first integral

(7'8) , gm'nﬁmlnzo

exists,

In the case of the normal correspondence, differentiation of (7.2)
gives
(7' 4) gmnnmln_{—gmnn O
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or, by (5.31),

(7’ 41) gmnﬁmln”gmno?abnmlalb:‘0~
Differentiating again, we obtain
(7.42) Tuun T A"+ G T 1" — G Olapen™ 2727 4°

— G Clun 0™ (= 0%ea 2" 2°2° — 0La 4" 4°2%) = 0.
Hence, by (6.23),
(7.5) 7 (8) = 3™ 2%2°2°(Cmave — Cmpd Cfoa — Crap Ce3)-
This is the value for f”(s) which must be substituted in (6.37) and

(6.52) in the case of the normal correspondence. The reduction in
(6.64) consists in the omission of the last term, since 1"p, =0.

8. Dynamieal significanee of the paper.

Being given a conservative dynamical system with N coordinates 2",
subject to M constraints given by

(8.1) Bymda™=0,

where B[, are mutunally orthogonal unit vectors, the equations of motion
may be written *¥)

dz” r | da™ dz” . dz™ da*
(8.2) T T n) T o=~ Bl Boma gy o
where ds is the action line-element, given by
(8.21) ds*=g, . dz"da*=(h—V)a,,dz™dz",

h being the constant total energy of the motion, ¥ the potential energy,
and 1a,, @#®&* the kinetic energy.

Since (8.2) is identical with (3.5), we have the result:

Theorem V. The constrained geodesics of the present paper are the
curves of motion of a conservative dynamical system, subject lo non-
holonomic constrasnts, the line-clement being the action line-element.

Thus the geometrical considerations as to stability apply to conser-
vative dynamical systems subject to non-holonomic constraints, only those
disturbances being considered which do not change the total emergy.

1% GD., p. 58, Theorem XVII (A).

{Eingegangen am 25. 8. 1927.)



