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1. Introduction

In this paper we consider conformal minimal immersions of the Riemann sphere S
into CP", where this latter space is given the Fubini-Study metric of constant
holomorphic sectional curvature 4. As is well known, particular examples of such
immersions are given by holomorphic or antiholomorphic immersions of S? into
CP" {13]. Also, since RP" is a totally real, totally geodesic submanifold of CP"
whose double cover is 7, it follows that every conformal minimal immersion of S?
into S™ determines a totally real conformal minimal immersion of $? into CP".
However these examples are rather special in that they have constant Kéhler angle.
Before stating our main results we should remark that any immersion of S* can
be made conformal by first applying a suitable diffeomorphism of S to itself.
Our main results are as follows.

The Veronese Sequence (Theorem 5.2.). For each p=0,...,n, let y,: S>~>CP" be
given by

wp[20a21]=[gp,0(20/21)7---agp,n(ZO/zl)] »

where [z, z,]e CP' =52, and for j=0,...,n, dp,;(2) is given by

1 . . . .
gp,j(z)=(%22:); (;)Z’ ";(—l)k(‘pik) (nkj)(zz) )

Then Y, is a conformal minimal immersion with constant curvature
4n+2p(n—p))~* and constant Kéhler angle 0, given by

pn—p+1)
tan0,)? =-"—u— .
G20 = D
Each ¥, is an embedding unless n=2p, in which case i, is a totally real immersion,

and is essentially the Veronese immersion of §? into R P” given by Boruvka [2]. We
call y, ..., ¥, the Veronese sequence.
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Characterisation of the Veronese Sequence (Theorem 5.4). Let : S2>CP" be 3
conformal minimal immersion with constant curvature and assume that y/(S?) i
linearly full (i.e. not contained in any hyperplane of CP"). Then, up to a
holomorphic isometry of €P", the immersion y is an element of the Veronese
sequence.

Rigidity Theorem (Theorem 6.1). Let y,y’:S?*~>CP" be conformal minimal
immersions. Then v, Y’ differ by a holomorphic isometry of CP" if and only if they
have the same Kihler angles and induced metrics at each point.

In the case of holomorphic immersions this reduces to the rigidity theorem of
Calabi [3] for complex submanifolds of a Kédhler manifold. It also generalises the
rigidity theorem of Barbosa [1] for minimal immersions of S? into S™.

Totally Real Minimal Immersions (Theorem 7.3). If  : S2->CP" is a totally real
minimal immersion (i.e. has constant Kéhler angle #/2) then, up to a holomorphic
isometry of CP", y(S?) is contained in IRP".

Pinching Theorems for Curvature (Sect.8). We prove pinching theorems for
curvature which generalise results of Calabi [5], Lawson [12], Rigoli [14], and
Jensen-Rigoli [10,11], and go some way towards proving a comnjecture of
Simon [15].

Minimal Immersions with Constant Kéhler Angle (Sect. 9). We conjecture that if
¥ : S2-CP"is a conformal minimal immersion with constant Kihler angle which is
not holomorphic, anti-holomorphic or totally real then ¢ also has constant
curvature and so essentially is an element of a Veronese sequence. We prove this
conjecture (assuming that  is linearly full) for many values of n. We also prove
pinching theorems for Kihler angle.

Conformal minimal immersions are harmonic maps, and much progress has
been made recently in understanding harmonic maps into CP". Specifically,
Wolfson [16] has introduced the notion of the harmonic sequence associated to such
a harmonic map, and this is the main tool we use in this paper. We consider
conformal minimal immersions of $2 because in this case the harmonic sequence
terminates and is essentially the Frenet frame of an associated holomorphic curve.
In the case of a minimal immersion of S? into S”, this curve is just the directrix curve
described in [6].

The construction of the harmonic sequence and a discussion of its local
properties are outlined in Sect. 2, while in Sect. 3 we describe its topological
properties. Formulae for Kahler angle and curvature are given in Sect. 4, and our
results are presented in Sects. 5-9.

This is a slightly modified version of a paper originally submitted 0
Mathematische Annalen by Bolton and Woodward. However, similar results had
been obtained independently and somewhat earlier by Jensen and Rigoli in a papef
also submitted to Mathematische Annalen. It was therefore agreed that the present
paper should be submitted bearing all four names. The first and last authors would
like to thank Philip Higgins, Tony Scholl and Steve Wilson for some helpful
remarks; the other two authors would similarly like to thank Simon Salamon and
McKenzie Wang.
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2. Minimal Immersions and Harmonic Sequences

We will first consider minimal immersions of $? into € P" in the context of harmonic
maps. In [16] Wolfson has developed the notion of the harmonic sequence
determined by a harmonic map of a Riemann surface M into a complex
Grassmannian. If M is homeomorphic to $2, and the Grassmannian is CP", this is
essentially the Frenet frame of a certain associated holomorphic curve. We now
describe these ideas briefly and show how they can be adapted to deal with
conformal minimal immersions of §? into CP".

Let M be a smooth manifold and let ¥ be a complex vector subbundle of the
trivial bundle M x €C**! over M. Let €"*! be endowed with the Hermitian inner
product defined by

<(X0, ?xn)9 (y07 ’yn)>=x0.)70+"'+xn}7n ’

where (x5 ..., %), (Jo, ..., V,) are elements of €**!, Then ¥ has a connection F,
induced from the trivial connection on M x €"*?, given by

Vs=mnyds ,

where 5 is a section of V and ny : M x €"*' - V denotes orthogonal projection onto
V.

If L denotes the canonical line bundle over CP" defined by
L=({(p,n)eCP"xC"" ' :vep} ,

then L and its orthogonal complement L* both have induced connections
and Hermitian metrics. Thus we have a Hermitian metric and connection on
Hom (L, L*) and there is a canonical isomorphism

h:TCP"-»Hom(L, L") ,
given by
h(x) (s)=mnpds(x) ,

where x e TCP" and s is a local section of L. Under this isomorphism, the complex
structure, metric and connection on Hom (L, LX) correspond to the complex
structure, Fubini Study metric and connection (also denoted by ¥) on CP" with
constant holomorphic sectional curvature 4.

If M is a smooth manifold then there is a bijective correspondence between
(smooth) complex line subbundles of M x €"*! and smooth maps ¥ : M— CP".
This correspondence is given by i <>y *L. If &y : TM— T CP"is the derivative of y,
then hody is a bundle map covering  and the corresponding section ¢ of
Hom(TM @ y*L, y*L*) is given by

O(x @s)=mpeds(x) ,

Where a section s of y*L is considered as a €** '-valued map defined on M. If Misa
Riemann surface, the holomorphic part

0: THOM @y*L-y*L*
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of § is given in terms of a local complex co-ordinate z on M by

0(0/0z @)= (h~dy(9/02)) () =71:(0s/02) , @4
while the antiholomorphic part

O:TOVM @Y*L-y*L*
of § is given by

3(0/07 ® 5) = (h o d(8)02)) (s) = 1:(0s/0Z) . Q.2)

If V is any complex vector bundle over the Riemann surface M, then by the
Koszul-Malgrange theorem each connection on V determines a holomorphic
structure on ¥. Thus we have holomorphic structures on y*L and y*L*, and
Wolfson shows that i is harmonic if and only if ¢ is 2 holomorphic bundle map.
Using these ideas Wolfson goes on to construct inductively an associated sequence

oLy L Lo, Ly, Ly...
of complex line subbundles of the trivial bundle M x €**! and bundle maps

Op: TCOM®L,—L,4y
and
5,,:T‘°’”M®L,,—»Lp_1 .

Here L,=y*L for a suitable harmonic map y,: M—>CP" and 8, (resp. 7,) is
essentially the map & (resp. J) defined above for the map y,. Then &, (resp. ) is
holomorphic (resp. antiholomorphic) bundle map. If 9,=0 but 0,_,3%0 (resp.
J,=0but d,. +0) then the sequence terminates with L, at the right {resp. left) hand
end. Otherwise the set Z,, (resp. Y,) of points of M over which &, (resp. d,) is singular
is a set of isolated points and, except at these points we have that L., (tesp. L,—1)is
the image of ¢, (resp. 0,). See [16] for details. '

If ¥ is a conformal immersion then ¢ is minimal if and only if it is harmonic.
Thus we may assign to a conformal minimal immersion a corresponding associated
harmonic sequence.

If M is homeomorphic to S? then Wolfson shows that for p ¢, L, is orthogonal
to L,. In particular, L,_, is orthogonalto L, 1, 1.¢. theimage of 3, is orthogonalto
the image of J,. It now follows that each ¥, is conformal, so is itself a minimal
immersion of M (perhaps with isolated singularities). Clearly the harmoni
sequence has length at most #+ 1, and it is easy to see that the sequence has length
exactly n+1if and only if vy is linearly full,i.e. y is not contained in any hyperplane
of CP".

If  : 2 CP"is a linearly full conformal minimal immersion we will relabel the
associated sequence Lo, ..., L, and we will denote by ¥, the conformal minimal
immersion (perhaps with isolated singularities) corresponding to the line bundle Lp-
We will call the sequence

Yo, > ¥n
the harmonic sequence determined by y, with y =, for some p=0, ..., n. Note t%ta:
Ly, ..., L, is essentially the analogue for the holomorphic curve ), of the Frene

frame of a real space curve.
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To help with later calculations, we give a local description of the above. Let
¥ :8S2—>CP" be a linearly full conformal minimal immersion and let z be a local
complex co-ordinate on S2. We define a sequence f;, ..., f, of local sections of
Ly, ..., L, inductively such that f; is a nowhere zero local section of L, and

Fyer=(hody,(2)0)f,=0,(0/0z ®f) , p=0,...,n~1 .

If Z=Zyw...uZ,_; then, on the complement of Z we have

0 1 /o
“(alz";=fp+1 +W <'a'j';£’fp>fp s p=0,....n, 23)

and since the image of 0, is in L,_, we have that for suitable complex valued
functions a,, b,

ofp

5;_—=apfp+b,,f,,_1 , p=1,...,n. 2.4)
In fact, taking the inner product of (2.4) with f,_; we see that
Il
by=——%_ | =1,...,n . 2.5
Pl P @

We now assume (without loss of generality) that df,/0z =0. Then an easy induction
argument using (2.3), (2.4) and the fact that

0f,/0202=02%f,/070z
shows that a,=0 for p=0,...,n. Thus

afp l,fpl2

—— — - =1,..., . 26

07 pr—1|2 fP v d § ( )

It also follows that
02 fpeil 1P
log Ifyp = R pt,n

20z OB /el o il d Q.7
02 AP

222
5255 108 Ul =170 -

Note that (2.6) shows for each p=0, ..., n that f, is a holomorphic section of L,.
If we define y, by putting

__lfp+1|2 _ -
I,-—E"‘z— ) =0,...,n—1,
: @.8)
P-1=7=0,
then f0fp==1,...,n,
b 2
by @02 =7, =220 _ay,, .. @jaz)F . 29

h ’fp#—llz
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Also, using (2.7) and (2.8) one may derive the unintegrated Pliicker formulae for the
Yp'S, namely

az
3555 1087 =Yp1 = 2%p+Vp-1 »  p=0,...,n—1 . (2.10)

Remark. If 0, is never zero, then for r=0,...,n —1 we have that y,/y, is a globally
defined function on S2. If i, is a non-singular holomorphic curve in CP" then the
functions y,/y, are the higher order curvatures considered by Calabi [4], Lawson
[12], and Rigoli [14].

3. Ramification Indices, Chern Classes and Degrees
Let ¥rq, ..., ¥, : S2—CP" be a harmonic sequence and let
51,:?1(1’0)82 ®LP_)LP+1 N p=0,”‘,n-‘1 s

be the associated bundle homomorphisms described in Sect.2. Since d, is
holomorphic if follows that the singularities are isolated zeros and we define the
ramification index r(d,) of 0, by:

r(0,)=sum of the indices of the singularities of J, . 3.1

Thus r(0,) is a non-negative integer, and if ¢, (L,) denotes the first Chern class of the
line bundle L, it follows from the Hopf Index Theorem that

r@p=ci(Ly+1)—c(Ly)—2 . (3.2)
Thus we have immediately that
r(@p)+ ... +r(8,-1)=c; (L) —c; (Lg) —2n (3.3)
and .
p;o (n—p)r@)=m+1)(—ci(Lo)—n) . G4

Recall that the first Chern class of the canonical line bundle L over CP" is equal to
minus the generator of H2(CP") so that if d, (resp. d,) denotes the degree of the
holomorphic curve v, (resp. ,) then

cai(Lo)y=—dy , ¢ (Ly)=d, . (3.5
Hence (3.3) and (3.4) may be rewritten as
"i‘ r(0,)=do+d,—2n , (3.6)
and p=o
n—-1
Y (n—p)r@)=(n+1)(do—n) . X))
p=0

The harmonic sequence is said to be totally unramified if r(3,)=0 for
p=0,...,n—1, and we see immediately from (3.7) that this is the case if and Ofll_y
if the degree dy of Yo is n. If Y :S2—CP" is a linearly full conformal min"
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mal immersion with corresponding harmonic sequence ¥, ..., {, we say that  is
a totally unramified minimal immersion if s, ..., is totally unramified.
Next observe that in terms of a local complex coordinate z on S2 we have
for p=0,...,n,
62

{ 5.5 loe S dzndz (3.8)

Ci (Lp) aza -

2m

so that from (3.2), for p=0,...,n~1,

2

r(ap)+2=m sjz 6Za_log ypdindz . 3.9
Thus using (2.7), (2.8), and (2.10) we have
1
alp=5— | Gp-1—vdzndz (3.10)
il g2
and
-1
r@)+2=5— | (p-1=27p+Vpe1)dndz . (3.11)
Tl g2

Now consider the p-th osculating curve [9]
n+1
5 §25>CP (541)
| (":1)
which has a local lift ¢, into €~/ given by

o\?
Gp=foA...A (52_)f° , p=0,....n. (3.12)

A ~ . .. n+1
We write 6,=¢(z)G,, where ¢(2) is the greatest common divisor of the (P+ 1)

components of 6,. Then 6, is a nowhere zero holomorphic curve. If

Bo=16,F , (3.13)
then
9ol Bp=1fol* .- 1 fol* (3.14)
and the degree §, of g, is given by
1 o?

1 , .
0,= P sIz povr og fpdz ndz (3.15)

which is equal to the degree of the polynomial function 6,,. But from (2.7), (2.8), and
(3.14) we have

az
% a_log[f, Yp » (3.16)
so that

8,= 2m s_\;yde/\dz . 3an
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Thus it follows from (3.10), (3.11), and (3.17) that
e (Lp)=0,-1—0, , (3.18)
r(0p)+2=—(8p-1—28,+6,+1) » (3.19)

where we have put §_; =0. This latter equation is the global Pliicker formula (see
[9]). We also remark in passing that the energy E(L,) of the map v, defined by

1 _
E(Lp)=2—1ti sjz (yp-1+yp)dZ ndz | (3.20)

is also an integer namely
E(L,)=6,-1+9, . 3.2

In fact [see (4.4) and (4.6) below], if 1, is an immersion then its induced area form
dA, is given by
dz ndz
dAp=(yp—1 +Yp) 21 s (322)

so that the area 4(yf,) of S? with the metric induced by ¥, is given by
AW =n(b,-1+6,) . (3.23)

It is an immediate consequence of the global Pliicker formula (3.19) that

-1
5y=(p+1)(dy —p)—:;o (p—K)r@) .

which, using (3.7) gives

—p P—1 -1
5,=(p+)(n—p)+—L ¥ k+Dreg+2HL Y (—k)r@) . (.24
n+1 %% n+1 .5,

In particular for a totally unramified harmonic sequence Vq, ..., Y, : S2—>CP" we
have

Sp=(p+1)(n—p) . (3.23)

4. Kiihler Angles and Curvature

If  : M—CP" is a conformal immersion of a Riemann surface M we define the
Kdihler angle of y to be the function 6:M—[0, ] given in terms of a complex
coordinate z on M by

6(m)\ _Id(m) (0/02) A1)
(‘a“ 2 )“ldw(m)(a/az)t’ meM-. (

Itis clear that 6 is globally defined and is smooth at m unless 8 (m) =0 or 1. Observe
that if z=x+ iy, and J denotes the complex structure on CP”, then 6 is the angle
between Jdy(8/0x) and dy(8/0y). The Kihler angle, whose importance 1o the
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theory of minimal immersions of surfaces into Kéhler manifolds was pointed out by
Chern and Wolfson [7], gives a measure of the failure of y to be a holomorphic map.
indeed i is holomorphic if and only if 8(m)=0 for all me M, while ¢ is anti-
holomorphic if and only if §(m)=mn for all me M.

Now suppose that ¥ : S2—CP" is a linearly full conformal minimal immersion
and let o, ..., ¥, be the associated harmonic sequence described in Sect. 2. Then
each y,: S2—>CP" is a conformal minimal immersion on the complement of the
finite set ¥,NZ, of points of S? (see Sect. 2). Thus the Kihler angle

6,:8*—(Y,nZ,)-[0,x)
is well-defined, and is smooth on $% —(Y,UZ,). If we write
t,=(tan 36, , 4.2)

then in terms of a local complex co-ordinate z,

_ 1y @109 _yp-1
TRCIEE T

@.3)

Now suppose that ds? is the metric on §? —(Y,nZ,) induced by ¥, so that

di=2F,didz , 2F,=y,-1+7, - (4.4)

Then the Laplacian 4, of ds? is given by

2 92
_2 4.5
4p F, 020z’ @
the area form d4,, by
dd,—F, dz /l\dz , (4.6)
and the curvature K,= K(y,) by
1 02
_ 4.7
Ky F 020z log £, @7

In the following sections we will be studying conformal minimal immersions

with constant Kéhler angle. We note that if y, is such animmersion then from (3.17)
we have that

Op-1
ty=—Ft—, (4.8)
4 (5’,
Wwhile from (4.7), (4.4), and (4.3) it follows that
1 62
K,=— log ¥p-1 - 4.9

F 8207



608 J. Bolton et al.

5. The Veronese Sequence
Let ¢ : S2 - CP" be the holomorphic immersion (indeed embedding) defined by

n/z([z(),zl])-—-[zs, \/(;')zs*lzl,..., /(’:)zs-'z;,...,zz], 5.1)

where [z,,2;]€ CP! =S2. Alternatively, in terms of the holomorphic coordinate
z=2,/2o on S% we may write

.//(z)=[1,\/<’1’>z,..., (’r’)z'z:l (2

As is well-known [14], this is of constant curvature and, up to holomorphic
isometries of CP”, is the only such linearly full holomorphic curve. Let iy, ..., i, be
the harmonic sequence of Yy =,. Wecall yy, ... , ¥, the Veronese sequence. Since Y,
is a rational curve of degree n it follows from (3.7) that each y, is an immersion.

Recall from Sect. 2 that if fp : €—>C"** is the holomorphic lift of ¥, given by

ﬁ,(z)=[1,\/<’1’)z,..., ('r’>zz] )

and f;,....f, are defined inductively by

of, 1 /of, 3 B
f,+1=-67’—1—gl~2<52—,fp>f,, p=0,....,n—1, (5.4)

then Y, = [f,]. We proceed to establish an explicit formula for y, and to prove thatit
has constant Kihler angle and constant curvature. To this end let g, : C—C"*" be
the map defined by

gp=(gp,0a s prs-es 9gp,n) s

R R [y

Lemma 5.1. If g, is defined by (5.5) then

where

nip! -
195 =Gy 2777

Proof.

2 n _ 2
0 = {(:)(zz '-v(g (_1)k(p: k) (" - ’)(zz-)k) } e

But if x, y, ¢ are indeterminates, then equating powers of y*? in the n-th power of the
identity

x(1+y) A +yt™ )+ —xy) A —xpt =1 +x) (1 +x7)
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reveals that

éjo (’:) X (; (—1)F (p " k> (";') x">2 =C> (1 +x)'x? . ¢.7)

The result is now immediate from (5.6) and (5.7).
Now observe that f; =g, [see (5.3) and (5.5)], so suppose that for some p >0 we
have

g=fi, for 0Zk=Zp . (5.8)

09, 2 < agp>
<az,9p> =195l e (5.9

it follows from (5.8) and the fact that {f,,f,-1)>=0 that {g,,0g,/0Z)=0. Thus
from (5.9) and Lemma 5.1,

1 0g, 0 . (n—2p)z
Igp!2<52’g"> 2 OBl ="

Since

But then a straightforward calculation using (5.8) shows that,

_ 0y, 1 /og,
gp+1_ Bz _'|gp|2 <6z ’gp g ’

so that, by (5.4), f,+1=4g,+1. Thus by induction we have f, =g, for p=0,...,n.

Theorem 5.2. The Veronese sequence g, ..., \,: S*—~CP" is given by
l/’p__- [fp,Os ’fp,n] H

where, for ze S?,

p 1 n—r &
Il = /()z’ (- 1)(p )(k)(za .

Furthermore vy, is a minimal immersion with induced metric
n+2p(n—p) , .
dst=—"—"" dzdz
(A +22y°

and hence is of constant curvature K,=4/(n+2p(n—p)) and constant Kdihler angle 6,
given by

pn—p+1)
(p+)(n-p)

Fmally, if T:8%—S? denotes the antipodal map, (well-defined for the metric ds?
on S? since this is of constant curvature) then

*l’n—p='/’p°

(tan}6,)* =
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Proof. The first statement has already been established, while

ol _(p+1)(m—p)
T Aar

by Lemma 5.1, so that

n+2p(n—p)
(1 +2z2y°

pr(z)1=[fn-,(~§_)] ,

and hence as T:S%—S? is given by z— —1/Z, this establishes that y,_,=y,°T.

ds3=(y,-1 +yp)dzdi= dzdz .

Finally we observe that

Remarks. Using Lemma 5.1 it is easy to see that if 2p +n then f, is injective and it
readily follows that in this case i, is an embedding; while if n=2m then y,, is
essentially the Veronese immersion. More precisely, following Boruvka [2], let us
suppose n=2m and write

m! 2m \ m-—s\{m+s
X—szfm,m+s=m <m+s>z ;(—1)"( k )(m__k)(zz")"

m! 2m \ _, m—s\[m+s i
it ) () ()t

Some elementary manipulation then shows that
Xs=(_1)sf~s s

so that i*X,=i*X_, for s=0,...,m.
Thus writing

Ys=—’—2 K +X_) . )

7

is+1
Y—s=*_2’ (X —X-9) .

7

Yo=Xo

v
L2
It
=N
-
-
3
~

/

we have Y,=Y, for s= —m,...,0,...,m. In particular, it follows that there is 2
holomorphic isometry of €P" which maps the Veronese sequence of Thgorem 5.2
into the harmonic sequence for the holomorphic curve y : §*—»CP>™ given by

ZH(hO(Z)a e 9h2m(z)] »
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where

-
im—r+1

(2:"> (@™ r—2) if 0<rsm—1

&

h,(2) =4 1/5\/2," z" if m=m

ir—m \/<2m) (Zr+22m—l') lf m+1 érézm ‘
L r

Furthermore the image of the m-th term of the harmonic sequence for this i is con-

tained in IRP%™ and is the Veronese immersion. For further details see Boruvka [2].
We now show that the above example essentially contains all linearly fuli

conformal minimal immersions of S? into CP" with constant curvature.

Lemma 5.3. Let v : S2—»CP" be a linearly full conformal minimal immersion with
constant curvature and constant Kihler angle. Then, up to a holomorphic isometry of
CP", the harmonic sequence determined by \ is the Veronese sequence.

Proof. Let iy, ..., be the harmonic sequence determined by v/, and assume that
Y=y,. If p=0 or n then y is a holomorphic or antiholomorphic curve of constant
curvature on €P", so the result follows from the rigidity theorem of Calabi [3]. Now
assume 1<p<n—1.

From (4.9), (4.4), and (4.3) we see that
2t, 0?

K —
Vp-1(1+1,) 0202

p=

log y,-1

so from (2.10) we obtain

2t 1
K=—-""F ¢y 243, 5.1
P 1+t,,{"1 +t} (5.10)

p

This shows that 1,_, is also constant. Now , is an immersion with constant
non-zero Kéhler angle so r(9,-,)=0. Thus y,_, is also an immersion. If we put

ﬁp=Fp/F p—1 it follows from (4.4) and (4.3) that y, is constant, and from (4.7) we
ave

Kp—l =I,lpr .

Thus K,_, is also constant, so by inducting downwards we see that K, is
constant. We may now apply Calabi’s rigidity theorem [3] to complete the proof.

Theorem 5.4, Les Y : 82> CP" be a linearly full conformal minimal immersion of
tonstant curvature. Then, up to a holomorphic isometry of CP", the harmonic
Sequence determined by s is the Veronese sequence.

f r00f. Suppose that Y is the p-th element i, of a harmonic sequence Yo, ..., ¥,. It
ollows from (3.22), (3.17) and the Gauss-Bonnet theorem that K,=4/(5,-, +6,),
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so from (4.7) and (4.4) we obtain

2 0% 4
=108 (Yp-1 +v,,)=(S

_y,,_1 +7y, 020z p-1+0p (.11)

If we now choose a complex co-ordinate z on S*—{pt} so that the metric
ds?=(y,-1 +7,)dzdz is given by

Bp-1+9,

dS%,=—(1—+252— dzdz , (512)
it follows from (5.11), (5.12), and (3.16) that
02 ﬁp—lﬂp _

0z0z 08 A+z2r (5.13)

where
a=5p-1 +5p .

Now choose a nowhere zero holomorphic €"*!-valued function f;(z) such that
Yo =[fo] (i.e. f5 is a holomorphic section of Ly over €C=S%—{pr}). The map §;
defined following (3.12) is a polynomial function on € of degree ; and thus
Bo—1B,(1+22)"%is globally defined on € and has a non-zero constant limit c, say, as
z~c0. Thus from (5.13)

ﬁp—lﬂp=c(1 +22)* .
But then

Bp-1=cp-1(1+2z2)’»-1 ,  B,=c,(1+25)° ,
where ¢,_;, ¢, are constants, and hence
Vp— =_é”___1_._. y,= 6” .
PRI gzzp T P (1 422)

Hence y, is of constant curvature and constant Kihler angle and the result
follows from Lemma 5.3.

Remark 5.5. It is of interest to see what conditions one must place on a harmonic
sequence in order that it be the Veronese sequence. For instance, one secs
immediately from (5.10) that if a harmonic sequence has two consecutive Kahler
angles constant then, up to a holomorphic isometry of CP", it must be the Veronese
sequence. We return to this question in later sections.

6. Rigidity

A holomorphic curve has Kihler angle identically zero, and Calabi [3] has show?
that such a curve is determined by its induced metric. As we indicate below, 2
conformal minimal immersion of $? into $” determines a conformal minimd
immersion of $? into CP" which has constant Kihler angle /2, and Barbosa [_1]
has shown that such immersions are also determined by the induced metri
Thus Theorem 6.1, proved below, is a generalisation of both of these rigidity
results.
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Recall that if 7: $"— R P" is the standard double covering then every (conformal)
immersion  : S2—S" defines a (conformal) immersion y ==y : S2—RP", and
conversely every immersion of $? into R P" arises in this way. Next recall that R P" is
a totally geodesic submanifold of CP" of constant curvature 1, so that if
i: RP"—~CP" denotes the inclusion map, then a conformal immersion y : S2—RP"
is minimal if and only if iy is minimal.

Theorem 6.1. Let Y, ' be conformal minimal immersions of S* into CP". Then y, '
differ by a holomorphic isometry of CP" if and only if they have the same Kihler angle
and induced metric at each point.

Proof. Let i, ..., ¥, be the harmonic sequence determined by ¢. Since we have not
assumed that i is linearly full we only know that m < n. Assume that y =y, for some
p=0,...,m. We will apply our standard notation to the harmonic sequence
determined by y, and denote the corresponding objects associated to the harmonic
sequence determined by i’ by the addition of the superscript '. Assume that ' =,
and that g=p. If follows from (4.3) and (4.4) that

'))p='ytl1 ) 'Yp—1='ytl1-—1 »

$0 an easy induction argument using (2.10) shows that
'))p_j='y‘l1_j . j=1,,p‘—1 .

In particular, y;_,_,=0, so that p=g and also y,=7;. Thus ¥, and g are
holomorphic curves which induce the same metric on S2, so by Calabi’s rigidity
result, there is a holomorphic isometry g of CP" such that gyo=yg. The
construction of the harmonic sequence now shows that

glp:glpp:l//;:l/// s

so the theorem is proved.

7. Totally Real Conformal Minimal Immersions

Animmersion of §2 in CP"is totally real if its Kdhler angle is constant and equal to
/2. An immersion whose image lies in RP"c CP" is of course totally real, and in
Fhis section we show that if i : S2—CP" is a totally real conformal minimal
Immersion then there is a holomorphic isometry g of €CP" such that the image of gy
18 contained in RP".

. To fix notation, we let i be a linearly full conformal minimal immersion of §2
Into CP" with associated harmonic sequence Yy, ..., ¥,, and let y=y,,.

Lemma 7.1, If o, is totally real, then n=2p and y;="y,- ;-1 for j=0,...,n—1.
P roof. Since 6,=n/2, (4.2) and (4.3) show that Yp—1="7p. An induction argument
using (2.10) now shows that

Bporei=tper o T=0. )

Thus p+r 2 5 if and only if p—r —1 <0, from which it follows that n=2p. Taking
"=P~=j~1in (7.1) we obtain the desired result.
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Theorem 7.2. Let vy, : S2— € P" be a linearly full holomorphic curve with n even. Then

Yo ="Vn-1 if and only if there is a holomorphic isometry g of CP" such that g\ ;= ﬁn_j
for all j=0,...,n.

Proof. (<) The existence of such an isometry g implies that the metrics induced on
S? by Y, and by y, are equal. Thus (4.4) shows that yo=y,_;.

(=>) Since yq, y,-; are the induced metrics on the holomorphic curves g, \,, it
follows from Calabi’s rigidity theorem [3] that Ay,=1, for some 4eU(n+1).
However, the construction of the harmonic sequence shows that the harmonic
sequence determined by V, is ¥, ¥p—1,..., Yo. Thus

AYy=Tey . J=0,.0m . (12

Taking j=0and then j=nin (7.2) we see that 44y, =), . Since y, is linearly full
it follows that 44 = I for some 1€ C. If we conjugate by 4 we see that 4 and 4
commute, so that A is real. Also, A"*1=1 and n is even so that A=1. Thus A isa
unitary symmetric matrix so there is a real orthogonal matrix Q such that Q ~14(0
is diagonal. If we put Q "'4Q=D D for a unitary diagonal matrix D and then
let P=DQ ! we see that Pe U(n+1) and 4='PP. It now follows from (7.2) that

Pl//j=ﬁ"_j , j=0,...,n .
so Theorem 7.2 is proved.
If g is a holomorphic isometry of CP", then s and gy have equal Kéhler anges.

The following theorem is thus an immediate consequence of Lemma 7.1 and
Theorem 7.2.

Theorem 7.3. Let i be a linearly full conformal minimal immersion of S* into CP" with
associated harmonic sequence Y, ..., W, with y=v,. Then the following three
statements are equivalent :

(i) W is totally real.

(i) n=2pandyj=y,-j- for j=0,...,n—1.
(iii) There is a holomorphic isometry g of CP" such that the image of gy lies it
RP"cCP"

Remark 7.4. (i) A linearly full holomorphic curve ¢, in CP" with the property that
@0 = @, has been called totally isotropic by Eells and Wood [8]. They show that 7
must be even for such a curve.

(i) Let §:S*-S" be a conformal minimal immersion whose image is not
contained in any hyperplane section of S”. As indicated earlier, § determines
totally real conformal minimal immersion y into CP", and it is clear that ¥ is also
linearly full. If v, ..., ¥, is the associated harmonic sequence, then Theorem 73
shows thatniseven and ifn =2p theny =y, and r(9;) = r(0,-;-,) forj=0, n—l
Using (3.24) one can now deduce that

r—1
Op-1=0,=p(p+1)+ Y (k+1)r(6) .
k=0
Thus (3.23) enables one to obtain some results of Calabi [5], namely that the area

A(Y,) is an integer multiple of 27, and 4 (y,) 2 2np(p + 1) with equality if and only
if ¥, has no higher order singularities.
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8. Pinching Theorems for Curvature

In this section we prove some pinching theorems for curvature of linearly full
conformal minimal immersions of S? into CP", and then show how these are
relevant to the Simon conjecture [15].

Let ¥ :S?—CP" be a linearly full conformal minimal immersion and let
Vo,.-., ¥n be its associated harmonic sequence with y =,. Recall that we have
given CP" the Fubini-Study metric of constant holomorphic sectional curvature 4.

Lemma 8.1. Suppose that the curvature K, of Y, satisfies either K,24(8,-1+06,) !
or K,S4(8,-1+0,)"". Then K,=4(5,-,+5,)"*.

Proof. 1t follows from the Gauss Bonnet theorem and from (3.23) that

4
K, —————1d4,=0 .
sz( ? 5p-1+5p> ?

The result is now immediate.

Theorem 8.2. Let y : S*—CP" be a linearly full conformal minimal immersion and
suppose that \ is the p-th element Vs, of its harmonic sequence.

@ 1If

4
KWyyz———F—— th KY)=—"m—F—
(w)"n+2p(n = " ) n+2p(n—p)
and y is totally unramified.
@ I
<
K(l//)=n+2p(n_p)
and if s is totally unramified then
= e

(Recall also that when K(\) is constant then, up to a holomorphic isometry of CP”,
¥ belongs to the Veronese sequence.)

Proof. From (3.24) we see that
0p-1+6,2n+2p(n—p) ,

with equality if and only if y is totally unramified. The result is now immediate from
Lemma 8.1 and Theorem 5.4.

Theorem 8.2 has several corollaries as we now show. The first is a strengthened
Version of a theorem of Lawson [12].

Theorem 8.3, Let Y : S2—CP" be a totally unramified holomorphic immersion and
Suppose that K () <4/n. Then K(y) = 4/n and, up to a holomorphic isometry of CP",
1S the holomorphic curve \, in the Veronese sequence.

Similarly, we have the following theorem of Rigoli [14].
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Theorem 8.4. Let y : S>— CP" be a linearly full holomorphic immersion and Suppose
that K(f)=4/n. Then K()=4/n and, up to a holomorphic isometry of CP", y is the
holomorphic curve W in the Veronese sequence.

Remark. Let K, denote the curvature of the ¢** element i, of the Veronese sequence.
Then K, =K, _,, and K, is a decreasing function of ¢ on the closed interval [0, /2],
One may thus use Theorem 8.2 to prove pinching theorems for curvature of the
following type:

Let §:S?>CP" be a totally unramified minimal immersion. If K, <K(y)
<K,_, for some integer g with 0 < g <n/2 then K()= K, or K, (so that y is the
(g=1)", g™ (n—q)* or (n—q+1)* element of the Veronese sequence).

We now consider the application of Theorem 8.2 to minimal immersions of >
into S”. Recall that Simon [15] has made the following conjecture.

Conjecture. Let  : §* - S7(1) be a conformal minimal immersion and suppose, for
some integer s 1, that

2 2
G+1D(+2) éK("”)és(s+1) '
Then
K ———-2 K -————————2
('/’)‘s(s+1) ('”)‘(s+1)(s+2)

and, up to isometries of SV, ¢ is the unique linearly full conformal minimal
immersion into the totally geodesic subspace S?° or S2¢*% of S¥, namely the
Veronese immersion.

We now show how Theorem 8.2 may be used to go some way towards resolving
the conjecture. In the process we give a new proof that the conjecture is true for s<2.
Our theorem verifies the conjecture for all cases cited in [15], plus some more.

Recall first, from Remark 7.4 (ii), that each conformal minimal immersion
i : §2 5" whose image is not contained in any hyperplane section of S" determines
alinearly full conformal minimal immersion i : $*—»CP", so we have the associated
harmonic sequence Yo, ..., {/, : S2—>CP". Furthermore by Theorem 7.3 we have
n=2m for some m, and y=y,. The following theorem is then an immediatc
consequence of Theorem 8.2.

Theorem 8.5. Let § : S2—S2™(1) be a linearly full conformal minimal immersion. If
either

. > 2
0 K@)z
or
2
. s . . is tOta”y
(ii) K(\Z)gm m+1) and the harmonic sequence associated to Y
unramified,
then K(.Z)=——2———

mm+1)’

and up to isometries of S*™, \ is the Veronese immersion.
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Now suppose we are given a linearly full conformal minimal immersion
§:5?—5?" and suppose for some integer s=1 that

2

KWph)z——— . 8.1
(l//)_(s+1)(s+2) @1
If m=s+1 then
- 2
K@)z 2 ,
(W)’(s+1)(s+2) “mm+1)
so that by Theorem 8.5 we have m=s-+1 and
KP)=—"—"———.
2 +1)(s+2)
Thus condition (8.1) implies that m <s+1. If in addition we have
2
< —_
K=
and m<s then
2
O

ss+ 1) "m@m+1)°

and hence by Theorem 8.5 if the associated harmonic sequence of y is totally
unramified then
. 2
KWy)=——,
@) m(m+1)
and m=s.

Theorem 8.6. The Simon conjecture is true for linearly full conformal minimal
immersions { : S —S*™ if either i) \ has totally unramified associated harmonic
Sequence; or (ii) m>s=1; or iii) m=2, s=1. In particular it is true for s<2. If a
counterexample exists for s=3 then the holomorphic curve Vo in the harmonic
Sequence associated to  has degree dy 22m+1. ( The “‘first” open case iss=m=3.)

Proof. The last statement in the theorem follows from (3.7) so it only remains to
show that if

2

K(l//)és(SH)

and if m<2 <s then the harmonic sequence associated to y is totally unramified.
Since i is a totally real immersion the only non-trivial case is m=2 <s in which
Case r(01)=r(8,)=0. But then (5.10) shows that

ty =1 —Kzgl —2/s(s+1) .
S0 it follows from (4.3) that r(d,)=0 and hence r(d3)=0 by Theorem 7.3.

9. Minimal Immersions with Constant Kiihler Angle

In this section we will give support to the following.
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Conjecture. Let y : S2—CP" be a linearly full conformal minimal immersion with
constant Kihler angle, and suppose that ¥ is neither holomorphic, antiholomor-
phic nor totally real. Then, up to holomorphic isometries of CP",  belongs to the
Veronese sequence.

Theorem 9.1. The conjecture is true if n<4.

Proof. If n£3 then the harmonic sequence determined by Y must have two
consecutive Kihler angles constant, so Remark 5.5 shows that the conjecture holds
in this case. Similar reasoning shows that if #=4 then it is enough to consider the
case in which ¥ =1,. In this case (2.10) and (4.3) show that

Yo—Ya=372(2 1) . 9.1

By considering the harmonic sequence determined by i if necessary we may
assumet, = 1. However, if t; > 1 then (9.1) shows that r(d,) =0, so by (4.8) and (3.24)
=2 —1)

27 3(dy-2)

and hence d, <4. But ¥ is linearly full and n=4, so dy =4 by (3.7) and we have 2
contradiction.

>1

Theorem 9.2. Let  : S*—CP" be a linearly full conformal minimal immersion with
constant Kéhler angle, and let \l, ... , b, be the harmonic sequence determined by ¥,
with Y=y ,. If the degrees 6,-, 6, are coprime, then Y belongs to the Veronese
sequence.

Proof. Let f,(z) be a holomorphic €**!-valued function defined on € =82 —{pt}
such that o =[f,]. For each j=0,...,p, the map &, defined following (3.12) is a
polynomial function on € of degree J; and hence the function

Bole B
is defined on the whole of €, is never zero, and has a constant limit ¢ as z—®-
Furthermore by (3.16), (4.8), and (4.3) we have
2
v ~8p pépt
020z log fp-t5; 0
so that
Bl Bor—t=c .

Hence, as elements of €[z, Z], §,-, and B, have the same prime factors. Suppose
then that  is a prime factor and that the highest powers of = dividing 8, and ppare
r, s respectively. Then ré,=s5,_, and since (3,,,6,) =1 it follows that 6,11, SlS-
But if 7 is of degree d in z we have rd<d,_;, sd<J, so that d=1 and

ﬂp—lzﬂ‘,‘"-l s ﬂp=7‘t6" .

Furthermore we may assume without loss of generality that = is self-conjugat®
so that n=a+ fz+ Bz + 622 for some complex numbers a, B, & with @, 0 real, an
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8 — BB >0. But then, using (3.16),

ad - BB

0
')’p—l +'yp=(5p—l +5p)—_~10g n=(6p-1+5p). TL‘Z

0z0Z

and so ds2=(y,-1 +7y,)dzdZ is of constant curvature.

Corollary 9.3. The conjecture is true for totally unramified minimal immersions
¥ :S2—CP" when n and n+2 are consecutive prime integers.

Proof. We observe that (p(n—p+1),(p+1)(n—p))=(p(p+1),n—2p) and hence
since n is prime it follows from (3.25) that

(0p-1,0,)=(p+1,n=-2p)=(p+1,n+2)=1 .

Remark. There is a conjecture known as the Twin Primes Conjecture that there are
infinitely many pairs of primes of the form n,n+2.

We now prove some pinching theorems for Kihler angles. Let §y : S2—»CP"be a
linearly full conformal minimal immersion and let q,...,y, be the associated
harmonic sequence. We assume that Y =y,,.

Lemma 9.4. If the Kdhler angle t, of W, satisfies either t,28,_,/6, or t,<6,_,/5,
then t,=6,_,/6,.

Proof. Using (3.17) we see that

§ Gpe17p—8y1p_1)dEAdz=0 ,

S2

so the result follows from (4.3).
Theorem 9.5, Assume that s, is totally unramified. If either t,< N, or t, = N, where

_pln-p+1)
P (p+D(n—p)’
then tpsz.
The proof of the above theorem is immediate from (3.25).

Remark. One may use Theorem 9.5 to deduce pinching theorems for Kihler angle of
the following type.
Lety : 2 CP” be a totally unramified minimal immersion. If the Kahler angle
5\(;//) of y is such that N,-1 St(y)< N, forsomeinteger g€ [0, n], thent(y)=N,_; or
o
It seems rather more difficult to deal with the case in which ¥, is not totally
unramified. However, using (3.24) we can deduce the following.

Theorem 9.6, Ift,<% (resp.1,22), thent,=0 (resp. t,= ), i.e. y is a holomorphic
(resp. antiholomorphic) curve.
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