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I. Introduction 

In this paper we consider conformal minimal immersions of the Riemann sphere S 2 
into (EP", where this latter space is given the Fubini-Study metric of constant 
holomorphic sectional curvature 4. As is well known, particular examples of such 
immersions are given by holomorphic or antiholomorphic immersions of S 2 into 
CP" [13]. Also, since ~ P "  is a totally real, totally geodesic submanifold of (EP" 
whose double cover is S", it follows that every conformal minimal immersion of  S 2 
into S" determines a totally real conformal minimal immersion of S 2 into (EP". 
However these examples are rather special in that they have constant K/ihler angle. 

Before stating our main results we should remark that any immersion of S 2 can 
be made conformal by first applying a suitable diffeomorphism of S 2 to itself. 

Our main results are as follows. 

The Veronese Sequence (Theorem 5.2.). For each p = 0 . . . . .  n, let ~Ip:S2---~I~,P n be 
given by 

Cp [Zo, z d  = [gp.o(Zo/ZO . . . . .  gp , . (Zo/ZO] , 

where [Zo,Zl] e •p1 = S  2, and for j = 0  ..... n, gp, j(z) is given by 

ap,l(z) = (1 + ze)-------~ zJ-p y~ ( -  1) ~ (ze) ~ . 
k k 

Then $p is a conformal minimal immersion with constant curvature 
4(n + 2p(n-p))-1 and constant K~ihler angle 0p given by 

(tan �89 2 - p(n -p+ 1) 
(p + 1) (n - p )  " 

Each ffp is an embedding unless n = 2p, in which case ~bp is a totally real immersion, 
and is essentially the Veronese immersion of S 2 into IRP n given by Boruvka [2]. We 
call ~ko ... .  , ~b. the Veronese sequence. 
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Characterisation of  the Veronese Sequence (Theorem 5.4). Let ~I : S 2 - - * C P  n be a 
conformal minimal immersion with constant curvature and assume that qJ(S 2) is 
linearly full (i.e. not contained in any hyperplane of CP"). Then, up to a 
holomorphic isometry of ~EP", the immersion ~b is an element of the Veronese 
sequence. 

Rigidity Theorem (Theorem 6.1). Let ~,~k':S2-.~P" be conformal minimal 
immersions. Then ~,, ~k' differ by a holomorphic isometry of (EP n if and only if they 
have the same Kiihler angles and induced metrics at each point. 

In the case of holomorphic immersions this reduces to the rigidity theorem of 
Calabi [3] for complex submanifolds of a K/ihler manifold. It also generalises the 
rigidity theorem of Barbosa [1] for minimal immersions of S 2 into S". 

Totally Real Minimal Immersions (Theorem 7.3). If  ~k :S 2--*tEP" is a totally real 
minimal immersion (i. e. has constant K/ihler angle re/2) then, up to a holomorphic 
isometry of (I;P", ~//(S 2) is contained in RP".  

Pinching Theorems for Curvature (Sect. 8). We prove pinching theorems for 
curvature which generalise results of  Calabi [5], Lawson [12], Rigoli [14], and 
Jensen-Rigoli [10,11], and go some way towards proving a conjecture of 
Simon [15]. 

Minimal Immersions with Constant Kiihler Angle (Sect. 9). We conjecture that if 
~k : S 2 ~ CP" is a conformal minimal immersion with constant K~ihler angle which is 
not holomorphic, anti-holomorphic or totally real then ~b also has constant 
curvature and so essentially is an element of  a Veronese sequence. We prove this 
conjecture (assuming that ~ is linearly full) for many values of n. We also prove 
pinching theorems for K/ihler angle. 

Conformal minimal immersions are harmonic maps, and much progress has 
been made recently in understanding harmonic maps into CP". Specifically, 
Wolfson [16] has introduced the notion of the harmonic sequence associated to such 
a harmonic map, and this is the main tool we use in this paper. We consider 
conformal minimal immersions of S 2 because in this case the harmonic sequence 
terminates and is essentially the Frenet frame of  an associated holomorphic curve. 
In the case of  a minimal immersion of S 2 into S", this curve is just the directrix curve 
described in [6]. 

The construction of the harmonic sequence and a discussion of its local 
properties are outlined in Sect. 2, while in Sect. 3 we describe its topological 
properties. Formulae for K~ihler angle and curvature are given in Sect. 4, and our 
results are presented in Sects. 5-9. 

This is a slightly modified version of  a paper originally submitted to 
Mathematische Annalen by Bolton and Woodward. However, similar results had 
been obtained independently and somewhat earlier by Jensen and Rigoli in a paper 
also submitted to Mathematische Annalen. It was therefore agreed that the present 
paper should be submitted bearing all four names. The first and last authors would 
like to thank Philip Higgins, Tony Scholl and Steve Wilson for some helpful 
remarks; the other two authors would similarly like to thank Simon Salamon and 
McKenzie Wang. 
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2. Minimal Immersions and Harmonic Sequences 

We will first consider minimal immersions of  S 2 into IEP" in the context of  harmonic 
maps. In [16] Wolfson has developed the notion of the harmonic sequence 
determined by a harmonic map  of  a Riemann surface M into a complex 
Grassmannian. I f  M is homeomorphic  to S 2, and the Grassmannian is IEP", this is 
essentially the Frenet frame of a certain associated holomorphic curve. We now 
describe these ideas briefly and show how they can be adapted to deal with 
conformal minimal immersions of  S 2 into IEP". 

Let M be a smooth manifold and let V be a complex vector subbundle of  the 
trivial bundle M x C" + 1 over M. Let ~E" + x be endowed with the Hermit ian inner 
product defined by 

((x0 . . . . .  x.), (Y0,-.. ,Y.)) =XoJT0 +- . -+x , )~ .  , 

where (Xo . . . . .  x.), (Yo . . . . .  y.) are elements of  C" + 1. Then V has a connection [7, 
induced from the trivial connection on M •  ~.+i ,  given by 

~Ts-'u- 7~vdS , 

where s is a section of  Vand rCv : M x C "+1 ~ Vdenotes orthogonal projection onto 
V. 

If L denotes the canonical line bundle over CP" defined by 

L = ({(p, v) E CP"  x ~E" + 1 : v ~p} , 

then L and its orthogonal  complement L j- both have induced connections 
and Hermitian metrics. Thus we have a Hermitian metric and connection on 
Horn (L, L 1) and there is a canonical isomorphism 

h : T C P " ~ H o m  (L, L • , 
given by 

h(x)  (s) = ~ v d s ( x )  , 

where x e Tff~P" and s is a local section of L. Under this isomorphism, the complex 
structure, metric and connection on Horn (L, U')  correspond to the complex 
structure, Fubini Study metric and connection (also denoted by [7) on ~EP" with 
constant holomorphic sectional curvature 4. 

If M is a smooth manifold then there is a bijective correspondence between 
(smooth) complex line subbundles of  M x C "+x and smooth maps O : M ~ E P " .  
This correspondence is given by O *" ~'*L- I f  dO : TM--, T~EP" is the derivative of  O, 
then h o d o is a bundle map covering O and the corresponding section 6 of  
Hom(TM| O*L • is given by 

6 ( x  | s ) = z v d s ( x )  , 

Where a section s of  ~0*L is considered as a C" + 1_valued map defined on M. I f  M is a 
Riemann surface, the holomorphic part  

O : T (l'~ | q J * L ~ * L  • 
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of 6 is given in terms of a local complex co-ordinate z on M by 

o (O/Oz | s) = (h o dqJ (O/Oz)) (s) = ~L~(~s/Oz), (2.1) 

while the antiholomorphic part 

J: T(~ | •*L--* ~b*L 1 
of 6 is given by 

~(0 / 0~ | s) = (h o d~b ( O / O~) ) (s) = rr z~( Os/ Of ) . (2.2) 

If  V is any complex vector bundle over the Riemann surface M, then by the 
Koszul-Malgrange theorem each connection on V determines a holomorphic 
structure on II. Thus we have holomorphic structures on ~,*L and ~b*L x, and 
Wolfson shows that ff is harmonic if and only if 0 is a holomorphic bundle map. 
Using these ideas Wolfson goes on to construct inductively an associated sequence 

. . . .  L - z . L - 1 , L o , L I , L z . , .  

of complex line subbundles of the trivial bundle M • C "+1 and bundle maps 

O e : T(x,O)M | a 
and 

Jp : T~~ |  1 . 

Here Lp=qJ*L for a suitable harmonic map qJp:M--*CP" and c3p (resp. 0f)is 
essentially the map 0 (resp. c ~) defined above for the map ~b v. Then 0p (resp. 0f) is a 
holomorphic (resp. antiholomorphic) bundle map. If  0v=0 but dp-a~0  (resp. 
~Yp-- 0 but ~-p + 1 ~ 0) then the sequence terminates with Lp at the right (resp. left) hand 
end. Otherwise the set Z v (resp, Yp) of points of M over which 0 v (resp. ~-p) is singular 
is a set of isolated points and, except at these points we have that L v + t (resp. Lp-1) is 
the image of  Op (resp. ~Yp). See [16] for details. 

I f  ~O is a conformal immersion then tk is minimal if and only if it is harmonic. 
Thus we may assign to a conformal minimal immersion a corresponding associated 
harmonic sequence. 

I f  Mis  homeomorphic to S z then Wolfson shows that forp 4= q, L v is orthogonal 
to Lq. In particular, Lp_ 1 is orthogonal to Lp + 1, i.e. the image of  0 v is orthogonal to 
the image of cTp. It now follows that each qJ~ is conformal, so is itself a minimal 
immersion of  M (perhaps with isolated singularities). Clearly the harmonic 
sequence has length at most n + 1, and it is easy to see that the sequence has length 
exactly n + 1 if and only if ~O is linearly full, i.e. ~b is not contained in any hyperplane 
of CP". 

If  ~b : S 2 ~ ~P"  is a linearly full conformal minimal immersion we will relabel the 
associated sequence Lo . . . .  , L,  and we will denote by ~,, the conformal minimal 
immersion (perhaps with isolated singularities) corresponding to the line bundle Lp. 
We will call the sequence 

q,0 . . . . .  ~ .  

the harmonic sequence determined by if, with qJ = ~bp for somep = 0 . . . . .  n. Note t1~at 
L1 . . . . .  L, is essentially the analogue for the holomorphic curve ~bo of  the Frenet 
frame of a real space curve. 
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To help with later calculations, we give a local description of  the above. Let 
r  be a linearly full conformal minimal immersion and let z be a local 
complex co-ordinate on S 2. We define a sequence fo,-- .  , f .  of  local sections of  
Lo . . . . .  L. inductively such that fo is a nowhere zero local section of Lo and 

f p  + 1 : (h o d~lp ( O / a z ) ) f p  = ap (0 /02  ( ~ A )  , p = 0 . . . . .  n - 1 . 

If Z = Zo u.. .  w Z._ ~ then, on the complement of  Z we have 

0z ~ 'fP f p '  p = 0  .. . .  , n ,  (2.3) 

and since the image of  ~p is in Lp_ x we have that for suitable complex valued 
functions ap, bp 

Ofp = apfp + bpfp_x , p = 1, .. n . (2.4) 
0~ " ' 

In fact, taking the inner product  o f  (2.4) with fp_ x we see that 

IAI 2 
bp= [fp_x[2 , p = l  . . . . .  n . (2.5) 

We now assume (without loss of  generality) that  Ofo/a~- 0. Then an easy induction 
argument using (2.3) ,  (2.4)  and the fact that  

O2 f p/ OzOy=O2 f ,/Of.Oz 

shows that ap = 0 for p = 0 . . . . .  n. Thus 

Of, [f~l 2 
a~ = if~_~15 fp-1 , p = l  . . . . .  n . (2.6) 

It also follows that 

05 
0z0~ log If~l 5 = IL+ 115 IAI 5 

IAI5 IA_115 , p = l  . . . . .  n . 
0 2 Ifd 2 

OzO~, log IAI 2 - i fo l  5 . 

Note that (2.6) shows for each p = 0 , . . . ,  n that fp is a holomorphic section of  Lp. 
If  we define T~ by putting 

IA+dS~ t 7 , =  , p--O . . . . .  , , - 1 , .  
(2.8) 

? - x  = 7 ,  = 0  , 

then for p = l  . . . . .  n, 

Ibp+aGI 2 
Id~pp(O/Oz)12 =~, p =  ifr+al 5 = l d C p +  ~ (O/Oz-)l 2 . (2 .9)  

(2.7) 



604 J. Bolton et al. 

Also, using (2.7) and (2.8) one may derive the unintegrated Plficker formulae for the 
yp's, namely 

0 2 
t 3 z o : ? l o g T p = ? p + l - 2 ? p + T p - x  , p = 0  . . . .  , n - 1  . (2.10) 

Remark. I f  8p is never zero, then for  r = 0 . . . . .  n - 1 we have that  ?r/?p is a globally 
defined funct ion on  S 2. If  ~ko is a non-singular  ho lomorphic  curve in CP"  then the 
functions ?,/?o are the higher  order  curvatures  considered by Calabi [4], Lawson 
[12], and Rigoli [14]. 

3. Ramification Indices, Chem Classes and Degrees 

Let  ~Oo . . . . .  qJ. :S2~CP" be a harmonic  sequence and let 

0p: T~1'~ | , p = 0  . . . . .  n - 1  , 

be the associated bundle homomorph i sms  described in Sect. 2. Since 0p is 
ho lomorphic  if follows that  the singularities are isolated zeros and we define the 
ramification index r(Op) of  0p by: 

r(t~p) = sum o f  the indices of  the singularities o f  t3p . (3.1) 

Thus  r (ap) is a non-negative integer, and if cl (Lp) denotes the first Chern class of the 
line bundle Lp it follows f rom the H o p f  Index Theorem that  

r (t3p) = cl (Lp+ 1) - cl (Lp) - 2  . (3.2) 

Thus we have immediately that  

r (0o) + . . .  + r (O.- 1) = cl (L.)  - cl (Lo) - 2 n (3.3) 
and 

n--1 

(n - p )  r (0p) = (n + 1) ( - ct (Lo) - n) . (3.4) 
p=0 

Recall that  the first Chern class of  the canonical  line bundle L over CP"  is equal to 
minus the genera tor  o f  H 2 ( ~ P  ") so that  if do (resp. dn) denotes  the degree of the 
ho lomorph ic  curve ~o (resp. q~.) then 

c l  ( L o )  = - do , c l  ( L , )  = d ,  . (3.5) 

Hence (3.3) and (3.4) may  be rewrit ten as 

and 

n - I  
~, r(Op)=do+d,-2n, (3.6) 

p=0 

n-1  
~. (n -p)r(Op) =(n  + 1) (do - n )  . (3.7) 

p=0 

The  harmonic  sequence is said to be totally unramified i f  r(0p) = 0  for 
p = 0 . . . . .  n -  1, and we see immediately f rom (3.7) tha t  this is the case if and only 
if the degree do o f  ~bo is n. I f  ~b:S2--*{EP" is a l inearly full conformal  mini- 
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real immersion with corresponding harmonic sequence ~'0 . . . . .  ~b, we say that ~k is 
a totally unrami f i ed  m i n i m a l  immers ion  if ~bo . . . . .  ~k. is totally unramified. 

Next observe that in terms of a local complex coordinate z on S 2 we have 
for p = 0 , . . . , n ,  

c l (L , )=  s~ 2 log I f , 1 2 d e ^ d z  , (3.8) 

so that from (3.2), for p = 0  . . . . .  n - l ,  

r(tgp) + 2 = 2-~/. 05 s~ 2 - ~ log yp ds  ^ dz . (3.9) 

Thus using (2.7), (2.8), and (2.10) we have 

1 
cl(Lp)=2-~-fn / S ( r p - l - y p ) d e ^ d z ,  (3.10) 

S 2 

and 

r(Op)+2= -1  ~ (rp_l-2r~+~.+l)ae^az (3.11) 
2hi s2 

Now consider the p-th osculating curve [9] 

[ n + l  \ 

ap : S2__.,tEp ~p+1)-1 

/n+ l~ 
which has a local lift t~p into IE ~p§ given by 

a~ =fo  ^ ... ^ fo , p = O  . . . . .  n . (3.12) 

,, ~ ( n +  l'~ 
We write ap= tp(z)%, where ~o(z) is the greatest common divisor of  the kP + 1/ 

components of  6p. Then 6p is a nowhere zero holomorphic curve. If  

then tip = ISpI~ ' (3.13) 

Iq~pl2/~p = Ifo12.. .  Ifpl 2 , ( 3 . 1 4 )  

and the degree ~p of ~rp is given by 

= 1__1__ ~2 
P 21ri ~s2 - o ~ l ~  ' (3.15) 

Which is equal to the degree of the polynomial function 6p. But from (2.7), (2.8), and 
(3.14) we have 

02 
azO~ log flu =)'p , (3.16) 

so that 

= 1 S y u d ~ ^ d z  (3.17) 
P 2~i s2 
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Thus it follows from (3.10), (3.11), and (3.17) that 

cl (Lp) = 6p_ I - 6p , 

r (0p)+2= --(6p-1 -26p+fp+x)  , 

(3.18) 

(3.19) 
where we have put 6-1 =0. This latter equation is the 9lobal Pliickerformula (see 
[9]). We also remark in passing that the energy E(Lp) of the map ~kp defined by 

E ( L p ) = 2 ~  / S 0'p-1 +Tp) d e ^ d z  , (3.20) 
S 2 

is also an integer namely 

E(Lp) = 6p_ 1 + 6p . (3.21) 

In fact [see (4.4) and (4.6) below], if ~kp is an immersion then its induced area form 
dAp is given by 

d~^dz  
dAp = (~,p_ 1 + Yp) 2 i ' (3.22) 

so that the area A (q%) of S 2 with the metric induced by ~bp is given by 

A (O,) = rc (6,_ 1 + 6p) . (3.23) 

It is an immediate consequence of the global Pliicker formula (3.19) that 

p - 1  

6p-- (p + 1) (do - p )  - ~', (p --k)r(Ok) , 
k = 0  

which, using (3.7) gives 

n - p  p-1 (k + l)r(Ok)+p+ l ,-2 6 p = ( p + l ) ( n - p ) + - ~ - ~  ~, ~ ~ (n -k ) r (Ok) .  (3.24) 
k=O k = p  

In particular for a totally unramified harmonic sequence r . . . . .  ~k, : S 2 " ~ P  n w e  

have 

6p = (p + 1) (n - p )  . (3.25) 

4. Kiihler Angles and Curvature 

If  ~b : M ~ C P "  is a conformal immersion of a Riemann surface M we define the 
Kgihler angle of ~b to be the function 0 : M ~  [0, n] given in terms of  a complex 
coordinate z on M by 

( tan ~ - ~ )  =.d~b(m)(O/Oz-)lld~,(m) (O/Oz)[ ' m ~ M  . (4.1) 

It is clear that 0 is globally defined and is smooth at m unless O(m) = 0 or n. Observe 
that if z = x + iy, and J denotes the complex structure on CP", then 0 is the angle 
between Jd~k(O/t3x) and d~O(O/Oy), The K~ihler angle, whose importance in the 
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theory of minimal immersions of  surfaces into K~ihler manifolds was pointed out  by 
Chern and Wolf  son [7], gives a measure of  the failure of  ~b to be a holomorphic map. 
Indeed ~ is holomorphic if and only if 0 (m)=0  for all meM, while ~k is anti- 
holomorphic if and only if O(m)= n for all m e M. 

Now suppose that ff :S 2 ~ C P  ~ is a linearly full conformal minimal immersion 
and let ~'o . . . . .  ft, be the associated harmonic sequence described in Sect. 2. Then 
each ~bp:S2~CP " is a conformal minimal immersion on the complement of  the 
finite set Yp c~ Zp of points of S 2 (see Sect. 2). Thus the K~ihler angle 

0p-s 2 -(Yp n z.)--, [0, ~] 

is well-defined, and is smooth on S 2 -(YpwZp). If  we write 

tp = (tan ~- 0p) 2 , 

then in terms of  a local complex co-ordinate z, 

(4.2) 

tp = Id~P/0z-)12 Yp-1 (4.3) 
Id~Pp(Olaz)l 2 ~,,, 

Now suppose that ds 2 is the metric on S 2 -(YpnZp) induced by ~,p, so that 

ds2p=2Fpd~dz , 2F~=Tp-1 +Tp �9 (4.4) 

Then the Laplacian Ap of d ~  is given by 

2 9 2 
Ap=Fp 0z0~ ' (4.5) 

the area form dAp by 

d.4p= Fp - -  

and the curvature Kp = K(~p) by 

d~Adz 
i 

(4.6) 

1 9 2 
Kp = Fp 0z0s log Fp . (4.7) 

In the following sections we will be studying conformal minimal immersions 
with constant K/ihler angle. We note that if ~p is such an immersion then from (3.17) 
we have that 

tp 6 ~ a  , (4.8) 

while from (4.7), (4.4), and (4.3) it follows that 

1 0 2 
gp = Fp OZO~lOg Tp-1. (4.9) 
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5 .  T h e  V e r o n e s e  S e q u e n c e  

Let ~b:SZ~ffAP ~ be the holomorphic immersion (indeed embedding) defined by 

- 1 ~b([Zo,Zl])= 4 ,  1 ~/ \ r /  

where [Zo, zl ] e C P  1 = S 2. Alternatively, in terms of  the holomorphic coordinate 
z = z~/Zo on S 2 we may write 

As is well-known [14], this is of  constant curvature and, up to holomorphic 
isometrics of  ~pn, is the only such linearly full holomorphic curve. Let fro . . . . .  ff~ be 
the harmonic sequence of~, = ~bo. We call ~'o . . . . .  ~,n the Veronese sequence. Since ~0 
is a rational curve of  degree n it follows from (3.7) that each ~bp is an immersion. 

Recall from Sect. 2 that iffo : C ~ E  ~§ is the holomorphic lift of  ~'o given by 

:o z, I1J(nl)z .... 1 
and f~ . . . . .  f~ are defined inductively by 

: , ,  0:, 
= ~z lfpl z ' fP  f p  ' p = 0 . . . . .  n - 1 , (5.4) 

then ~kp = [fp]. We proceed to establish an explicit formula for ~kp and to prove that it 
has constant K/ihler angle and constant curvature. To this end let 9p : I E ~ r  ~§ be 
the map defined by 

9~=(9p,o, ..., 9p . . . . . . .  9p,~) , 
where 

0p, , (z)=(1 z ' -~  y, ( - 1 )  ~ (zz-) . (5.5) 

Lemma 5.1. I f  gp is defined by (5.5) then 

n!p! (1 _bzz_)n_2p 19p12 = (n  -p ) !  

Proof. 

1012p = (1 "~'~2 p(P])2 r = O ~ { ( : ) ( z z - ) ' - P ( ~ ( - - 1 ) k ~ r k ) ( n k r ) ( z z ' ) k ) 2 }  "(5"6) 

But if x, y, t are indeterminates, then equating powers o f y  2p in the n-th power of the 
identity 

x(1 +yt) (1  + y t - 1 ) + ( 1  -xy t ) (1  - x y t - l ) = ( 1  +x)(1  + x y  2) 
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reveals that 

,=o r n - - r  2 (5.7) 

The result is now immediate from (5.6) and (5.7). 
Now observe thatfo = go [see (5.3) and (5.5)], so suppose that for some p > 0 we 

have 

gk=fk for O < k < p .  (5.8) 
Since 

0e / ' (5.9) 

it follows from (5.8) and the fact that ( f p , f p _ l ) = 0  that (gp, Ogp/Of)=0. Thus 
from (5.9) and Lemma 5.1, 

1 ~Ogp,g \=O___ 2 (n-2p) ,~ 
10.15 \ ~z " /  0z log 9p = - 1 ~  " 

But then a straightforward calculation using (5.8) shows that, 

gp+l-- OZ Igpl 2 ,Or gv , 

so that, by (5.4), fu+ 1 = g.+ 1. Thus by induction we have fp =gp for p = 0 . . . .  , n. 

Theorem 5.2. The Veronese sequence ~o . . . . .  ~b, : S2 ~ C P "  is given by 

~bv= [fv, o . . . . .  fp,.] , 

where, for z ~ S z, 

fp,,(z)=(l+zz_)------- ~ z ~ - t ' ~ ( - - 1 )  k r k n k r  (zz-) k " 

Furthermore ~bv is a minimal immersion with induced metric 

n + 2p(n - p )  dzd~ 
r ig= (1 +zz-) ~ 

and hence is o f  constant curvature Kp = 4/(n + 2p (n - p ) )  and constant Kgihler angle Ov 
oiven by 

(tan �89 2 = p (n - p  + 1) 
(p + 1) (n - p )  

Finally, i f  T: S 2-~ S 2 denotes the antipodal map, (well-defined for the metric ds2v 
on S 2 since this is o f  constant curvature) then 

~ . _ p = ~ p o  T . 
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Proof. The first statement has already been established, while 

by Lemma 5.1, so that 

Ifp+d 2 ( p + l ) ( n - p )  
~'= I:--i77 -= ( l + z z 3  2 

n + 2p(n - p )  d z d f .  ds2~=(rp_l + ~p)dzae= (1 +zz-y 

Finally we observe that 

and hence as T: S 2 ~ S *  is given by z--* - I / i ,  this establishes that ~k,_p = @p o T. 

Remarks. Using Lemma 5.1 it is easy to see that if 2p =t=n thenfp is injective and it 
readily follows that in this case ~bp is an embedding; while if n = 2 m  then ~b~ is 
essentially the Veronese immersion. More precisely, following Boruvka [2], let us 
suppose n = 2 m  and write 

m' Lm):  ( 
X-'=fm''+~=O +Z~ m +S ~ \m - k :  (~)~ 

m, : m m ) z _ S ~ ( _ l ) k ( m - - s ) ( m ; s )  
X ' = f m " - s = ( 1  +zz-) ---------~ - s  m - k  (zz)k " 

Some elementary manipulation then shows that 

X~ = ( -  1)s:?-s , 

so that isXs=i 'X_s for s = 0  . . . . .  m. 
Thus writing 

i s 
Y ~ = - ~  (X, + X-s)  . 

is+ l 
Y - , = - ' ~  ( X s - X - s )  �9 s= 1 . . . . .  m , 

Yo=Xo 

we have Y~ = Fs for s = - m , . . . ,  0 . . . . .  m. In particular, it follows that there is a 
holomorphic isometry of  ~EP" which maps the Veronese sequence of Theorem 5.2 
into the harmonic sequence for the holomorphic curve ~ , : S Z ~ E P  2m given by 

z~[ho(Z) ..... h , . ( z ) ]  , 
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where 

2m z" if m = m  h,(z)= ~/~ m 

i r-m / ( 2 m ~ ( z ' + z 2 " - ' )  if m + l < r < _ 2 m  . 
X / \  r / 

Furthermore the image of the m-th term of the harmonic sequence for this ~k is con- 
tained in ~{p2ra and is the Veronese immersion. For further details see Boruvka [2]. 

We now show that the above example essentially contains all linearly full 
conformal minimal immersions of S 2 into ~P~ with constant curvature. 

Lemma 5.3. Let ~b : S  2 ~ISP  n be a linearly full  conformal minimal immersion with 
constant curvature and constant Kiihler angle. Then, up to a holomorphic isometry o f  
r the harmonic sequence determined by ~b is the Veronese sequence. 

Proof. Let ~k0 . . . . .  ~k~ be the harmonic sequence determined by ~b, and assume that 
= Op. Ifp = 0 or n then ~ is a holomorphic or antiholomorphic curve of constant 

curvature on ti;P ~, so the result follows from the rigidity theorem of Calabi [3]. Now 
assume 1 < p < n  - 1 .  

From (4.9), (4.4), and (4.3) we see that 

2tp a 2 
Kp= yp-l(1 +tp) 8z8~ log 7p-i , 

so from (2.10) we obtain 

Kp=-l+tp2tp { t p _ l _ 2 + t ~  } . (5.10) 

This shows that tp-1 is also constant. Now ~kp is an immersion with constant 
non-zero K/ihler angle so r (Sp_0=0.  Thus ~p-1 is also an immersion. If we put 
gp=Fp/Fp_l it follows from (4.4) and (4.3) that #p is constant, and from (4.7) we 
have 

Kp-i =#pKp . 

Thus Kp_ 1 is also constant, so by inducting downwards we see that K 0 is 
constant. We may now apply Calabi's rigidity theorem [3] to complete the proof. 

Theorem 5.4. Let r : S2 ~ C P  n be a linearly full conformal minimal immersion o f  
constant curvature. Then, up to a holomorphic isometry o f  r ~, the harmonic 
sequence determined by ~k is the Veronese sequence. 

Proof. Suppose that ~, is the p-th element ~,p of a harmonic sequence ~o . . . . .  ~'n. It 
follows from (3.22), (3.17) and the Gauss-Bonnet theorem that Kp = 4/(6p_ t + 6p), 
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so from (4.7) and (4.4) we obtain 

2 t~ 2 4 
?v-1 +?p ~zaf log (?v-1 +?v)=~v-1  +6v (5.11) 

If  we now choose a complex co-ordinate z on S 2 - { p t }  so that the metric 
ds2p=(?v_l +?p)dY.dz is given by 

6v-  1 + 6p 
drip= (1 +zz-) 2 d~dz , (5.12) 

it follows from (5.11), (5.12), and (3.16) that 

~2 f lp-lflp ,, (5.13) 
dzd:? log (1 +zz-) ~=~  ' 

where 
~ = 6 p - l + f i v  �9 

Now choose a nowhere zero holomorphie C n + 1.valued functionfo(z) such that 
~o = [f0] (i.e. f0 is a holomorphic section of  L0 over C = S  2 -{pt}) .  The map 3~ 
defined following (3.12) is a polynomial function on 113 of  degree ~j and thus 
tip- 1 flp(l + zz-)-~ is globally defined on r and has a non-zero constant limit c, say, as 
z--*oo. Thus from (5.13) 

flv_ l f lp= C(1 q- ZZ-) ~ . 
But then 

f l v - l = C p - l ( 1  q-ZZ-) '~p-' , 

where %_ 1, cv are constants, and hence 

~p-  1 
?v- 1 - (1 + zz3 2 ' 

Bv = %(1 + zz-) 6p , 

6p 
? p -  (1 + zz-) 2 " 

Hence ~v is of constant curvature and constant K~ihler angle and the result 
follows from Lemma 5.3. 

Remark  5.5. It is of  interest to see what conditions one must place on a harmonic 
sequence in order that it be the Veronese sequence. For  instance, one sees 
immediately from (5.10) that if a harmonic sequence has two consecutive K/ihler 
angles constant then, up to a holomorphic isometry of  ~EP", it must be the Veronese 
sequence. We return to this question in later sections. 

6. Rigidity 

A holomorphic curve has K/ihler angle identically zero, and Calabi [3] has shown 
that such a curve is determined by its induced metric. As we indicate below, a 
conformal minimal immersion of  S 2 into S n determines a conformal minimal 
immersion of  S 2 into ~EP n which has constant Kfihler angle 7t/2, and Barbosa [1] 
has shown that such immersions are also determined by the induced metric. 
Thus Theorem 6.1, proved below, is a generalisation of both of  these rigidity 
results. 
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Recall that if re : S " ~ R P "  is the standard double covering then every (conformal) 
immersion ~ : $ 2 ~ S "  defines a (conformal) immersion ~,=Tr~ :S2--*RP ", and 
conversely every immersion o fS  2 into R P "  arises in this way. Next recall that R P "  is 
a totally geodesic submanifold of  IEP" of  constant curvature 1, so that if 
i: RP" ~ e P "  denotes the inclusion map, then a conformal immersion @ : S 2 ~ R P "  
is minimal if and only if i~O is minimal. 

Theorem 6.1. Let ~b, ~b' be conformal minimal immersions of  S 2 into CP". Then d/, ~b' 
differ by a holomorphic isometry of CP" i f  and only if  they have the same Kgihler angle 
and induced metric at each point. 

Proof Let ~bo . . . . .  ~Om be the harmonic sequence determined by ~b. Since we have not 
assumed that ~b is linearly full we only know that m < n. Assume that ~b = ~p for some 
p=0  . . . . .  m. We will apply our standard notation to the harmonic sequence 
determined by if, and denote the corresponding objects associated to the harmonic 
sequence determined by ~b' by the addition of  the superscript '. Assume that ~ '  -- ~O~ 
and that q>__p. If follows from (4.3) and (4.4) that 

?p=?~ , ~ p - l - ~ q - 1  , 

so an easy induction argument using (2.10) shows that 

?p--j--~]~q--j , j = l  . . . . .  p - 1  . 

In particular, ?'q-p-1 =0,  so that p = q  and also ?o=?~. Thus ~bo and ~b~ are 
holomorphic curves which induce the same metric on S 2, so by Calabi's rigidity 
result, there is a holomorphic isometry g of CP" such that g~ko=~.  The 
construction of  the harmonic sequence now shows that 

so the theorem is proved. 

7. Totally Real Conformai Minimal Immersions 

An immersion of  S 2 in ~ P "  is totally realifits K~ihler angle is constant and equal to 
n/2. An immersion whose image lies in lRP" c CP" is of course totally real, and in 
this section we show that if ~I:S2--*CP n is a totally real conformal minimal 
immersion then there is a holomorphic isometry g of ~ P "  such that the image ofg~, 
is contained in IRP". 

To fix notation, we let ~O be a linearly full conformal minimal immersion of  S 2 
into CP" with associated harmonic sequence ~o . . . . .  ~O,, and let ~ = ~kp. 

Lemma 7.1. I f  ~bp is totally real, then n = 2p and ?j = ?,_j_ 1 for j = 0 . . . . .  n - 1. 

Proof Since 0p = rr/2, (4.2) and (4.3) show that ?p_ 1 =?p- An induction argument 
using (2.10) now shows that 

?p- , -1  =?p+, , r = 0  . . . .  (7.1) 

Thus p + r_> n if and only i fp  - r - 1 < 0, from which it follows that n = 2p. Taking 
r - ~ p _ j _ l  in (7.1) we obtain the desired result. 
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Theorem 7.2. Let  ~bo : 82 ~ t E P "  be a linearly fu l l  holomorphic curve with n even. Then 

7o = 7n- 1 i f  and only i f  there is a holomorphic isometry [t o f  C P" such that 9d/ j = 9~ ,- j 
f o r  all j =  0 . . . . .  n. 

P r o o f  (<=) The existence of such an isometry 9 implies that the metrics induced on 
S 2 by ~o and by ~,. are equal. Thus (4.4) shows that 7o=7,_1. 

(=~) Since 7o, 7.-  1 are the induced metrics on the holomorphic curves ~'o, ~,, it 
follows from Calabi's rigidity theorem [3] that A~,o = ~. for some A ~ U(n + l) 
However, the construction of  the harmonic sequence shows that the harmonic 
sequence determined by ~,  is r ~._ 1 . . . . .  ~o. Thus 

A~Oj=q~._j , j = 0  . . . . .  n . (7.2) 

Taking j = 0 and then j  = n in (7.2) we see that//Afro = ~ko. Since q/o is linearly full 
it follows tha t / /A  = 21 for some 2 ~ ~.  If we conjugate by A we see that A and ~/ 
commute, so that 2 is real. Also, 2"+1= 1 and n is even so that 2 =  1. Thus A is a 
unitary symmetric matrix so there is a real orthogonal matrix Q such that Q -1AQ 
is diagonal. If we put Q - 1 A Q = D  D for a unitary diagonal matrix D and then 
let P = D Q -  1 we see that P ~ U(n + 1) and A = tpp.  It now follows from (7.2) that 

p ~ t j  = p ~ . _  ~ , j = 0 . . . . .  n , 

so Theorem 7.2 is proved. 
Ifg is a holomorphic isometry of  r then ~b and 9~b have equal K~ihler angles. 

The following theorem is thus an immediate consequence of  Lemma 7.1 and 
Theorem 7.2. 

Theorem 7.3. Let  ~ be a linearly fu l l  con formal  minimal immersion o f  S 2 into ~ P" with 
associated harmonic sequence ~bo . . . . .  ~ ,  with ~b = ~bv. Then the followin9 three 
statements are equivalent: 

(i) ~b is totally real. 
(ii) n = 2p and 7i = 7 , -  i -  1 for  j = 0 , . . . ,  n - 1. 

(iii) There is a holomorphic isometry 9 o f  CP"  such that the image o f  9~ lies in 
R P "  ~ IF, P". 

Rem ark  7.4. (i) A linearly full holomorphic curve ~Po in ~ P "  with the property that 
~Po = q3. has been called totally isotropic by Eells and Wood [8]. They show that n 
must be even for such a curve. 

(ii) Let ~ : $ 2 ~ S "  be a conformal minimal immersion whose image is not 
contained in any hyperplane section of S". As indicated earlier, ff determines a 
totally real conformal minimal immersion r into IEP n, and it is clear that r is also 
linearly full. If fro,..-,  ~b. is the associated harmonic sequence, then Theorem 7.3 
shows that n is even and ifn = 2p then ~b = ~'v and r(O~) = r (0._j_ 1) for j  = 0 . . . . .  n - 1. 
Using (3.24) one can now deduce that 

p - 1  

6 p _ l = f v = p ( p + l ) +  ~ (k+l ) r (Ok)  . 
k=O 

Thus (3.23) enables one to obtain some results of  Calabi [5], namely that the area 
A (~v) is an integer multiple of 2 n, and A (~,v) => 2 np (p + 1) with equality if and only 
if ~'v has no higher order singularities. 
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8. Pinching Theorems for Curvature 

In this section we prove some pinching theorems for curvature of  linearly full 
conformal minimal immersions of S 2 into e P " ,  and then show how these are 
relevant to the Simon conjecture [15]. 

Let ~ k : S 2 - ~ P  n be a linearly full conformal minimal immersion and let 
@0 ..... q/, be its associated harmonic sequence with qt = ~bp. Recall that we have 
given CP ~ the Fubini-Study metric of  constant holomorphic sectional curvature 4. 

Lemma 8.1. Suppose that the curvature Kp o f ~b p satisfies either Kp > 4 ( bp_ t +6p) -x 
or Kp<_4(bp_l +3p) -1. Then Kp=4(fp_x +6p) -1. 

Proof. It follows from the Gauss Bonnet theorem and from (3.23) that 

The result is now immediate. 

Theorem 8.2. Let q/ : S2--+•P" be a linearly full conformal minimal immersion and 
suppose that ~ is the p-th element tpp of  its harmonic sequence. 

(i) / f  
4 4 

K ( O ) > n + 2 p ( n _ p  ) then K ( O ) = n + 2 p ( n _ p  ) 

and ~ is totally unramified. 

(ii) I f  
4 

K ( $ ) <  
n + 2p (n - p )  

and if ~ is totally unramified then 

4 
K($) = 

n + 2p(n  - p )  " 

(Reeall also that when K ( ~ ) is constant then, up to a holomorphie isometry o f  ~ P", 
belongs to the Veronese sequence.) 

Proof. From (3.24) we see that 

6p-1 + 6p>n + 2p(n - p )  , 

with equality if and only if ~k is totally unramified. The result is now immediate from 
Lemma 8.1 and Theorem 5.4. 

Theorem 8.2 has several corollaries as we now show. The first is a strengthened 
version of a theorem of  Lawson [12]. 

Theorem 8.3. Let ~b : S 2 ~q~P" be a totally unramified holomorphic immersion and 
suppose that K(~b ) <= 4/n. Then K(~,) = 4/n and, up to a holomorphic isometry o f  lEP", 

is the holomorphic curve ~bo in the Veronese sequence. 

Similarly, we have the following theorem of  Rigoli [14]. 
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Theorem 8.4. Let ~, : S2 ~(EP ~ be a linearly full  holomorphic immersion and suppose 
that K ( @ ) > 4 /n. Then K ( ~ ) = 4In and, up to a holomorphic isometry o f  (E P", ~ is the 
holomorphic curve ~ko in the Veronese sequence. 

Remark. Let K~ denote the curvature of the qth element ~k~ of the Veronese sequence 
Then Kq =K,_~,  and Kq is a decreasing function ofq  on the closed interval [0, n/2]. 
One may thus use Theorem 8.2 to prove pinching theorems for curvature of the 
following type: 

Let ~b :S2--*(EP ~ be a totally unramified minimal immersion. If K~<=K(@) 
_-<K~-I for some integer q with O<_<_q<n/2 then K(@) =Kq-1 or K~ (so that ~ is the 
(q _ 1)a, qth, (n _q),h or (n - q  + 1) a element of the Veronese sequence). 

We now consider the application of Theorem 8.2 to minimal immersions of S 2 
into S N. Recall that Simon [15] has made the following conjecture. 

Conjecture. Let ~b : S z ~SN(1) be a conformal minimal immersion and suppose, for 
some integer s > 1, that 

2 2 
< K ( $ ) < - -  

( s + l ) ( s + 2 )  s ( s + l )  
Then 

2 2 
K ( ~ k ) = - -  or K ( $ ) =  

s(s+l) (s+l)(s+2) 

and, up to isometries of  S N, ~ is the unique linearly full conformal minimal 
immersion into the totally geodesic subspace S 2" or S 2~'+1~ of S N, namely the 
Veronese immersion. 

We now show how Theorem 8.2 may be used to go some way towards resolving 
the conjecture. In the process we give a new proof that the conjecture is true for s 5 2. 
Our theorem verifies the conjecture for all cases cited in [15], plus some more. 

Recall first, from Remark 7.4 (ii), that each conformal minimal immersion 
: S 2--*S n whose image is not contained in any hyperplane section of S n determines 

a linearly full conformal minimal immersion ~b : S 2 ~(EP n, so we have the associated 
harmonic sequence ~bo . . . . .  ~k, :S2~(EP ". Furthermore by Theorem 7.3 we have 
n = 2 m  for some m, and $ = $ m .  The following theorem is then an immediate 
consequence of Theorem 8.2. 

Theorem 8.5. Let ~ : $2--.$2m(1) be a linearly full conformal minimal immersion. If 
either 

2 
(i) K ( ~ ) > m ( m + l )  , 

o r  

2 
(ii) K(ff) ~ - -  

m(m+1)  
unramified, 

then K(~ )  = 2 
re(m+ 1) ' 

and up to isometries o f  S 2m, ~ is the Veronese immersion. 

and the harmonic sequence associated to ~b is totally 
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Now suppose we are given a linearly full conformal minimal 
:$2~S  2m and suppose for some integer s>_ 1 that 

If m_-> s + 1 then 

immersion 

2 
K(t~) => (s + 1) (s + 2) (8. l) 

2 2 
K ( ~ ) > ( s  + > ] ) ( s + 2 )  = m ( m + 1 )  ' 

so that by Theorem 8.5 we have m = s + l  and 

2 
K(~)  = 

(s+ 1) ( s+2)  

Thus condition (8.1) implies that m < s  + 1. If in addition we have 

2 
K(~)  <=s(s + 1---~ ' 

and m < s then 
+ 2 

)<s(s < K(~ 1) = m(m + 1) ' 

and hence by Theorem 8.5 if the associated harmonic sequence of  ~O is totally 
unramified then 

2 

m ( m  + ' 
and m=s. 

Theorem 8.6. The Simon conjecture is true for linearly full conformal minimal 
immersions ~" $2-~S 2m if either i) d~ has totally unramified associated harmonic 
sequence; or ( ii ) m > s > 1 ; or iii ) m = 2, s > 1. In particular it is true for s <-_ 2. I f  a 
counterexample exists for s> 3 then the holomorphic curve ~ko in the harmonic 
sequence associated to $ has degree do > 2m + 1. (The "first" open case is s =m = 3.) 

Proof The last statement in the theorem follows from (3.7) so it only remains to 
show that if 

2 
K ( ~ ) < s ( s + l )  

and if m =< 2 < s then the harmonic sequence associated to $ is totally unramified. 
Since $ is a totally real immersion the only non-trivial case is m- -2  _-<s in which 
case r(c?l)=r(O2)= 0. But then (5.10) shows that 

tx = 1 -1(2 > 1 -2 / s ( s  + 1) , 

so it follows from (4.3) that r (0o)=0 and hence r(03)=0 by Theorem 7.3. 

9. Minimal Immersions with Constant Kiihler Angle 

In this section we will give support to the following. 
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Conjecture. Let ~k : $2--* C P  n be a linearly full conformal  minimal immersion with 
constant  K/ihler angle, and suppose that  ~k is neither holomorphic ,  antiholomor- 
phic nor  totally real. Then, up to ho lomorphic  isometries o f  ~EP n, ~k belongs to the 
Veronese sequence. 

Theorem 9.1. The conjecture is true i f  n < 4 .  

Proof. I f  n < 3 then  the harmonic  sequence determined by ~ must  have two 
consecutive K/ihler angles constant ,  so Remark  5.5 shows that  the conjecture holds 
in this case. Similar reasoning shows that  if n = 4 then it is enough to consider the 
case in which ~k = ~b2. In this case (2.10) and (4.3) show that  

~o -~3  =372(t2 - 1 )  . (9.1) 

By considering the harmonic  sequence determined by ~ if necessary we may 
assume t2 > 1. However ,  if t2 > 1 then (9.1) shows that  r(do) -- 0, so by (4.8) and (3.24) 

2(do - 1 )  > 
t2 = 1 

3(do - 2 )  

and hence do <4.  But ~ is linearly full and n = 4 ,  so do ___4 by (3.7) and we have a 
contradict ion.  

Theorem 9.2. Let  ff : S : ~  IEP n be a linearly fu l l  conformal minimal immersion with 
constant Kiihler angle, and let ~/o . . . . .  ~bn be the harmonic sequence determined by ~, 
with ~ = ~kp. I f  the deorees c5p-1, tip are coprime, then ~ belongs to the Veronese 
sequence. 

Proof. Let fo(z) be a ho lomorphic  IE n+ 1-valued funct ion defined on tE = S z -  {pt} 
such that  ~ko= [fo]. For  each j = 0  . . . . .  p, the map c/j defined following (3.12)is a 
polynomial  funct ion on IE o f  degree fij and hence the funct ion 

is defined on  the whole o f  IE, is never  zero, and has a constant  limit c as z--,o0. 
Fur the rmore  by (3.16), (4.8), and (4.3) we have 

d z 
/~p_ f #p - 0 dzd:/ log -6 ~p_,_ 

so that  
f l;~r fl~ ~-~ = c . 

Hence,  as elements o f  IE [z, z-I, tip_ 1 and tip have the same pr ime factors. Suppose 
then that  7t is a prime factor and that  the highest powers o f n  dividing tip- 1 and ~p are 
r, s respectively. Then  r6~ = st~p _ 1 and since (fir-  1,6~) = 1 it follows that  6p - 1 Ir, 6p]s. 
But i f n  is o f  degree d i n  z we have rd<_<_cJp_~, s d ~ f p  so that  d = l  and 

tip- 1 = zt~P- ~ , tip = rr~P �9 

Fu r the rmore  we m a y  assume without  loss o f  generality tha t  7t is self-conjugate 
so that  rc = 0~ +/~z + fl~ + fiz:? for  some complex numbers  ~, fl, fi with ~, t~ real, and 
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~- f l ]~> 0. But then, using (3.16), 

?p-1 +?p=(~p-1 +6p) ~ log rc=(Jp_l +~p) n2 

and so ds2p = (?p- 1 + ?p) d z d f  is of constant curvature. 

Corollary 9.3. The conjecture is true for totally unramified minimal immersions 
r : S 2 ~ r  ~ when n and n + 2 are consecutive prime integers. 

Proof. We observe that (p(n - p  + 1), (p + 1) (n -p))  = (p(p + 1), n - 2 p )  and hence 
since n is prime it follows from (3.25) that 

(Jp- 1, Jp) = (P + 1, n - 2p) = (p + I, n + 2) = 1 . 

Remark. There is a conjecture known as the Twin Primes Conjecture that there are 
infinitely many pairs of primes of the form n, n + 2. 

We now prove some pinching theorems for K/ihler angles. Let ~, : S2~{EP ~ be a 
linearly full conformal minimal immersion and let ~bo . . . . .  ~b~ be the associated 
harmonic sequence. We assume that ~k = ~kp. 

Lemma 9.4. I f  the Kdhler anole tp o f  ~kp satisfies either tp >-- (~p_ 1/(~p or tp ~ Op - 1/~p 
then tp = 6p _ 1/t~p. 

Proof. Using (3.17) we see that 

((~p-l ?p --~p?p--1) d~ A dz =O , 
82 

so the result follows from (4.3). 

Theorem 9.5. Assume that ~kp is totally unramified. I f  either tp <_6 Np or tp > Np, where 

p ( n - p +  l) 
Np - (p + 1) (n - p )  ' 

then tp= Np. 

The proof of the above theorem is immediate from (3.25). 

Remark. One may use Theorem 9.5 to deduce pinching theorems for Kiihler angle of  
the following type. 

Let ~, : S 2 ~ Cpn be a totally unramified minimal immersion. If the Kiihler angle 
t(r offf is such that Nq_ 1 -~ t(~) _-_6 Nq for some integer q e [0, n], then t(~k) = N~_ 1 or 

It seems rather more difficult to deal with the case in which ~bp is not totally 
unramified. However, using (3.24) we can deduce the following. 

Theorem 9.6. I f  tp ~_ �89 (resp. tp > 2), then tp = 0 (resp. tp = oo), i.e. ~b is a holomorphic 
(resp. antiholomorphic ) curve. 
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