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A recently described self-consistent effective binary diffusion approximation is applied 
to ambipolar diffusion in a neutral multicomponent plasma in zero magnetic field, 
where forced diffusion due to the electric field E plays an essential role. 717w field 
E is determined by the constraint that the net current f low produced by the d!ffusion 
fluxes must be :ero. The resulting effective binary diffusion fluxes are the sum of  
those that would obtain .]br E = 0 and ambipolar correction terms proportional to 
E. The formulation is self-consistent with respect to both mass and charge, the net 
diffusional fluxes o f  which are both identically zero. The results may be .further 
simpl([ied due to the small mass of  the electrons. The effective binary diffusivity D,. 
o f  the electrons no longer appears in the simpl([ied expressions. They are therelbre 
well suited to numerical calculations, where the large value of  D,. might otherwise 
have resulted in unacceptable stability or accura(v restrictions. The well-known 
effective doubling of  ion diffusivities due to ambipolar diffusion occurs in simple 
situations but is not a general feature. 
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1. I N T R O D U C T I O N  AND S U M M A R Y  

In single-fluid descriptions of  partially or fully ionized mult icomponent  
plasmas, constitutive relations are in general required for the diffusional 
mass fluxes Jr of  the individual components  or species relative to the 
mass-averaged velocity of  the plasma. ~'2~ Forced diffusion due to the electric 
field E is an essential contribution to these fluxes. Usually E is not known 
a priori  but is implicitly determined by the current density J~, which is 
known or determined on other grounds. Since Jq is a linear combination 
of  the J~, E must assume the value necessary to make the Jr consistent with 
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the given Jq. Thus E plays the role of a parameter  conjugate to J,~, which 
serves as the mechanism by which constraints on Ju are enforced. 

This paper  is concerned with the case in which Jq =0,  which is com- 
monly referred'to as ambipolar  diffusionJ ~.2~ Ambipolar  diffusion in simple 
situations is treated in textbooks. However, the resulting expressions are 
inadequate to deal with more complicated and realistic cases, such as 
detailed simulations of  mult icomponent  thermal plasmas of arbitrary com- 
positionJ 3'4~ The growing interest in this and related problems creates a 
need for simple and tractable approximations for ambipolar  diffusion in 
an arbitrary mult icomponent  plasma. Our purpose here is to derive such 
an approximation based on a recently described self-consistent effective 
binary diffusion approximation.  '5~ The resulting formulation is fully con- 
sistent with respect to both mass and charge, the net diffusional fluxes of 
which are both identically zero. 

The present development is restricted to cases in which the magnetic 
field B is zero. This restriction is not essential or intrinsic to ambipolar  
diffusion, as J,; may vanish even when B does not. However, a proper 
treatment of  diffusion in a magnetic field is considerably more complicated 
due to the velocity dependence of the magnetic forcesJ 6'7' This case falls 
within the purview of mult icomponent  magnetohydrodynamics,  and is 
beyond the scope of this paper. 

The development proceeds along the following outline. The general 
expressions of Ref. 5 are specialized to the present situation by identifying 
the specific body forces with gravity (which cancels out) and the electric 
forces on the charged species. The resulting effective binary diffusion fluxes 
J, are the sum of those that would obtain if E were zero and additional 
terms proportional to E. The corresponding current density J,j is then written 
as the appropriate  linear combination of the &, and E is determined by 
setting Ju = 0. The resulting expression for E combines with the J, to yield 
self-consistent effective binary ambipolar  diffusion fluxes which automati- 
cally conserve both mass and charge. 

The general expressions for E and the J, may be further simplified due 
to the fact that the free electrons in the plasma are much lighter than the 
other components.  The electrons dominate E, but they otherwise contribute 
negligibly to the diffusion fluxes of the other species. The electron diffusion 
flux does not simplify in the same way, but it may easily be obtained from 
the condition that J,i = 0. The net result is that the effective binary diffusivity 
of the electrons, D,,, no longer appears in the equations. This is fortunate, 
since D,. is very large and might otherwise give rise to severe stability and /o r  
accuracy restrictions in numerical calculations. The resulting simplified 
formulation no longer exactly satisfies the constraint that the J, sum to zero, 
but the discrepancy is negligible due to the small mass of the electrons. We 
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also find that the well-known effective doubling of ion diffusivities due to 
ambipolar  diffusion ~'-~ is not a general feature, but occurs only in simple 
situations. 

2. AMBIPOLAR DIFFUSION IN ARBITRARY 
M U L T I C O M P O N E N T  PLASMAS 

We begin with the self-consistent effective binary diffusion approxima- 
tion of Ref. 5, which provides an explicit expression for the diffusional 
mass fluxes J~ relative to the mass-averaged velocity of  the mixture. This 
expression may be written in the form 

J, = -cM~D,G, + (p,c/p) ~ M,D~Gj (1) 
I 

where J ,  M,, and p, are, respectively, the diffusional mass flux, molecular 
weight, and partial mass density of species i ,p is the total mass density 
(i.e., the sum of the p~), c is the total molar concentration (i.e., the sum of 
p~/M~), D~ is the effective binary diffusivity of species i, ~5~ and the diffusional 
driving forces G, are given by 

G,= H~-(1/p)[p ,F~-(p , /p)  ~ piFi] (2) 
i 

Here p is the pressure, F, is the body force per unit mass acting on species 
i, and H, represents the driving forces for concentration (ordinary), pressure, 
and thermal diffusion, namely 

H, = Vx, +(x~- p,/p)V ln p+ K, V In T (3) 

where x, = p~/(M~c) is the m.ole fraction of species i and T is the temperature. 
The coefficients K, are simply related to the species thermal diffusion 
coefficients, and they have the property that their sum over all species 
vanishes. It follows that both G, and H, also sum to zero in the same way. 

In the present context, the only body forces present are gravity and 
the electric forces on the charged species. Thus F, = g +  q,E, where q, is the 
charge per unit mass of  species i, E is the electric field, and g is the 
acceleration of gravity. Equation (2) then becomes 

G~ = H, - (q,p,/p)E (4) 

where use has been made of the neutrality condition 

q,p, = 0 (5) 
i 
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Notice that g has cancelled out and no longer appears. Combining Eqs. (1) 
and (4), we obtain 

J, = -cm,  D~Hi + (p~c/ p) • MjDiH j 
i 

+ ( c/ p ) [ MiqipiDi - ( pi/ p ) ~ M)qipjDj ] E (6) 

in which the first two terms represent the species diffusion fluxes that would 
result in the absence of forced diffusion. This equation expresses the 
diffusion fluxes in terms of the Hi, which are presumed known, and E, 
which remains to be determined. 

The current density in the plasma is related to the species diffusion 
fluxes by 

J,; = ~ qiJi (7) 
i 

Equation (7) actually defines the current density relative to the mass- 
averaged velocity of the plasma, but because of the neutrality condition 
there is no distinction between this current density and that in the laboratory 
frame. 

In order to describe ambipolar  diffusion, we must determine the electric 
field for which the current density vanishes. Combining Eqs. (5)-(7), setting 
Jq =0,  and solving for E, we obtain 

p ~, Miq,DiHi 
t 

E - (8) 
Miq~piD,-.- 

i 

which may be referred to as the ambipolar  electric field. This expression 
for E, together with Eq. (6), defines our self-consistent effective binary 
diffusion approximation for ambipolar  diffusion in mult icomponent  
plasmas. The effective binary diffusion flux J, is seen to be the sum of the 
flux that would result in the absence of forced diffusion and additional 
terms proportional to the ambipolar  electric field E. By construction, this 
approximation satisfies the condition J~ = 0  as well as the constraint that 
the J, properly sum to zero) 5~ 

3. S I M P L I F I C A T I O N S  DUE TO SMALL ELECTRON MASS 

The free electrons in the plasma will be symbolically denoted by the 
species index i=  e. They are much lighter than the other species, and their 
effective binary diffusivity D,, is consequently much larger. We are therefore 



Ambipolar Diffusion in Multicomponent Plasmas 399 

led to examine the behavior  o f  the general expressions for very small electron 
mass, i.e., very small Me. For this purpose we may assume that D,, is 
propor t ional  to .._,.M -~/2.~'-~' It will therefore be convenient  to introduce the 
small parameter  e = M~/-~. The orders of  magni tude  of  the various quantities 
involved are then as follows: q,, ~ e-2 P,, ~ e'-, q~.p,, ~ 1, M,,q,, ~ 1, D~, ~ e 
and M,,D,, ~ e, so that 

M,.q~p,,D,. ~ M, ,q , ,D, , -  e I (9) 

and 

Meq,.peD~. ~ e (10) 

First we examine the behavior  of  E. By virtue of  Eq. (9), the electron 
terms dominate  the sums in Eq. (8). Neglecting terms of  order  e and higher, 
we readily find 

E=(p/q , .p~ , )He  (11) 

In the absence of  pressure and temperature gradients H~, = 7x,, ,  and Eq. 
(11) then reduces to an expression previously derived under  less general 
c i rcumstancesJ  2 

Next we examine the species fluxes Ji for i #  e. By virtue of  Eq. (10), 
the electron terms in Eq. (6) are now of  order  e smaller than the other 
terms. Again neglecting terms of  order e and higher, we obtain 

J , = - c m ~ D , H ,  + ( p / / p )  Z MjD~Hj 
j ~ e  

+ ( c / p ) [ M , q , p i D i - ( p , / p )  V M i q i p i D , ] E  ( i ~ e )  (12) 
j ~ c  

with E given by Eq. (11). The restrictions on the sums in Eq. (12) may be 
formally accompl ished by setting D,. = 0 in Eq. (6) for i ¢ e. 

The diffusional flux J,, of  the electrons requires special treatment 
because it is inherently of  order  e 2 and vanishes to order  unity. Setting 
J~.=0 would therefore be correct to order  unity with regard to mass flux, 
but this would improperly  neglect the essential contr ibution of  the electrons 
to the current density. The latter contr ibution is q,,J~,, which is of  order 
unity and must be retained in order to satisfy the condit ion Jq = 0  to order 
unity. Since q,, is of  order  e -', this requires an expression for J,. correct to 
order  e 2. Such an expression could be derived directly from Eqs. (6) and 
(8), but a simpler equivalent procedure  is to solve for J,. from the condit ion 

J,~ = 0; i.e., 

J , . = - ( 1 / q , . )  ~ q,J, (13) 

Equat ion (13) is of  course exact if the correct J~ of  Eq. (6) are used. Here, 
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however,  we obtain the Ji for i S  e from Eq. (12), which is only correct to 
order  unity. Since q,. is of  order  e -2, Eq. (13) then gives J,. correct to 
order  e 2. 

Equat ions (11)-(13) are the proper  simplified expressions that result 
when the small mass o f  the electrons is taken into account.  Since they do 
not represent all the Ji to the same order  in e, the total diffusional mass 
flux (i.e., the sum of the J,)  is no longer identically zero as it should be, ~5' 
but is rather of  order  e -~. Thus the simplified formulat ion is not fully 
self-consistent with respect to mass conservat ion,  which is the price paid 
for the simplification. However,  since the electron mass is very small, the 
discrepancy should be negligible for most purposes.  

Notice that D,, no longer appears  in the simplified formulat ion.  This 
is fortunate,  since D,. is very large and might otherwise have resulted in 
unacceptable  stability or accuracy restrictions in numerical calculations. 
The simplified formulat ion is therefore well suited for use in numerical  
s imulat ions)  3,4~ 

It is often stated that when the ion and electron temperatures are equal 
(as assumed in the present development) ,  the essential effect of  ambipolar  
diffusion is to effectively double  the ion diffusivitiesJ ,.:.s.,~ It is not apparent  
from the preceding results how or whether this occurs. The reason is that 
this doubl ing is not in fact a general feature of  ambipolar  diffusion, but 
rather occurs only in simple special cases. ( Indeed,  it is not even possible 
in general to define effective "ambipo la r  diffusion coefficients" in such a 
way that the diffusion fluxes formally reduce to their E = 0  forms.) One 
such case is that of  a th ree-component  plasma produced  by partial ionization 
of  a single atomic species; i.e., A ~ A + + e  . This situation is commonly  
treated in textbooks. Of  course, one would not ordinarily use the effective 
binary diffusion approximat ion  in this context,  where exact analytical results 
can be obtained without it. However,  our  purpose here is not to give an 
exact t reatment but rather to examine the behavior  of  our approximate  
expressions in this special case. 

The three-component  plasma contains neutral atoms ( i =  a), positive 
ions ( i = p), and electrons ( i = e). The neutrality condit ion of  Eq. (5) reduces 
to qp&, = -q, .p, . .  Moreover,  the ions and electrons carry equal but opposi te  
charges, so that M p q ~ , = - M , , q , . .  These relations combine  to imply that 
xp = xc,  from which it follows that x,, = 1 -2xp .  In the absence of  pressure 
and temperature gradients H, reduces to Vx,, so that H r, = H~. =Vxp and 
H,, = - 2 V x  v. These relations then combine  with Eqs. (11) and (12) for i = p  
to yield 

Jr, = -2 (  c / p  )[p, ,M,,D,,  + ( p - p,, ) Mt, D t , ] V x  v (14) 

in which the factor of  2 represents the ambipolar  doubling.  The quanti ty 
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in square brackets is proportional to a weighted average of D,, and Dp, and 
may be related to the atom-ion binary diffusivity D,,p via the definition of 
Di, namely '5~ 

1 - w i  
Di - (15) 

E xj/Do 
j~i 

Here Dii is the binary diffusivity for the pair (i,j), and the w, are normalized 
weighting factors employed in the effective binary diffusion approxima- 
tion. ~5~ Combining Eqs. (14) and (15), neglecting terms involving 1/D,,, and 
l/D,,p (which are very small because D,,, and D,,, are very large), and 
neglecting the electronic contribution to the mass density, we obtain 

Jv = -2(  c2/p )( 1 + w,,) M,  MrD,wVx p (16) 

The conventional choice '~' w,. = x,. would be inappropriate here because of 
the very small mass of the electrons. The latter should be reflected in a w,, 
value much less than unity, which can then be neglected in Eq. (16). The 
resulting Jp has precisely the form appropriate to a binary mixture of ions 
and neutrals alone with no electric forces, ~ "'~ but with D,p replaced by 2D,,p. 
The doubling is not an artifact of the effective binary diffusion approxima- 
tion, as the same result may readily be obtained from the full multicom- 
portent diffusion equations' "" under the same assumptions. It is clear from 
the preceding development that the origin of the doubling lies in the special 
relations peculiar to the present case, and is not in any sense a general 
feature. In order to describe ambipolar diffusion in more general situations, 
it is simply necessary to use the more general equations (6) and (8), or 
(11)-(13). 

4. CONCLUDING REMARKS 

We have presented a self-consistent effective binary diffusion approxi- 
mation to ambipolar diffusion in multicomponent plasmas of arbitrary 
composition. The approximation explicitly expresses the diffusional mass 
fluxes in terms of the diffusional driving forces. It is fully self-consistent 
with respect to both mass and charge, the net diffusional fluxes of which 
are both identically zero. We have also presented a simplified formulation 
based on the fact that the electrons are much lighter than the other com- 
ponents. 

The present development has assumed that all species, including the 
electrons, have the same common temperature T. A corresponding theory 
for unequal electron and ion temperatures would require more general 



402 Ramshaw and Chang 

starting expressions for the J~, but would proceed along basically the same 
outline. 

We are currently using the present formulation, with the simplifications 
due to small electron mass, in our ongoing simulations of thermal plasma 
processes/3'4~ It is hoped that these results will also find useful applications 
in fusion p l a s m a s ~  and astrophysical problems/~_,-~4, 
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