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Introduction 

Let G be a connected semisimple Lie group with finite centre. If G is linear and F is 
any finitely generated subgroup of G, then it is well known that F admits a torsion- 
free subgroup of finite index. In particular, this is so if F is a lattice in G. The last 
assertion fails for certain lattices if G is not linear as was shown by Millson [6]. 
Deligne devised a general method for deciding when an "arithmetic" lattice in a 
finite covering of a linear group admits a torsion free subgroup of finite index. He 
used this method together with available information on the congruence subgroup 
problem to exhibit further examples of arithmetic lattices which admit no torsion 
free subgroups of finite index. Deligne's as well as Millson's examples are of lattices 
which are not cocompact. In the present paper we will apply Deligne's ideas to the 
case of lattices in a covering group ~ of the group Spin(2, n), the real spin group of a 
quadratic form of signature (2, n). The necessary ingredients for doing this are 
provided partially by Kneser [3] and Margulis [5]; these deep results combined 
with the results of Prasad and Raghunathan [8, 9] enable us to obtain the required 
information on the (necessarily arithmetic) lattices in question with the help of 
some abelian class field theory. The main result of the paper is 

Main Theorem. Let f~ be the universal covering of Spin(2, n), n an odd integer, the 
spin group of a quadratic form of signature (2, n)_ Let F C f~ be any lattice and 7z 1 
(~-Z) the kernel of the map ~ S p i n ( 2 ,  n). Then F 3 8rCl. In particular, if f~ is any 
finite covering of Spin(2, n) of order not dividing 8, then f~ l admits no torsion-free 
lattice. 

Throughout this paper we will deal exclusively with cocompact lattices. For 
non-cocompact lattices Deligne's methods generalize in a straight forward man- 
ner in the light of the extensive available information on the congruence sub- 
group problem [8, 9]. 
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A brief indication of the method of proof follows. Let k be a numberfield and 
its set of archimedean valuations. Let G be a connected simply connected 
semisimple k-group. Let G(a) [resp. G(c)] denote the completion of G(k) with 
respect to the family of arithmetic (resp. congruence) subgroups. The k-group G 
has CSP iff (~(a) is a central extension of (~(c). Let G(A) denote the ad61e group of G 
and M(G) the kernel of the restriction homomorphism HZ(G(A))--*H2(G(k)) �9 the 
cohomology groups are based on continuous cochains and have coefficients in 
T = R / Z .  For v e ~ ,  k, denotes the completion of k at v and let Go~ denote the 
product of all those G(k~), v~ov, which are not compact and simply connected. Let 
t ~  denote the universal covering of Go and re1 the kernel of p" ~ ~ Go~. With this 
notation Deligne has proved the following: if G has CSP, there is a homomor- 
phism 2~" zc 1 ~#(G) [ = the dual of M(G)] such that any lattice/~C Go~ with p(F) an 
arithmetic subgroup of G~o contains the kernel of 2o. Suppose now that f# is the real 
Lie group Spin(2, n), n > 3, viz., the spin group of a quadratic form over R with n 
positive and 2 negative eigenvalues and ~ its universal covering (the fundamental 
group of f# is isomorphic to Z). Let/~C fr be any lattice in re. Then by a theorem of 
Margulis [1], there is a numberfield k = k(/~) with a real valuation v and a k-group 
G = G(ff) such that G(kw) is compact (and simply connected) for w e ~ - {v} and 
there is an isomorphism of ff on G(k~) which takes the image of /~  into an 
arithmetic subgroup of G(kv). If we make the further hypothesis that n is odd, then 
one knows that G is necessarily the spin group of a quadratic form over the field k 
[13]. Now Kneser [3] has shown that such a G has CSP. So we conclude from the 
theorem of Deligne cited above that for each/~, there is a homomorphism 

,~p) :(Z)~l(~)--,~(~(f)) 
whose kernel is contained in F. It suffices then to show that #(G(F)) has exponent 
dividing 8. We prove in fact a more general result. 

Let k be a numberfield and G the spin group of a quadratic form 
over k in at least five variables. Let N be the order of the group of 
roots of unity in k. Then 4.N.M(G)= O. 

Note that N = 2 when k = k(lff): it admits a real valuation. 
The general result on M(G) above is reduced to proving two weaker statements 

on 3 dimensional groups with the aid of cohomological computations made in 
[8, 9]. The first of these results is reduced using the work of Moore [14] to a 
problem on algebraic numberfields which is solved by using some (abelian) class 
field theory. The second is an assertion about real semisimple groups which is 
handled by differential geometric methods. 

1. The Metaplectic Kernel and a Theorem of Deligne 

1.1. Let k be a global field and V its set of valuations. For v~V, let kv be the 
completion of k with respect to v, fv the residue field of kv, Pv the characteristic of fv 
and #~ the group of roots of unity in k*. IfS is a finite subset of V, we denote by A(S) 
the S-adele ring ofk. Let G be a connected, simply connected, semisimple algebraic 
group over k and for v~V, let G(kv) = G~. For S as above let G s = n~sG ~ and G(S) 
the S adele group G(A(S)) of G. Let T be the compact topological group R/Z and 
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for any locally compact group B, let H2(B) denote the second cohomology group 
of B with coefficients in T (for the trivial action of B) based on continuous cochains. 
For each v r S, the inclusion GroG(S) induces a restriction homomorphism ro of 
Hz(d(S)) in Hz(G~) leading to a homomorphism 

h : H2(Cr(S))'-*Ilv~sH2(Gv). 

It is proved in [9, Theorem 2.4] that ifG is isotropic at all nonarchimedean v not in 
S, h is an isomorphism. It is also shown there that for each v ~ S, the group Go 
admits a universal locally compact central extension Qo: G ~ G o  with kernel 
denoted ltl(Gv), a discrete group and there is a natural isomorphism of the dual 
Hom(rq(G~),T) on H2(Go). Moreove~ the group G(S) admits also a universal 
locally compact central extension ~'G(S)~Cr(S) and we have natural maps Go 
-~ G(S) for v ~ S making the diagram 

Go--, G(S) 
commutative and inducing an isomorphism of the direct sum 

[_[ rq(G~)-~ r q ( G ( S ) ) ( ~ f k e r n e l  Q). 
vr  

The group H2(G(S)) is then evidently dual to ~I(G(S)) under Pontrjagin duality. 

1.2. Suppose now that G(k) is perfect. Then G(k) admits a universal (discrete) 
central extension p: G(k)~G(k) whose kernel is denoted rh(G(k)) and we have a 
natural map: ~l(G(k))~ ~I(G(S)). We denote the cokernel of this map by p(S, G). 
Now from the fact that ~(G(S)) is the direct sum of the groups ~l(G(ko)) each of 
which is discrete (in fact finite cyclic of order I~1 or  1#~1/2: Prasad-Raghunathan 
[8]) one sees easily that #(S, G) is in duality (under Pontrjagin pairing) with the 
group M(S, G) = kernel of the restriction map H2(G(S))--*H2(G(k)) induced by the 
diagonal inclusion of G(k) in G(S). In the sequel M(S, G) will be called the 
S-metaplectic kernel of G. When S = ~, we set G = G(~) = G(A@)), M(G) = M((~, G), 
and #(G) = #(~b, G). The assumption that G(k) is perfect implies that Go is perfect for 
all v e 1 /and hence that G is isotropic over ko for all non-archimedean v (one 
expects that the converse is also true but so far only partial results are available: 
Kneser [3], Platanov-Rapin~uk [7], and Raghunathan E11]). 

1.3. Suppose now that o0 C S. Let Ts(a ) [resp. Ts(c)] be the topological group 
structure on G(k) defined by stipulating that the family of S-arithmetic (resp. S 
congruence) subgroups constitute a fundamental system of neighbourhoods of the 
identity. We denote by t~(S, a) [resp. G(S, c)] the completion of G(k) with respect to 
Ts(a) [resp. Ts(c)]. The group (~(S, a) is an extension of (~(S, c) by a profinite group 
C(S, G) which we call the S-congruence kernel. We will say that G has the 
S-congruence subgroup property - SCSP for short - if C(S, G) is central in G(S, a). 
If G(k) is perfect, the group Gs admits a universal central extension t7 s and the 
inclusion Gs~G induces a natural inclusion 

71:1 (Gs)  ---~ 7~ 1 ((~) ,  
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where the group n~(Gs) is the kernel of the covering projection 

Os : Crs ~Gs" 

Composing with the map n~(G)~# [=p(~ ,  G)] we obtain a homomorphism 

Rs: n l (Gs)~p.  

The following result is due to Deligne [1]. 

1.4. Theorem. Assume that G(k) is perfect and that G has SCSP. let Ps : Gs~Gs be 
the universal covering of Gs and F C Gs a (discrete) subgroup commensurable with 
ps~(~), where �9 is any S-arithmetic subgroup in G s. Then F contains kernel R s. 

We remark that Deligne does not formulate the result in the above form but his 
proofs go through in the light of the comments made in the earlier paragraphs. We 
will be mainly interested in applying this theorem to certain anisotropic Spin 
groups. Kneser [3, 4] has shown the following: 

Let k be a number field and E a vector space of dimension n > 5 
over k and q a quadratic form on E. let S be such that we have 

(Witt-index of q at v)>2 .  
v ~ S  

Then Spin(q)(k) is perfect and Spinq has SCSP. 

Actually our interest in the sequel will be limited to the case of Spin groups of the 
above kind with S = ov and such that for at all but one archimedean valuation v0, q 
is anisotropic. 

2. Finiteness of the Metaplectic Kernd 

We continue with notations introduced in Sect. 1. Our aim in this section is to 
prove the following 

2.1. Theorem. M(S, G) is a torsion group. I f  G is isotropic at kv for all v r  or if 
chark = O, M(S, G) is finite. 

In Prasad and Raghunathan [9, Theorems 2.10 and 3.4] it is shown that 
M(S, G) is finite if G is isotropic over k or S ~ ~ ,  G is isotropic at v for all v ~ S and 

Z kv-rank G => 2. Now if v is non-archimedean and G is isotropic at k v then 
v~S 

HZ(G(kv)) is finite [8]. It follows that M(S, G) is finite ifS D ~ and G is isotropic at v 
for all v ~ S. Now when G is anisotropic at v and v is non-archimedean G~ is 
compact and HZ(G~) is a torsion group and in fact Hi(G~), i= 1, 2, are finite if 
chark = 0 [10, Theorem 4.10]. This leaves out for our consideration only the case 
when S D o% G is anisotropic over k (and k is of characteristic 0). We may assume 
S = 4  as M(S, G) has a natural inclusion in M(G). Let r:H2(G)-+H2(Go~) denote 
the projection induced by the inclusion of Goo in G. It is clear then that the kernel of 
r restricted to M(G) is precisely M(oo, G). It is therefore sufficient to show that the 
image of M(G) in H2(Goo) is finite. Suppose now that U is a compact open 
subgroup of (~(~). According to Raghunathan [10, Theorem 5.2], H2(U) is finite. 
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Since U is profinite, it admits an open compact subgroup U' such that for all 
xvEH2(U), Zv restricts to zero on U'. Let F=G(k)nU'.  Then we have the 
following commutative diagram 

r - ,  Gtk) 

G| x U" -~ G~- Go~ x G(co). 

Moreover, H2(G) "H2(G~o) x H2(G(oo)) as G~ is perfect. The map H2(G)~HE(F) 
thus factors through Goo x U' and as any Z ~ M(G) is zero on U', we see that Zoo the 
restriction of ~( to Goo must be trivial on F. Since G is anisotropic over k, Goo/F is 
compact and it suffices therefore to prove the following proposition in order to 
complete the proof of the theorem. 

2.2. Proposition. Let f# be a connected linear semisimple Lie group and F a discrete 
subgroup such that f#/F is compact. Then the map HZ(f~) ~H2(F)  has a finite kernel. 

We consider the action of both f# and F on f# by right translations. Then 
according to van Est [2] there is a spectral sequence Eft q abutting on the Lie 
algebra cohomology of g -- Lie algebra off#, and with E~ q ~- HV(f#, H~(f#, R)), the pth 
cohomology group of f# based on continuous cochains with coefficients in 
H~(f#, R), the qth cohomology group of f# as a topological space with coefficients in 
R. Moreover, we have a natural map of this spectral sequence into the Cartan 
Leray spectral sequence 'E~q=HV(F,H~(f#,R)) of the covering projection Q:G 
---,G/F which abuts to H*(f#/F,R). Now H~(g,R)=0 for i=  1,2 leading us to an 
isomorphism. 

0 --~ H)(f#,R) --- H2(f#,R)--~ 0 
~l ~1 ~1 ~l (*)  

Hl(_g, R) E ~ -~ E 2~ U2(_g, R). 

From the spectral sequence 'Er we obtain the following exact sequence: 

U~,(f#/r, R) ~ Ut~ (f#, R) ---* H2(F, R), (**) 

where q* is the map induced by Q. We will presently establish the following 

2.3. Claim. O* is the trivial map. 

We first complete the proof of Proposition 2.2 assuming the claim. It is 
immediate from the claim and the sequence (*) and (**) above H2(f#,R) 
-~HZ(F,R) is injective. Let V=H2(f#,R) and W=H2(F,R). Let V z (resp. Wz) 
denote the kernel of the map H2(f#,R)~H2(f#) [resp. H2(F,R)~H2(F)]. Evi- 
dently, we have a commutative diagram with exact rows and i and j injections 

o-~ vz-~ v - ~  H2(f#) 

0-~ Wz-* W - ,  H2(r). 



408 M.S. Raghunathan 

The map V--*H2(fr has finite cokernel and V z spans V as a real vector space and 
Wz=ImageH2(F, Z) in W is discrete. It follows that j (V)nWz contains Vz as a 
subgroup of finite index. Hence j - I(Wz)/V z is finite. Since V---,H2(fr has a finite 
cokernel, Hz(~)~H2(F) has a finite kernel. 

We have to prove the claim. 

2.4. Proof of Claim 2.3. Let K be a maximal compact subgroup off#. As K ~ f q  is a 
homotopy equivalence we have to show that the map K ~ / F  induces the trivial 
map in the first cohomology of these spaces with coefficients in R (we have assumed 
that K ~ ~/F is an inclusion; this is easily secured by assuming that F is torsion free 
- ff is a linear group !). Let X = K\G be the Riemannian symmetric space and 
Y = X / F .  Then ~ / F ~ Y  is a principal K-fibration. The transgression in this 
fibration takes each non-zero element of H,I(K,R) (=E ~ into a second 
cohomology class in H~(Y,R) (=Ez  z~ which is represented by a non-zero 
~-invariam form on X projected to Y. This is easily seen by a comparison with the 
compact dual; and such a form is harmonic, hence is non-zero in cohomology. 

3. Lattices in Spin(2, n), n odd 

3.1. In this section ~ will denote the real Spin group of a quadratic from q in 
(n + 2)__> 5 variables with Witt-index 2 and n is assumed odd. The pairity condition 
on n has the following consequence: if k is a number field with a valuation v such 
that kv"  R and G is a (simply connected) k-algebraic group with ~ ~- G(kv), then G 
is necessarily the Spin group Spinq of a quadratic form q over k which, over k~, is 
equivalent to q: this is known from the classification of algebraic groups [13]. In 
view of this the arithmetricity of lattices in ~ proved by Margulis [5] has the 
following formulation. Given a cocompact lattice F C~, there is a totally real 
number field k = k(F), an archimedean valuation v = v(F) of k and an anisotropic 
quadratic form q = q(F) in (n + 2)-variables on k with the following properties: 

(i) k~--- R. 
(ii) If v '~v  is archimedean, q is anisotropic over k~, 

(iii) Over k~ (-~ R), q is equivalent to q_. 
(iv) The equivalence ofq and q_ over R may be so chosen that under the induced 

isomorphism ~-'Spinq(k~), F maps into a subgroup of Spinq(k~) which is 
commensurable with an arithmetic subgroup of Spinq(kv). 

3.2. Remark. As (n + 2)>_ 5, we note that the Hasse-principle implies that k(F) 
above cannot be Q. 

3.3. The fundamental group ~1(~) of ~ is isomorphic to Z. Let r : ~ f r  be the 
universal covering. We identify nl(~) with kernel r. If ~/' C ~ is a cocompact lattice, 
r(~) is a cocompact lattice in ~ and hence determines a (totally real) number field k, 
a (real) valuation of v of k and a quadratic, form q as above [all depending on r(~)]. 
According to Theorem 1.4, there is a homomorphism ~: ~l(f~)~M(Spinq) such 
that �9 contains kernel 2 [2 depends on the k-group Spin q but not on the arithmetic 
lattice r(~)]. Since ~1(~) is cyclic to prove the main result it suffices to show that 
8M(Spinq)=O for any q as above. We have in fact the following more general 
result. 
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3.4. Theorem. Let k be a number field and q a quadratic form on a k-vector space E 
with d i m E > 5 .  Let #k be the group of roots of unity in k and N=l#k[- Then 
4N(M(Spin q)) = 0. 

3.5. In the sequel we denote by G the group Spinq. Let x~H2(G) be such that 
z = 4Nx 4: O. If x is a torsion free dement,  then according to Theorem 2.1, x has a 
non-zero restriction to G(k). We will, therefore, assume that x is a torsion element. 
Let p be any prime and pt the highest power of p dividing/~k we may assume then 
that x is a p-torsion element such that 4p'x4:0 while 4pt+lx=O. Under this 
assumption we will show that x restricts to a non-zero element on G(k). Let V(x) 
= {v e Vl4ptxv 4= 0} (here xv is the restriction of x to Gv). Evidently, V(x) is non- 
empty. We will now choose a 3-dimensional non-degenerate-for-q k-subspace E(x) 
of E as follows. If V(x) contains a non-archimedean place w, q(x), the restriction of 
q to E(x) is anisotropic at all real archimedean places and isotropic at w as well as 
at all v ~ V -  oo with p~ = p. If V(x) Coo, q(x) is assumed to be anisotropic at all but 
one w ~ oo with w ~ V(x) and the natural map of Spinq(x) (k,) in G(ko) induces in 
the fundamental groups a homomorphism whose cokernel has order 2. Such a 
choice of E(x) is possible as is seen easily from the density of E(k) in any finite 
product of the E(k~). The choice of E(x) as above is motivated by. 

3.6. Lemma. I f  E(x ) is chosen as above the element x in Ha(G) restricts to a non-zero 
element y in Ha(H), where H = Spinq(x) is considered as a subgroup of G for the 
natural inclusion. Moreover, if V(x)d{ 0% ptyv=O for v~ oo and 2pZyw4:0 (w as 
above). I f  V(x) C ~ ,  there is a unique w ~ oo such that 2ptyv 4:0 for v ~ V if and only 
f V=W, 

Proof. In the case when V(x)C oo this is immediate from our choice of E(x). 
Assume then that V(x) ~ oo. In this case the result is an easy consequence of [8, 
Theorem 9.5]. According to that theorem we have the following: let B be a 
maximal kw-split torus in G and �9 the k,~-root system of G with respect to B. Let 
d be a dominant root in �9 for some ordering on the character group of B. Let 
G(d) denote the kw-rank 1, kw-subgroup of G determined by d. Then HZ(Gw) 
-~I-I2(G(d)~) is injective. Now suppose first that kw-rank G > 2  (this is the case 
always if d imE>7) .  Then G(d)+SL2 over kw. Let E' be a k~-subspace of E of 
dimension 5 containing E(x) and G' the Spin group ofq',  the restriction ofq  to E'. 
We assume that q' is non-degenerate and has Witt-index > 2. Then it is easy to 
see that Spinq' contains a conjugate (over kw) of G(d). Consequently, the 
restriction map H2(G~)~HZ(Spinq'(k~)) is injective. Now Spinq '= G' is a split 
group of type B2 (=  C2) and Spinq(x) is the subgroup kw-isomorphic to SL2 
corresponding to a short root in this root system. From the work of Moore [14] 
one knows that H2(G'~)~H2(Spinq(x)~) has a kernel of order 2. This proves the 
lernma when kw-rank G > 2; when the kw-rank is 1, d i m e  = 5 and we know from 
[8, Proposition 8.44] that if E'D E(x) is a suitable 4-dimensional subspace and q' 
the restriction of q to E', HZ(G~)~H2((Spinq3~) is injective. Now 
Spinq'~_Rx/kwSL2 over kw for a quadratic extension K of kw; from the work of 
Moore [1] (see also [8, Sect. 5.4]) the map SL2~RK/kwSL2 induces in H 2 a map 
with kernel of order 2; and Spinq~Spinq '  can be identified under a suitable 
isomorphism with this inclusion. This proves the lemma. 
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Lemma 3.6 now reduces the problem to the following two results on 
3-dimensional groups: note that the Spin group in 3 variables is a 3-dimensional 
group: it is either isomorphic to SLz or the group SLy, o of elements of reduced 
norm 1 in a quaternion division algebra. 

3.7. Theorem. Let D be a quaternion division algebra over k which is anisotropic at 
every real place of k and split at all k~ with v finite and Po = P a f ixed prime. Let G be 
the k-group SLt,  o and Z ~ H2((~) be such that the following holds: there is a w 

V -  oo at which D is split and 2ptzw =~ 0 w hile pt + 1X = 0 or 2p t + t Z = 0 according as p 
is odd or p = 2. Then Z restricts to a non-zero element in H2(G(k)). (Recall that ff is 
the highest power of p dividing Ipkl-) 

3.8. Theorem. Let G be a 3-dimensional simply connected semisimple group over k 
and v an archimedean valuation. Then the map H2( Go)~H2( G(k )) is injective. 

4. Proof of Theorem 3.7 

4.1. The notations are those of Theorem 3.7. Let ~ be a primitive p'th root of unity 
in k and l=k(~t/O. Let K be a quadratic extension of k contained in D with the 
following properties: For  v = w or Po = P, K imbeds in k~ and K is linearly disjoint 
from 1. To see that such a K exists we argue as follows. Let f2 be the (finite) 
collection of all quadratic subfields of I. For  each l'~ f2 pick v(13 in V -  oo distinct 
from w and the v with Po =P  such that l' is linearly disjoint from kv(l') (~ebotarev's 
approximation theorem) and D splits over kotv~. We will also assume that v(l) 
4: v(l") if l '~  l". Then using weak approximation One sees that we can find K such 
that K | ~- ko x ko if v = w or/fPo = P while for each l' e f2, K | " ko(v) x kv(r)- 
Thus there exists a quadratic subfield K C D with the required properties. 

We will need 

4.2. Lemma. Let v ~ V be a non-archimedean with Po ~: P. let  Mo be a maximal 
compact subgroup of Go. Then H2(Mo) has no p-torsion. 

Proof. Go is either isomorphic to SL2(ko) or the group D~ of reduced norm 1 
elements in Do, a division algebra. In the former case M, may be identified with 
SL2(Qv)(Q ~ ring of integers in k~); in the latter case My = D~. Let Nv be the normal 
subgroup {x ~ SL2(Qo)Ix-- 1 modn} if Mo~-SL2(Qo), rc ~ Qo a uniformizing para- 
meter, while No = {x ~ D~lx = 1 modzc}, zc a uniformizing parameter in Do if Do is a 
division algebra. Then No is a pro-po-group. Further, M d N  o ~-SL2(fo)or Mo/N~ is 
cyclic accordings as M o ~ SL2(Qo) or M o'-~ Do. In either case H2(MdN~) has no 
p-torsion (Schur 112] when Mo/No"~SL2(f~); in the other case the group is in fact 
trivial). Since No is a pro-p~-group H~(No, E) for any continuous No-module E is a 
po-torsion subgroup if i>  0. The lemma now follows from the Hochschild-Serre 
spectral sequence for M~ and N~. 

4.3. Let V ' = { v ~  V-oolv~=w, Po~-P and I is linearly disjoint from ko}. As I is a 
cyclic extension of k, we know from the ~ebotarev approximation theorem that V' 
is an infinite set. Now if v ~ V', we claim that pt~v = 0: this is seen as follows: if/3 
does not split at v, this follows from Lemma 4.2; if D splits at v, Go" SL2(ko) and 
H2(SL2(ko)),~ i~ and since v E V', the p-sylow subgroup ~u o is a cyclic group of order 
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through 

have 

pt. This proves our contention. Let S = {v ~ V -  oolv = w or p =Po}- Let V1 = V'uoo 
wS and set 

F={ t6K* l t  a unit in K| for v6 I11}. 

Also let K I =  {t E K*lNtc/k(t)= 1} and F I =  FmK ~. Then we can find a maximal 

compact subgroup 1--I My, each M o a maximal compact subgroup of Go, such that 
v ~ V  

F ~ maps into Mo under the natural inclusion of G(k) in Go for v 6 V1. It follows that 
the diagonal inclusion of F 1 [ C G(k)] in G factors through the subgroup I~ Mo 

v~V1 

x I-I -Go x 1--[ Gv x Goo (the second factor being a restricted direct product). Since 
OEV" t~ES 

H2(Mo), v ~ lit has no p-torsion, H2(G~) = 0 and ptzo = 0 for v ~ V', we see that the 

restriction of y=ptz to F ~ is the same as the restriction of z= {yo}o~s ~ HZ (o~s Go) 

to F ~. It suffices therefore to show that the restriction ofz  to F 1 is non-zero. Now 
the group K~ = {x 6 K v = K | = 1 } can evidently be identified with the 
diagonal group in SL2(ko)(=Go) for v6S.  Each element Yo, v~S, can be 
represented be a unique Steinberg-Cocycle c' o on Go = SL2(ko); the cocycle c'o has a 
restriction c, to K~ which determines c~; further, co is a bimultiplicative map of K~ 
in T satisfying c,(a,b)=co(b,a)-l: all this is due to Moore [14]. Now the 
cohomology group HZ(F 1) may be identified with the group of all alternating 
bimultiplicative maps o f f  ~ in T and the cocycle co represents the trivial class if and 
only if co takes values in {__+ 1} CT. As Yo is a p-torsion class i fp  is odd and a 4 

torsion class if p = 2, it is immediate that on 1-I K1 x 1-[ K1, c = I-I c, defines an 
yES v~S  v ~ S  

alternating T-valued bimultiplicative map such that c z is not identically equal to 1. 
Define u(a, b)= c(a, b)c(b, a)-1= c2(a, b) so that u is non-trivial. Now u factors 

K~/(K~) . It follows that it suffices to show that we 
v~S  v~S  

F~. ]-I (K~) v= I-[ K~. 
uES uES 

Since &--~ t/o-(t), t ~ K*, maps K* onto K 1 and extends to a continuous surjection of 

I-[ K~* on 1--[ K~ (a here is the Galois-conjugation), we need only establish the 
v~S y e s  

following: 

4.4 Proposition. r .  I-I (K*) p= l-I K*. 
y e s  v~S  

Proof. Let ~" denote the set of valuations of K and S C V the subset of those 
valuations u ~ ~" which lie over those in S. For  v 6 ~', Ko will denote the completion 
of K at v. Let I denote the id61e group of K. Let L=K| Then (L: K ) = ( I :  k) by 
choice and UK is a cyclic extension. Let BL C I denote the open subgroup of finite 
index in I determined by L under the Artin-reciprocity law. We identify * K v , v~ ~', 
with the corresponding subgroup of I and let Uo denote the unit group of K*. Let 
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B = K * .  l-I K* .  11 Uv (here o~ denotes the set of archimedean valuations of 

K). Finally, we set 

B'= K* YI K* I-[ U~ ~ U~. 
w ~  v E ~ - ~ - ~  y e s  

Clearly, we have B'C B. Let E be the abelian extension of K corresponding to the 
subgroup B'nBL o f / :  B/B'nL ~ - GaI(E/K). Let r denote the natural map Gal(E/k) 
~Gal (L /K)  and set 

= {u ~ Gal(E/K)lr(u) generates Gal(L/K)}.  

Then O generates GalE/K so that any u ~ GalE~K) can be written as a product noi 
with o- i sO .  Now according to ~eboratev 's  theorem for each i, there is a valuation 
vi E V -  S -  o~ such that  ai is the Frobenius at vi. Since ai maps (under r) onto a 
generator of Gal(L/K), vi~ ~"=  {v e VIv lies over a valuation in V'}. Let rq be a 

uniformizing parameter  in Kv~ and let e = I-I n, (in the idele group I). Then a maps 
i 

to u in I/B'nBL. Suppose now that u ~ B/B'nBL; then e E B so that ~ = 2QUo, where 

e K*, O e 1-[ K*, and u0 s I-I uv. This means that the principal idele ,~ is a 

unit at all v ~ V--  o~ other than the v,. Clearly, then, 2 E F. As the image of a in 

17I K* is trivial and so is the image of O. Consequently, 2-1  and Uo have the same 
veg 

in image ( [ I  U~ C] I-[ K*. The homomorphism I-I U ~ B / B "  is evidently 
\ y e s  J yeS  v~S 

surjective and u may  be taken as the image of an element g e 1-[ U~. It is clear then 
yes 

that g and a have the same image in I/B'. Since 2 and 0 are in B', uog- x ~ B'. We 

conclude that the projection a o Of Uo in 1-[ K~* is of the form gT~, 7 ~ K*, ~ e 17I U~. 
w g  wt~ 

As g and ~ are units, ? is a unit. Evidently, 2 - 1 7 -  a is in F and maps into the same 

element as 9 in l--I * * p K,,/(K,,) . This shows that 
vEg 

F. 1-[ (K*) p 3 l-[ Uv. 
w S  veg  

It now suffices to show that for each v e if, r contains an element h, which is a 
uniformizing parameter  in K~ and is a unit at K~, for v 'eS,  v '#v .  For  this let ~z~ 

K* be a uniformizing parameter  at v and % its image in the Galois group I/B of 
the Hilbert classified H. Let s denote the natural map  GalE /K- .Ga lH/K .  Then 

r~ = 11 s(ai) with ai ~ O. Each ai is the Frobenius at vi for some v~ ~ V' ((~ebotarev's 

theorem). It  follows that the ideal in K determined by r~o is equivalent in the ideal 
class group to a product  of prime ideals corresponding to elements in V'. In other 
words we can find 2 ~ K* such that t /= 2r~v in the idele group has all components ~, 
units for v' e V'. In particular, 2 -  ~ is a unit at all v' s S - {v} and it is a uniformizing 
parameter  in K,.  This proves the proposition. 
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5. Proof of Theorem 3.8 

As in Theorem 3.8 let k be a numberfield and kv its completion with respect to an 
archimedean valuation v. Let G be a simply connected 3-dimensional semisimple 
k-algebraic group. Then we have to show that the natural map 

H2( G(k~)) ~ H2( G(k)) 

is injective. If k,,-~ C or if G is an anisotropic over k v ( -~ R), the group G(kv) is simply 
connected and consequently H2(G(k~)) is trivial. Thus, we need only consider the 
case when k v'-~ R and G splits over k~. In the sequel we will assume this to hold. We 
denote G(kv) by ~ in the rest of this chapter. 

5.2. The main result can be reformulated as follows: 
Let 

I _-, T --, f~ p --,  ~ ~ 1 (*) 

be locally compact central extension of c~ by T; if this extension (*) splits over G(k) 
then it splits. Suppose then that (*) is a central extension and z: G(k)~c~ is a 
splitting of (*) over G(k). We observe first that # carries a natural structure of a Lie 
group making p (real) analytic so that p is in particular a principal analytic 
fibration with T as fibre. Since Cq = G(kv)~-SLz(R), it is homotopy equivalent to the 
unit circle and hence all analytic circle fibrations over ~ are trivial. We conclude 
therefore that there is an analytic map o : ~ #  such that p o o is the identity map of 
.~. We define now an analytic map 12:~ x f ~ #  as follows: for x, y ~ f#, choose 
elements ~,3~e# such that p(Yc)=x, p(~)=y;  then the commutator  

d e f  

Ex, 33] = ~33~- 133- ~ of~ and 33 depends only on x and y and not on the choice of~  

and 33 and we set 12(x, y ) =  [~, 33]. Evidently, 

12(x, y) = [~(x), ~(y)] 

so that 12 is analytic. Also we denote that if x, y ~ G(k), C(x, y) = z([x, y]). Now if(*) 
splits, it has a unique splitting ~, say, and we would have 12(x, y ) =  0(Ix, y]): in 
other words C would factor through C:f~ x N--,N, where for x, yef#, C(x,y) 
= Ix, y] (=  xyx-ay-~). We will establish the converse. 

5.3. Lemma. If  C factors through C, the extension (*) is split. 

Proof. Since 12 factors through C, there is a map 2: f f~f~  such that 12= 2 o C. 
Suppose X C f# is the set of critical values of C, then the restriction of C to E = 
ff x f ~ -  C -  ~(X) is a submersion; consequently, 2 would be analytic on C(E) and 
hence provide an analytic section over C(E) for the map p : fq~fr Now 12 clearly 
maps f9 x f~ into the commutator  subgroup Efq, f~] of fg; this last group is a 
connected Lie subgroup whose Lie algebras maps isomorphically onto that of f~. 
Consequently, we have a connected covering group f#--,f# and a continuous 
bijection i: f ~  [~, fq] and a continuous map 2': C(E)~C~ such that 2tc~e)= i o 2'. 
Evidently 2' is a section for the covering map ~ f f  over C(E). We will now show 
that C(E) = ~ -  { ___ 1 }. Once this is granted the complement of C(E) in ~ consists 
of two points so that the map zcl(C(E))--*rct~ of fundamental groups is an 
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isomorphism; as the covering ( ~  is trivial over C(E), it is trivial. Thus to prove 
Lemma 5.3, we need only show that we have the following 

5.4. Assertion. The critical values o f  C is the set { 1 }. Further image C = ~ -  { - 1 ) 

Proof. We identify, as usual, the tangent space at any point to c$ (resp. fr  f#) with 
Lie ~, where Lie ff is the Lie algebra of ~. With this identification the tangent map 
dC~g, h~ of C at a point (g, h) ~ ~ • fr is given by the following: let X, Y E Lie if; then 

dCtg" ~)iX, Y) = Ad g { X  - Ad h(X)  + Ad h ( Y -  Adg - - 1  (y))} 

as is seen by a straightforward calculation. It is now easy to see that the orthogonal 
complement of image dCcg, h ) in Lie ~ with respect to the Killing form on Lie f~ is 
the space 

Ad g Ad h(centralizer h c~ cent ralizer g -  1) ; 

and centralizer hcacentralizer g-  1 # 0 iff h and g commute i.e. iff C(g, h)=  1. This 
proves the first assertion. 

To prove the second assertion we note first that if u e f~ is unipotent, it can be 
put in upper triangular form and then is easily seen to be a commutator  in the 
upper triangular group itself. On the other hand, if we fix 2 e R, 2 > 0 and set 

t = )-- 1 , we have for g = e SL2(R) (i.e. ad - bc = 1), 

trace It, g] = 2 -  b c ( 2 -  2-  1)2 ; 

and we can choose g so that bc takes any given real value. We see therefore that any 
semisimple element not equal to _ 1 in SL2(R ) has a conjugate which is a 
commutator  and is thus itself a commutator.  It is also clear from the above that we 
may obtain as a commutator  any element which is not semisimple but has both 
eigenvalues equal to ( - 1 )  - we need only choose g such that bc (2 -2 -1 )2 - -4 .  
[Note that any two such elements are conjugate in GL(2,R) and the commutator 
set is stable under conjugation in GL(2,R).] Thus we have only to show that - 1 is 
not a commutator  in SL(2,R). If - 1  = g .  h g - l h  -1 we conclude that g and - g  
commute with each other and are conjugates. Now this would mean the 
eigenvalues of g are of the form (2, - 2) so that 2-1 = _ 2, i.e. )2 = _ 1. In other 
words after a conjugation one can assume that 

g =  --1 

a n d t h e n h g - l h - ' i s n e c e s s a r i l y ( ~ - 1 0 ) . H o w e v e r , ( _ ~  ; )  and (~ -10) are 

not c~ in SL2(R); they are c~ bY the permutat i~ matrix (01 ~) 

which has determinant - 1; if they were conjugates in SL2(R), the centralizer of 

(0_1 10) in GL2(R) w~ c~ an element ~ determinant - 1 '  a 

contradiction. 
This proves assertion 5.4. 
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5.5. The commutator  map C:f9 x fg~f f  admits a factorization m o f ,  where 

f :  f9 x fg~f9 x f9 

is defined by 

f ( x ,  y) = (xyx - it, y-  1) 

and m : f9 x N--*f9 is the multiplication in fg. The map f evidently maps E into the 
set 

W = {(x, y) e f9 x Nix + ___ 1, y + + 1, trace (x - y -  1) = 0}. 

We assert that W is a closed codimension 1 submanifold of 

O = ( ( x , y ) e N •  y:~ +1} 

and that f is a submersion of E in W. That  W is a codimension 1 closed analytic 
submanifold in f2 follows from the fact that the map (x, y) ~ t race  ( x -  y -  1) off9 x N 
in R has no critical points in f2 as is easily checked. To prove that f is a submersion 
we observe that the tangent map df~a,b) o f f  at (a, b) ~ f9 x f9 is given by the following 
formula: for X, Y ~ Lie fg, 

df~., b)(X, Y) = (Ada(Adb-  I(X) - X + Y), - Adb(Y)). 

The kernel df~a,b) is thus seen to be the space 

{(X, 0) ~ Lie f9 x Lie fglAd b-  I(X) = X} ; 

and this has dimension 1 ifb :# +_ 1 - as is indeed the case if(a, b) E E. It follows that 
f :  E -*W is a submersion. 

5.6. Claim. ~ factors through f to an analytic map of P = f (E) in f~. 

Proof. Since f : E ~  W is a submersion, it suffices to show that c~ is constant along 
the fibres of f .  If (a, b) e f9 • f9 then any point in the fibre of f through (a, b) is 
necessarily of the form (ax, b) with x e centralizer of b. Clearly, C(ax, b) 
= or(a) a(x) a(b) a(x)-  i a(a)- 1 a(b)- 1 and it suffices to show that a(x) and a(y) 
commute whenever x and y commute. This is true if in addition x and y belong 
to G(k) : [a(x), a(y)] = z([x, y]). If B is a torus in G defined over k, B(k) is dense 
in B(R) so that by continuity we have to [a(x), a(y)] = 1 if x, y ~ B(R). For  a 
pair (x, y) of semisimple elements with Ix, y] = 1, it follows that [a(x), a(y)] = 1 
because x and y can be conjugated simultaneously into B(R) for a suitable k-torus 
B in G. Suppose now that x is not semisimple; then we can, after a conjugation in 

GL2(R) assume that x = with e = + 1 and y then takes the form 
/ 

( - 1  0)  commutes with a(g)for any semisimple g and hence witha~R. N o w a \  0 - 1  
/ 

for any g~ f9 by continuity. We may therefore assume e = e ' =  1 in the above: 
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x =  (10 l l ) , y =  (10 ~ ) .  Let p./q,, p,,q, eZ  be a sequence of rational numbers 

(~ l /q )  ( ;  p,/lq, ) converging to ~. Let x. = " and y, = . Then 

Ea(x), a(y.)]  = Ea(x.) "o, a(x.F"]  = 1. 

Taking the limit as n tends to 0% we conclude that [a(x), a(y)] = 1. 

m 

5.7. Since C:E--*fr _+ 1} is a surjective submersion so is P - - o  i f - {  _+ 1}. We 

have seen above that there is analytic map th : P- - .~  such that C = th o f on E. We 
will now show the following which in the light of Lemma 5.3 proves the theorem. 

5.8. Assertion. th is constant along the fibres of the map m : P--> ~ -  { + 1 } and hence 
factors through m. 
Proof. Let J be the fibre product of P with itself over f r  { _+ 1} = S, say: 

J =  {(p, q) ~ P x Pith(p) = th(q)}. 

We will show that J is connected. We observe first that E is connected: it is easy to 
see that C -  1(1) is an analytic subset of codimension 2 in ~ x ft. Hence P = f ( E )  is 
connected. Also the fibres of C being real algebraic sets have finitely many 
connected components. Consequently the same holds for the fibres ofm : P~S. It 
is immediate that we have then the following: for each s~S, there is a 
neighbourhood N(s) of s with the following property: given any connected 
component F of m- l(s) ( C P) there is a point p e F, an open neighbourhood/q(p) of 
p and a diffeomorphism 4 ,  : N(s) x Q(p)~bT(p), where t2(p) is an open set in R 2 
such that m o 4~p(x, y) = x for x ~ N(s), y ~ t2(p). As a consequence we note that if 
? : [a, b]-~N(s) is any continuous path in N(s) with ?(a) = s there is a path ~: [a, b] 
~ P  such that ~(a) belongs to any prescribed connected component of th-l(s). 
Suppose now ~ = (p, q) ~ J and s o r S is any fixed point. We will show that there is a 
path u : [0 ,  T] ~ J  such that u(0)= ct and u(T)= (p', q') with m(p')= m(q')= So. For 
this let ? : [0, 1 ] ~ P  be any path with ?(0) = p  and ?(1) =p' ,  p', any point ofm ~(s0) 
(in P). Choose {t/[1 <i<r} in [0, 1] such that tl =0 ,  t r= 1 and ti<t~+ 1 for 1 <i<r 
and tfi-7([ti, ti+l])CN(th(V)(ti)). We now define paths 4i: [2 i+ 1, 2 i + 2 ] - o P  for 
1 < i < r -  1 inductively as follows. Let ?i : [2i + 1, 2i + 2]--.P be the path defined by 
?i(t) = ?(Oi(t)), where 0i is a linear homeomorphism of [ti, ti+ 1] onto [2i + 1,2i + 2]. 
Let ~ i = m o v i  . 

Then ?~([2i+1,2i+2])CN(?~(2i+1)) so that we can find a path 
r [2 i+  1 , 2 i + 2 ] ~ P  with ~(2i+ 1) belonging to any connected component of 
m- 1(7~(2i + 1)) we want. Assume ~i defined for i<j and choose ~j with ~j(2j + 1) in 
the same connected component as 4j-l(2j). To start the induction 41 is chosen so 
that r is in the same connected component of m-  1(?1(1)) as the point q. Define 
now a path 4:[0,  2r]--,P as follows: 

~lt2j+l,~j+2~=~j for 0 < j < r  
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while ~][2j, 2j+H is a path in rh-l(Tj(2j--t-1))joining ~i_l(2j) and ~j(2j+ 1). Let 
7: [O,2r]--,P be the path  given by 

r/l[zj + 1,2j+ 2] = ])j 

while */It=j, z j+u  is the constant path with value "tj_~(2j)=Tj(2j+l). Then t 
-~(~(t), q(t)), t e [0, 2r] gives a path joining (p, q) to (p', q )  �9 J with rh(p3 = th(qg. 
Now to prove the connectedness of J it suffices to show that for a suitable So e S, 0) 
rh-~(So) (CP)  is connected. Let so= 2_ ~ with 2 > 0  and 2r  Let 

F =  {(x, y) e WCf9 x ~#lm(x,y)=x.y=So}. 

If(x, y) e F, we have trace x = trace y -  1 and since y -  ~ = So i x; we see then that if we 

set x =  (~  bd) (withad-bc=l),wehavenecessarilyd=a2-1. Now (x, y) belong 

to P iffx and y -  ~ are conjugates in SL2(R). The elements x and y -  t are conjugates 

in GL2(R ) as t r a c e x = t r a c e y  -~. Now x =  a2_ 1 while So~X=y -~ 

= . Since 2 > 0 we may conjugate y-1  by a diagonal matrix in 
k c2 

SL2(R ) to obtain the element z = . Now if the eigenvalues of x (and 

hence also z) are both real and distinct, x and z are conjugates in SL2(R). We need 
therefore consider only the case when the eigenvalues of x are either both equal or 
when they are not real. But this means that 2=>l t racex l= la l ( l+2-1) ,  i.e. 
lal< 2/(1 +#) ,  where # = 2  -a > 0 i s  distinct from 1. We have then bc=ad- 1 =a2p 
- 1  <4p / ( l  + # ) - 1  <0 .  Thus, b,c are both nonzero and are of opposite signs. 
Conjugating x and z by a suitable diagonal matrix we see then that x and y -  1 are 

( : u )  ( a n : )  
conjugates iff and are conjugates for a suitable u + 0 ;  and 

- -  a U  - -  U 

(0 ;) wos  t us these last two elements are conjugates of each other under - 1 

that F is the fibre ff~- ~(so) in P. On the other hand, F can be identified with 

and this set - a conic in R 3 - is evidently connected as/~ > 0. We see therefore that F 
and hence J is connected. Let D denote the set of elements (p, q) e J with p = (x, y), 
q -= (z, w) with (x, y) and (z, w) belonging to f(G(k) x G(k)). Then since rh(p) = rh(q) 
for (p,q)sD the analytic function ~ : J - -* f f  given by q~(p,q)=rh(p)th(q) -1 is 
constant (equal to 1) on D. Since J is connected it suffices then to establish the 
following 

5.9. Assertion. The closure of D contains an open subset of J. 
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Proof. Consider  the following subset M / o f  f~ x fq x N x fq: 

J r '  = {(a, b, x, y)la, b �9 f9, [a, b] 4: 1, x E Z(a), y e Z(Ea, b])},  

where for g e f~, Z(g) denotes the centralizer of  g in N. It is easy to see that  ~ '  is a 
submanifold of  (r x ~r x N x N of  dimension 8. In  fact, ~ '  is the R-points  of a 
subvariety M of  G x G x G x G defined over k. Since G(k) is dense in f~ and for g 
e G(k), Z(g)(k) is dense in Z(g)(R)  we see that  M(k) is dense in J//. 

Let F : J / - -*N x f# x f~ x f~ be the m a p  defined as follows: 

F(a, b, x, u) = (aba- t, a-  1, uabxa- lu -  t, ux -  lb-  tu-  1) 

= (f(a,  b), f (uau-  t, ubxu-1)). 

Then F is an analytic ma p  of  M into J as is easily seen. The differential of  F at 
( a , b , l , l )  is given by the following formula:  let X, YELief#,  Z~z(a) ,  the 
centralizer of  a in Lie f~ and Te  z([a, b]), the centralizer of  f-a, b] in Lie fg; then 

where 

and 

dFca, b, 1, 1)( X,  Y, Z,  T ) =  (X',  Y', Z' ,  TO, 

X ' =  A d a ( ( A d b -  1 _ I )X  + Y, 

Y ' =  - A d b ( Y ) ,  

Z ' =  X" + Z + A d a b -  la-  t ( T ) -  T,  

T '= Y ' -  AdbZ  + A d b T -  T.  

Thus,  if X , Y , Z , T  is in the kernel of  dF(a,b.l,1), then Y = 0 ,  Xez(b) ,  Z 
Image ( A d b -  1 _ 1)nz(a).  If  a and b are semisimple and Z 4:0 this would  mean 

that  z(a) and z(b) are o r thogona l  to each other  with respect to the Killing form on 
Lie ~. Thus,  if we assume - such a choice of  a and b in fr is possible - that  

2 trace a b -  trace a trace b + 0 ,  

then z(a) is not  o r thogona l  to z(b) so that  Z = 0. Once Z = 0, one concludes that T 
Ez(aba-1)nz(b); and then T = 0  if aba -1 does not  commute  with b. We see 
therefore that  if (a, b) ~ f# x f~ is so chosen that  a and  b are semisimple, 2 trace ab 
- t r a c e a  t r a c e b # 0  and aba -1 and b do not  commute ,  then at (a,b, 1, 1) the 
differential of  F has a kernel of  dimension 1. Since d i m J  = 7 while d i m M =  8, we 
conclude that  there is an open subset U of  M such that  F(U) is open in J. Since 
M ( k ) n  U is dense in U and F(M(k)n  U)C D, Assert ion 5.9 follows. 
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Added in Proof. The conclusions of the main theorem are also valid for the groups Sp (2n, R), n > 1. 
This follows from the following facts: any lattice F in Sp (2n, R) is arithmetic; if G is an algebraic 
k-group over a number field k with G(kv)  "" Sp(2n, R) for some archimedean valuation v, then G 
admits a k-subgroup H such that zrx(H(k, , ) )  "" n l ( G ( k , , ) )  and H is of type C2, i.e. H is of type B2; our 
contention now follows from the main theorem. 


