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Introduction

Let G be a connected semisimple Lie group with finite centre. If G is linear and I' is
any finitely generated subgroup of G, then it is well known that I' admits a torsion-
free subgroup of finite index. In particular, this is so if " is a lattice in G. The last
assertion fails for certain lattices if G is not linear as was shown by Millson [6].
Deligne devised a general method for deciding when an “arithmetic” lattice in a
finite covering of a linear group admits a torsion free subgroup of finite index. He
used this method together with available information on the congruence subgroup
problem to exhibit further examples of arithmetic lattices which admit no torsion
free subgroups of finite index. Deligne’s as well as Millson’s examples are of lattices
which are not cocompact. In the present paper we will apply Deligne’s ideas to the
case of lattices in a covering group % of the group Spin(2, n), the real spin group of a
quadratic form of signature (2,n). The necessary ingredients for doing this are
provided partially by Kneser [3] and Margulis [5]; these deep results combined
with the results of Prasad and Raghunathan [8, 9] enable us to obtain the required
information on the (necessarily arithmetic) lattices in question with the help of
some abelian class field theory. The main result of the paper is

Main Theorem. Let 4 be the universal covering of Spin(2,n), n an odd integer, the
spin group of a quadratic form of signature (2,n). Let I'C% be any lattice and m,
(~Z) the kernel of the map 4—Spin(2,n). Then > 8ny. In particular, if 4 is any
lf inite covering of Spin(2, n) of order not dividing 8, then 4, admits no torsion-free
attice.

Throughout this paper we will deal exclusively with cocompact lattices. For
non-cocompact lattices Deligne’s methods generalize in a straight forward man-
ner in the light of the extensive available information on the congruence sub-
group problem [8, 9].
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A briefindication of the method of prooffollows. Let k be a numberfield and «
its set of archimedean valuations. Let G be a connected simply connected
semisimple k-group. Let G(a) [resp. G(c)] denote the completion of G(k) with
respect to the family of arithmetic (resp. congruence) subgroups. The k-group G
has CSPiff G(a) is a central extension of G(c). Let G(A) denote the adéle group of G
and M(G) the kernel of the restriction homomorphism H?(G(A4))—H?*(G(k)): the
cohomology groups are based on continuous cochains and have coefficients in
T=R/Z. For vew, k, denotes the completion of k at v and let G, denote the
product of all those G(k,), veco, which are not compact and simply connected. Let
G, denote the universal covering of G, and r, the kernel of p: G, —G . With this
notation Deligne has proved the following: if G has CSP, there is a homomor-
phism A : 7, — u(G) [ = the dual of M(G)] such that any lattice I G, with p(I") an
arithmetic subgroup of G, contains the kernel of 4. Suppose now that % is the real
Lie group Spin(2, n), n2 3, viz., the spin group of a quadratic form over R with n
positive and 2 negative eigenvalues and ¥ its universal covering (the fundamental
group of ¢ is isomorphic to Z). Let I"C# be any lattice in 4. Then by a theorem of
Margulis [1], there is a numberfield k = k(I") with a real valuation v and a k-group
G =G(F) such that G(k,) is compact (and simply connected) for w e co — {v} and
there is an isomorphism of % on G(k,) which takes the image of I into an
arithmetic subgroup of G(k,). If we make the further hypothesis that n is odd, then
one knows that G is necessarily the spin group of a quadratic form over the field &
[13]. Now Kneser [3] has shown that such a G has CSP. So we conclude from the
theorem of Deligne cited above that for each I, there is a homomorphism

Ay (Z)nl(?)—ﬁ,&(G(f))

whose kernel is contained in I. It suffices then to show that u(G(I’)) has exponent
dividing 8. We prove in fact a more general result.

Let k be a numberfield and G the spin group of a quadratic form
over kin at least five variables. Let N be the order of the group of
roots of unity in k. Then 4-N-M(G)=0.

Note that N =2 when k=k(I"): it admits a real valuation.

The general result on M(G) above is reduced to proving two weaker statements
on 3 dimensional groups with the aid of cohomological computations made in
[8,9]. The first of these results is reduced using the work of Moore [14] to a
problem on algebraic numberfields which is solved by using some (abelian) class
field theory. The second is an assertion about real semisimple groups which is
handled by differential geometric methods.

1. The Metaplectic Kernel and a Theorem of Deligne

1.1. Let k be a global field and V its set of valuations. For veV, let k, be the
completion of k with respect to v, £, the residue field of k,, p, the characteristic of f,
and u, the group of roots of unity in k. If § is a finite subset of ¥, we denote by A(S)
the S-adele ring of k. Let G be a connected, simply connected, semisimple algebraic
group over k and for veV, let G(k,)=G,. For § as above let Gg=mn, G, and G(5)
the S adele group G(A(S)) of G. Let T be the compact topological group R/Z and
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for any locally compact group B, let H(B) denote the second cohomology group
of B with coefficients in T (for the trivial action of B) based on continuous cochains.
For each v ¢ S, the inclusion G,— G(S) induces a restriction homomorphism r, of
H*(G(S)) in H*(G,) leading to a homomorphism

h: HY(G(S)~1,,HX(G,).

Itis proved in [9, Theorem 2.4] that if G is isotropic at all nonarchimedean v not in
S, h is an isomorphism. It is also shown there that for each v¢ S, the group G,
admits a universal locally compact central extension g,:G,—G, with kernel
denoted 7,(G,), a discrete group and there is a natural isomorphism of the dual
Hom(rn,(G,), T) on H(G,). Moreover, the group G(S) admits also a universal
locally compact central extension g G(S)—»G(S) and we have natural maps G,
—G(S) for v¢ S making the diagram

G, — G(S)

G, — G(S)

commutative and inducing an isomorphism of the direct sum
— def
I 7(G)=ny(G(S)) (= kernel Q) .
V¢S

The group H2(G(S)) is then evidently dual to =,(G(S)) under Pontrjagin duality.

1.2. Suppose now that G(k) is perfect. Then G(k) admits a universal (discrete)
central extension p: G(k)— G(k) whose kernel is denoted 7,(G(k)) and we have a
natural map: n,(G(k))— = ,(G(S)). We denote the cokernel of this map by u(S, G).

Now from the fact that 7,(G(S)) is the direct sum of the groups 7,(G(k,)) each of
which is discrete (in fact finite cyclic of order |u,| or |u,)/2: Prasad-Raghunathan
[81) one sees easily that (S, G) is in duality (under Pontrjagin pairing) with the
group M(S, G) =kernel of the restriction map H2(G(S))— H*(G(k)) induced by the
diagonal inclusion of G(k) in G(S). In the sequel M(S,G) will be called the
S-metaplectic kernel of G. When S = ¢, we set G = G(¢) = G(A(9)), M(G) = M(¢, G),
and y(G) = u(¢, G). The assumption that G(k) is perfect implies that G, is perfect for
all ve ¥ and hence that G is isotropic over k, for all non-archimedean v (one
expects that the converse is also true but so far only partial results are available:
Kneser [3], Platanov-Rapincuk [7], and Raghunathan [11]).

1.3. Suppose now that oo CS. Let Ty(a) [resp. Tg(c)] be the topological group
structure on G(k) defined by stipulating that the family of S-arithmetic (resp. S
congruence) subgroups constitute a fundamental system of neighbourhoods of the
identity. We denote by G(S, a) [resp. G(S, c)] the completion of G(k) with respect to

T(a) [resp. Ty(c)]. The group G(S, a) is an extension of G(S, ¢) by a profinite group
C(S,G) which we call the S-congruence kernel. We will say that G has the
S-congruence subgroup property — SCSP for short —if C(S, G) is central in G(S, a).
If G(k) is perfect, the group Gg admits a universal central extension Gy and the
inclusion Gg— G induces a natural inclusion

nl(GS)_)nl(G)s
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where the group 7,(Gy) is the kernel of the covering projection
gs:Gs—Gys-
Composing with the map n,(G)—p [ = (g, G)] we obtain a homomorphism
Rs:my(Gg)—p.
The following result is due to Deligne [1].

1.4. Theorem. Assume that G(k) is perfect and that G has SCSP. Let ps: Gs— Gy be
the universal covering of Ggand I' C Gg a (discrete) subgroup commensurable with
ps (®), where @ is any S-arithmetic subgroup in Gg. Then I contains kernel Ry,

We remark that Deligne does not formulate the result in the above form but his
proofs go through in the light of the comments made in the earlier paragraphs. We
will be mainly interested in applying this theorem to certain anisotropic Spin
groups. Kneser [3, 4] has shown the following:

Let k be a number field and E a vector space of dimension n=5
over k and q a quadratic form on E. Let S be such that we have
3. (Witt-index of q at v)=2.

veS

Then Spin(q) (k) is perfect and Sping has SCSP.

Actually our interest in the sequel will be limited to the case of Spin groups of the
above kind with S = oo and such that for at all but one archimedean valuation v,
is anisotropic.

2. Finiteness of the Metaplectic Kernel

We continue with notations introduced in Sect. 1. Our aim in this section is to
prove the following

2.1. Theorem. M(S, G) is a torsion group. If G is isotropic at k, for all v¢ S or if
chark=0, M(S, G) is finite.

In Prasad and Raghunathan [9, Theorems 2.10 and 3.4] it is shown that
M(S, G) is finite if G is isotropic over k or $ 00, G is isotropic at v for all v ¢ S and

Y k,rank G22. Now if v is non-archimedean and G is isotropic at k, then

veS

H?*(G(k,))is finite [8]. It follows that M(S, G) s finite if $ D 00 and G is isotropicatv
for all veS. Now when G is anisotropic at v and v is non-archimedean G, i
compact and H?(G,) is a torsion group and in fact H(G,), i=1,2, are finite if
chark =0 [10, Theorem 4.107]. This leaves out for our consideration only the case
when SD o0, G is anisotropic over k (and k is of characteristic 0). We may assume
S =¢ as M(S, G) has a natural inclusion in M(G). Let r: H{(G)—H?*(G,,) denote
the projection induced by the inclusion of G, in G. It is clear then that the kernel of
r restricted to M(G) is precisely M(co, G). It is therefore sufficient to show that the
image of M(G) in HXG,) is finite. Suppose now that U is a compact open
subgroup of G(0). According to Raghunathan [ 10, Theorem 5.2], H*(U) s fini‘e-
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Since U is profinite, it admits an open compact subgroup U’ such that for all
vy € HA(U), xy restricts to zero on U’. Let I'=G(k)nU’. Then we have the
following commutative diagram

r -Gk
l |
G, xU — G~G, xG(c0).

Moreover, H%(G) ~ H*(G ) x H*(G(0)) as G, is perfect. The map H*(G)— H*(I")
thus factors through G x U’ and as any y € M(G) is zero on U’, we see that yx, the
restriction of x to G, must be trivial on I'. Since G is anisotropic over k, G /I is
compact and it suffices therefore to prove the following proposition in order to
complete the proof of the theorem.

2.2. Proposition. Let % be a connected linear semisimple Lie group and I' a discrete
subgroup such that /T is compact. Then the map H*(%)— H?*(I') has a finite kernel.

We consider the action of both 4 and I on ¥ by right translations. Then
according to van Est [2] there is a spectral sequence E?? abutting on the Lie
algebra cohomology of g = Lie algebra of %, and with E5?~ H?(%, H(%, R)), the p™
cohomology group of ¢ based on continuous cochains with coefficients in
H4%,R), the g™ cohomology group of % as a topological space with coefficients in
R. Moreover, we have a natural map of this spectral sequence into the Cartan
Leray spectral sequence 'E%?= HP(I', H}(%,R)) of the covering projection ¢: G
~G/I" which abuts to H¥%/I',R). Now H(g,R)=0 for i=1, 2 leading us to an
isomorphism. B

0 — HY{Y%R)~H%R)— 0
U 2 ] 2 *)
H'(g,R) E* —» EZ° H%*(g,R).

From the spectral sequence ‘E, we obtain the following exact sequence:

HX%/I\R)-"> H\%,R) — H([R), (**)
where ¢* is the map induced by g¢. We will presently establish the following

2.3. Claim. g* is the trivial map.

We first complete the proof of Proposition 2.2 assuming the claim. It is
immediate from the claim and the sequence (*) and (**) above H*(%,R)
- H*(I',R) is injective. Let V=H?*%,R) and W=H?*(I',R). Let V, (resp. W)
denote the kernel of the map H%(¥,R)—H?*(%) [resp. H(I', R)»HXI')]. Evi-
dently, we have a commutative diagram with exact rows and i and j injections

0— V, » V — H¥%)
A
0— Wy;— W— HYI).
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The map ¥V — H*(%) has finite cokernel and V, spans V as a real vector space and
W,=Image H*(I", Z) in W is discrete. It follows that j(V)nW, contains ¥, as a
subgroup of finite index. Hence j~*(W,)/V, is finite. Since V—H?*(%) has a finite
cokernel, H*(%)— H?(I') has a finite kernel.

We have to prove the claim.

2.4. Proof of Claim 2.3. Let K be a maximal compact subgroup of 4. As K—%isa
homotopy equivalence we have to show that the map K—%/TI' induces the trivial
map in the first cohomology of these spaces with coefficients in R (we have assumed
that K—%/I" is an inclusion; this is easily secured by assuming that I” is torsion free
— % is a linear group!). Let X = K\G be the Riemannian symmetric space and
Y=X/I'. Then %/I'>Y is a principal K-fibration. The transgression in this
fibration takes each non-zero element of HX(K,R) (=E$!) into a second
cohomology class in H2(Y,R) (=E3°) which is represented by a non-zero
%-invariant form on X projected to Y. This is easily seen by a comparison with the
compact dual; and such a form is harmonic, hence is non-zero in cohomology.

3. Lattices in Spin(2, n), nodd

3.1. In this section ¢ will denote the real Spin group of a quadratic from ¢ in
(n+2)= 5 variables with Witt-index 2 and n is assumed odd. The pairity condition
on n has the following consequence: if k is a number field with a valuation v such
that k,~R and G is a (simply connected) k-algebraic group with ¥ ~ G(k,), then G
is necessarily the Spin group Sping of a quadratic form g over k which, over k,, is
equivalent to g: this is known from the classification of algebraic groups [13]. In
view of this the arithmetricity of lattices in & proved by Margulis [5] has the
following formulation. Given a cocompact lattice I' C¥, there is a totally real
number field k=k(I'), an archimedean valuation v=v(I") of k and an anisotropic
quadratic form ¢ =¢q(I') in (n+ 2)-variables on k with the following properties:
(i) k,~R.

(i) If v'#=v is archimedean, g is anisotropic over k,,

(iii) Over k, (=R), q is equivalent to q.

(iv) The equivalence of g and g over R may be so chosen that under the induced
isomorphism %=~Sping(k,), I’ maps into a subgroup of Sping(k,) which is
commensurable with an arithmetic subgroup of Sping(k,).

3.2. Remark. As (n+2)=5, we note that the Hasse-principle implies that k(I')
above cannot be Q.

3.3. The fundamental group 7,(%) of & is isomorphic to Z. Let r: ¥—% be the
universal covering. We identify 7,(%) with kernel r. If #C & is a cocompact lattice,
r(®)is a cocompact lattice in 4 and hence determines a (totally real) number field k,
a(real) valuation of v of k and a quadratic, form g as above [all depending on #(9)]-
According to Theorem 1.4, there is a homomorphism 4 : r,(%)— M(Sping) such
that @ contains kernel A [4 depends on the k-group Sping but not on the arithmetic
lattice r(®)]. Since n,(¥%) is cyclic to prove the main result it suffices to show that
8M(Sping)=0 for any g as above. We have in fact the following more general
result.
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34. Theorem. Let k be a number field and q a quadratic form on a k-vector space E
with dimE=5. Let y, be the group of roots of unity in k and N=|u|. Then
4N(M(Sping))=0.

3.5. In the sequel we denote by G the group Sping. Let x € H*(G) be such that
z=4Nx=+0. If x is a torsion free element, then according to Theorem 2.1, x has a
non-zero restriction to G(k). We will, therefore, assume that x is a torsion element.
Let p be any prime and p* the highest power of p dividing g, we may assume then
that x is a p-torsion element such that 4p'x=+0 while 4p'*1x=0. Under this
assumption we will show that x restricts to a non-zero element on G(k). Let V(x)
={ve V|dp'x, + 0} (here x, is the restriction of x to G,). Evidently, V(x) is non-
empty. We will now choose a 3-dimensional non-degenerate-for-q k-subspace E(x)
of E as follows. If V(x) contains a non-archimedean place w, g(x), the restriction of
g to E(x) is anisotropic at all real archimedean places and isotropic at w as well as
atallve V— oo with p,=p. If V(x)C o0, g(x) is assumed to be anisotropic at all but
one we oo with w e F(x) and the natural map of Sping(x) (k,) in G(k,) induces in
the fundamental groups a homomorphism whose cokernel has order 2. Such a
choice of E(x) is possible as is seen easily from the density of E(k) in any finite
product of the E(k,). The choice of E(x) as above is motivated by.

3.6. Lemma. If E(x)is chosen as above the element x in H*(G) restricts to a non-zero
element y in H*(H), where H=Sping(x) is considered as a subgroup of G for the
natural inclusion. Moreover, if V(x)¢ «, p'y,=0 for ve co and 2p'y,,+£0 (w as
above). If V(x)C oo, there is a unique w € oo such that 2p‘y,=+0 for ve V if and only
if v=w.

Proof. In the case when V(x)Coo this is immediate from our choice of E(x).
Assume then that V(x){ co. In this case the result is an easy consequence of [8,
Theorem 9.5]. According to that theorem we have the following: let B be a
maximal k,-split torus in G and @ the k,-root system of G with respect to B. Let
d be a dominant root in @ for some ordering on the character group of B. Let
G(d) denote the k,-rank 1, k,-subgroup of G determined by d. Then H*(G,)
- H*(G(d),,) is injective. Now suppose first that k,-rank G =2 (this is the case
always if dimE = 7). Then G(d)* SL, over k,,. Let E’ be a k,-subspace of E of
dimension 5 containing E(x) and G’ the Spin group of ¢’, the restriction of g to E’.
We assume that ¢’ is non-degenerate and has Witt-index =2. Then it is easy to
see that Sping’ contains a conjugate (over k,) of G(d). Consequently, the
restriction map H*(G,,)— H*(Sping'(k,,)) is injective. Now Sping’=G" is a split
group of type B, (=C,) and Sping(x) is the subgroup k,-isomorphic to SL,
corresponding to a short root in this root system. From the work of Moore [14]
one knows that H*(G/,)-H*(Sping(x),,) has a kernel of order 2. This proves the
lemma when k,-rank G=2; when the k,-rank is 1, dimE=5 and we know from
[8, Proposition 8.44] that if E'D E(x) is a suitable 4-dimensional subspace and g’
the restriction of g to E, H*G,)-H?*(Sping),) is injective. Now
Sping’~ Ry, SL, over k, for a quadratic extension K of k,,; from the work of
Moore [1] (see also [8, Sect. 5.47]) the map SL,— R, SL, induces in H 2 a map
with kernel of order 2; and Sping—Sping’ can be identified under a suitable
isomorphism with this inclusion. This proves the lemma.
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Lemma 3.6 now reduces the problem to the [ollowing two results on
3-dimensional groups: note that the Spin group in 3 variables is a 3-dimensional
group: it is either isomorphic to SL, or the group SL; ,, of elements of reduced
norm 1 in a quaternion division algebra.

3.7. Theorem. Let D be a quaternion division algebra over k which is anisotropic at
every real place of k and split at all k, with v finite and p,=p a fixed prime. Let G be
the k-group SL, p and y € HXG) be such that the following holds: there is a w
€ V— oo at which D is split and 2p'y,,+ 0 while p'* 'y =0 0r 2p'* 'y =0 according as p
is odd or p=2. Then y restricts to a non-zero element in H*(G(k)). ( Recall that p' is
the highest power of p dividing {iy].)

3.8. Theorem. Let G be a 3-dimensional simply connected semisimple group over k
and v an archimedean valuation. Then the map H*(G,)— H?*(G(k)) is injective.

4. Proof of Theorem 3.7

4.1. The notations are those of Theorem 3.7. Let { be a primitive p‘th root of unity
in k and I=k({*"?). Let K be a quadratic extension of k contained in D with the
following properties: For v=w or p,=p, K imbeds in k, and K is linearly disjoint
from . To see that such a K exists we argue as follows. Let © be the (finite)
collection of all quadratic subfields of I. For each e Q pick (!} in V—oo distinct
from w and the v with p, = p such that /" is linearly disjoint from k(") (Cebotarev’s
approximation theorem) and D splits over k,;,. We will also assume that o(l")
Fo(l") if '+1". Then using weak approximation one sees that we can find K such
that K®,k,~k, x k,ifv=worif p,=p while foreach l'e Q, K&;k,q)~k, ¢ X k)
Thus there exists a quadratic subfield K C D with the required properties.
We will need

4.2. Lemma. Let ve V be a non-archimedean with p,=p. Iet M, be a maximal
compact subgroup of G,. Then H*(M,) has no p-torsion.

Proof. G, is either isomorphic to SL,(k,) or the group D} of reduced norm 1
elements in D,, a division algebra. In the former case M, may be identified with
SL,(0,)(0,ring of integers in k,); in the latter case M, = D!. Let N, be the normal
subgroup {x e SL,(0,)|x=1modn=} if M,~SL,(0,), #€ 0, a uniformizing para-
meter, while N, = {x € D}|x=1mod=}, 7 a uniformizing parameter in D, if D, is a
division algebra. Then N, is a pro-p,-group. Further, M /N, ~SL,(f,)or M /N is
cyclic accordings as M, ~SL,(Q,) or M,~D,. In either case H*(M,/N,) has no
p-torsion (Schur [12] when M /N, ~SL,(f,); in the other case the group is in fact
trivial). Since N, is a pro-p,-group H{(N,, E) for any continuous N ,-module E is a
p,~torsion subgroup if i>0. The lemma now follows from the Hochschild-Serre
spectral sequence for M, and N,.

43. Let V'={veV-—colv$w, p,+p and [ is linearly disjoint from k,}. As [is a
cyclic extension of k, we know from the Cebotarev approximation theorem that ¥’
is an infinite set. Now if ve V', we claim that p'y,=0: this is seen as follows: if D
does not split at v, this follows from Lemma 4.2; if D splits at v, G,~SL,(k,) and
H*SL,(k,) ~ u,and since v € V*, the p-sylow subgroup u, is a cyclic group of order
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p'. This proves our contention. Let S={ve V—-owlv=worp=p,}. Let V,=V'ux
uS and set

I'={te K*|t a unit in K®k, for ve V,}.
Also let K'={te K*|N,(t)=1} and I'' =I'~K". Then we can find a maximal

compact subgroup JT M,, each M, a maximal compact subgroup of G,, such that
veV
I'! maps into M, under the natural inclusion of G(k) in G, for ve V,. It follows that

the diagonal inclusion of I'* [ C G(k)] in G factors through the subgroup [] M,
veVy
X H G, x I1G, x G, (the second factor being a restricted direct product). Since
veS

H"'(M ), ve V; has no p-torsion, H*(G,)=0 and p'y, =0 for ve V’, we see that the
restriction of y=p'y to I'" is the same as the restriction of z={y,},.s € H? (H Gu>

veS
to I'". It suffices therefore to show that the restriction of z to I'! is non-zero. Now
the group K, = {x € K, = K®,k,JNg ;. (x)=1} can evidently be identified with the
diagonal group in SL,(k,) (=G,) for veS. Each element y,, veS, can be
represented be a unique Steinberg-Cocycle ¢, on G, = SL,(k,); the cocycle ¢, has a
restriction ¢, to K, which determines c}; further, ¢, is a bimultiplicative map of K}
in T satisfying c,(a,b)=c,(b,a)”': all this is due to Moore [14]. Now the
cohomology group H2*(I'') may be identified with the group of all alternating
bimultiplicative maps of I'* in T and the cocycle ¢, represents the trivial class if and
only if ¢, takes values in {4+ 1} CT. As y, is a p-torsion class if p is odd and a 4

torsion class if p=2, it is immediate that on [T K! x K,J, ¢= [] ¢, defines an
p= v

veS €S
alternating T-valued bimultiplicative map such that ¢? 1s not 1dent1cally equalto 1.
Define u(a, b)=c(a, b)c(b, a) "' =c?(a, b) so that u is non-trivial. Now u factors

through [T K;/(K!?x [T KL/(KYH?. 1t follows that it suffices to show that we

veS veS
have

r TIK,)’=TIK;.

veS veS

Since t—t/a(t), t € K*, maps K* onto K* and extends to a continuous surjection of

[TK¥ on [T K! (¢ here is the Galois-conjugation), we need only establish the
ves veS
following:

44 Proposition. I' - T (K*)?= [T K.
veS vesS

Proof. Let ¥ denote the set of valuations of K and SCV the subset of those
valuations u € ¥ which lie over those in S. For ve ¥, K, will denote the completion
of K at v. Let I denote the idéle group of K. Let L= K®,l. Then (L: K)=(I: k) by
choice and I/K is a cyclic extension. Let B, CI denote the open subgroup of finite
index in I determined by L under the Artin-reciprocity law. We identify K*, ve ¥,
with the corresponding subgroup of I and let U, denote the unit group of K}. Let
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B=K*-TI K¥- [I U, (here & denotes the set of archimedean valuations of
ve D veV - o
K). Finally, we set
B=K*TI Ky Il U,IIUS.
ved veV-S-& veS
Clearly, we have B’C B. Let E be the abelian extension of K corresponding to the
subgroup B'nB; of I : B/BnL~Gal(E/K). Let r denote the natural map Gal(E/k)
—Gal(L/K)and set

Q ={u e Gal(E/K)|r(u) generates Gal (L/K)} .

Then Q generates Gal E/K so that any u € Gal E/K) can be written as a product zg,
with ¢, € Q. Now according to Ceboratev’s theorem for each i, there is a valuation
v,€ V—S— such that g, is the Frobenius at v;. Since ¢; maps (under r) onto a
generator of Gal(L/K), v;e V= {ve P|v lies over a valuation in ¥’}. Let , be a

uniformizing parameter in K, and let « = [ #; (in the idele group I). Then o maps
touin I/B’nB;. Suppose now that u € B/B'nB;; then o € B so0 that a = Agu,, where
AeK* g€ J] K}, and upe [] U, This means that the principal idele 4 is a

veV—-&

unit at all pe V—& other than the v;. Clearly, then, A€ I'. As the image of a in

I'T K¥ is trivial and so is the image of ¢. Consequently, 4~ ! and u, have the same

veS

in image < I1U, C) TI K} The homomorphism [] U,—B/B" is evidently
veS veS veS

surjective and u may be taken as the image of an element g € [] U.,. Itis clear then

veS

that g and « have the same image in I/B’. Since A and g are in B’, uog '€ B". We

conclude that the projection i1, of ug in [] K?* is of the form gy¢,ye K*, (e [1 UL,
S vel

veS
As g and ¢ are units, y is a unit. Evidently, A~ 'y~ !isin I" and maps into the same

element as g in [] K§/(K7)?. This shows that

veS

r-TIKH S I1U,.
veS veS
It now suffices to show that for each ve S, I contains an element &, which is a
uniformizing parameter in K, and is a unit at K, for v'€ §, v'+v. For this let 7,
€ K* be a uniformizing parameter at v and 7, its image in the Galois group I/B of
the Hilbert classified H. Let s denote the natural map GalE/K —GalH/K. Then

1, = [1s(0,) with 6, € Q. Each o, is the Frobenius at v, for some v, € V" (Cebotarev’s

theorem). It follows that the ideal in K determined by 7, is equivalent in the ideal
class group to a product of prime ideals corresponding to elements in V. In other
words we can find 1 € K* such that n = Ax, in the idele group has all components 7,/
units for v’ e V. In particular, A~ ' is a unit at all v’ € S — {v} and it is a uniformizing
parameter in K,. This proves the proposition,
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5, Proof of Theorem 3.8

As in Theorem 3.8 let k be a numberfield and &, its completion with respect to an
archimedean valuation v. Let G be a simply connected 3-dimensional semisimple
k-algebraic group. Then we have to show that the natural map

H*(G(k,)~H*(G(k))

isinjective. If k,~C or if G is an anisotropic over k, (~R), the group G(k,) is simply
connected and consequently H*(G(k,)) is trivial. Thus, we need only consider the
case when k, ~R and G splits over k,. In the sequel we will assume this to hold. We
denote G(k,) by ¢ in the rest of this chapter.

5.2. The main result can be reformulated as follows:
Let

1> T—95 %951 *

be locally compact central extension of 4 by T if this extension (*) splits over G(k)
then it splits. Suppose then that (*) is a central extension and : G(k)»¥ is a
splitting of (*) over G(k). We observe first that & carries a natural structure of a Lie
group making p (real) analytic so that p is in particular a principal analytic
fibration with T as fibre. Since ¥ = G(k,)=SL,(R), it is homotopy equivalent to the
unit circle and hence all analytic circle fibrations over 4 are trivial. We conclude
therefore that there is an analytic mapo:¥ ~% such that p - ¢ is the identity map of
%. We define now an analytic map C:¥% x 9% as follows: for x, y € %, choose
elements X, 9% such that p(X)=x, p(j)=y; then the commutator

ArA—1A—

[x, y] =% $2~ 19~ ! of £ and j depends only on x and y and not on the choice of %
and § and we set C(x, y)=[%, §]. Evidently,
Cx, y)=[a(x), o(y)]

so that C is analytlc Also we denote thatif x, y e G(k), C(x, y) =1([x, y]). Now if (¥)
splits, it has a _unique splitting g, say, and we would have C(x, y)=o([x, y]): in
other words € would factor through C:¥ x %%, where for x,ye ¥, C(x, y)
=[x, y] (=xyx~'y~1). We will establish the converse.

53. Lemma. If C factors through C, the extension (*) is split.

Proof. Since C factors through C, there is a map 1:%—% such that C=1.C.
Suppose X C ¥ is the set of critical values of C, then the restriction of C to E=
9 x4 —C~N(X) is a submersion; consequently, 2 would be analytic on C(E) and
hence provide an analytic section over C(E) for the map p: 4 —%. Now C clearly
maps ¢ x ¢ into the commutator subgroup [%, %] of 4; this last group is a
connected Lie subgroup whose Lie algebras maps isomorphically onto that of .
Consequently, we have a connected covering group 4—% and a continuous
bijection i: ¥—[%, #] and a continuous map A’: C(E)—# such that Aoy =ik’

Evidently A’is a section for the covering map 4 -»% over C(E). We will now show
that C(E)=%—{+1}. Once this is granted the complement of C(E) in & consists
of two points so that the map n,(C(E))-n,% of fundamental groups is an
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isomorphism; as the covering 4 — % is trivial over C(E), it is trivial. Thus to prove
Lemma 5.3, we need only show that we have the following

5.4. Assertion. The critical values of C is the set {1}. Further image C=%—{—1}.

Proof. We identify, as usual, the tangent space at any point to % (resp. 4 x %) with
Liec ¢, where Lie % is the Lie algebra of 4. With this identification the tangent map
dC, 4 of Cata point (g,h) € 9 x ¥ is given by the following: let X, Y € Lie ¢; then

dCy (X, Y)=Adg{X — Adh(X)+Adh(Y —Adg™(Y))}

asis seen by a straightforward calculation. It is now easy to see that the orthogonal
complement of image dC,,,;, in Lie % with respect to the Killing form on Lie 4 is
the space

Adg Adh(centralizer hncentralizerg ') ;

and centralizer hrcentralizer g~ 40 iff 4 and g commute i.e. iff C(g, h)=1. This
proves the first assertion.

To prove the second assertion we note first that if u € ¢ is unipotent, it can be
put in upper triangular form and then is easily seen to be a commutator in the
upper triangular group itself. On the other hand, if we fix A€ R, A>0 and set

0 b
t= (3 A")’ we have for g= (Z d)e SL,(R)(i.e. ad—bc=1),

trace [t,g]=2—bc(A—1"1)?;

and we can choose g so that bc takes any given real value. We see therefore that any
semisimple element not equal to +1 in SL,(R) has a conjugate which is a
commutator and is thus itself a commutator. It is also clear from the above that we
may obtain as a commutator any element which is not semisimple but has both
eigenvalues equal to (—1) — we need only choose g such that be(A—A71)*=4.
[Note that any two such elements are conjugate in GL(2,R) and the commutator
set is stable under conjugation in GL(2,R).] Thus we have only to show that —1is
not a commutator in SL(2,R). If —1=g-hg~'h~! we conclude that g and —g
commute with each other and are conjugates. Now this would mean the
eigenvalues of g are of the form (4, —4) so that A™'=—4, ie. A?= —1. In other
words after a conjugation one can assume that

-(_1 o)
9=\ -1 o

0 -t 0 1 0 -1
andthenhg™'h~'is nec«:ssarily(1 ()).However,(b1 0) and( ) 0) are

not conjugates inSL,(R); they are conjugates by the permutation matrix ) 0)

which has determinant — 1; if they were conjugates in SL,(R), the centralizer of
0 1

( 1 0) in GL,(R) would contain an element of determinant —1,

contradiction.
This proves assertion 5.4.
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5.5. The commutator map C:¥% x ¥ —% admits a factorization mo f, where
[ %9x%>%x%
is defined by

S p)=(eyx4y™h

and m: % x ¥—% is the multiplication in 4. The map f evidently maps E into the
set

W={(x,y)e4x%x++1, y¥ +1, trace(x—y~ ')=0}.
We assert that W is a closed codimension 1 submanifold of

Q={x,y)ebx¥%x++1, y+ +1}

and that f is a submersion of E in W. That W is a codimension 1 closed analytic
submanifold in Q2 follows from the fact that the map (x, y)—trace(x —y ") of ¥ x ¢
in R has no critical points in £ as is easily checked. To prove that f is a submersion
we observe that the tangent map df , ,, of f at(a, b) € 4 x @ is given by the following
formula: for X,Yelie %,

dfio (X, Y)=(Ada(Adb™ 1(X)— X + ¥), —Adb(Y)).

The kernel df,, ;, is thus seen to be the space
{(X,0)eLie¥ x Lie 9|Adb '(X)=X};

and this has dimension 1if b= 4+ 1 - as is indeed the case if (g, b) € E. It follows that
f:E—-W is a submersion.

5.6. Claim. € factors through f to an analytic map of P=f(E) in 9.

Proof. Since f : E—W is a submersion, it suffices to show that € is constant along
the fibres of f. If (a, b) € 4 x & then any point in the fibre of f through (a,b) is
necessarily of the form (ax, b) with xecentralizer of b. Clearly, C(ax, b)
=0(a) 6(x) o6(b) 6(x) " 'o(a) 'o(b)”! and it suffices to show that o(x) and o(y)
commute whenever x and y commute. This is true if in addition x and y belong
to G(k) : [o(x), a(»)]=1([x, y]). If B is a torus in G defined over k, B(k) is dense
in B(R) so that by continuity we have to [a(x), o(y)]=1 if x, ye B(R). For a
pair (x, y) of semisimple elements with [x, y]=1, it follows that [a(x), s(y)] =1
because x and y can be conjugated simultaneously into B(R) for a suitable k-torus
Bin G. Suppose now that x is not semisimple; then we can, after a conjugation in

’

1
GL,(R) assume that x = <§ ) with e= +1 and y then takes the form (f)
€

withae R, Now o ( > commutes with o(g) for any semisimple g and hence

for any ge % by continuity. We may therefore assume e=¢'=1 in the above:
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1 1 1
x= (O 1) , V= <0 C;) . Let p,/q,, Pn» 4. € Z be a sequence of rational numbers

1 1 1
converging to a. Let x,= (0 /lq”> and y,= <0 p,,{q,,>- Then

[a(x), o(y)]=[o(x,)* o(x,)1=1.

Taking the limit as n tends to co, we conclude that [a(x),o(y)]=1.

5.7. Since C: E—-»% —{+1} is a surjective submersion so is P g {+1}. We

have seen above that there is analytic map ri: P—% such that C =1 f on E. We
will now show the following which in the light of Lemma 5.3 proves the theorem.

5.8. Assertion. i is constant along the fibres of the mapm:P—% —{+ 1} and hence
factors through m.

Proof. Let J be the fibre product of P with itself over ¥ —{+1} =S8, say:

J={(p,q) € P x Pl (p)=ri(q)} .

We will show that J is connected. We observe first that E is connected: it is easy to
see that C (1) is an analytic subset of codimension 2 in % x 4. Hence P = f(E)is
connected. Also the fibres of C being real algebraic sets have finitely many
connected components. Consequently the same holds for the fibres of m: P—§. It
is immediate that we have then the following: for each seS, there is a
neighbourhood N(s) of s with the following property: given any connected
component F of m~ (s) (C P) thereis a point pe F, an open neighbourhood N(p) of
p and a diffeomorphism ®,: N(s) x Q(p)—>N(p), where Q(p) is an open set in R?
such that mo @, (x, y)=x for xe N(s), y € Q(p). As a consequence we note that if
y:[a, b]— N(s) is any continuous path in N(s) with y(a)=s there is a path 7:[a, b]
—P such that y(a) belongs to any prescribed connected component of ™ '(s).
Suppose now a=(p, g) € J and s, € S is any fixed point. We will show that thereis a
path u: [0, T]—J such that u(0)=a and w(T)=(p’, ¢") with m(p") =m(q")=s,. For
this let y : [0, 1]— P be any path with y(0)=p and y(1)=p’, p’, any point of m ™~ (s,)
(in P). Choose {t;]1<i<r}in[0,1] such that¢, =0, ¢,=1and ¢;<t¢,,, for 1 <i<r
and mi-p([t;, t; . D CNOR(Y)(t)). We now define paths &;:[2i+1,2i+2]-P for
1<i<r—1inductively as follows. Let y;: [2i+ 1, 2i 4 2] P be the path defined by
y{) =7(0;(1)), where g, is a linear homeomorphism of [¢,, t;, , Jonto [2i+1,2i +2].
Let ;=movy,

Then p{[2i+1,2i+2]DCN(;(2i+1)) so that we can find a path
& [2i+1,2i+2]—-P with £{2i+ 1) belonging to any connected component of
m~'(y,(2i+ 1)) we want. Assume ¢&; defined for i <j and choose &; with £{2j+1) in
the same connected component as £;_ ,(2j). To start the induction £, is chosen so
that &,(1) is in the same connected component of m~(y,(1)) as the point g. Define
now a path £:[0,2r]— P as follows:

Chzjs1,24n=¢; for O<j<r
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while &gz 25417 18 @ path in n”t‘l(yj(2j+l)) Joining &;_;(2j) and £42j+1). Let
1:[0,2r]— P be the path given by

n|[2j+1,2j+2]=yj

while #l2;,25+1) Is the constant path with value y;_,(2/)=y/2j+1). Then ¢

(&), n(1)), te [0, 2r] gives a path joining (p, q) to (p’, ") € J with mi(p") = mi(q).
Now to prove the connectedness of J it suffices to show that for a suitable s, € S,

. A0 .
1~ 1(sp) (CP) is connected. Let sy = (O w1) with 4>0 and A¢1. Let

A
F={(x,y)e WC¥ x%m(x,y)=x-y=50}.

1

If(x, y) € F, we have trace x =trace y~ * and since y ! =s; !x; we see then that if we

set x = z i (with ad —bc = 1), we have necessarily d =ald ™. Now (x, y) belong
to Piff x and y~ ! are conjugates in SL,(R). The elements x and y ! are conjugates
in GL,(R) as tracex=tracey '. Now x= (a ;11) while s5'x=y~!
~ (a/l_ Lopatt ©

1 ) Since 1>0 we may conjugate y ! by a diagonal matrix in
c a

271 b
SL,(R) to obtain the element z= <a ) Now if the eigenvalues of x (and
¢ a

hence also z) are both real and distinct, x and z are conjugates in SL,(R). We need
therefore consider only the case when the eigenvalues of x are either both equal or
when they are not real. But this means that 22|trace x|=|a|(1+17}), ie.
la} £ 2/(1 + ), where = A~' >0is distinct from 1. We have then bc=ad— 1 =a%u
—1<4u/(1 4+ u)—1<0. Thus, b, c are both nonzero and are of opposite signs.
Conjugating x and z by a suitable diagonal matrix we see then that x and y~* are
conjugates iff < z al;) and (au Z) are conjugates for a suitable u=+0; and

01
) . We see thus
-1 0
that F is the fibre s~ '(sy) in P. On the other hand, F can be identified with

a b
{( >€M2(R)]ua2—bc=l}
c au

and this set —a conic in R®~is evidently connected as > 0. We see therefore that F
and hence J is connected. Let D denote the set of elements (p, g) € J with p=(x, y),
q=(z, w) with (x, y) and (z, w) belonging to f(G(k) x G(k)). Then since (p) =(q)
for (p,q)e D the analytic function ®:J—% given by D(p,q)=m{p)i(g)~ ' is
constant (equal to 1) on D. Since J is connected it suffices then to establish the
following

these last two elements are conjugates of each other under (

5.9. Assertion. The closure of D contains an open subset of J.
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Proof. Consider the following subset .# of ¥ x % x ¥ x 4.
M={(a,b,x,y)la,be ¥, [a,b]l+1, xe Z(a), ye Z([a,b])},

where for g € 4, Z(g) denotes the centralizer of g in ¥. It is easy to see that .4 is a
submanifold of ¥ x ¥ x % x ¢ of dimension 8. In fact, .# is the R-points of a
subvariety M of G x G x G x G defined over k. Since G(k) is dense in % and for g
€ G(k), Z(g)(k) is dense in Z(g)(R) we see that M(k) is dense in #.

Let F: #—% x% x% x% be the map defined as follows:

F(a,b,x,u)=(aba"',a” !, uabxa v, ux" b~ 'u"1)
=(f(a,b), f(uau™ ", ubxu)).

Then F is an analytic map of M into J as is easily seen. The differential of F at
(a,b,1,1) is given by the following formula: let X,YeLie¥, Zez(a), the
centralizer of a in Lie 4 and Te z([a, b]), the centralizer of [a,b] in Lie ¢; then

dF(a,b,l. 1)(X5 Y, Za T)Z(X” Yly Z’a T’) s

where
X'=Ada((Adb™ ' —1)X +7Y,
Y'=—Adb(Y),
Z'=X'+Z+Adab 'a Y ()T,
and

T'=Y'—~AdbZ+AdbT—T.

Thus, if X,Y,Z,T is in the kernel of dF,, ; ;) then Y=0, Xez(b), Z
€ Image (Adb ™' —1)nz(a). If g and b are semisimple and Z -0 this would mean
that z(a) and z(b) are orthogonal to each other with respect to the Killing form on
Lie %. Thus, if we assume — such a choice of @ and b in ¥ is possible — that

2trace ab—tracea traceb+0,

then z(a) is not orthogonal to z(b) so that Z =0. Once Z =0, one concludes that T
€ z{(aba™')nz(b); and then T=0 if aba™' does not commute with b. We see
therefore that if (a,b) € 9 x % is so chosen that a and b are semisimple, 2 trace ab
—tracea trace b+ 0 and aba™ ' and b do not commute, then at (a,b,1,1) the
differential of F has a kernel of dimension 1. Since dimJ =7 while dimM =8, we
conclude that there is an open subset U of M such that F(U) is open in J. Since
M(k)nU is dense in U and F(M(k)nU)CD, Assertion 5.9 follows.
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Added in Proof. The conclusions ofthe main theorem are also valid for the groups Sp(2n, R), n> 1.
This follows from the following facts: any lattice I' in Sp(2», R) is arithmetic; if G is an algebraic
k-group over a number field k with G(k,) ~Sp(2n, R) for some archimedean valuation v, then G
admits a k-subgroup H such that 7, (H(k,)) ~m,(G(k,)) and H is of type C,, i.e. H is of type By; our
contention now follows from the main theorem.



