Topological equivalence of eomplexes.

Von
M. H. A. Newman in Cambridge (England).

The “internal transformation” (simple subdivision of a cell), which
is the basis of combinatory analysis situs as developed in the works of
Dehn, Heegaard, Kneser!), and others, does not lend itself very readily to
the direct investigation of topologieal invariants: owing to the great variety
of ways in which a single n-cell may be subdivided it is necessary to
interpolate discussions of the properties of spheres and their intersections
not always germane to the real subject matter. It is the object of this
paper to shew that a certain general transformation, of which “internal
transformation® is a special case, can always be carried out by a series
of “moves” of a much more specialised kind, whose effects are easily
followed without the help of general theorems about spheres.

The moves employed are those that I defined in an earlier paper?®),
but the standpoint there adopted has been modified in one respect. The
“n-arrays”, discussed in §§ 1 and 2 below, are no longer regarded as
being themselves the subject matter of combinatory topology, but are
thought of rather as instruments for proving theorems about the n-com-
plexes introduced in § 3. This does net necessitate any change in the
definitions or results of FI and FII, save that the symbol “—” is no
longer read as “is topologically equivalent to”, which is given a dif-
ferent sense.

§ 1 is a summary of the definitions and leading theorems of F1I
and FII, § 2 contains a new proof and generalisation of FII Theorem 10,
§ 3 gives its application to n-complexes.

1) Dehn and Heegaard, Encykl. der Math. Wiss. IIT, AB 3 .dnalysis Situs; H. Kneser,
Proe. Amsterdam 27 (1924), p. 601; E. Bils, Math. Zeitschr. 18 (1923), 8. 1.

%) The Foundations of Combinatory Analysis Situs, I and I, Proc. Amsterdam
29 (1926), p. 611 and 627, referred to as FI and FIL. See also “Additions and Cor-
rections” to these papers, Proc. Amsterdam 30 (1927), p. 670, cited as F. Add.
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§ 1.
Arrays ®).

If » is a positive integer or zero, an n-array is formed from a finite
or enumerable set of objects by choosing as the units of the array cer-
tain of the groups of » 4 1 objects contained in the set*). The choice
is unrestricted save that every object must belong to at least one wunit.
The objects are called the wverfices of the n-array, and if 0Zk<n
any k-1 vertices all belonging to the same unit form a k-component
of the array. An (% — 1)-component is called a face; units with a face
in common are adjacent. An n-simplex is an n-array with only one
unit. The logical sum, I'1-4 .} ..., of a number of n-arrays, I’ 4,...,
is the n-array whose units are all the units of all the arrays®). — The
sum mod 2 of I, 4, ..., denoted by "'+ A4+ ..., is the n-array whose
units are the n-simplexes contained in ®) an odd number of the arrays.
When no two of I, 4, ... have a conmon unit the logical sum and the
sum mod 2 are the same and may be called the “sum”, siraply, and
denoted by I' -+ 4 -4-... . If the n-array I" contains the n-array 4, ' — 4
is the sum of the n-simplexes contained in I' but not in 4.

If 8 and T are simplexes with no common vertex S 7' is the simplex
containing all the vertices of both. If I"and 4 are arrays with no common
vertex I'4 is the sum of all products 87, where 8 is a unit of I”
and T of 4.

An n-array is regular if each face belongs to at most two units and
each vertex to a finite nuraber. If is conmected if every two umits are
the extreme members of a sequence of units such that adjacent members
of the sequence are adjacent units of the array.

The sum of the faces of an n-array, I', that belong each to only
one unit is the boundary of I, denoted by I', (or, when that is incovenient,
by B (I')). A component not contained in the boundary is infernal. The
sum mod 2 of the boundaries of the units of I" is the margin of I, de-
noted by I

#) The definitions in § 1 are taken, with certain slight meodifications, from F1I
and FII, where proofs of the theorems will be found. It should be noticed that
Theorem 10 of FII is not assumed. The present paper replaces § 9 of FII

4) P. Alexandroff pointed out almost simultaneously (Math, Annalen 96 (1926),
p. 489) that an n-simplex may be regarded as being simply its n 1 vertices. See
also the same author’s paper, Math. Annalen 94 (1925), p, 296.

%) The corresponding notation for sets of points was introduced by Carathéodory,
Reelle Funktionen, p. 28.

% The array I'* contains the array I'® if every unit of I'® is a unit or com-
ponent of I'".
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It is easily proved that if I' and 4 have mo common werlex and
d(dy> 07", T4 is A+ AT (FI1)and FA is D- A+ A-T (F1 12).
Here it is agreed that if I' is a vertex I'(or I') shall be omitted from
terms containing it, and if I' is unbounded (or has no margin) terms
coutaining T (or T') are to be omitted. E. g., if « is a vertex «I" is
I'+e.I®).

(In the rest of this paper all arrays are supposed to contain only
a finite number of vertices.)

8, is said to have regular contact with I',, not containing it, if it
is the product of two components U and V, (8, is UV), such that
(I) U belongs to I',, (II) U is interior to I, + UV, (III) V does not
belong to I',. (U and V must each contain at least one vertex.)

Ij T, is regular the common faces of I, and UV form the array U-V,
lying in I', (F14 and 5).

If I, is bounded it is a move of fype 1 to add to (I',) a simplex,
S,, having regular contact with it, and a move of fype 2 to remove T,
having regular contact with I, — T,,.

If I, contains 8,-7,_,, but I, — 8,-T,_, contains neither S, nor
T, . it is a move of type 3 to substitute g T, . for 8,-T, ,inT,.
(The case k ==n is included).

If 4 can be obtained from I" by a succession of moves of any of
the three types we write I'-—49); if only moves of types p and g are
required we write I” ;;A.

Itr,—8,, I,is an n-element (&,). The boundary of an (n - 1)-element
Is an n-sphere (2,). The necessary and sufficient condition that T,
should be an n-sphere is that I',—>S,,, (F19 and 14).

If §, and Z,_,_, have no common vertex 8,2, _, ; is a complele
(n:k)- cluster if 8§ and E,_,_, have no common vertex S, F,_,_, i8
an incomplete (n:k)~cluster. 8, is the core, =, _,_,and E,_,_, are the
shells. An (n:0)-cluster is an n-star.

An n-manifold (M,) is a comnected n-array such that the sum of
the units at each vertex is an m-star. If all the stars are complete the
manifold is unbounded, otherwise it is bounded.

% d(I'y means “the dimension-number of I,

¥) The letters I" and 4 will be used for arrays of uncertain character; 8, T, U, V,
for simplexes; small Greek letters for vertices. If a lower index is present, it denotes
the dimension number; upper indices are merely distingnishing maxrks,

%) This differs from the definition of FI in the case of unbounded arrays, but
the two definitions are equivalent in the case of manifolds in view of FI21 and FIX
Theorem 5. “I"—» 4” iz no longer to be vead «I" ig topologicdlly equivalent to 4~
but, ¢. g, as “I" leads to 47, Cf. F. Add., under “Topological equivalence”.

Mathematische Annalen. 99, 26



402 M. H. A, Newman.

The units of M, containing the component S, form an (n:k)-cluster,
complete or incomplete as S, is tnternal to M, or in M,. (FI 19 and 31.)
This (n:k)-cluster is called the S, -cluster in M,.

The numerous small theorems — (n : k)~ clusters are n-elements, n-spheres
a ren-manifolds, etec. — required to set in motion the theory based on
these definitions will be found in FI. The following resalts from FII
may here be mentioned:

FII Theorems 1, 3a, 8b: If M*— M" then M'— M°, M' 5 M°,
MM

FII Theorem 2. If M'—5 M and I'+M' is a manifold, then
I+ MI—;I’—}— M?, provided I' contains no internal component of M*.

PII Theorem 4. If E* is E*, then E'— E.

FII Theorem 5. If the unbounded manifolds M* and M® contain
units 8 and T, respectively, such that M' — 8 — M* — T, then
M- M7,

FII Theorem 6. If E is E: and M, comtains B, then
M,;a—»(M,,—-E;) + E., provided M, — E, contains no internal com-
ponent of By .

(It M, is unbounded M, > (M, — E;)+ E,.)

Corollary 1. If Ey is E,, but E, and E;, have no common internal
component, Ey -+ Ep is an n-sphere.

Corollary 2. =, — E, is an n-clement.

FII Theorem 7. Suppose M, contains E, and E, contains E, _,,
and let E, be a second n-element whose Bboundary contains E,_,.
Then if all componenis of M — E, belonging to E, or E, belong to
En—li Mn—_’(Mn - En) + E:'

FII Theorem 8a. If the common part of M, and E, is an
(n — 1)-element in the boundary of eack, M,— M, + E,.

FII Theorem 8b. If M, contains E,, and the part of B, in M,
is an (n — 1)-element, then M, — M, — E, .

FII Lemma 7a.. If E and II have no common vertex, Il being a
sphere or an element, then EII is an element.

FII Lemma 7b. ¥If = and X' have no common vertex, 22X’ us
a sphere.

1) Theorems 1, 3, 5, give all the general relations betweex_m_ the three moves, The
only other plausible snggestion — <X M~ M? and M" is M° then M* ?M"” -
is false. See F. Add. p. 671.
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§ 2.
Assemblies of pieces,

An n-dimensional assembly of pieces is a collection of elements, (the
“pieces” of the assembly), of all dimension numbers from 0 to n such
that (denoting by G; an 7-dimensional piece):

P(I) if G, contains a unit or internal component of G;, G, contains
G; unless G, a.nd G; are identical;

P(II) if ¢ >0 every unit of G, belongs to an (i — 1)- dimensional piece;

PII) ¥ s<n @ is contained in an
(Z -+ 1)-dimensional piece.

Two assemblies I and I'’ have the same
structure if a (1,1) correspondence A can be
set up between their pieces so that (a) d(A@,)
=1; (b) G; (of T") contains G; (of I} if, and }
only if, AG; contains AG,. U is the structural & & & & &
relation. Fig. 1.

If [ denotes an n-assembly, I' denotes the  2-dimensional assembly

- N X with two 2-pieces.
sum of the n-dimensional pieces of I 31),

Lemma 1. If all j-pieces of the assembly T, for which § >k are
complete stars. and @, is any k-ptece, the units of I, that contain a
unit of G, form an array G, 4, _,_,.

It must be shewn that if U, and V, are units of @, and U, X, _, _,
is a unit of I',, then ¥V, X, _,_, is a unit of I',. Let @, be the n-piece
containing U, X, _,_,. The centre, ¢, of @, does not, by P(I), belong
to @,, and therefore U, X, . ,isa¢UY,_,_,. The pieces of I', contained
in G, constitute an (n ~ 1)-assembly and so, using an induetive hypo-
thesis, &,, which contains U, Y, ,_,, contains V, ¥, ,_,. Hence G,
contains ¥, X, ’

n—k—1°*

The array G, 4, _, _, is called the G -cluster in I',, 4,_, . is its shell.
If T, is a manifold A,_,_, is a sphere or an element. (For if U,
is a unit of @,, U4, _,_, is the U,-cluster in T,.)

Lemma 2. Let Gf be a k-piece of the n-assémbly M, (M being a
'mamjold) and let Hy be a k-element, whose boundary is identical with
Q7 but of which no unit or component not contained in Gy belongs to M.
Then there is an assembly [ with these properties:

) The conventions governing the use of letters may be extended to assemblies;.
¢ g, the use of M to denote an n-sssembly implies that the sum of if8 n-pieces is

4 manifold,
26%
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(a) M— 1T

(b) M and T have the same structure (with structural relation U,
say);

(e) if § >k and G; is a j-piece of M, UG, is a complete star;

(d) if <k UG, is G, save that UG, is Hy*).

The lemma being trme when k= mn, in virtue of FII, Theorems 4
and 2%%), suppose it true when % is replaced by number greater than itself. By
applying this hypothesis to all the (k- 1)-dimensional pieces of M in
turn, (taking Hy,, itself to be a complete star), M may be transformed
into an assembly M’ with the same structure, in which all pieces with
k -+ 1 or more dimensions are complete stars, while other pieces are
unchanged, and M — M'. We may then suppose, without loss of generality,
that in M itself all pieces of more than %k dimensions are complete stars.

The boundary of any piece, G;, containing Gy has, (by Lemma 1,
and FII Lemma 7a and Corollary 2 to Theorem 6), the form
B+ &3 I G, (wz'tk centre «) is contained @ and contains Gy,
then « X, _, _, is contained in 2,_, _, and aE’h - N E’_]L (Remark A.)
For a3, ;2 Gy must be contalned in 3;_;_20F, the set of all units of
G containing a unit of @f; and if ¢ E,_, did not belong entirely to &
1t would contain an internal component of G'k...f,_k 2, ¢.€ an mternal
component of Gp.

Consider the set of j-arrays, UG, defined as follows (G’j being a
typical cell of M):

AGy is Hy;

if G 18 «f (E, 1-}*07; —x—2 ) %{G is o (E, 1—-}~HL Z'_k_g);

if G does not contain Gy, %{G is G;.

ThlS set of arrays may be called QIM The following propertles are
evident: Al vertices of UG, not in Hy belong to G; (Remark B).
necessary and sufficient condition that UG, skcmld contain on army
H.T, is that G, should contain GT. (Remark C.) If a unit U; of G,
contains no unit of Gy, U; belongs to AG;; and conversely, a umt o;
QIG conlaining no unit of Hb belongs 1o G (Remark D.)

It can now be shewn that UM is an n-assembly having the pro-
perties required of T.

(a) UG, is a j-element,.

%) The invariance of the property of being a manifold was proved by Weyl
{Revista di Matem. Hisp-Amer., 1928) by a process somewhat similar to that here
adopted. Weyl’s fundamental definitions are, however, of a radically different character.

1% Quoted on p. 402
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Since &/ does not (by definition) belong to E;_, or 2; - g—g0 MOT (by
hypothesis} to Hp), it is sufficient to shew that Ej , - HLZ} - it a
(j -— 1) sphere, (FI 12) B(HL _‘L_e) i Hk j—Te— 3, which is sz‘,._l,_z,
which is E _,; units and internal eomponents of HLZ', z-2 Confain units
or m’cema,l components of H, and so do not belong to E . Hence
(F1I, Theorem 6, Corollary 1), B;_; + Hp ;1o is a (§ — 1)- sphere

(b) Every unit of QIGj belongs to an QIGj_ .-

A unit, Uj__l, of QTG not containing a unit of H° belongs to G},
and therefore to some plece G, 1 i. e. (by Remark D) to %@,;_,. A unit
Vj that contains a unit of Hk belongs to an array Hg X; z-2 contamed
in ‘JIG,, @1 Xj—3—» 18 contained in G, and therefore in a piece G,_,;
and AG,;_, contains V;_

(¢) Ii G, contams Gh, AG, contains AG,.

This foHows at once from Remark A unless @, contains @5. In that
case (with the notation of Remark A) «E,_ , is contained in E; ,,
Hle¢Z), ;o in HOZL z—2, and therefore UG, in ‘%{G

(d) If AQG, contains a unit or internal component of AG,, AG, con-
tains AG,;.

By (c) it is sufficient to shew that G, contains (7 ¥ 1<k the
result follows from Remark D (of. (b)). If j >k UG, zs a comple’ce star,
whose centre, f, is contained in ¥@,. Since B is aléo the centre of G,
it is not interior to Hj and therefore (Remark A4) belongs to 4, . Hence,
by P(II), G, contains G;.

From these results it follows that UM is an n-assembly. The com-
plete symmetry of the relations between M and %M being thus esta-
blished it may be inferred that

(¢/) If AQG; contains AG,, then G, contains G,, shewing that M
and UM have the same structure. Finally,

{e) M—AM.

I Gk I, 31, (say BE,), is the sum of all units of M conbaining a
unit of @y, the correspondlng sum in YA M is, by Remark C, H I, -,
(say E,). The arrays M— E,, and Y M — E} ave identical, and so are
the (n — 1)-elements Gy, M, and H.Il, ;_;, which are respectively
the part of E, interior to M and the part of K, interior to % M. Hence
(by F II Theorem 6, if 7, ;. is a sphere, by Theorem 7 if it is an
element) M— (M — E;) - By, which is %M.

Theorem 1. If the assemblies M and T have the same strutiure
and M is a manifold, then I' is @ manifold and M —1I'.

The 1-dimensional pieces in M can, by Lemma 2, be changed one
by one into their assigned correlates in I, while all other pieces are
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changed into complete stars. The right boundaries having thus been
provided for the 2-pieces these may next be changed, without disturbing
the 1-pieces; and so on. To ensure that this process can be continued
until I is finally reached it is only necessary to shew that the final con-
dition imposed on Fj in Lemma 2 is fulfilled at every stage.

Suppose then that M has been successfully changed into M*, in which
some k-dimensional pieces, and all j-pieces for which j < %, are “regu-
lated”, (i. e. congruent4) to their assigned I'-correlates ), while the remain-
ing “unregulated” pieces are complete stars. Let the operation to be
justified be the replacement of the k-piece, Gy, of M® by a k-element,
with boundary G, congruent to G; of T, (G and Gf being congruent
by hypothesis). It can certainly be arranged that no internal werfer of
the new k-piece belongs to M™, for the choice of the internal vertices
is unrestrained. If, on the other hand, there is an internal component,
U*, of @, with vertices lying in Gf, such that the simplex with the
corresponding vertices in Gy belongs to M™, then U must be a unit or
internal component of some piece, G, of M@ ). If G is not Gy itself
it is one of the pieces already regulated, for the unregulated pieces are
complete stars whose centres do not belong to Gy. Hence G; is con-
gruent to its [-correlate, Gf, and j > k. It follows that U*, which is a
unit or internal component of Gy, belongs to @°; and this is incompa-
tible with P(I).

§ 8.
Complexes.

(In this section the objects so far called “elements™, “spheres”,
“ manifolds”, “pieces”, will be called “ A elements”, “aspheres”, “,mani-
folds”, and “apieces”, to distingnish them from the “oelements”,
“ogpheres” etc. now to be introduced6). “Array”, “unit”, “component”,
having no new analogues, are still used, without prefix, in the same sense

as before.)

A cell is simply an object associated with a positive integer, its
dimension number. A collection of cells, of dimension numbers from 0
to n, becomes an n-sef of cells, if certain pairs of cells with dimension
nambers differing by 1 are associated together. The association of an ¢-cell,

) Two arrays are congruent if they are completely similar.

18y If T is any assembly every component of I' is a unit or internal component
of some piece. ’

%) The connection between the A- and O-entities having once been cleared up
it should be possible to drop the prefixes in most contexts.
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a;, with an (¢--1)-cell, @;,,, is expressed in the statement “g; bounds
a;,,”, and more generally, if @; bounds a; and a; bounds a,, g; is said
to bound a,.

A proper m-set is one in which if 7 < n every i-cell bounds at least
one (¢-+1)-cell, and if §>0 every j-cell is bounded by at least one
(j—1)-cell. From any proper n-set, oI', an n-array AI", called the
skeleton of oI', is formed by taking as vertices the cells of oI" and as
units all sets of n1 cells, a®©®, a¥,..., a®, such that a® bounds
a®V({=0,...n). Evidently ¢ must be an 7-cell??)

If @, is & cell of a proper n-set, the proper k-set formed by a,
and all the cells bounding it is denoted by o{@,}. The array ,{a.} is
seen to be the sum of all k-components of ,I" whose vertices form a
sequence deseepding from a,. Clearly if ar, a., ..., are the n-cells of oI,
oI is %’ afan}.

The boundary (n— 1)-cells of an n-set are those that bound only one
n-cell; the boundary k-cells, (k<n-—1),
are those that bound a boundary (n — 1)-
cell.  Other cells, including all n-cells, are
internal. The boundary of oI" (denoted by
ol or B (oI')) i the set of all boundary
cells, (if any). If oI'is a proper n\-set oI"
is evidently a proper (n— 1)-set. If there
is no boundary ~I' is wnbounded %),

Theorem 2. If a, ¢s a boundary cell of the proper n-set oI', pr{a,}
belongs to B(,T7).

By hypothesis there exists in oI" & sequence of cells ascending from
@, to a cell @,_, bounding only one n-cell, a,. If then g,a, ,...q,is
a unit of p{a,}, @, @, _,...0,...4, is a face of AI" containing it and
belonging to only one unit of oI, viz. a, @, _,...0q,...4.

Corollary 1. The skeleton of oI" is contained in B(,T).

(Set k==n—1 in Theorem 2).

Corollary 2. If oI is unbounded I' is unbounded.

(From Corollary 1).

An nosphere is a proper. n-set whose skeleton is an nasphere.

From Corollary 2 to Theorem 2 it follows that nospheres are un-
bounded.

%) A gequence of cells &, @;4,, ..., ¢;, in which each cell bounds its suceessor
is called a sequence ascending from a; or descending from a;.

%) The margin of an n-set of cells may be defined analogously to the margin of
an array (p. 400) and has properties similar to those of the boundary.
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An n-complex is an n-set of cells (not necessarily “proper”) such
that the boundary of every k-cell'®) is a (k— 1)osphere, (k=1,2,...,n).

Theorem3. If o I is a proper n-complex the skeleton of o T is B(aT').

In view of Theorem 2, Corollary 1, it is sufficient to shew that every
unit of B(AI") belongs to the skeleton of oI'.

In the first place the vertices of any boundary face of nI' form a
sequence descending from a boundary(n —1)-cell. Forifa, ... a0, 0, ;...a,
were a bounding face there would be only one j-cell, @, such that a .,
@;, @;_, is a descending sequence. But &, is unbounded and therefore
there are at least two j-cells in 7, , bounded by a;_,. Again if
a4, . @, s...q, is a bounding face of AT", @,_, is a boundary cell, for
if it bounded both a, and ay, a,a,_,...a, and @, @,_,...q, would be
two units of AI" containing the given face.

From this Theorem 8 follows at once, for if a@,_, is a bounding
(n—1)-cell all members of any sequence descending from it are by defi-
nition boundary cells, i. e. the members of any such sequence are the
vertices of a unit of the skeleton of ,I"2%).

Both B(AI') and the skeleton of oI" may, then, be denoted by , I'.

Corollary. If a, is a boundary vertex of AI' 4t is a boundary
cell of 5T.

Theorem 4. Every nosphere is an n-complex.

Let the theorem be assumed true of ospheres of less than n dimensions.

If @, is an n-cell of the nosphere 53, the array 5{a,}, being the
sum of all units of , 3 containing the vertex a,, is a complete star with
centre a, (F118). Hence the skeleton of @,, whose units are those of
n{a,} with the vertex g, left out, is an (n» —1)nsphere: the boundaries
of n-cells of ;3 are (»— 1)ospheres. It now follows from the inductive
hypothesis that o3 is an n-complex.

An noelement is a proper n-complex whose skeleton is an nzele-
ment®!). By Theorem 3 its boundary is an (n — 1)osphere.

Theorem 5. If oI ¢s a proper n-complex the arrays p{a,} formed
from all the cells of oI are the pieces of an nrassembly.

%) “The boundary of o{,}” may be abbreviated to “the boundary of @;” and
denoted by ax.

20) It will be noticed that the only property of Ospheres used in this proof is
their unboundedness. For a systematic investigation of the properties that the boun-
daries of cells mnst be assumed to possess see the paper of Weyl already eited.

2t) That an O element cannot be defined to be any n-set whose skeleton is an
nelement, and then proved to be an n-complex, is shewn by the simple example
of a 1-cell bounded by a single 0-cell.
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The arrays ‘r{a,}, being complete stars, are elements (FI 12). If
a; bounds a,, ~{e;} is contained in A{a,}: P(III}) is satisfied. If an
internal component of s{a;} belongs to A{a,} the vertex a; belongs to
ar{ay; i e, in oT", a; bounds @,. Hence n{a}, which does not con-
tain @, belongs to B-,{a,}. This is P(I). The vertices of a boundary
face, U,_,, of p{a,} form a sequence descending from some (% — 1)-cell,
a,_,, and U,_, is a unit of p{a,_,}. This is P(II).

Since all the pieces in this n-assembly are complete stars the
“{@,}-cluster in ,I'” exists. (cf. Lemma 1).

Let ,I' be a complex and a, one of its cells. If the dimension
numbers of all cells bounded by a, are diminished by £ -+ 1 while the
bounding relations between the cells are maintained, the modified cells
form an (n— & — 1)-set called the neighbour complex of a, in oI,
(NC(a,) in oI')*®). (The name “complex” will be justified presently.)

Lemma 3. The necessary and sufficient condition that a, should
belong to oI is that NC(a,) should be bounded.

(Obvious.)

Lemma 4. If oI" is a proper complex, the shell of the 5{a,}-cluster
in AT is the skeleton of NC(a,) in oI

Let AT, _,_, be the shell of the s{a@,}-cluster in ,I". A wunit,
U,_4_1 of ANC(a,) has for vertices a descending sequence of cells
@, @y_ys -+-5 Gy, all bounded by a,. If then ¥, is a unit of 5{a,},
i. e. if the vertices of ¥, form a sequence descending from a,, U, _,_,V,
is a unit of A I', and therefore U, ,_, is a unit of AI',_, ,.

Conversely the vertices of a unmit, U,_,_,, of AT, _,_, form a
sequence descending from an n-cell a,; for if ¥, is a unit of s{a,} the
vertices of U, _,_,V, descend from g, through a, to a,, and ¥, exhausts
the first & dimension numbers, Hence U,_,_, is a unit of A{@, . ,_}>
where @, _, denotes a, considered as an (n — k — 1)-cell of NC(a,).

An nomanifold is a connected n-complex in which the NC of every
0-cell is an (n — 1)osphere or (n — 1)oelement. From Lemma 3 is fol-
lIows that an nomanifold is unbounded if, and only if, the NC of every
0-cell is an nosphere. An nmomanifold is clearly a proper set, and so
Lemma 4 gives

Theorem 6a. The skelelon of a omanifold is a ~mantfold.

Theorem 7a. JIn an unbounded nomanifold NC(a,) is an
(n— & — 1)osphere. :

) ¢f. H. Kneser, Proc, Amsterddm 27 (1924), p. 60L
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It is now clear that if ,I" is any complex NC(a,) Isan (n — k& — 1)-

complex®®). For if &; contains a, the boundary of a;_,._,, is all the cells
@;_y_y» Where a@; is any cell bounding a; and bounded by a,; 1 e.

B(a;(~;-y) i8 NC(a;) in @;. Since @; is an unbounded manifold this NC
is & (j — & — 2)osphere.

Hence (by Lemma 4):

Theorem 6b. A proper complex oI' is an nomanifold if \I' is
an nLmanifold.

Theorem 7b. In a bounded manifold NC(a,)isan(n—k— 1)osphere
or (n— k — 1)oelement.

ospheres and oelements are omanifolds.

The definitions of noassemblies and of structural similarity are derived
from those on p. 403 by substituting “ocelement” for “element”, “opiece”
for “piece”, “internal cell” for “unit or internal component” in P(I),
and “(7 — 1)-cell” for “unit” in P(II).

Theorem 8. The necessary and sufficient condition that the collection
of celements (o@,) should be an noassembly is thai the collection (5G;)
should be an nrassembly.

Suppose (,G,) is known to be an noassembly. Then the arrays A @,
are Aelements.

P(I): I 5@, has a component with vertices descending, say, from g,
which is a unit or internal component of G, @, is an internal cell of
oG; (Theorem 2). Hence oG; contains G; and so AG,; contains AG;.

P(II): If a,_,...q, is a unit of AG, where >0, q;_, is a
boundary cell of ,@;, (proof of Theorem 3), and so belongs to a piece
OGj—-1; and @, _, ... a, belongs to AGi_l.

P(III): If AG, is any 7apiece and ¢ <<, oG, is contained in some
0@;1q, 20d AG, ., contains A\G,.

The proof of the converse is precisely similar, using Theorem 3
(Corollary) and Theorem 2.

Theorem 9. The necessary and sufficient condition that T and o’
should have the same structure is that their skeleton rassemblies, AU and
AT, should have the same structure.

(Now obvious.)

A generalised noassembly is a collection of oelements of dimension
numbers from O to », satisfying P(I) and P(II), (modified as above),
but not necessarily P(III).

% H. Kneser, op. ¢it., pointed out that this need not be postulated in the definition.
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If the generalised noassemblies oI'" and oI® have the same structure,
and all the pieces of oI are single cells, oI"? is said to be obtained
from oI'* by subdivision. This is most conveniently denoted by using a
small letter (a,b,...) for the structural relation. If oafl’ is of*, and
oI, is any k-set in oI'', cal’, denotes the sum of the corresponding
k-pieces in oI*. In particular o3I"" denotes a complex “constituted
similarly” to the skeleton of o I'* 24), and 8" I"" is written for 35" I'%5).

Topological Equivalence. Let oI" and oI' be two n-complexes.
If there exist n-complexes oI, oI'%, ..., oI'%, (oI is oI, oI'%is oI")
with the property that oI'* and oI"**' can be organised into generalised
noassemblies with the same structure, then oI” and ,I"" are said to be
topologically equivalent?®).

Theorem 10. If o M' and o M® are nomanifolds, the necessary and
sufficient condition for their topological equivalence is that M' 75 AM*.

That the condition is necessary follows from Theorem 1. For if a
manifold is organised into an assembly satisfying P(I) and P(II), P(III)
is necessarily satisfied also.

If it is known that A M'— ,M*, then Asubdivision-processes ,a and
Ab exist such that naM’ is \BM¥). If M® is a complex constituted
similarly®*) to ,aM" the Aprocesses na and Ab serve in an obvious
way as patterns for oprocesses for dividing oM and ,M*® into oM°.

With the help of this theoremx Theorems 6, 7, 8a, 8b, and Lemmas 7a
and 7b of FII, quoted on p. 402, can be extended to complexes, provided
that “is topologically equivalent to” is read for “-—’; also the following
theorems from §:

Theorem 112°). If oEy and oEﬁ are oelemenis, and an_,i 78 OQ'E,E,
there is a division process ob and an integer s such that B E, is
08"’ By, and ob is o8°a in E,.

#) i. e., to each k-component, U, of Al‘l, there corresponds a k-cell, u;, of
o8I, and if U; is a component of U,, u; bounds .

#5) The corresponding notation for arrays was introduced in an earlier paper “On
the superposition of »-dimensional manifolds”, Journal Lond. Math. Soc. 2 (1927),
p- 56—64, referred to as 8. The only modification is that the statement “ AT " is AT>”
implies that all the pieces in AT " are simpleres.

2) of. Weyl, 2 c. The additional transformations allowed by Weyl (his axioms C
and D) lead to no increased generality, with the present definitions, in view of FH
Lemmas 7a and 7b (quoted on p. 402.).

2% This is Theorem 2 of 8.

%) of. £ n. 2¢) above.

) 8, Theorem 2, Case 2.
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Theorem 123°). If oM, and oM, are topologically equivalent
o manifolds, and if o B and oL are oelements, contained respectively in
oM} and oM, but having no cell in thesr boundaries (if any), then
oMY can be superposed on oM, so thai oE. falls on oB,; i. e. there
exist a division process oa and an integer r such that saM, is 8" M
and ca By is 03" E,.

From Theorem 11 follows the general

Theorem on Superposition: If ,I' and oI are any two equi-
valent n-complexes there is a division process o0 and an inieger v such
that oal” is 53"

For if oI" and oI’ can themselves be organised into assemblies with
the same stracture, it is only necessary to “superpose” corresponding
1-, 2-, ..., n-pieces successively, making the structural relation between
k-pleces agree with that already set up between their boundaries.

If oI and oI are the end members of the chain oI, o I'%, ..., oI,
where oI'* and I"*** can be organised as assemblies with the same
structure, oI"*"" can first be superposed on oI, giving o3™I"; then
oI*™® may be superposed on 3", giving 8"I""; and so on.

Corollary. At most one intermediate complex is required to exhibit
topological eguivalence befween two complexes.

303 8., Theorem 3.

{Eingegangen am 4. 4. 1927.)



