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I. Introduction 

Let R denote the ring 7/or the field IFz, and let V be a free R-module of finite rank 
p with an alternating bilinear form ( - ,  - )  : V x V ~ R .  This form determines a 
mapj  from V to its dual V*, given by x ~ ( x ,  - ). If V 0 denotes its kernel and V' its 
image, then we shall identify V' and V/V o. For aE V we have a so-called symplectic 
transvection T, : V ~  V given by Ta(x) = x -  (x,  a)a. Notice that T a is an element of 
the group Sp*V of automorphisms of ( V , ( - , - ) )  that act trivially on V*/V' 
(hence on V o as well). Given any subset A of V we let Fa C Sp*V denote the 
subgroup generated by the transvections T~,b~A. We shall study triples 
(V,, ( - ,  - ), A) satisfying: 

(i) A is a F~-orbit. 
(ii) A generates V. 

(iii) If rank V> 1, then there exist 61,62~A such that (61,~2) = 1. 
Such a triple we call a vanishing lattice (over R), and F~ is called its monodromy 

group. In the sequel we exclude the (trivial) rank 1 case since it is exceptional. We 
conjecture that condition (iii) is already implied by (i) and (ii). 

We prove that the monodromy group of a vanishing lattice over 7z contains a 
certain congruence subgroup of Sp#V and that the problem of describing A 
reduces to the corresponding problem in the modulo 2 reduction of V (thereby 
generalizing [1, Theorem 1], [10, Theorem 1], and [5, Theorem 1]). Furthermore 
we generalize the results of Wajnryb's paper [10] concerning vanishing lattices 
over F 2 and classify these structures. This yields information about the subgroup 
of F~ consisting of elements that act trivially on V' (R--Z or IF2). 

The interest of the notion of vanishing lattice is explained by the fact that it 
occurs in at least two places in algebraic geometry : the vanishing homology of an 
odd-dimensional isolated complete intersection singularity and the vanishing 
homology of many Lefschetz pencils on an even-dimensional projective variety 
both carry such a structure. In these cases our results give rather precise 
information on the vanishing cycles and monodromy groups (Sect. 6). 

* Supported by ZWO 
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2. Vanishing Lattices 

We use the notations introduced in Sect. 1. 

(2.1) Lemma. Let A' C V be a set of generators such that all T~,, 6' ~ A' are in a single 
conjuoacy class in F4,. I f  there exist ~1,62~A' such that (61 ,62)=1  , then 
(V, ( - ,  - ) ,  A) (where A = FA, " A') is a vanishing lattice, and Fa = Fa,. 

Proof Let 6~A. There exist 6'eA' and g~Fa, such that 6 =g(6'). Now T~ =gT~,g-1, 
so T~E Fd,. This proves F d, =F  a. 

It remains to prove that every 6'sA' is in Fa,-31. There is geY~, such that 
T~, =oT~,g- 1. Now g(3a)= g(T~,(32)- 32) = gTo,(b2)- g(62)= To,g(32)-g(b2)~R. 3'. 
Hence g(61)= __+ 6'. 

Since - 31 = T02 T0] T~2(31)eFA,. 31 it follows that 3'~ Fn,. 61. 

(2.2) En passant we proved : if (V, ( - ,  - ), A) is a vanishing lattice then - A = A. 

(2.3) Recall (see for example [3, p. 79]) that for an alternating bilinear form on V 
there is a basis (e~,fl ..... e,,f,, gl , . . . ,  g )  such that with respect to this basis the 
matrix o f (  , ) i s g i v e n b y  

0 

-d I 

d 1 
OI 

I0 d 2 

-d 2 0 1 

I 

-e- 

I 
---1--- 

I 0  tin 
-d n 0 I 

I O, 
\ 

"0 

where in the Z-case all d~ are natural numbers and d~ divides d~+ 1 (i= 1, ..., n - 1 )  
and in the IF2-case all d~ are 1. We call such a basis symplectic. 

(2.4) Let ( - , - )  be an alternating bilinear form on the Z-module V with d 1 
(defined above) equal to 1. Chmutov [5] proves that G v, the subgroup of Sp*V 
acting trivially on V*/2V' is generated by the elements T, 2, ae  V. 

It is easy to see tldat G v contains the congruence subgroup modulo 2d, of Sp * V, 
which coincides with the congruence subgroup modulo 2 "+ a where r is the number 
of 2's in the prime factorization of d,. 

Our first main result is: 

(2.5) Theorem. Let (V, ( - ,  - ) ,  A) be a vanishin 9 lattice over 7l. Then F~ ~ G v. 

Proof We shall prove that the statement is true if A contains a finite set of 
generators {ap. . . ,  a~} for V such that T~, .... T~ generate Fa and (ax, at) = 1 for 
i=2,  ...,v. 

Using this result and some lemmas we shall show that for any vanishing lattice 
such a set of generators exists. 



Skew-Symmetric Vanishing Lattices 117 

This will complete the proof. 
Suppose we have a set of  generators  as above. 
If  v = #, we are ready by [5, Proposi t ion 3]. 
If  v > #, we define a free 7Z-module V of rank v with a basis (ill . . . . .  fi~) and with a 

bilinear form ( - ,  - ) defined by @i, fij) = (ai, aj) 

Now fil =T~,T~(fil) for i = 2  . . . . .  n since (?tl, f i l ) = ( a a , a i ) = l ,  and if t~=.~(hl) for 

0s/~ then T~=OT~,0-1e/~. So F~=/~ and A'=F~.h  I. Therefore (V,, ( - , - ) , A )  is a 
vanishing lattice. 

Let 9e  Gv. Now (2.4) tells us that  there exist t e N ,  xj~ V, eje { - 1, 1}, (j = 1,..., r) 

f i T Z ~ j  such that  g = ~j . 
j = l  

For  every xj there is ~j~ V which maps  to xj under the surjection V ~  V given 
by g~i--*ai. 

' l  T2ejr ~ "  Put  ~ = ~ j  ~ ~v- 
j = l  

But G~ ( F~ = F, so ~ is a p roduc t  of  elements T~,, T~ 1 and hence g is a product  
of the corresponding T~, and T,~ 1. This proves  Gv (F~. 

(2.6) Lemma.  Let (V, ( - - ,  - ) ,  A) be a vanishing lattice and consider the equivalence 
relation on A generated by (81, 62)= 1. Then A is an equivalence class. 

Proof (for R=77). To2Ta~(Sz)=St if (61,62) = 1. 
Hence any equivalence class A ' ( A  is a Fa,-orbit. F a permutes  equivalence 

classes. 
Let A' be an equivalence class and J~  A. We show that  there is 6'E A' such that  

T~(6') = 6'. (This is sufficient : it implies that  F leaves A' invariant,  so A' = F.  A' = A.) 
Take  61~A'. There is 62~A such that  ( 8 1 , 6 2 ) =  1. We have 77.61 +~E.82~TZ 

8i--4"<6i, 6 > . 

A generator  6' of  the kernel of this mapp ing  is indivisible in 77.61 +77.62, hence 
~'~F{~,~2}.61 by [1, Theorem 2]. 

T~(6')=6'- (6 ' ,~)6=6' ,  and 6'cA' since T~,(A')= T~2(A')=A'. 

Proof (for R = F2). Any equivalence class is a F~-orbit, hence equal to A. 

(2.7) Lemma.  Let J o e  A and A o : = {(~e A I(fi o, fi) = 1 or 8 = 6o}. Then Fdo = F a and 
V = R . A  o. 

Proof. For  any  8e A there exists a sequence 8 o, 6v  ..., 6~ = 6 such that  (6 i_ 1, 81) = 1 
for i = 1 . . . .  , I. Let  1(6) denote the minimal  length of such a sequence. 

By induction on 1(8) we prove:  8e  Fao. 8 o (hence T~ e F~o ). If  1(6) = 0 then 6 = 8 0 so 
there is nothing to prove. If  l=l(6)>O we have 60,61 . . . .  ,St_l ,Sz=8. 
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There exists geFao such that g(6 z_ 1)=3o, from the induction hypothesis. 

(3o, g(6t) ) = (g(3,_ 1), g(6t)) = (3 t -  1, ~,) = 1 

~, = ~L 1, ~T ~(r 1)e r~o. ~o 
V = R . A  =R. (F~o .Ao)CR.A  o. 

The proof of Theorem (2.5) is now completed by the following 

(2.8) Proposition. Let  (V, ( - ,  - ), A) be a vanishing lattice. Then A contains a finite 
set o f  generators {al, . . . ,a,}  for  V such that T,,, .... T,~ generate F~ and ( a l , a i ) = l  
for  i=2,  ..., v. 

Proof  (for R=TZ; for R=IFz: Take the finite set Ao). Take 6o~A. Now A o is 
countable so we can arrange its elements in a sequence a I = 6 o, a z . . . .  

V l : =TZ. {a 1 ..... al}. F t : =subgroup of F a generated by Ta,, .... T,.  

We have V = U vt, Fa = U ~. 
! l 

There exists/0elN such that rank Vzo =rank  V, so for such/o V/V~o is finite and 

V,o/V, o c v, o+ 1/V,o c . . .  c v / v ,  o . 

Then there is/1 >Io such that Vl= V for/>11. 
Now (V, ( - ,  - ), Fl. {al, ..., at,}) is a vanishing lattice. 
We can apply Theorem (2.5) to it since it satisfies the extra hypothesis about a 

suitable set of generators. 
Therefore FI, 3 G  v, and F J G  v is finite, so Fa/Fl, is finite. Since 

Ft,/Ftl CFI,+ 1/F~1C... CFJFz,, there exists veiN, v > l  1 such that F~=F~ for l>v .  This 
completes the proof of the proposition. 

(2.9) Theorem. Let  (V, ( - ,  - ), A) be a vanishing lattice over Z, and x e  V. Then: 
x e  A iff there are y e  V and be  A such that ( x ,  y )  = 1 and x -  fie 2 V. 

Proo f  Apply Proposition (2.8) and make (V,, ( - ,  - ), z]) as in the proof of 
Theorem (2.5). Apply Chmutov's corollary of Proposition 1 to [1 [5]. 

(2.10) The group F = F  a acts on V' with its induced form ( - ,  - ) .  We denote the 
image o f F  in Sp* V' by F~ and the kernel of F--.F~ by F,. We refer to F,, respectively, 
F, as the unipotent, respectively, simile part of the monodromy group. 

For  ge F, there exist v ie V, w i e V o such that g(x) = x + ~ (x ,  vl) wl. So we can 

identify F u with a subgroup of Vo| V'. In particular F u is abelian. The following is a 
first step in estimating F,. 

(2.11) Lemma. Let  6cA .  V o o : = { v e V o l 6 + v e A }  does not depend on the choice 
o f  3. I t  is a subgroup of  V o. 

I f  we identify F, with a subgroup o f  Vo|  as above, then F, contains Voo| V', 

Proof  Let ve Voo. Then there is g e F such that 3 + v = 9(6). Now let 6' e A. There is 
h ~ F such that h(6) = 6'. So 3' + v = h(3) + v = h(3 + v) = hg(3) e d. This proves the first 
statement, from which the second immediately follows. 
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It remains to prove that for any 6cA, ve Voo, F,, contains the automorphism 
x~x+(x ,~5)v .  (A generates E) But this map is -x T~+vT ~, which is an element o f f  
since 6+yeA.  

(2.12) A quadratic function associated to (V, ( - ,  - )) is an IFz-valued function on 
V satisfying 

q(2x + #y) = 22q(x) +/.t2q(y) + 2~(x, y)  

(where the bar above (x, y)  denotes taking the class of (x,  y)  in ~:2, if R--Z). From 
the above formula it is clear that q is a homomorphism of groups on any subgroup 
of j-1(2V*), in particular on V o. 

It is also clear that q completely determines ( - ,  - ) if R = 1F 2. 
In this paper we shall call a triple (V, ( - ,  - ), q) where q is a quadratic function 

associated to (V, ( - , - ) ) ,  a quadratic form. 

(2.13) Let R=IF  2. Suppose that q(V0)=0 and that (el,f1, . . . ,e,,f , ,gl ..... gp) is a 
symplectic basis for (V, ( - ,  - )) (2.3). We recall that then the Arf  invariant of q can 

be defined as ~ q(ei)q(fl) (see [6, 10, p. 151]. For fixed dimensions of V and V o there 
i = 1  

exist at most 3 quadratic forms, up to isomorphism [4, 6]. 
(i) q(Vo)=O, Arf(q)=l , Iq-l(1)J=22"+p-~+2 "+p-~ 

(ii) q(Vo)=O, Arf(q)=O , rq-~(l) l=22"+P-~-2 "+p-~ 
(iii) q(Vo)--IF2(sop>l), Iq-~(1)J=jq-l(O)f=22"+p-1 

[For  R = Z  all this is more complicated since j-1(2V*) can be different from 
V0+ZE] 

(2.14) Let V be a free R-module of finite rank with an alternating bilinear form 
( - , - ) .  To any basis B of V we can associate a unique quadratic form by 
requiring qB to take the value 1 on all elements of B. 

Now let (V, ( - , - ) , A )  be a vanishing lattice. We say a basis B is weakly 
distinguished if F B = F  4. In this case F respects qB, so in particular qB(6)= 1 for all 
6~A. Furthermore for veVoo, 6~A we have I=qB(6+v)=qs(6)+qB(v)+(6,  V ) 
= 1 + qB(V). SO qB(V) = 0, hence Foo C Ker(qlvo). 

3. Vanishing Lattices over F 2 

In this section R shall always be IF 2. 

(3.1) Bases B and B' are said to be equivalent if B'CFB.B and BCFn,.B'. (This is 
indeed an equivalence relation on the set of bases of V.) If B and B' are equivalent, 
then FB----FB, ' qB =qB,, and if B is a weakly distinguished basis for (V,, ( - , - ) ,  A), 
then so is B'. 

(3.2) Let B=(a  I ..... a,) be a basis of V. We define gr(B) to be the graph which has 
B as its set of points and in which at, aj are connected by an edge iff (a  t, at) = 1. 

For any x = ~ xiai~ V we define gr(B, x) to be the subgraph of gr(B) spanned 
i=1 

by {ai~B]x~=l}" It is easy to see that gr(B) is connected if B is weakly 
distinguished. 
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A graph is said to have radius one if it has a point  connected to any other  point. 
Therefore  we shall say that  a basis B = ( a  1 . . . . .  au) of V has radius one if ( a  1, a~) = 1 
for each i=~ 1. 

Wajnryb  [10] proved that  any  basis B for which gr(B) is connected (e.g. weakly 
distinguished B) is equivalent to a basis of  radius one. 

(3.3) A basis is called special if it is equivalent to a basis B = ( a l  . . . .  , a ,)  such that  
for some k, l < k < #  we have (ai, a j )  = 0  iff i = j  or i,j>=k+l. 

This is a s t ra ightforward generalization of a not ion introduced by  Wajnryb  
[-10] (he assumed Vo=0). 

(3.4) Lemma.  I f  B = (al . . . . .  a~) is a basis of  radius one in V, and if gr(B, a t + a 2 + a 3 
+ a 4 + as) is a complete graph, then at least one of the following statements holds: 

(i) a s +a 2+a 3+a4+aS~A B. 
(ii) aa + a  2 +a 3 +a4+as~ F 0. 

(iii) B is special. 

In order to prove  this l emma we slightly modify  an a rgument  due to Wajnryb  
1-10]. For  convenience we give the complete  p roof  instead of only indicating the 
modifications. 

Proof Let J C B  be a maximal  set containing a2, a3, a4, as, but  not a p  such that  the 
subgraph  of  gr(B) spanned by J is complete. If  a~, aj, a k, ate J are distinct, then a 1 
+ai+aj+ak+al~FB(al  + a z + a  3 +a4+as). (TAT,, replaces a 2 by a~ in a 1 + a 2 + a  3 

-q- a 4 -1- a 5 .) 
Let  apEB be such that  (ap, ai)=O for all ai~J. In B we replace ap by ap+a 1 

= L , ( a ; ) .  
Since T~ = T.1T~; +,, Ta, the new basis is equivalent  to the old one. Also we get a 

new J, having one extra point :  a v + a 1. 
If  ap~B is such tha t  (ap, a~)= 1 for all a ~ J  except one, we also replace ap by 

ap + a~. J does not  change, but the new base vector  bp = a; + a~ satisfies (b  v, a~) = 1 
for exact ly one a~EJ. 

I f  there exists ap~B and a,, a~, a k, at~J such that  

(ap, a i) = (a ; ,  a i )  = 1, (ap, a k ) = (ap, at) = 0 

then T~ T,~T~.T~T,T,~(at+ai+ai+ak+a~)=ar So (i) holds. 
Let ~ : = ~ \ ( { d ~  u J). 
We may  assume that  for any ap~.J 1 there exists exactly one av,~J such that  

(%, %,) = 1. 
I f  J has exactly 4 elements, then J={a~,aa, a4, as}, so ( a ~ + a a + a 3 + a  4 

+ a ~ , x ) = 0  for all x E E  So in this case (ii) holds. If  not  J contains  at  least 5 
elements. 

Case A. There  exist a v, aq~J 1 such that (ap, aq)=O, p4:q, p'4:q'. So we may  
assume a:, a a, a 4, av,, % are distinct elements of  J. Then:  

T.~T,,L~T~,T.,T,,,T.,T.~T.IT.,(al +a2 +a3 +a4 +a~,)=al. 

This proves  that  a~ +'a2 + aa + a4 + aq,~ A ~, hence a~ + az + a3 + a, + a~ e A ~. So 
(i) holds. 
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Case B. There exist av, aqeJ 1 such that  (ap, aa) = 1 and p' = q'. Let a2, aa, a4, ap,, a~ 
be distinct elements of  J. 

Then Ta T~ T~ T,, T, T o T~ T~ T, T a Ta T, (at +a2+a3+a~,  + a , ) = a  r Hence( i )  
r q p "  p 4 p '  3 1 q 2 1 p 

holds. 

Case C. There exist %, aqeJ 1 such that  (ap, aq> = 1 and  p '#q ' .  We replace the 
basis vector  ap by ap + %, + aq, = Ta, ' T~,,ap. J does not change. 

Since T,, = Ta; ' T,,, T~ +a~, + ~, Ta,, T,;, the new basis is equivalent to the old one. 
For  a ~ J  we have:  

(ap+ap,+aq , ,a i>=l  iff ai=a q, 

( a v + ap, + aq,, aq) = 0 .  

So we reduced case C to:  

Case D. For  all ap, aoe J: we have : (ap, aq) = 0 and p' = q'. We replace all ape J 1  by 

ap + ar  
The new basis is equivalent to B. So B is special and  (iii) holds. 

(3.5) Theorem. For any weakly distinguished basis B of  V which is not special, A B is 
the set o f  xe  V -  V o with qa(x)= 1. 

Proof We m a y  assume that  B is a basis with radius one (3.2). Throughou t  the 
proof, we omit  the index B from An, FB, qB. Suppose first xeA .  

I f x ~  Vo, then x = a t since F acts trivially on V o. Hence  A = {al}, and B is special 
which contradicts  the hypothesis.  

So xCV o and q ( x ) = q ( a l ) = l  since F respects q. 
Conversely, let x~ V \ V  o with q(x)= 1. Write x = ~ a~ (I C (1,...,/~}). We show: 

i e I  

If lll > l, then xe  F. (i~, ai) for I' C {1, . . ., #} with lI'l < llI. This is sufficient. 

If  there is an ioeI  such that  (x ,  aio > = 1, then T~,o(X)= ~ a i and we are done. 
iE I \ { io}  

Hence we may  assume:  (x,  a fo )=  0 for all ioe I. 
We consider the two cases: 16 I, 1r separately. 

Case t. 1~I. Then lit is odd, since (x ,  a t ) = 0 .  
There exists j e  {1, ..., #} \ I  such that  (x ,  a j ) =  1 (for xCVo). If  there is an io6I  

such that  (alo, a j )=O , then Ta,o +,lT~j(x)=x +aj+aio +a  1= ~ a i, where 
I '  =(lw{j})\{1,  io}. [Ta, ~ + , e F  since aio +a  I = T~,o (at)~A. ] i~r 

Clearly JI'l <1I]. So we may  assume that  (aio, a j ) =  1 for all ioeI. We distin- 
guish two subcases:  

(a) I f  there exist distinct i 1, i2eI  with (all, ai~ ) =0 ,  then 

T~ +aT~ T , , j ( x ) = x + a j + a i , + a i 2 + a l =  y ' a  i. 
i2 ~1 " 

i e l '  

I '= ( Iu{ j } ) \ {1 , i  t, i2}. Notice that  ai~+at~A and that  [I'l <1I]. 
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(b) F o r  all il, i2~I  with i t :#i  2 we have ( % , a t : ) = l .  I f  1I[=3, then q (x )=0  
which contradicts  the hypothesis. So III > 5. Let 1, i 1, i 2, i 3, i 4 be distinct elements of 
I. 

(a  1 + ai, +ai2 + ai3 + a~,, a : )  = 1 and B is not  special, hence a 1 + % + at: + ai3 
+ a g e  A (Lemma 3.4). 

Tal + a, 1 + a, 2 + ai~ + a,, Zaj(X) = X q- aj -F a I -t- ail q- ai2 + ai3 "}- ai, -= Z ai, 
where ieI' 

I'  = ( I u  {j})\{1, i 1, i 2, i 3, i4} (hence I/'1 < I/I). 

Case 2. l~I. If  ( a ~ , x ) = l  we have for any io~I:  

T a , o T a , ( X ) = x q - a l  q -a lo= Z at" 
i~(I\{io}) v { 1 } 

Although I(l\{io} w {1}1 = Ill, we are in case 1 now, so this has already been dealt 
with, and we m a y  assume ( a ~ , x )  =0 .  Hence [II is even. 

I f  [II =2 ,  x = %  +ai~. 
Since q(x) = q(ah) + q(a~) + (aq,  ai2 ) = 1 + 1 + 0 = 0, this case is excluded 

( ( a  h, a ~ )  = (x ,  a~) ,  and we treated the case of  this being 1 in the beginning of the 
proof). 

If  I I [= 4 every vertex of gr(B, x) has even degree, hence degree 2 or  degree 0. 
This leaves us with three possible graphs:  

~ O  ~ OOO0 

Since q(x) = 1 only the first of  these graphs can be gr(B, x), so 

x=ai~ +ai2 +ai3 +ai ,  with (aij, a~k)=l  if j + k  and lr  

= 0  in all other  cases. 

Now we replace in our  basis B the vector  ai, by a a + a  1. We get a basis B' which 
satisfies the hypothesis  of  the theorem. B' is equivalent  to B, hence A n, = A, F B, = F, 
qs' = q '  

Since gr(B', x) is a complete  graph  on 5 points,  it follows that  x e  A (Lemma 
3.4). 

I f  [I] > 6 we use the following 

(3.6) Assertion. gr(B, x) has a full  subgraph gr(B, y) which is o f  one o f  the foIlowin9 
types: I I  

(i)o �9 �9 (ii}l.--.-.-.-~----~ ( i i ~ ) ~  

and for  such y :  y e  A. 
We pos tpone  the p roof  of  this assert ion and finish the p roof  of  the theorem:  
There exists j e  {1 . . . . .  #}\1 such that  ( x , a ~ ) =  1. 
Take  y as in the assertion. If (y,  a : )  = 1, then 

TrT, j ( x ) = x + a j + y =  Z a ~ with 1 I ' [ < 1 I [ - 2 .  
iEl' 

If  (y ,  a j )  =0 ,  then TyTalT~j(x)=x+a 1 + a j + y =  ~, a i with II'l < [ I [ -  1. 
ieI' 
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This completes the proof. 
Now we prove the assertion (3.6): If (i) does not occur, gr(B, x) has at most one 

point of degree 0. Moreover if such a point occurs all other points are connected 
by edges, so (iii) occurs. Hence we may assume all points have degree > 2 (every 
point has even degree since (x, ai) = 0 for all i~ I). So every point is connected to at 
least 2 other points. 

If (ii) does not occur, all points connected to a certain fixed point are connected 
among themselves. Hence (iii) occurs if there is a point with degree >4. So if (iii) 
does not occur gr(B, x) has only connected components of the form 

This contradicts the hypothesis q(x)= 1. 
For the various subgraphs we have: 

(i) y=ai  +ai2 +ai3 and T,, T,,2Ta~ T, l(y)=ar 

(ii) y=ai, +ai2 +ai3 ai 1 a, 2 ai3 Tai2Ta~3(Y)=a~ �9 

(iii) y = all + ai2 + ai3 + ai4 + ai . 
Apply Lemma (3.4) to T,,, T,~(y)=y+a~ +a r 
This proves the assertion. 

(3.7) Corollary. Under the conditions of (3.5) Voo = Ker(qlvo). 

(3.8) Theorem. Let ( V , ( - , - ) , A )  be a vanishing lattice admitting a weakly 
distinguished basis B which is not special. 

Then F is the subgroup O*(qB) of Sp#V consisting of those automorphisms 
which respect qB. 

Proof. If V o = Voo, q~ induces a quadratic function q' on V', which takes the value 
1 on any element of the image of d. Hence F~ =O(q') [10, Theorem 4]. Since 
F~=Vo| the desired result follows. If 17o:# Voo, there exists vos V o such that 
qB(vo) --- 1 [Corollary (3.7)]. Making use of this v o we can lift any element of V'\{0} 
to an element of A =q~ ~(1)\V o. Now F~=Sp(V') ([3, Sect. 5, Exercise 11] or [10, 
Theorem4]). But any element of Sp(V') can be lifted to an element of Sp*V 
respecting q~, uniquely up to an element of Voo| ~. So in this case we also 
have the result. 

(3.9) The orders of O*(q~) and Sp*V can easily be computed from the orders of 
O(q) for nondegenerate quadratic forms and of Sp(V) for nondegenerate alternat- 
ing forms. For  these we refer to [4, 5]. 

(3.10) Now we turn our attention to special bases. It is easy to see that any special 
basis is equivalent to a basis B for which gr(B) is a tree as indicated in the following 
picture (examples are the Dynkin diagrams A,,D,): 
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Indeed, an equivalent basis satisfying the condition of (3.3) is obtained from B by 
taking elements corresponding to chains containing the left end point of the graph. 

(3.11) Lemma. I f  B is a speciat weakly distinguished basis of the above type, then: 
x~ A iff gr(B,x) is connected or gr(B,x) has an odd number of components and is 
obtained by deleting from a connected subgraph another connected subgraph 
containing a point that has degree >= 3 in gr(B). ( I f  such a point exists, it is unique.) 
Furthermore, xe  Voo iff gr(B, x) consists of an even number of end points of gr(B), all 
of them connected in gr(B) to a point of degree > 3 (degree 2 if # = 3). 

Proof. Exercise. 

4. Classification of  Vanishing Lattices Over F 2 

In this section R is IF 2. 

(4.1) Let ( V , ( - , - ) , A )  be a vanishing lattice, dimV=/~. We can choose 
a 1, . . . ,areA such that Tal, ..., Ta~ generate F=F~ (hence al ..... av generate V). We 
suppose v is the minimal number for which we can do this. We may assume that 
( a p a l ) = l  for all i4:1 (3.2). 

Now let us consider a v-dimensional vector space V over IF 2 with a basis 
B=(fi~ .. . . .  fi~). We define an alternating bilinear form ( , ) on V by putting 

( ?ti, ?t i) = ( ai, aj). Let z] :=F~.B.  

(~  ( - ,  - ) ,  A) is a vanishing lattice and B is a weakly distinguished basis of 
radius 1 for it. 

Let n : V ~ V  be the surjection defined by n(fii)=a ~, i = l , . . . , v .  Clearly, 
Ker0r) C fz 0. It is also easy to see that/~ respectively A maps onto F, respectively A. 

We distinguish two cases. 

(4.2) Case 1. B is not special. Then z]=q~l( l) \ f /o (Theorem 3.5). There are two 
subcases: 

(a) qB vanishes on Kerzc. Then q~ induces a quadratic function q on V, and F 
respects q. 

So q(6)= 1 for 6~A. 
On the other hand for any vEq-l(1)\Vo, there exists ~q~l (1) \~"  o such that 

n(~) = v. Hence v~ n(/]) = A. 
This proves A = q -  l(l)\Vo. 
Furthermore F = O ~ (q), since F B = 0 ~ (qB) (Theorem 3.8). 
So these vanishing lattices correspond to quadratic forms. 
For  fixed p = dim V o, 2n + p = dim V, we have at most three vanishing lattices of 

this kind which we denote by their monodromy groups: 

The number 

O~(2n, p;IF2) if Ar f (q )= l  

O~(2n, p;lF2) if Arf(q)=0 

O*(2n, p;lF2) if q(Vo)=lF 2 (p_->l). 

of elements of A is given by 2 2 " + P - t + 2  "+p- l ,  respectively. 
22n+p - 1 __ 2n§ 1, respectively, 22n+p- 1 _ 2 p- 
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(b) There is a ~0eKer(rc) with qB(~o)=l. Then for any v e V - V  o there is 
~e V - V  o such that z~(~)=v and qB(~)= 1. Hence A = V - V  o and F =  Sp*V, since 
G=O~(qB). 

For fixed p = dim V o and 2n + p = dim V this gives us only one vanishing lattice 
(up to isomorphism). 

We denote it by its monodromy group Sp*(2n, p; IF2). 
A has 22"+P-2 p elements. 

(4.3) Case 2. B is special. Then B is equivalent to a basis B' such that gr(B') is given 
by ~k 

Q1 ~ 

Let k be the length of the longest chain in this graph. 
diml/oo = v -  2, if k=3,  and v - k  if k#:3. 
If v=k, IA] =�89 1). Hence in general Iz]l =2  v-k- lk(k+ 1) (including k=3!). 
Suppose ~e ~'ooc~Kerrr. Then ~= ~ fii for some 

IC{k,k+l,. . . ,v},  Ill even (k+3) 

IC {1,3,4 ..... v}, tit even (k=3).  

If ioef we can delete alo from our set of generators, since aio= ~ alert(FB,,.B" ) 
iel\{io} 

where B"=B'\{io}. This contradicts our minimality hypothesis, so I = 0 ,  hence 
V00~Ker(~)=0. Since dim~'o-dimVoo<l ,  it follows that dimKer(~z)< 1, so we 
may assume 

Ker(~)=0 or Ker(~)={0,al+~3+...+fik} (k_->5odd) 

(add an even number of the elements ilk,'-', a~ to i k if necessary). If Ker(n) =0 we 
find at most 2 vanishing lattices for fixed p = d i m V  o, 2n+p=dimV (up to 
isomorphism) 

namely one with k = 2n which we shall call A~*(2n, p;lF2) 

and one with k = 2 n +  1 called A~ p;lF2) (p> 1). 

If Ker(rc) = {0, al + a3 +-. .  + ak}, then z],/~ project bijectively to A, respectively, F, 
since fi I + a3 + . . .  + ak r Vow We call this vanishing lattice A'(2n, p; 11=2). (p = dim V0, 
2n + p = dimV.) 

For these three vanishing lattices F is determined by the splitting exact 
sequence 

O--, Voo | V'--, r--, ~--, ~ , 

where F~___5~k+l(k~:3), F~5~3(k=3 ) (symmetric groups). 
In the sequel we shall write O~(2n, p) instead of O~(2n, p; IF2) etc. 
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(4.4) So for fixed dimensions 2n and p of V, Vo, respectively, there exist at most 7 
vanishing lattices up to isomorphism, namely 

O~(2n, p) 
Og(2n, p) 
O#(2n, p) (p>=l) 

Sp * (2n, p) 

A~*(2n, p) 
A~ p) (p_>--l) 

A'(2n, p) (n > 2). 

For the quadratic form q with Arfq=0 and dimV-dimVo=2,q-l(1) does not 
generate V and if dim V-  dim V o =4, q- 1(1) consists of 2 orbits of F~_ ~). 

So we only find vanishing lattices O~(2n, p) for n > 3. 
In the same way we only find vanishing lattices O~(2n, p) for n>2.  AeV(2,p) 

only occurs for p = 0, since the length of the longest chain in the graph has to be 2. 
Furthermore we have to check whether or not any two of these 7 vanishing lattices 
are isomorphic. We do this by comparing the number of elements of the respective 
A's. 

Only for small n some of these numbers are equal, and for those cases we 
actually find isomorphisms. The result is the following: 

(4. 5) O ~* (2, O) ~ Sp # (2, O) -~ ae*(2, O) 

O~(2,p)~Sp #(2,p)~-A~ (p> i) 

O~(4, p) ~ a~v(4, p) 

Sp# (4, p)~-- A'(4, p) 
O*(4,p)~--A~ (p>l )  

O o (6, p) = A (6, p). 

Existence of the vanishing lattices of type A and A' is clear. This also proves 
existence of 

O~(2n, p) for n < 2  

Oo*(6,p) 

O#(4,p) 

Sp*(2n, p) for n < 2 .  

We shall prove existence of O*~(2n, p) and O*(2n, p) for n>3  and of O~(2n, p) for 
n >  4 by giving weakly distinguished bases. 

It will follow that vanishing lattices of type Sp*(2n, p) exist [form a quotient of' 
O*~(2n, p+ 1)]. 
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(4.6) Consider a basis B with gr(B) given by: 

2 3 4 5 
. . . .  

2n+1 (n>3) 
2n+p 

Arf(qB) = 1 if n = 2, 3 mod 4 

=0  if n = 0 , 1 m o d 4 .  

Also consider B' with gr(B') given by: 

3 L 5 6 7 

.... ~ ~ . .  ~nn+ 1 (n>_-4) 

" ~  2n,p 

Arf(qB,)=l if n = 0 , 1 m o d 4  

=0  if n = 2 , 3 m o d 4 .  

It is not difficult to see that these bases are not special (A = q/~,t(1)). It follows from 
Theorems (3.5), (3.8) that these bases are weakly distinguished bases for O~* (2n, p), 
Og(Zn, p). 

For O~(2n, p) we use 

2 3 4 5 

2o+2 (n>3) 
2n+p 

(4.7) For Sp ~ (2n, p) (n 4= 1) and A'(2n, p) (n ~e 3) weakly distinguished bases do not 
exist [(3.8), (3.11), and (4.5)]. 

For the A-type lattices we have weakly distinguished bases by construction. 
For A'(6,p) a weakly distinguished basis might exist a priori, since 

A'(6, p)~ O~(6, p). 
We shall prove that it does not exist (first for p = 0). We may assume a weakly 

distinguished basis has radius one (3.2). If there would be one it would consist of 6 
elements from 

{~'eA[<5',al>=t}~{at} for some area 

but we can write this set as 

{at}u{b,,  . . . ,b6}u{a t +b  1 ..... at +b6} 

with (b~, b j> = 1 for all i :l:j. 
If we take 6 elements from this set that form a basis B, gr(B) is one of the 

following : 

*-- + 4  
But all these correspond to weakly distinguished bases for AeV(6, 0), not for A'(6, 0). 

Furthermore, if a weakly distinguished basis would exist for some A'(6, p), 
P ~ 1, we could use an argument similar to (4.3), to prove that there would exist one 
for A'(6, 0). 
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Now we have proved: 

(4.8) Theorem. (i) Up to isomorphism, the vanishing lattices o v e r  ~F 2 are given by 
the followino list: 

O~(2n, p) for n > l ,  p > 0  

O~(2n, p) for n>3,  p > 0  

O~*(2n, p) for n~2 ,  p > l  

Sp#(2n, p) for n > l ,  p=>0 

AeV(2n, p) for n = l ,  p = 0  

A~ p) for n > l ,  p > l  

A'(2n, p) for n>2,  p ~ 0 .  

or n>2,  p>O 

(ii) Among those we only have the following isomorphisms : 

O ~ (2, 0) z Sp(2, 0) = A~'(2, 0) 

O~(2, p)-~Sp(2, p)=A~ p) (p> l )  

0 ~ (4, p) -~ AeV(4, p) 

O*(4, p)~--A~ p) (p> l )  

Sp* (4, p) -- a'(4, p) 

Og (6, p) ~ A'(6, p). 

(iii) Weakly distinguished bases exist for the members of the 0~*, 0~, O#-series 
and the two A-series with the exception of O~(6, p). 

Weakly distinguished bases do not exist for other vanishing lattices (the A' and 
Sp *-series, with the exception of Sp * (2, p) ~ O ~ (2, p)). 

(4.9) From the discussions (4.2) and (4.3) it follows that vanishing lattices not 
admitting a weakly distinguished basis do admit a set of generators 
{al ... .  , adimV+ 1} such that the T~, generate F. 

(4.10) Voo = V o in all cases except 

O*(2n, p) and A~ p) (n>2).  

In these exceptional cases Voo is of codimension 1 in V o. 
[Voo = Ker(qlvo) for O*(2n, p).] 

(4.11) To conclude this section we shall characterize vanishing lattices of the 
types A and A' by the property that they do not contain a vanishing sublattice of 
type O~(6,0) (in a sense to be made precise later). A first step is the following 
lemma which is a generalization of [10, Lemma 5]. 

(4.12) Lemma. Let (V, ( - ,  - ), A) be a vanishing lattice of one of the types A or A' 
Let a,b,c~A, such that (a ,b )=(a ,c>=(b ,c )=O and a+b, a+c, b+cCV o. Then: 
a+b+c~A iff (V, ( - ,  - ),A) is of type A'(6,p). 
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Proof Suppose a + b + c~ A. We divide out  V o and consider the vanishing lattice 
V'. Then a', b', and c' are distinct elements of A' since a+b, a+c, b+cCV o. N o w  we 
are in the situation of Wajnryb ' s  L e m m a  5. Its p roof  shows that  d im V' = 6. So V' is 
of type AeV(6, 0) or A'(6, 0). It  is easily seen that  the first case is excluded [Wajnryb ' s  
Lemma 3 or our  L e m m a  (3.11)]. If  V is not of  type A'(6,p) we can divide out a 
subspace of V 0 to obtain type A~ 1) still satisfying our  condition. But this is 
excluded by the same a rgument  as above. 

The converse is an easy consequence of the i somorphism between A'(6, p) and 

Off (6, p). 

(4.13) Proposition. Let (V, ( - , - ) ,  A) be a vanishing lattice. Then the following 
statements are equivalent: 

(i) (V, ( - , - ' ) ,  A) is not of one of the types A ev, A ~ A'. 
(ii) There exist VxCV, At C A such that (VI, ( - ,  -- )lvL• is a vanishing 

lattice of type O~(6, 0). 

Proof. Suppose that  (V, ( - ,  - ), A) is not  of one of the types A ~v, A ~ A'. Then it 
either admits  a weakly distinguished basis as in (4.6) or it is of type Sp *, hence a 
quotient of a lattice of type O*(2n, p) with n > 4 .  The latter has a weakly 
distinguished basis as in (4.6). In both  cases the corresponding graph has a full 
subgraph ~ which corresponds to a weakly distinguished basis of a 

l i p  

vanishing lattice of  type Off(6,0). 
Let (V r ( - ,  - ) I v ,  • v,, A ~) be the sublattice of V corresponding to this graph 

[in the second case we take its image in Sp~(2n, p - 1); if n = 3 ,  then V =  V~, but  
A~:A1]. 

It follows f rom Theorem (3.5) that  V~ is as desired. 
On the other  hand  let V 1 be a subspace such that  ( V I , ( - ,  - ) l v ~  ~v~,A1) is a 

vanishing lattice of  type O~(6, 0). In the graph  ~ corresponding to a 

b 
weakly distinguished basis, the points a, b, c represent elements of  A satisfying the 
condition of  the previous lemma. It follows that  V is either of  type A'(6, p) or not  of  
any of the types A ~, A ~ A'. By dividing out  V o we see that  the first case cannot  
occur since A'(6, 0) and O~(6,0) are not isomorphic.  

(4.14) We have the following table: 

Possess a weakly Do not possess a weakly 
distinguished basis distinguished basis 

Containasublattice O~* (2n, p; IF2) n>3 Sp* (2n, p: F2), n-_>3 
O~ (6, 0, F2) O~ (2n, p; ~:2) n >4 

O*(2n, p~IF 2) n>3, p>l 

Do not contain a sublattice A ev (2n, p; F 2 ) A' (2n, p: F 2) 
O~ 16,0; ~2) A ~ (2n, p; ~'2) P > 1 
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5. The Unipotent Part of the Monodromy Group 

In this section we lift our results about Voo to integral lattices. Also we give a 
description of F, (over :~ or IF2). Over 7Z this description is complete only if 
j -  :(2V*) = V o + 2V. 

(5.1) Lemma. Let (V, ( - , - ) ,  A) be a vanishing lattice over Z. Then Voo is the 
inverse image of I/go under the natural projection V o--* V o. (V is the vanishing lattice 
V/2V over IF2.) 

In particular Voo D 2V 0. 

Proof It is clear that any element of Voe projects intoP'o0. Conversely, let ve V o, 
such that v projects into ~'oo, and let OeA. 

Now 6 + ve A iff there exists ye V such that (6 + v, y)  = 3[ and 6 + v projects into 
A. But ( 6 + v , y ) = ( J , y ) - - - 1  for some y e V  and 6 projects into A, v into Vo0, so 
6+v projects into 3. Hence ve V0o. 

(5.2) If B is a weakly distinguished basis of V that projects to a nonspecial basis of 
V,, it follows that Voo = Ker(qBJvo ). 

(5.3) Theorem. Identifying F~ with a subgroup of Vo| as in (2.10), we have: 
Voo | V' C Fu C Voo| V'+ Vo| 

In particular, if j -  t(2V*) = V o + 2V (R = ~:2 and R =7l with d,, as defined in (2.3), 
odd), then F, = Voo | V'. 

Proof The first inclusion has been proven in (2.11). 
Now choose a basis (v v.. . ,vp) for V o such that ~2 . . . .  ,VpeVoo, and let 9eF,. 

p 
There exist wl,. . . ,  wpe V such that 9(x) = x + ~ (x, wl)v ~ for all xe  V.. For  6e A we 

i = l  
have: g(6)eA so (6, w l )v l~  Voo. 

Hence v 1 ~ V0o or (6, w~)E2R for all 6cA. In the first case we are done, as well 
as in the second, for it follows that j(w~)e 2V* since A generates V. 

6. Singularities and Lefschetz Pencils 

(6.1) Let V be the middle homology group of the Milnor fibre of a complex 
isolated complete intersection singularity of odd dimension. On V we have the 
intersection form ( - ,  - ), which is skew symmetric. The monodromy group of the 
singularity is generated by transvections T~ with respect to the vanishing cycles 6. 
V is generated by the set A of vanishing cycles and unless the singularity is an 
ordinary double point there are two vanishing cycles with intersection number 
one. (For these well known facts we refer to the lecture notes of Looijenga [9].) 

It follows that (V, ( - ,  - ) ,  A) is a vanishing lattice. We shall apply the results of 
the preceding sections to it. From (2.5) and (2.9) we immediately get the following 
theorem which is a generalization of Eli (Au-singularities), [10] (plane curve 
singularities), and [5] (hypersurface singularities). 

(6.2) Theorem. The monodromy group of an isolated complete intersection singu- 
larity contains the subgroup G of ge Aut(V) that act trivially on V*/2V'. G contain~ 
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the congruence subgroup modulo 2 r+ 1 of the group Sp # V (r and Sp # V are defined in 
Sect. 2). 

The set of vanishin9 cycles consists of those x~ V that satisfy (x,  V ) = Z  and 
project to elements of A in the modulo 2 reduction ~" of V. 

(6.3) It is obvious that G is contained in the congruence subgroup modulo 2 of the 
monodromy group. Equality however does not hold in general. An example is 
provided by the singularity /~6, given by 3 3 x~ + x2 + x~ + 2xlx2x3 + x] =O. The 
third power of its classical monodromy operator is in the congruence subgroup, 
but not in G. 

(6.4) Theorem. Voo| Voo|  Vo| ~(2V*). 
I f  j - I ( 2 V * ) = 2 V +  V o, as is for example the ease for a curve singularity then 

r. Voo| 

(6.5) We can apply the results of Sect. 4 to the modulo 2 reduction of the vanishing 
lattice of a singularity. We get the following results: If a singularity admits a 
weakly distinguished basis for the vanishing homology, then the modulo 2 
reduction cannot be of type Sp#(2n, p;lFz) with n>3  or of type A'(2n, p;lF2) 
(4.8 iii). (It is not known whether or not weakly distinguished bases exist for all 
isolated complete intersection singularities.) 

Ira singularity is adjacent to the E6-singularity, then the modulo 2 reduction of 
the vanishing homology contains a O~(6,0;IF2) lattice corresponding to this 
E 6, so we do not have type A or A' (4.13). In both cases the condition can 
be weakened to the corresponding condition on the modulo 2 reduction of the 
vanishing lattice. 

If we restrict ourselves to isolated hypersurface singularities we get the 
following precise result: 

(6.6) Theorem. The modulo 2 reduction of the vanishing lattice associated to an 
isolated hypersurface singularity is of type: 

AeV(2n, 0 ; IF2) for the A2,-singularity 

A~ 0; IF2) for the A2, + 1"singularity 

A~ 2, 2 ; IF2) for the Dz,-singularity 

AeV(2n, 1 ;Fz) for the D2, + 1-singularity 

O~(2n, p;IF2), Og(2n, p;IF2) or O#(2n, p;lF2) for other singularities. 

Proof Isolated hypersurface singularities admit a (weakly) distinguished basis [7]. 
This excludes the Sp* and A'-types. 

From the classification of hypersurface singularities [2] we know that only the 
A k and D k singularities are not adjacent to E 6. So for other singularities we have 
OF, O~* or O n. 

The theorem now follows. (Look at the intersection diagrams for the A k and D k 
singularities.) 

(6.7) We shall now describe another situation where vanishing lattices occur. A 
good reference for this is [8]. 
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A pencil of hyperplanes  in a complex projective space pN consists of all 
hyperplanes  containing a fixed ( N -  2)-dimensional projective subspace A, called 
the axis of the pencil. Hyperp lanes  of IP N correspond to points  of  the dual 
projective space I[ 'N, and a set o fhyperp lanes  is a pencil if it corresponds to a line L 
in IP u. We shall consider the intersections of hyperplanes  in the pencil with a 
nonsingular  subvariety X of dimension n in IP N. If H is a hyperplane,  then Hc~X 
will be nonsingular  iff H is not  tangent  to X. The hyperplanes  that  are tangent  to X 
cor respond to the points  of  a subvariety ) f  of  ~N, called the dual variety. In general 

is a hypersurface with singularities. A generic line L intersects_X transversally in r 
regular points,  where r = degX if)~ is a hypersurface, r = 0 i fX is of  lower dimension. 
Then the axis A of the corresponding pencil intersects X transversally, and if we 
blow up X along Xc~A, the resulting space Y will be nonsingular.  The fibres of the 
associated m a p  f :  Y ~ L  are the hyperplane  sections Htc~X, and the critical values 
o f f  are the points o f ) ~ L .  The singular fibres contain exactly one singular point, 
which is non-degenerate,  i.e. an ordinary  double  point. Removing the critical 
points  and the singular fibres we get a locally trivial fibre bundle f :  Y*~L* .  The 
fundamenta l  group of L* acts on the homology  of the fibre. This monodromy 
action is trivial except in the middle dimension n -  1. The m o n o d r o m y  group F in 
dimension n - 1  is generated by the t ransformat ions  T,, : x - ~ x - ( x ,  6~)6 i where 
( - ,  - > denotes the intersection form and the 6~ are the so-called vanishing cycles 
corresponding to the ordinary double  points  ment ioned above. The  T~, are 
conjugated in F. 

The vanishing cycles 6~ generate a subgroup  V of the middle homology  group, 
called the vanishing homology. 

If  n is odd, the intersection form is symmetric,  if n is even it is skew symmetric.  
We assume n even and  consider the triple (V, ( - , -  >, F .  {61, . . ,6,}) .  It  follows 
f rom L e m m a  (2.1) that  this is a vanishing lattice if there are 6,6 'eF.  {61, . . ,6 ,}  
such that  (6, 5'> = 1. Such 6, 6' exist if there is a hyperplane  section of X having an 
isolated singularity other than  an ord inary  double point. We conjecture that  this 
condit ion can always be met. I f X  is a hypersurface this can at  least be achieved in 
some mult iple embedding of IP N. Then  the theory  of the preceding sections applies. 

Added to revised version. For any vanishing lattice V,, the group F/G can be identified with a certain 
canonical central extension of the monodromy group of the mod 2 reduction. 
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