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Introduction 

Let M be a closed minimally immersed hypersurface of S "+ 1, and h its second 
fundamental form. We denote the square of the length of h by S. It follows from 
the Gauss and Codazzi equations that the apparently extrinsic quantity S is in fact 
intrinsic and is given by 

S = n(n- 1 ) -  R, 

where R is the scalar curvature ofM.  IfO<S(x)<n for all x~M, then either S--0 
or S=-n [6]. In the case that S - n ,  Chern, do Carmo, Kobayashi; and Lawson 
independently proved that M is a Clifford torus [2, 4]. In a previous paper [5] we 

showed that there exists a positive real number C(n) > 0 C(3) = 3 and C(n) > ~ in 
q 

general / such that if S(x) is a constant bigger than n then it must be bigger than or 
J 

equal to n+C(n). We also learned that Naoya Doi has worked on the same 
problem [3]. His main results are for minimal hypersurface M of S "§ with 
constant scalar curvature and whose sectional curvature is bounded above by 1, he 
proved that either S = 0  or S>2(2n-3 ) .  However, under his assumptions it is 
easily seen that either S = 0 ;  or n=3,  S = 6  and M is the classical isoparametric 
example. To see this, let el, ..., e, be a local orthonormal frame field of principal 
curvature directions of M, then the sectional curvature in the direction e i, % for 
i:~j, is 1 + 2i2j, where 2{s are the principal curvatures. The conditions 

Z 2 i = 0 ,  
1 

Y' 2 2 = S, constant, 
i 

1 + 2i)~ i <  1, for i4:j, 
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imply that  there are at most  one positive 2 i and one negative 2. i and the principal 
curvatures  of  M are constants.  Hence either 2~ = 0 for all i, which gives S = 0; or  by 
The o rem 1 of [5], n = 3, S = 6 and M is the classical i soparametr ic  example.  

In this paper,  we prove  a pinching theorem for minimal  hypersurfaces in S "+ i 
for n < 5 :  

Theorem A. Let M be a closed minimally immersed hypersuface in S ~+ 1, n< 5, and 
S the square of the length of the second fundamental form of M. Then there exists 
6(n)>0  such that if n<S(x)<n+6(n) then S(x)=n, hence M is a Clifford torus. 

The p roof  uses the equations for Ah, A(Vh), and some integral equations 
natural ly  associated to the second fundamental  form h. Since we do not assume 
that  S is a constant  function, the est imate we have in [5] can not  be applied here, 
and  the technique of using integral equat ions seems essential. 

In the end of this paper,  we give a p roof  of  the theorem we stated in [5], 
namely :  

Theorem B. Let M 3 be a closed minimal hypersurface with constant scalar curvature 
R in S 4. I f  all three principal curvatures of M are distinct at every point, then R =0. 

1. Formulas Involving the Second Fundamental Form of Minimal Hypersurfaces 

In this section, we will review the nota t ion  used in our  previous paper  [5], derive 
several new formulas  and give a p roof  of  Theorem A. Let  M be a minimal 
hypersurface of S" § 1, and e l , . . . ,  e, a local o r thonorma l  frame field on M, wp ..., w, 
its dual  coframe. Then we have 

where 

where 

W 2 I =  Y, 1,  (1.1) 
i 

II = h = ~. hljwiwj, hij = hji , (1.2) 
I , J  

lTh= Z hijkWiWjWk, hljk=hikj , (1.3) 
i , j , k  

172h= Z hijklWiWjWkWl ' (1.4) 
i , j , k , l  

hijkl = hijlk + ~ hmjRmikt + ~ himRmjkl" 
m rrl 

V3h= Z hijklmWiWjWkWIWm' 
i , j , k , l  

m 

hukt, . = hijkm I k- 2 hrjkRrltr~ + ~ hi,kR,jl,, + ~ hijrRrktm, 
r r r 

(1.5) 

Ah u = ( n -  S)hij, (1.6t 
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where 

S=[hl z. 

Since we do not  assume S is a constant function, the same computat ion as in 1-5] 
will lead to a slightly different formula for A(Vh): 

Ahi: k = (2n + 3 - S)hi: k + 2 ~ (hi,.lh..kh:l + h:,.lhmlhtk + hk,.lh,.ihz: ) 
tn, l 

-- y" (hijmh,,,thtk + hik,,,hmthli + h.ik~h~lh u) 
m,l 

- -  ( S i h j k  -t- Sdh lk  q- Skhii). (1.7) 

Then it follows easily from (1.6), (1.7) that we have: 

Theorem 1. Let  M be an immersed minimal hypersurface of  S "+ 1, h its second 
fundamental form. Then 

~ AS = S ( n -  S) + lVh[ z . (1.8) 

�89 3-S)IVhlZ + 3 ( 2 B - A ) - ~ I V S I 2  § (1.9) 

where 

S=lhl  2, 

A = ~, hijkhiflhkmhmt, 
i , j , k  
l ,m 

B =  ~ hijkhk~mhjlhl, . .  
i , j , k  
l ,m 

Near any given point p e M ,  we can choose a local frame field el, ..., e, so that 

Hence we have 

Proposition 2. 

ti: = (2~-2:)(1  + 2~2:) ; 

1172hl= > 2-~ y '  (S + f3~k-  S2~) e , 
k 

at p. (1.11) 

With the same assumption as in Theorem 1, we have 

[F2hj 2 ~ ~(Sf4 - f3 z - S 2 - S ( S -  n)). (1.12) 

where 

at p, we have 

hi: = 2igij. 

Let f~ denote the smooth function on M given by tr(hk), i.e., fk=  ~2~. With such 

frame field, we have shown in I-5] that 

hlj~: = h:ij~ + ti: , (1.10) 
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Next we obtain a pointwise estimate for A - 2 B ,  

3 (A-2B)=  2 z z 22 ~, h~jk(2 i + kj + k -- 22i2j-- 2)t j2 k -- 22i~.k) 
ijk 

= ~ h~k(2(J, ~ + 2 ;  +2~) - - (2 ,+ ,2 /+2 t~ )  z) 

dist inct  

+ 3  2 "iik,/~2 1"~,2 4)~i,,,],k) q _ . k  E h2~(-  32~) 
i*k i 

distinct 

where 2~ - 421~ ~ < ~ + 1 S is obtained by standard Lagrange multiplier method 

with respect to the constraints ~2~=0 and ~2~ =S. Hence we obtain 

Proposition 3. With the same assumptions as in Theorem 1, we have 

3(A - 2B)__< ]//i-7 + 1 S117h12. (1.13) 
2 

Now we will derive some integral equations. Following Cheng and Yau [1], 
for a given symmetric two tensor I= ~ w~wj and a smooth function u on M, we 

U 
consider the smooth function ~ l~ju~j. 

ij 

Then if M is a closed manifold, by Stokes' theorem we have 

Z l , j u , ~ = -  ~ Zt,j ju, .  (1.14) 
M ij M ij 

Moreover, if I satisfies the Codarzi equations, i.e., V1 is a symmetric three tensor, 
and trl is constant, then 

2 lijj = Z ljji = (tr I), = 0. 
J J 

So in particular, 

I (1.15) 
M ij 

On the other hand, if we choose a local frame field et, ..., e, such that hij(P)=2~ii 
at P, then 

ij k 

= 2 h,kk2k)~ + 2 2 h~'k2'~'k 
ik ijk 

= ~ (hkk,, + (2 , -  2k)(1 + 2,2k)12k2~ + 2B 
ik 



Scalar Curvature of Minimal Hypersurfaces 109 

2 (Sir -- ~ik hijk2 ) 212 + 2,~2~,k(),i_ 2k)( l _l_ 2i,~k) + 2B  
i \ 2  j ik 

hikhij S S 2 -- ~--5--  ~s+ f4-f~ -S2-(A-2B)" 

Integrating both sides and using (1.15), we obtain 

I A -  2B = j S f4 2 2 hikhkj St ' - f ~ - s  + y - g -  .j 
M M ijk 

2 2 S i  
= i S  f4 - f j  - S - ~,, (hikhkj)J 2 '  

M ijk 

= ~ S f 4 - f 2 - S  2 -  ~hikjhkj~-,  
M ijk /. 

= ~ S f 4 - f 3 Z - S  2 -  [VSi 2 
M 4 

Hence we have: 

Theorem 4. Let M be an immersed closed minimal hypersurface of  S "+ 1, h its second 
fundamental form, S = [hi z and fk = t,(hk) �9 Then 

[. A - 2 B =  J 2 S 2 IVSI 2 S f 4 - f i  - - - -  (1.16) 
M M 4 

where A and B are as in Theorem 1. 

We can now give a p roof  of Theorem A. 

Proof Integrating (1.8) and (1.9), we get 

[VS[ 2=  ~f S ( S - n ) f ( S ) - f ( s ) l g h l  z , (1.17) 

[VZh[ z=  I ( S - 2 n - 3 ) I V h I E  + 3 ( A - 2 B ) + ~ I V S I  2. (1.18) 
M ld 

Using (1.12) 

I ( S - 2 n - 3 ) I V h I 2 + 3 ( A - 2 B ) + ~ I V S [ 2 > =  I ~ 2 ( S f 4 - f z - S 2 - S ( S - n ) )  
M M 

= ~ 3(Sf4_~2~3 - S2~-alVhl2z 2, , , using Theorem 4 
M 

= ~ a (A-2B)+as lVS l2 -~ lVh l2 .  
M 

SO 

j ( S -  2n-a2)lVh[ 2 +~2(A- 2B) +~lVSl 2 ~ o .  
M 

Using Proposition 3 and (1.17) we have 

0 < S ( S -  2 n -  2~)[Vh[ 2 + ] / ~  + 1 S[ Vh[ 2 + ~(S2(S- n ) -  S IVhl2). 
--M 4 
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N o w  suppose n < S(x) < n + e, then 

j S z ( S - n ) < ( n + ~ )  ~ S ( S - n ) = ( n + e )  S [lZhl 2 
M M M 

So we have 

0<_ S ( I / ~ - 4 S  6 - 4 - 9 e )  lVh[2 
- M \ - - - T - - -  

6 - 1 . 1 3 n  
Hence, if n < 5 and a = - -  then 

- 5 +  1 / / ~ '  

( 1 / ]7  - 4 ) S -  ( 6 -  n -  9e) < 0. 

Therefore, we have ]Vh] =0, i.e., S=n.  This proves Theorem A. 

3. Proof  of Theorem B 

Since R = 6 - S ,  S is a constant  function. We may  assume S > 6 I-5]. We denote f3 
by f If  f is also a constant  function, then all three principal curvatures  are 
constants  and  S = 6, so we are done. If f is no t  a constant  function, we will derive a 
contradiction.  The  derivat ion is ra ther  long, so we divide it into four steps. Let f(p) 
= m a x f .  We m a y  assume f(p)+-O, otherwise we use m i n f  We choose a local frame 

M 

el, e2, e3, e 4 such that  at  p 

h~j(p) = 2i~i~, 

with 21 < 2 2 < 2 3 .  Then 

Step 1. 

h22a(p ) = S ( S -  3) (i) hi~k(p ) = 0 for all i, j, k, except 6 

(ii) h/ijk(p) = hliik(p) = hkiii(p) = 0, if i, j, k are distinct. 

(i/i) 3 ~ h2u(p) - 2 ~, h2,(p) = 3S(S - 3) 2. 
i , l  i 

To see this, we note that  

2i = 0, since M is minimal .  
i 

h 2 Sg(p) ~i lik(P) i =-  -~-O, S being cons tan t .  
2 

hii~(p)22 = A(p) = 0, f(p) being max f .  
i 3 

By assumpt ion ,  21, 22, 2 3 a r e  distinct, hence h,k(p ) = 0 for all i, k. 
Using (1.8) and the assumpt ion  S is a constant,  we have 

y = ~h2k(p) = S ( S -  3) = 6h~23 + 3 ~ hi2k + ~ h2/. 
i ~ k  i 
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Hence h223(P) = S(S-3_~_)) To obtain (ii), we take the derivative of the constant  
6 ' 

function y =  I Vhl 2. We have 

hqk(p)hi~u(p) = O, 
ijk 

so hiqk(p)=O, if i, j, k are distinct. For  j ~ k ,  we also have 

hujk(p) = O, 
i 

~, hujk(p)2 i = Sjk(P) -- ~, huj(p)h,k(p ) = O. 
2 il 

Since 21, 22, 23 are distinct, we have hjijk(p ) = hkkjk(p ) = 0. 
Using (1.9), we have 

~ h ~ k  ~ = S ( S -  3 ) ( S -  9) + 3(.4 - 2B). 

Substitute (i) into 

3(A - 2B)(p)= ~h2ktp)(2~ + 2 2 2 j d- 2 k - -  2 2 i 2  j - -  22~2 k -  22j2k) 

= 6h223(P)(22 q- 22 + 22 _ 22122 - 22123 - 22223) 

= 2S2(S-  3). 

This proves (iii). 

S 
S < 2 ~ < S  0 < 2 2 2 < _  and 2 1 < 2 2 < 0 .  Step 2. f (p )  > O, g ~ ,  6 '  

Since f ( p )  is m a x f  we have 

~Af(p)  = ( 3 -  S) f (p)  + 6 ~ h2k(P)21, using (i) of Step 1. 
ijk 

=(3  - S) f (p)  <= O. 

Hence f (p )  > O. 
3 

Using Lagrange multiplier to maximizing ~ x~ a with respect to the constraints 
i = l  

3 3 S 3 

x i = 0 a n d  Z x~ = s, w e  s e e  that f 2  < 6 -  and equality holds if and only if two of 
~=1 i = l  

the x~'s are equal to or - . Hence by our  assumption, f 2  < 6 -  on M, and 

_ S S 
S < 2 ~ < -  0 < 2 2 < -  2 1 < 2 2 < 0 .  
6 2 '  6 '  

Step 3. hml(p ) = - ~ ( S -  3)2i + g~21 + Zgig z, where 

s 

s '  3" 
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To obtain this, we solve the following rank 5 linear system of six equations and 
six unknowns hi, ~, i < 1: 

Z hi.z(P) = O, 
i 

Z him(P))~, = - Z h2t(P) + Su(P) 
u 2 

S(S-3) 
, 

hiijj = h jj u + (1 + 2i2;)(2i - 2j). 

where 

(2.1) 

o r  

Hence we have 

x > ( ~ - 2 ) f ( p ) ,  if x__O; (2.3) 

we have 

x < - f ( p ) ,  if x < 0 .  

On the other hand, f (p)  is max f, so for each l, we have 

~f~,(P) = Z h,ut(P)2~ + 2 Z h~(p),q,, <-_ O. 
i i j  

Using the computation in Steps 1-3 and the fact that 

- ~ x  k , - S ) ( 2 2 - ~ ) < 2 , ( 2 2 -  6]kS ~ (2.6) 

for all I = 1, 2, 3. However, if x >0, a direct computation shows that (2.6) with l=  1 
and (2.3) can not hold simultaneously. Similarly if x < 0, then (2.6) with l=  2 and 
(2.4) can not be true simultaneously. This contradiction proves our theorem. 

(2.2) 

(2.4) 

(2.5) 

+ + - 6 ) ~ S - - 7 - ) ]  . 

Note that S ( S -  6)(S- ~ )  => 0 for S > 6 and 

~-s~-]s+ 1 >(~s- 1) 2 

Step 4. A Contradition 

The real value Z in Step 3 is determined by substituting Step 3 into (iii) of Step 1, 
in fact, 
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