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1. Introduction. 

The stability of geodesics in Riemarmian space was first discussed 
simultaneously and independently by Levi-Civita a) and myself~). The 
tensorial equation obtained may be written 

( 1 . 1 )  = , _ ~  ,-~r ~ '  , ,~' 

where ~' is the infinitesimal vector joining a point on the fundamental 

geodesic to the corresponding point of a neighbouring geodesic, x r  dz' de 
where x '  is the coordinate system, G r.~s~ is the mixed curvature tensor 

~) ,Sur l'&~ar~ g~)d4aique," Math. Annalen 97 (I926), p. 291--320. Cs also Levi- 
Civita, ~The Absolute Differential Cal~ulu%" Et~gliah Tr~natation (I927). 

~) ,On the Geometry r Dynamics," Phil. Trans. Roy. See., A, 226 (1926), 
p 31--106. That paper will be referred to a~ GD. The dynamical problem of ,Stabi- 
lit~j in the action sense," discussed in GD., Chap. IX, is precisely the geometrical 
problem of tlm stabilis of geodesics in ~em~nniam gpa~. 
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of %he manifold, and the operation denoted by superimposed bars is 
defined (for any vector given along a curve) by 

dX" . f r )r~_5_x~ 

(1.2) 
= } 

The question of stability for systems subject to non-holonomie constraints 
was not discussed in these papers. Subsequently a number of papers have 
appeared dealing with geodesic stability and non-hotonomic constraints3). 

The method of Vranceanu, in dealing with non-holonomic systems, 
differs essentially from mine, as developed in GD. and in the present 
paper. He has employed a set of vectors in the element in which motion 
subject to the constraint is possible, whereas I have employed a set of 
vectors normal to that  element. We have therefore been led to different 
analytical expressions for the equations of motion of a non-holonomie 
conservative system (or, geometrically, the dif[erential equations of con- 
strained geodesics), his equations consisting 4) for a system with iV coordi- 
nates and M constraints, of ( 2 N ~  M) equations of the first order for 
the N coordinates and the (zV--M)  components of the unit tangent 
vector along his fundamental vectors of constraint, whereas my equations s) 
consist of a set oI N equations of the second order for the N coordinates, 
M particular first integrals of these equations being known, vis., th~ 
equations of constraint. The expressions given by him are invariant with 
respect to coordinate transformations and tonsorial with respect to trans- 
formations of the constraint vectors, while the expressions which I shalI 
develop are tensoriaI with respect to coordinate transformations and 
invariant with respect to transformations of the constraint vectora 

In the paper last cited, Vranceanu discusses the stabi]ity of geodesics. 
I t  appears to me, however, that  his argument is incorrect, for he assumes 
that  the infinitesimal displacement from the fundamental geodesic to the 

a) G. Vranceanu, ,Sur los espaoes non holonome~," Comptes Rendus 183 (1926), 
p. 852--854; ,Sur le calcul diff~rentiel abr~lu pour les v~i~t~s non holonom~, ~ ibid., 
p. 1083--1085; ,Sopra una classe eli sistemi anolonomi," Rend. Aoc. IAncei (6) 3 C1926)~ 
p. 548-553; ,Sopra le equazioni del mot5 di un sistema anolonomo," ibid, g (1926), 
p. 508--511; ,Sopra la stabili~ geodetica a, /bid- 5 (1927), p, 107--110. T. Boggle, 
,Sullo scostamento geodetieo," Rend. Ace. Lincsi (6) g (1926), p. 255--261. U. Crudeli, 
,Su lo scostamento geodetico etemenf~axe; larocedimento di estensione della equazione 
di Jacobi ad una qualsiasi variet~ riemanni~.na, ~ Rend. Acc. Lincei (6) 5 (1927), 
p. 248--251. E. Caftan, ,Sur l'6cart g&)d&~ique et quelques notions eonncxe%" Ren& 
aco. Lintel (6) 5 (19~27), p. 609--613. 

~) ,Sopra la stabiti~ geodetica, ~ p. t07. 
b) GD., p. 58, Theorem XVII (A)~ 

47* 
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neighbeuring geodesic is consistent with the constraints. In general, .this 
cannot continue to be true along the geodesicS). 

In the present paper the equagions of constrained geodesics are 
derived from a variational principle, and equations for geodesic separation 
are obtained. The mode of development is geometrical, the dynamical 
significance being indicated in w 8. The line-element is assumed to be 
positive definite. 

2. The constraint. 

Let N be the number of dimensions of the manifold and M the 
number of constraints. 

The following conventions will be observed: 

1. Small italic indices unrepeated imply a range of values from 1 
to N, and, when repeated in a single term, summation over that range. 

2. Greek indices unrepeated imply a range of values from 1 to M, 
and, when repoated 7) in a single term, summation over that range. 

3. Those indices (other than powers), which do not imply tensorial 
character with respect to coordinate transformations, are enclosed in brackets s). 

4. The CIaristoffel symbol of ~ e  second kind is denoted by m~ , 

insteazt of { r  ~} as in GD2). 

Let x ~ be the coordinate system, and let the line-element be given by 

(2.1) ds  ~ -~ g , , , , d x ~ d x  '*, 

which form we suppose to be positive definite. Let the constraint be 
given by 

(2.2)  A(e)~dx~ ~- O, 

which we suppose, in general, to possess no integrable combination. Equa- 
tions (2.2) can always be replaced by 

( 2 . 3 )  B~e)mdx '~ ~-- O, 

where B~) are M mutually orthogonal unit vectors lo). These vectors will 
be called the vonstraint vectors and the hncar M-space defined by them 
the M-space o/ constraint. Any curve satisfying (2.3) will be called a 

n) Cf. Caftan, Ioo. eft. 
~) It is not necessary that one should occur as a superscript and the other as a 

subscript. 

s) This rule is not observed in the oase of F.~, defined in (4. 31). 
~) The present notation is used by Eisenhart, R i e ~  Geometry (1926). 
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cons t ra ined  curve .  A curve is a constrained curve if and only if it is 
perpendicular at every point to every vector lying in the M-space of 
constraint. 

I t  is of course well known that the non-intograble character of the 
equations (2.8) implies that the congruences B~) are not normal con- 
gruences; the fact that there exists no integrable combination implies 
that there is no normal congruence having at every point a direction 
contain~t in the M-space of constraint. If, on the other hand, there did 
exist an integrable combination, then the totality of curves passing through 
any assigned point of the manifold and satisfying that equation at every 
point would build up a subspace of ( N - - l )  dimensions, from which it 
would be impossible to depart if one always followed a constrained curve. 
But under the given conditions of non.holonomicity it will be possible in 
general to reach any point of the manifold by travelling along a con- 
strained curve from an arbitrarily assigned point. 

I t  is possible to write down a single hmction whose vanishing is 
necessary and sufficient for the satisfaction of the constraint by a given 
curve. Let 2 r denote the unit vector tangent to the curve, and let eo be 
defined as the positive quantity given by  

B 2 ~ ~ ,~2 ~ . ~ (2.4) o : =  (~>~B(~), ~ = ( B ( ~ , f l  ) +(B(~),~ ) + . . + ( B ( ~ 2  ) .  

Thus co vanishes if and only if nil the equations of constraint are satisfied. 
I t  is not difficult to see the geometrical meaning of w. Let B" denote 
any unit vector in the M-space of constraint, so that 

(2.41) B "  -~ O@B~),  0~)0~) = 1,  

and let q) denote the angle between 2 ~ and B ~'. Then 

(2.42) c~s q~ = B,.,U = O<,)B~>,.2". 
If, by variation of 0(o, we vary the direcffon 'of B ' ,  we have 

if cos q~ has a stationary value for aLl such variations, we must have 

(2.5) 
where k is undetermined. 
we find, by (2. 42), 

(2.6) 

Multiplying by 0~) and summing as indicated, 

k-----cos ~ .  

If we square (2.5) and sum for Q from I ~o M, we 
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Thus the stationary values of cos ~o are ~_ o), the two signs corresponding 
to opposed unit vectors B * in the M-space of constraint. In fact, o~ is 
the cosine of the angle which the vector 2 r makes with the M-space o/ 
constraint, this angle being defined as the smallest angle made by  2 r with 
any vector in the M-space of constraint. We shall call eo the constraint 
]unction. Its importance is due to the fact that  its value is independent 
of the choice of orthogonal unit vectors B(~) in the M-space of constraint. 

I f  we write 

(2. S) 0,,,, = B(~). B(~). 
then C,,, is a symmetrical covariant tensor of the second order with 
respect to coordinate transformations, and i.s independent of the choice 
of the constraint vec4ors. We shall call C,,~ the constraint tensor. Any 
vector 2 ~, which satisfies the cons~aints, satisfies 

(2 .9 )  C ~ 2 ~ =  0.  

3. Equations of constrained geodesics derived from a variational 
principle. 

We shall now define a constrained geodesic 11) as a constrained curve 
whose length is stationary for all vaxations which vanish at the end points 
and satisfy the equations of constraint. 

I t  is to be noted that  it is the variation, and not the varied curve, 
that satisfies the equations of constraint. This definition is adopted 
because constrained geodesics, so defined, have a dynamical significance. 
From a purely geometrical point of view there are two possible generali- 
sations of the concept of surface geodesics when the constraint is non- 
holonomic, viz., curves defined as above, and curves of stationary length 
with respect to variations which make the varied curve satisfy the equa- 
tions of constraint. We shall reserve the name constrained geodesi~ for 
curves defined in the former sense. 

For  any variation ~x ~ with fixed end points we have 1~) 

where z r is t]~e first curvature vector, 

,x) Geodesics in non-holonomie geometry have been defined by Vraneeanu, 
Comptes Rendus 183 (1926), p. 854, but he has ao$ ~oaneoted his definition ~afftJa a 
variational principle. However it is not diSfiealt to derive his equations from the 
variational principle here adopted. The curves defined by him are therefore identical 
with those of the present pal~r, but the notation is entirely different. 

~) Prec. London Math. Soc. (2) 25 (1926), p. 253. 
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In order that a constrained curve may be geodesic, it is nocessary and 
sufficient that 3 f d s  should vanish for all variations consistent with 

(3.12) B(e)~ ~ x ~ = O ,  

and vanishing at the end points. Hence we must have 

(3.2) z,  3x~ -- ~<~, B , ~  ~x ~ , 

where lt(e ) are undetermined. Hence 

(3. 21) x, ~- k@ Bce~, ~" = k ~ B ~ .  

Now by differentiation of the equations of constraint 

R dx'~ ^ (3. 3) ~(o),~ ~ ~-- O, 

which are satisfied along the curve, we obtain 

dx m dx ~ 
(3.31) B ~ ) ' ~ - ~  Bto) ~,~ ds ds - - 0 ,  

where B.~)~ is the eovariant derivative of B(o),~. Hence, substituting 
for z ~ from (3. 21), and remembering that the constraint vectors, being 
unit vectors and mutually orthogonal, satisfy 

o ~1, for a - e ,  
(3. 32) B(o)~ B(e~-~ 6 e ~- (0,  for a ~ e, 

we find 
dx ~ dx~ 

(3.33) k~) ~ ~ ~r ds ds " 

Substitution in (3.21) gives 
~T ~ dx~ d x~ 

We may state the following result: 

Theo rem I. F/very constrained geodesic satis[ies the equations 

( { r  } , )dz~d~-  (3.5) + + = o.  

Geometrically, the / irst  curvature vector o/ a constrained geodesic lies in  

dx"  dx" i n  the the M-space  o/  constraint, and  has components ~ B(e),~. ds ds 
directions o/ the vectors B~) resTectively. 

We shall call (3. 5) the / i r s t / o r m  of the equations of constrained 
geodesics. 

Along any curve we have 

d [ n  d x ~ -  B d x -  dx" 

which vanishes if the curve satisfies (3.5).  Thus we have the result: 
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T h e o r e m  II. The di//eremiag equatior~ (3.5)  have the ]ir~t integrals 

(3. 52)  ~ d ~ " _  ~(e),~ -~s --  constant. 

The diite~eatiul equations (3.5) define a unique curve passing through 
an arbitrarily assigned point in an arbitrarily assigned direction, l~om 
the theorem just established we see that all solutions of (3. 5), whoso 
initial directions satisfy the equations of constraint, are constrained geodesics. 

I t  may be remarked that the equations 

do not in general possess the first integraI 
dz" dx" (3.61) g ~  d--u- d~-4- =- eons t~ t .  

For we find 

(3. 62) du du] = zg~,~-d~ @ lmn) -d~  du )-d~' 

so that for a carve satisfying (3 .6)  we have 

(3.63) du d u / =  -- " ts (e) , -3-~) ,~ ,  du du" 

This will vanish, giving the first integral (3. 61), if the equations of 
constraint are satisfied, but not in general. 

4. Second form of the equations of constrained geodesics. 

The equations (3. 5) for cons~ained geodesics suffer ~rom the defee~ 
Chat they are not independent of the choice of the orthogonal unit  con- 
straint vectors in the M-space of eonstraint~ We shall now obtain equations 
which have the requisite independence. 

Since all along any constrained curve we have 
d x  ~" _ 

( + .1 )  = o,  

it follows chat a constrained 'geodesic (which satisfies (3. 5)) also satisfies 

({ } " , ,  ~, ~ d ~ ' ~ "  
(4.2) d~x'ds ~ + mnr + Bte)B~)~ + aJ(e).,,aJ~e)~ ] ~ ~ ~ O, 

whe2e 

If  we Cake the covariant derivative of the constraint tensor C ~  defined 
by (2.8)  and then raise the first subscript, we hav~ (changing the indices) 

Thus we have the result: 



(~.~) 
where 

(~.~) 
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Theorem III. E~rV ~ t m / ~ d  ~ m*r 

d%" + U~ a=" dx = 

74~ 

F,  {,}+, 
Since the constraint tensor is independent of the particular choice of 
constraint vectors, it follows that we have in (4.3) a form having the 
requisite independence. We shall call (4. 3) the second ]orm of  t h e  equations 
of constrained geodesics. 

Unlike the first form (3. 5), the second form (4.3) does not possess 
the first integrals (3.52). We find, for any curve satisfying (4.3),  

(4. 4) ~; (  

B r B ~ , a x  = dx" = [B~) ,~ ,  - -  B(o)r(B(.) B c o ) , , , +  r (~**)J ~ ds " 

z~r B dx• d x .  

This will not vanish in general, but will vanish at a point if the eqnations 
of constraint are satisfied at that point. We may state the result: 

Theorem IV. The di]]eren~ial equat ions  (4.3) ~ e s s  ~ ~ a r t i e u l a r  

] irs t  in tegrals  

( 4 .  5 )  ~ , .  ~ = . 

Constrained geodesics are a particular class of curves belonging t~ 
the mo~ general system defined by 

dgx" F r  dx = dx" 
(4.6) du~ ~- "= '~  a--d d--d-= O. 

I have not discovered the geometrical meaning of this system. 

5. Parallel ( / ' )  propagation. 

The quantities F ~ .~,, are not the components of a tensor; if we trans- 
form from the coordinate system x" to the coordinate system %% the 
formulae of tmnsforn~tion axe easily seen to be 

�9 " Ox" O'x" O'x ~' b 'x=a'x '* 0~" 

Thus, if a eontravariant vector X r is given along any curve, the quantities 

z-" = - - z r  x" r:=.x=~. -__ (S.2) 
are the components of a contravariant vector. The coefficients F.r=. are 



22) 

We have, in fact, 

746 J.L. Synge. 

competent ~ define a type of parallel propagationS8), which we shall call 
79arallel (1-') propagation,  defined by the equations 

<5.21) 2 ' =  o. 

This is to be distinguished from the ordinary parallel propagation, 

as -t- ~ -3y = O. 

/~r ~iTm d~s 

I t  is obvious that the unit tangent vector to a constra&aed geodesic 
undergoes parallel (F) propagation. If 2' denotes the unit tangent vector, 
the equations of a constrained geodesic may be written in either of the 
forms 

3) i" = o, 

(5 .31)  - 

An interesting feature of the present work is the natural appearance 
in a discussion immediately suggested by classical dynamical theory of a 
type of geometry whose physical inte~retation is usually connected with 
electromagnetic theory in the general theory of relativity. Equations (4.3), 
however, are not as general as the paths of Eisenhart and VeblenX~), 
because our F . r~  are defined by (4.31), in which C.~m~ is not an arbitrary 
mixed tensor of the type indicated. 

It  is to be remembered that G~.~n is.not, in general, symmetrical 
in m and n; hence F.~n is not, in general, symmetrical in these indices. 

6. Geodesic stability for a general correspondence. 

In the present section there is first discussed a problem slightly 
more general than that of the stability of constrained geodesics. The 
work up to and including equation (6.37) is a diseussion of the stability 
of the curves defined by the equations 

(6.1) ~%" F '  d~- ax" p ,  , 

with the particular first integrM 
d ~  ~ d X  n 

(6.11) g-~ d--~ d--~-= 1. 

1~) This defini~on differs from the definition of parallel propagation given by 
Vranceanu, C, omptesRendua 183 (1926), p.853, which applies only to vectors satisfying 
the constraints. 

14) Prec. Nat. Acaxl. Sei. 8 (1022), p. 19. 
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The facts that r F . ~  are defined by (4 .31)  and that the curves under 
discussion are constrained curves are no$ introduced until after (6. 37). 
In the work prior to that equation F ~ .~n may be any functions of 
position, subject only to the condition that (6.11) is true. We shall refer 
Co any curve satisfying (6.1) and (6.11) as a path. On account of the 
existence of (6. 11), we may put u ~- s in (6. 1). 

Let C and G* (Fig. 1) be two neighbouring paths, and let a corre- 
spondence be established in some manner 
between ~ e  points of C and the points 
of C*. Let O* correspond to O, and let 
P~ correspond to P. Regarding O, O* as 
fixed and P, P* as variable, let us write 
s* --- O ' P * ,  s -~ O P. The correspondence 

,.,, 0 "  ~ _  P*  

Fig.  1. 

between the points of the two paths may be expressed by a relation of 
the form 

(6. 2) 8* = 8  -J-f(8). 

Now, if jr denotes the unit vector tangent to O and ~r the infini- 
tesimal displacement P P * ,  we have 15) 

p 

(6.21)  f ( s )  = s* -- s = f g=,~J'~'*ds 
o 

(6.22) 
and 

(6.2s) 

f ' ( s )  = g = , , ~ ' * ,  

f " ( s ) =  g~ Z ~ W +  g= ~.'~" . 

Let x ~ denote the coordinates of P. Then the coordinates of P*  
are ( ~  ~ - ~ ) .  Since C* is a path, we have 

(6.3) ~-7~(x ,+~r )+(~ . ,+~  ~-~ .,~Wk~• 
Assuming the function f ( s )  and its derivatives to be iniini~esimats of the 
order of ~ r and neglecting squares and higher powers of such infinitesimals, 
we have 

d [ 1 -  f ' ( s ) ]  ~ (6.  31 )  aS* = ~ '  

g~ g~ 
(6. 32) ~ = f1 -- 2f '(S)] ~7~ -- f"(8)  ~ 37" 
Thus (6.3)  may be wricten 

~) Cf. Proo. London Mat&. See. (2) 25 (t926), p. 252. 
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(6.88) F ~ ~ "~") 

d x  "~ , d ~ ' k  / d x  '~ . d ~ ' % ' l  d x  ~ 

or, since (7 is a path, 
r 

- a ~ + ( r . - - + r - - - ) ~ a ~  + o~, . . . - f ' ( s ) z = 0  
N o w  

~ -~ .~* /  , 

and 

(6.86) ~' = - a T +  d~'" ~ " ~ '  a - ~ r : ~ - +  r '  .~. ~ "t~-~ - r ~ . o ~ r  

or, since ~ =  O, 

(6.865) = d~," - -  ~/ . r  -m2,~ 

~. ( A _  r "  r S .  r? . , ,  - r ,  _r ,,~ + t 7~2~  t a x '  " ~ - -  ~ - . ~  . t , , ) -  

Substituting for d~iT'ids ~ in (6.34),  we obtain 

i I - • .~. .  ~ f " ( s ) ~ ' = 0 ,  

w h e r e  

r 1 , F r  / , r  1 r r (6.~s)  s . ~ . = ~ c  . . . -  . . ~ ) = ~ ( o . ~ . -  c . . . ) ,  

the torsion tensor of Cartan, and 

(6.89)  ~"  a /-,~ a , F a F"  - - F  a / ' "  

a curvat~e  tensor of the manifold with respec~ to F r 

Equation (6.37) is the first tensorial equation ]or the disturbance 
vector ~1". These equations are linear cti~erential equations of the second order. 

When we ~hink of C and G* as constrained geodesics, instead of 
general paths, we must add the conditions that they should be constrained 
curves. These conditions are 

which give 

(6.41) 

o r  

(6. 42) 

B(e ),~ ~'~ + B(e),,, ~ lI ~ , ~  = 0, 
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To investigate the stability of the constrained geodesio (7, it is necessa~ 
to solve (6. 37) and consider only those solutions which satisfy (6. 42). 

We shall now express (6.37) in another form. We have, analogous 
to (6. 36), 

{ } {,}-(= ) 

or, by virtue of (5. 31), 

(6.51) ~ ,  ~~  ~ - =  " 

§ {:o} 
Substitution for d ~ f / d s  ~ in (6.34) gives 

(6. ~ )  F,+(o:=.+o:,=)~=~.+(o:=,,+c,.,,,,~=~,~._f"(s)r=o, I 
where 

(6. 53) G r ~ r a ~ a r = 

the curvature tensor of the manifold, and 

(6. 54)  0 . , = ,  = ~=, O.,,,, . ~ sa 

the covariant derivative of C.~,=. 
Equation (6. 52) is the aecond tensorial equatio~ /or the disturbance 

vector ~r. Its left hand side is precisely the left hand side of (6.37) 
expressed in a different manner. We note that, in the case of no con- 
st~aint, (6.52) reduces immediately to the equation of Levi-Civita~6). 

We shall now obtain from (6.52) an invariant equation for the 
magnitude of the disturbance vector. L e t / ~  be a trait vector r 
with ~ ,  so that 

( 6 . 6 )  ~r=~,u ' ,  g,,,,=F=F" -~1. 

Then 

(6.61) 7"= ~/~ '+  ~ ,  
~d -) 

- -  d % l  
(6. 62) ~ rF ,  ~_ ~ _ ~2. 

~) Math. Annalen 97 (1926), p, 315, equation (42). 
r~) C"f. GD., equation (9.21). 
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Hence, multiplying (6. 52) by F, and summing as indicated, we obtain 

(6.68) ~% c" 

o r  

(6.6~) 

J G C ~2 ~ '2 '~ " ' ~2 '~-'~ -~" + , 2 [ (  ,.~,,.,+ .,,.,~)~ ~ +(o,. ,~, ,+,g.~, ,~# # - #  j 

- -  f"(s)2"ff,-= O. 

This is the invariant equation ]or the magnitude o] the dislurbane, e vector. 

7. Isometric and normal correspondences. 

So far we have been considering a general correspondence, given by 
the function f (s) ,  between the points of O and O*. When there are no 
constraints, O and C* being then free geodesics, there exists a corre- 
spondence of obvious simplicity. This correspondence is obtained by 
putting f ( s ) =  0; it makes s * ~  s, and also makes PP* normal ~o C, 
provided that OO* has been chosen normal to C. In the ease of paths 
(or constrained geodesics) it is no longer possible to obtain a correspon- 
dence which combines these two features, and we are led to consider two 
types of correspondence: 

1. The isometric correspondence, defined by s * =  s. This gives 

(7.1) f ( s )  = o .  

2. The normal correspondence, defined by the condition that PP* 
should be normal to C. The analytical expression for this condition is 

(7.2) " g~, V~2 ~ ~-0 .  

The reductions in (6.37), (6.52) and (6.64) in the ease of the 
isometric correspondence are very simple. The last term is to be omitted 
from each of these equations. We also know, by (6. 22), that the parti- 
cular first integral 

(7.3)  g . ~ C ~ = 0  

exists. 
In the case of the normal correspondence, differentiation of (7 .2)  

gives 

(7. 4) g ~  ~ +  ~ ~  = 0, , 
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or, by (5.31), 
n m a b (7.41) g , , ~ 2 " - - g , , , C . ~ b ~  2 2 = 0 .  

Differentiating again, we obtain 

(7.42) g,, ,  ~7 ,t , g,,=,=~ z -- gran t.;.aberl 

~a ~b2c2d ,,b 2a2c2a)=O.  -- g=, C . ~ b ~ (  - ~.~d~ -- ~ . ~  

Hence, by (6. 23), 

(7.5) f o ( s )  = ~]~ '~r  - -  O=~p b O~.va - -  O=a2# O . e b ) .  

This is the value for f" (s )  which must be substituted in (6.37) and 
(6.52) in the case of the normal correspondence. The reduction in 
(6. 64) consists in the omission of the last term, since 2 r / z ~  0. 

8. Dynamical significance of the paper. 

Being given a conservative dynamical system with N oool<linates x% 
subject to M constraints given by 

(8.1) B ~ ) = d x ~ =  O, 

where B~) are mutually orthogonal unit vectors, the equations of motiorb 
may be written is) 

d%'_4_~ r ~dx~'dz" B~ B az=dx" 
(8.2) ds~ ' l m ~ J - ~ ~ - : - -  ~) ( e ~  ~ ~ T '  

where da is the action line-element, given by 

(8.21) ds~ = g m ,  dx'~ dx~ = (h --  V) a~ ,  d x  = d x  n, 

h being the constant total energy of the motion, V the potential energy, 
and �89 a ~ . $ ~  ~ the kinetic energy. 

Since (8.2) is identical with (3.5), we have the result: 

Theo rem V. The constrained geodesics o/ the present pater  are the 
curves o/ motion el a conservative dynamical system, sub~ect to non- 
holonomic constraints, the line-element being the action line-dement. 

Thus the gzometrieal considerations as to stability app'ry to conser- 
vative dynamical systems subject to non-holonomic constraints, only those 
disturbances being considered which do not change the total energy. 

18) GD., p. 58, Theorem XVII (A). 

(Eingegangen am 25. 8. 1927.) 


