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Introduction

Let M be a closed minimally immersed hypersurface of $"**, and h its second
fundamental form. We denote the square of the length of & by S. It follows from
the Gauss and Codazzi equations that the apparently extrinsic quantity S is in fact
intrinsic and is given by

S=nn—1)—R,
where R is the scalar curvature of M. If 0 £S(x) <n for all xe M, then either §=0

or S=n{[6]. In the case that S=n, Chern, do Carmo, Kobayashi; and Lawson
independently proved that M is a Clifford torus [2, 4]. In a previous paper [5] we

~ 12n
general| such that if S(x) is a constant bigger than n then it must be bigger than or

1.
showed that there exists a positive real number C(n) >0 [C(S) =3and C(n)Z ——in

equal to n+ C(n). We also learned that Naoya Doi has worked on the same
problem [3]. His main results are for minimal hypersurface M of §"*' with
constant scalar curvature and whose sectional curvature is bounded above by 1, he
proved that either S=0 or S=2(2n—3). However, under his assumptions it is
easily seen that either S=0; or n=3, =6 and M is the classical isoparametric
example. To see this, let e, ..., ¢, be a local orthonormal frame field of principal
curvature directions of M, then the sectional curvature in the direction e, e;, for
i%],is 1+ 1,4, where A;s are the principal curvatures. The conditions

Y A}=S§, constant,
i

1+4,4;51, for i¥j,
T ————
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imply that there are at most one positive 4; and one negative 4, and the principal
curvatures of M are constants. Hence either 4, =0 for all i, which gives S=0; or by
Theorem 1 of [5], n=3, S=6 and M is the classical isoparametric example.

In this paper, we prove a pinching theorem for minimal hypersurfaces in §***
fornsSs:

Theorem A. Let M be a closed minimally immersed hypersuface in S"**, n<5, and
S the square of the length of the second fundamental form of M. Then there exists
o(n) >0 such that if n<S(x)<n+d(n) then S(x)=n, hence M is a Clifford torus.

The proof uses the equations for 4k, A(Vh), and some integral equations
naturally associated to the second fundamental form h. Since we do not assume
that § is a constant function, the estimate we have in [5] can not be applied here,
and the technique of using integral equations seems essential.

In the end of this paper, we give a proof of the theorem we stated in [5],
namely:

Theorem B. Let M? be a closed minimal hypersurface with constant scalar curvature
R in 8*. If all three principal curvatures of M are distinct at every point, then R =0.

1. Formulas Involving the Second Fundamental Form of Minimal Hypersurfaces

In this section, we will review the notation used in our previous paper [ 5], derive
several new formulas and give a proof of Theorem A. Let M be a minimal
hypersurface of S"* !, and e, ..., ¢, a local orthonormal frame field on M, w,, ..., w,
its dual coframe. Then we have

=Y, (L1)
H=h=Y hww,, h,=h;, (1.2)
i, J
Vh= .Zk By g Ww Wi s hijkzhikj’ (1.3)
b Js
V2h="3 hwwwow, 14
ik,
where
hi k= h; ik ; hm ijikl + ; himijkl .
Vih= z’; lhijk,mw,.ijkw,wm, (1.5}
i, J,k,
where "

hijklm = hijkml + z hrijrilm + Z hirerjlm + Z hierrklm ’
r r r

Ahy;=(n—S)h (1.6

ij
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where
S=In?.

Since we do not assume S is a constant function, the same computation as in [5]
will lead to a slightly different formula for A(Vh):

Ay =@+ 3= Vgt 2 T, Gy + Byl + i)

jmi
- Zl (hijmhmlhlk + hikmhmlhlj + hjkmhmlhli)
—(S;hj+Shy +S,.hy). (1.7)
Then it follows easily from (1.6), (1.7) that we have:

Theorem 1. Let M be an immersed minimal hypersurface of S"*1, h its second
fundamental form. Then

%AS=S(n—S)+th!2. (1.8)
%A(thl2)=(2n+3— SHVh? +3(2B—A)—%H7SI2 +|V2h|?, (1.9
where
S=|h?,

A= ‘Zk b s st Poms
i, j

I,m

B= Z hijkhk!mhﬂhim'

i,k
l,m

Near any given point pe M, we can choose a local frame field e,, ..., e, so that
at p, we have

Let £, denote the smooth function on M given by tr(h"), ie., f,= ) AL With such
frame field, we have shown in [5] that !

By =g+ s (1.10)

ijij Jiji
where

== AL+ AA);
3
Ph22 5o TS+ fyh=SAP, at p. (111)
k

Hence we have
Proposition 2. With the same assumption as in Theorem 1, we have

|P2h)? 23(Sf, — [ — S*—S(S—n)). (1.12)
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Next we obtain a pointwise estimate for 4—2B,

3(4—-2B)= Zh AR AT AT =204, = 24, — 200)

= Y HRQEAF A+t A A))

ijk
distinct
+3 Y WL (A2—44, +th( 312)
i*k
<5 ¥ hf,,,+”/_+“s 3T K,

ijk
distinct

17+1 . .
where A7 — 44,4, < ———2~i— S is obtained by standard Lagrange multiplier method

with respect to the constraints ) A,;=0 and ) A?=S. Hence we obtain

Proposition 3. With the same assumptions as in Theorem 1, we have
11 1
3(4-2B)< ———-Z—t—SWhIZ. (1.13)

Now we will derive some integral equations. Following Cheng and Yau [1],
for a given symmetric two tensor /= 2wiwj and a smooth function u on M, we

consider the smooth function Y I u
ij

ij lJ

Then if M is a closed manifold, by Stokes’ theorem we have

_f Zl.-u..—— f lejj“;- (1.14)
MG

M ij

Moreover, if I satisfies the Codarzi equations, i.e., ¥l is a symmetric three tensor,
and tr! is constant, then

Zl,.jj= Y =(tr]),=0.
j J
So in particular,

j Zhij(f3)ij=0' (1.15)
MG

On the other hand, if we choose a local frame field e, ..., e, such that k, (P)=1,4;;
at P, then

Zhu(fa u=%;’lk I3
Z}'k (z hukk)'2+2zhuk )
k

lkkAkAiZ + 2 Z hzzjk’{ A’

&
Z (hkku + (A‘ 2'Ig)(l + A ik))l AZ + 2B
ik
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= 53 D)2+ THAG - A +id)+28
ik

h.h .
= Z—"fjﬁsij+5f4—f32—sz—(A—2B).
ijk
Integrating both sides and using (1.15), we obtain
h.h,,
IA 2B= | Sf,—fi—-S"+ ), _l%_kj"sija
ijk

E’—’ai

S,
f4“f32_ §? Z(hikhkj)j—9
ijk 2

S;
-8 Zhikjhkj?’
ijk

VS|
4

| Sf.— 1

M
jSfu—f3-8"- .
M

Hence we have:

Theorem 4. Let M be an immersed closed minimal hypersurface of S** !, h its second
fundamental form, S=\h|* and f, =t h*). Then

|7s)?
[ A—2B= [ Sf,—f}-S*"— —, (1.16)
M i 4
where A and B are as in Theorem 1.
We can now give a proof of Theorem A.
Proof. Integrating (1.8) and (1.9), we get
S)
{ L2 { sis=ns)- sowar, (L17)
j (P2h|% = j (S—2n—3)|Vh|*+3(4~2B)+3|VS|>. (1.18)

Using (1.12)
J (§—2n—3)|Vh|2 +3(4—2B)+3|VSI2= [ X(Sf,— f2— 5>~ S(S—n))
M M
| 3(Sf,—f2—=5%—2|Vh|*, using Theorem 4
M
J{%(A—zB)—k%IVSIZ—%IVhP.
So

(S—2n—3)|Vh]*+3(4-2B)+2|VS|*=0.
o 2 2 8

Using Proposition 3 and (1.17) we have

V17+1
0= [ (S~2n—IWhi® + H—— SIPh> +5(S*(S—n)— SIVh[?).
M
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Now suppose n< S(x)<n+e, then
| SHS—m=(n+e) [ SS—m=(n+e) | |VhH?
M M M

So we have

V17—4 . 6—n—9%
sj( y S— 3 )|th2.
6—1.13n
+1/—

(/17 - HS—(6—n—98)<0.

Therefore, we have |Fh|=0, i.e., S =n. This proves Theorem A.

Hence, if n<5and e= ——

3. Proof of Theorem B

Since R=6—S, S is a constant function. We may assume S 26 [5]. We denote f,
by f If f is also a constant function, then all three principal curvatures are
constants and §=6, so we are done. If f is not a constant function, we will derive a
contradiction. The derivation is rather long, so we divide it into four steps. Let f(p)
= ma?x f. We may assume f(p)=0, otherwise we use min /. We choose a local frame

e,, e,, €5, e, such that at p

with 4, <4, <A,. Then

Step 1.

S(S—
(i) hy(p)=0 for all i, j, k, except h3,,(p)= _(56_3)

(i) h, Jk(p)—hmk(p)=hkm(p)=(), if i, j, k are distinct.
(iii) 3 Z hiip)—2 Z hZ.(p)=3S(S—-3)%
To see thxs we note that

Y 4,=0, since M is minimal.

Zhuk( ;= S"(p) =0, S being constant.
¥ e = I—_;!! =0, f(p) being max 1.

By assumption, 4,, 4,, 4, are distinct, hence h,;,(p)=0 for all i, k.
Using (1.8) and the assumption S is a constant, we have

y= Zhljk(p) S(S 3) 6’1123_}-3 Z huk+ th
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S(8-3)
6
function y=|Vh|%. We have

Hence hi,,(p)= . To obtain (ii), we take the derivative of the constant

Z hijk(p)hi jkl(p) =
ijk
$0 k5 (p)=0, if i, j, k are distinct. For j+k, we also have
Z hiijk(p) =0,

Sulp)
2

Z By (P)A; = - 21: hyf(p)hiu(p)=0.

Since 4,, A,, 4 are distinct, we have h;;(p) = hy, ;(p) =0.
Using (1. 9) we have

Y hl=S8(8—-305—9)+3(4—2B).
Substitute (i) into
3(A—-2B)(p)= Zhuk(p) (AF+A24+ A7 =24 A= 244, ~244,)

=6h7,3(P)A}+ A5+ A2 —24,4,— 24,4, —24,),)
=28%S5-3).

This proves (iii).

g—, O<Ai< g and 4, <4, <0,

Since f(p) is max f, we have

S
Step 2. f(p)>0, 5 <M<

$41(0)=(3=S)f(p)+6 X WPV, using () of Step 1.

=(3-8)/(p)=0.

Hence f(p)>0.
3

Using Lagrange multiplier to maximizing » x; with respect to the constraints
3 3 S3 =1
Y x;=0and Y x?=S§, we see that [ < < and equality holds if and only if two of
=1 i=1

. s?
the x;’s are equal to l/g or — ‘/g Hence by our assumption, f2 < < on M, and
S: 12 N 2 N
g <A< 3 0<i; < e Ay <4,<0.

Step 3. hy(p)= —3(S—3)4,+ g4+ Zg,9,, where

S8

=A2— =.
gt T S i 3
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To obtain this, we solve the following rank 5 linear system of six equations and
six unknowns A, i<l:

Z hiu(p)=0,
' 2.1)
f S(5-3
zi:hiill(p))'i_ Zhuz 12(17) =- ( 3 ),

where
By =h+ L+ AANL—24).

ll}j ]}ll

Step 4. A Contradition
The real value Z in Step 3 is determined by substituting Step 3 into (iii) of Step 1,

in fact,
w=2(3 - L) - (5- o

6 S
[f;(zp)(199 52— -§—S+ 1) +=S(5—6) (S— }72)}1/2. (2.2)
Note that S(S—6)(S—%’)=0 for §26 and
1252885 +12(3S—1)%.
Hence we have
x>(—§——§)f@), if xz0; 2.3)
or
x<—f(p), if x<0. 24)
On the other hand, f{p) is max f, so for each I, we have
3ulp)= Zh,,u(p)/12 +2 Z hiP)A; 20. (2.5

Using the computation in Steps 1-3 and the fact that

r=h=33-3).

—%x(lf 6)(,12 23S> z,(zf-%)@z;*-l;zf+zs—3) (2.6)

we have

for all I=1,2, 3. However, if x >0, a direct computation shows that (2.6) with [=1
and (2.3) can not hold simultaneously. Similarly if x <0, then (2.6) with /=2 and
(2.4) can not be true simultaneously. This contradiction proves our theorem.
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