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1. Introduction 

Given a (smooth) concordance CCS3• 1 between knots KiCS3• {i}, i=O, 1, C 
may be adjusted by a small isotopy so that the restriction to C of the projection 
S 3 • I-~I is a Morse function. This will typically have critical points of index 0 
(local minima), 1 (saddle-points), and 2 (local maxima). If there are no local 
maxima, we say that C is a ribbon concordance from K 1 to K o. The terminology is 
suggested by the fact that K is a ribbon knot [6, p. 172] if and only if there is a 
ribbon concordance from K to the unknot. 

Write K 1 >__K o if there exists a ribbon concordance from K 1 to K o. The 
relation > is clearly reflexive and transitive, and we conjecture that it is also anti- 
symmetric, that is, KI>=K o and K o > K  x implies K o = K  ~. [Knots are always 
oriented, and K o = K  ~ means that there exists an orientation-preserving diffeo- 
morphism of pairs (S 3, Ko)~(S  3, K1). ] In other words 

Conjecture 1.1. > is a partial ordering on the set of knots in S a. 

This would actually give a partial ordering on the semigroup of knots under 
connected sum (+),  since clearly K 1 > K  0 implies K 1 + K > K o + K  for any K. 

Let G be a group. Recall that the lower central series of G is defined as follows : 

Go=G, G~+ 1 =[G,G~], and Gp= ~ G~ if fl is a limit ordinal. We say that G is 
~t<~ 

transfinitely nilpotent if G~ = l for some 0t, and that a knot K is transfinitely 
nilpotent if the commutator subgroup [~z(K), zc(K)] is, where it(K) is the group of K. 
Examples of such K are those in the class generated by fibred knots and 2-bridge 
knots under the operations of connected sum and cabling (see Corollary 5.4). 

As evidence for the conjecture just stated, we have 

Theorem 1.2. I f  K l>  K o and K o >= K 1, and K 1 (say) is transfinitely nilpotent, then 
K o = K r  
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Let 1~ be the infinite cyclic covering of the exterior of a knot K, and z the 
automorphism of HI(X ; Q) induced by the canonical generator of the group of 
covering transformations. We say that K is ff)-anisotropic if HI()~ ; Q) contains no 
non-trivial z-invariant subspace which is self-annihilating with respect to the non- 
singular skew-symmetric duality pairing Hi(X; Q) x HI(~'; Q ) ~ Q  [15]. 

The next theorem gives a sufficient condition for a knot to be minimal with 
respect to 2 .  We remark that the class of knots which satisfy its hypotheses 
includes all connected sums of coherently oriented torus knots (see Proposition 
4.9). 

Theorem 1.3. Let K 1 be ~-anistropic and transfinitely nilpotent. Then K 1 > K o 
implies K o = K r 

Finally, we have 

Theorem 1.4. Let K be transfinitely nilpotent, and let C be a ribbon concordance 
from K to K. Then the exterior of C is a relative s-cobordism between the two copies 
of  the exterior of K. 

Thus, modulo the 4-dimensional relative s-cobordism theorem, 
(S 3 x I, C) ~ (S a, K) x I. 

Combining Theorems 1.3 and 1.4 gives the following, which suggests that the 
only ribbon concordance from a knot which is Q-anisotropic and transfinitely 
nilpotent is the product concordance. 

Corollary 1.5. Let K 1 be ff2-anisotropic and transfinitely nilpotent, and let C be a 
ribbon concordance from K 1 to K o. Then K o = K I , and the exterior of  C is a relative 
s-cobordism between the two copies of  the exterior of  K 1. 

Theorems 1.2-1.4 are proved in Sect. 3. Our whole approach is based on 
Stallings' results on homology and central series of groups [20]. We also need the 
fact, recently proved by Thurston (unpublished), that knot groups are residually 
finite, which we use in conjunction with a result of Gerstenhaber and Rothaus I-7]. 
Anisotropy of the duality pairing is used in the same way as in Scharlemann's 
study [19] of concordances of torus knots. 

In Sect. 4 we discuss the question ofanisotropy, over F, and Q, relating it to the 
standard knot invariants. For example, lR-anisotropy can sometimes be detected 
by the Alexander polynomial (Corollary 4.7). Applied to torus knots, this 
strengthens and simplifies the results of [19, Sect. 2]. We also show that any 
connected sum of coherently oriented torus knots is ~-anisotropic. With algebraic 
knots in mind, we consider the question of anisotropy for iterated torus knots. In 
particular, using results of Litherland [101 we show that most 2-stage iterated 
torus knots are Q-anisotropic (Proposition 4.10). However, there do exist (other) 
2-stage iterated torus knots K, indeed algebraic knots, such that at least 4K is Q- 
isotropic. This may be contrasted with Rudolph's result [18] that non-trivial 
positive braids have positive signature. 

Section 5 contains some remarks on transfinite nilpotency, and in Sect. 6 we 
close with some questions. 
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2. Terminology 

We work in the smooth category. 
Homology will be with integer coefficients unless otherwise specified. 
Unlabelled maps are induced by inclusion. 
( ) denotes the normal closure of a set of elements in a group. 
I f X  is a homology circle, that is, H,(X)~-H,(S1), X will denote the (unique) 

infinite cyclic covering of X. 
Note that ~l(?~) is naturally identified, via the covering projection, with the 

commutator subgroup of hi(X). Hence if X c  Y are homology circles such that 
HI(X)-*H~(u ) is an isomorphism, then nl(X)-*ni(Y) is injective (surjective) if and 
only if ni (X)~nl (  ~ is injective (surjective). 

The exterior of a submanifold M of N (we always assume MnON = OM) is the 
closure of the complement of a tubular neighbourhood of M. It is of the same 
homotopy type as the complement N - M .  

X will usually stand for the exterior of a knot K in S 3. 
A concordance between knots K 0 and K 1 is a submanifold C of S 3 x I, with 

C ~ S  1 x I, such that C n S  a x {i} =K~, i=0,  1. We shall always denote the exterior 
of Kg by X~, and the exterior of C by Y. 

3. Ribbon Concordance 

Lemma 3.1. I f  C is a ribbon concordance from K i to K o, then ~zi(X1)--,nl(Y) is 
surjective and nl(Xo)-}nl(Y ) is injective. 

Proof As we pass up through a level S 3 x {t} corresponding to a critical point of 
index k, a k-handle is added to C, and a (k + 1)-handle is added to Y Hence, if C is 
ribbon from K 1 to Ko, then 

Y = X  o • I u 1-handles u2-handles, 

and, dually, 

Y = X  1 x I u 2-handles u 3-handles. 

Therefore rq(X1)--}nl(Y ) is surjective. 
Since H . ( X o ) ~ H . ( Y )  is an isomorphism, in the expression Y = X  o x l u 1 -  

handles u2-handles there must be equal numbers of 1- and 2-handles, and the 2- 
handles must cancel the 1-handles homologically. Therefore 

rq(Y) ~- (nl(Xo).F)/(rl .. . . .  r .)  , 

where F is the free group on x 1 . . . .  , x., say, and the relators rje nl(Xo)*F satisfy the 
condition that if ei(r ) is the exponent sum of x i in r j, then the n x n matrix (ei(r)) 
has determinant _+ 1. [In fact, if ae n~(Xo) is represented by a meridian of K o, then 
r# may be taken to be of the form x~ l w~ law j, for some wje n l(Xo).F, j = 1,..., n.] 

Suppose zeker(nl(Xo)-}nl(Y)). By a recent result of Thurston (unpublished), 
nl(Xo) is residually finite. Therefore, if z=~ 1, nl(Xo) has a finite quotient G such 
that ~=k 1, where - :nl(Xo)~G is the quotient map. Hence hi(Y) has quotient 

H =(O*F)I<~I ..... L ) ,  
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where - now denotes the quotient map nl(Xo)*F~G.F induced by - :nl(Xo)~G 
and id: F ~ F .  Since ei(Fj)=et(rj), the conditions of [7, Theorem 2] are satisfied, 
allowing us to conclude that the natural map G ~ H  is injective. But since 
zF-~lenl(Y) by hypothesis, whereas ~ 1, this is impossible. Hence nl(X0)-~nl(Y) 
is injective, as asserted. [] 

Lemma 3.2. Let C be a ribbon concordance from K x to K0, where K 1 is transfinitely 
nilpotent and H x(X 1 ; O)~Hl(Ir; Q) is injective. Then K o =K1, and ~l(Xi)~nl(Y) is 
an isomorphism, i= 0, 1. 

Proof. By Lemma 3.1, nl(XI)~nl(Y)  is surjective;~therefore nl(.~l)--*nx(Y ) is 
surjective. This in turn implies the surjectivity of HI(X 1 ;R)~HI(~"; R), and hence 
of HI(0Y; R)~HI(Y; R), for any coefficients R. From the homology exact sequence 
of the pair (Y, 0Y) we then have Hi(Y, OY; R)=0. Now let R be a field. By Milnor 
duality [ 15] for the infinite cyclic covering Y, H 1 (Y, ~ ~z; R) ~ H2(Y; R); therefore 
H2(Y; R)--0. Hence H2(~(~R = 0, by the universal coefficient theorem. In particu- 
lar, H2(Y)|  showing that H2(Y) is ~.-torsion. Again, for any prime p, 
H2(Y)@Z p =0, showing that multiplication by p:H2(]z)--*H2(Y) is surjective. But a 
surjective endomorphism of a finitely-generated module over a Noetherian ring is 
injective, and H2(~" ) is a finitely-generated Z[t, t -  X]-module. Thus  H2(]/) has no p- 
torsion, for any prime p. Therefore  H2(]z)=0. 

Now HI(X 0 is torsion-free [5], hence H~(X1)~HI()(1)| 1;Q) is 
injective. Since H I ~ I ; ~ ) ~ H I ( Y ; Q )  is injective by hypothesis, we must have 
HI()s injective. 

Thus HI(X1)-~HI( ~ is an isomorphism and H2(~=0 ,  and hence by [20, 
Theorem 3.4], nl(X~)-~n~(~) induces an injection n~(X~)~ (Xx )~ I (~ /n I (Y )~  
for all ~. In particular, if hi(X1) is transfinitely nilpotent, nl(Xx)--+nl(Y) is injective. 
It follows that nl(X1)~n~(Y) is injective, and therefore an isomorphism. 

By Lemma 3.1, we have an injection n~(Xo)-~n~(Y)~-nx(X O. Let g:8Xo~SX ~ 
be the obvious orientation-preserving homeomorphism which sends a longitude- 
meridian pair for K 0 to a longitude-meridian pair for Kx. Since the cobordism Y 
between X 0 and X~ is a product from 8X o to 0Xx, the above injection 
nl(Xo)~n~(Xx) restricts to g. : nl(OXo)~nl(OX O. Hence, by [24, Corollary 6.4], it 
is induced by a covering map f : X o ~ X  1 such that flOXo=g. Since g is a 
homeomorphism, f must be also. Then f extends to an orientation-preserving 
homeomorphism (S ~, Ko)-,(S ~, K1) , showing that K o = KI. We have also shown in 
the process that nl(X~)--*n~(Y ) is an isomorphism, i=0, 1. [] 

LetX be the infinite cyclic covering of the exteriorX of a knot K, and let F be a 
field. Then according to Milnor [15], the cup product pairing 

~ : H~(X ; F) x H~(X, c~X ; F)~  H~O[, OX ; F)~- F 

is non-singular. Since k*:HI(X,d~';F)--,H~(2~;F), induced by inclusion, is an 
isomorphism, one obtains a non-singular skew-symmetric bilinear form 

�9 :HI (X;F)xH~(X;F)~F 

by setting 

x . y= x u k * -  X(y). 
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The automorphism z: Hi(Jr; F)~HI(_~; F) induced by the canonical generator 
of the group of covering transformations of .g is an isometry of -, that is, 
zx . zy=x .y .  

Let us say that K is F-isotropic if HI(X;F) contains a non-zero z-invariant 
subspace on which �9 is identically zero, and otherwise, F-anisotropic. 

Now let C be a concordance with K at one end, and let Y be the exterior of C. 
The following is a well-known consequence of Milnor duality in the infinite cyclic 
covering (Y, a ~ .  

Lemma 3.3. I f  K is F-anisotropic, then HI(X ; F)~HI(~'; F) is injective. 

Proof. (Compare [19, proof of Theorem 2.4].) F coefficients are to be understood 
throughout. 

We shall prove the equivalent assertion that H ~ ( ~ H I ( j ( )  is surjective. 
Let X 0 = 0 Y - X .  
We have inclusions i:.g--*~';j: d ~---* It; k: X~(Jf ,  t3J~); l: dY~(dY,,Xo); and e: 

(X, &g)~(t~Y,J~0). Note that e* is an isomorphism, by excision. 
Let W=j*HI(~  c n 1(~ ~,  and U = i* WE Hi(X). Let U • E HI(~ ") be the annihi- 

lator of U with respect to .. Clearly z(U)= U, which implies z(U-L)= U • 
Suppose xe U • Then 

i*(w)wk*-l(x)=OeH2(.g, dX), for all weW. 

By the naturality of the cup product, this gives 

wwe* - lk* - l(x) = 0 e H~(O Y, igo), 

and thence 

wwl*e* - lk* - l(x) = 0e H2(O It), 

for all we W. But by duality in (Y,O~, W is its own annihilator under 
u : Hl(tg~ x HI(OY)--,H2(O~ (see [15, p. 130]). Therefore l 'e*- lk*- l(x)e W, so 
that x=i*l*e*-~k*-~(x)eU. Thus U• and therefore U • is a z-invariant 
subspace of Hi(X) which is self-annihilating with respect to -. By hypothesis, we 
must have Ua={0}, giving U=HI(X) as desired. [] 

Proof of Theorem 1.3. This follows from Lemmas 3.2 and 3.3. [] 

Let d(K) denote the degree of the Alexander polynomial of K ; equivalently, 
d(K) =dimHl(X;  ~). 

Lemma 3.4. (i) K 1 >=K o implies d(Kl)> d(Ko). 
(ii) Suppose KI > Ko, d(K1)=d(Ko) , and K 1 is transfinitely nilpotent. Then 

K 0 = K  1. 

Proof Let C be a ribbon concordance from K 1 to Ko, and let d(C)=dimHt(Ir; •). 
(i) By Lemma 3.1, 7tl(X1)~1(Y ) is surjective; hence Hl(Xi ;Q)~HI(Y; ~)  is 

surjective. This implies that d( C) < d( K l ), and also that HI(Ot';ff~)--,HI(Y;ff~) is 
surjective. Therefore, since dim ker(Hl(OY; Q)--,HI(~'; Q)) = �89165 Q) by 
Milnor duality (see 115, p, 130]), we have d(C)=�89 ). But 
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HI(dY; Q)~HI(Xo; Q)~Ha(X1; Q), giving d(C)=�89 Hence 
d(K1)> d(Ko). 

(ii) If d(KO=d(Ko) , then the argument just given shows that d(C)=d(K O. 
Hence HI(X1;ff2)-~H~(Y;r ) is an isomorphism. The fact that Ko=K ~ now 
follows from Lemma 3.2. [] 

Proof of Theorem 1.2. By Lemma 3.40), d(KO=d(Ko). Hence by Lemma 3.4(ii), 
Ko =K1. [] 

Proof of Theorem 1.4. Let Y be the exterior of C, and write X, X' for the exterior of 
K in S 3 • {0} and S 3 x {1} respectively. 

As in the proof of Lemma 3.4(ii), HI(J(';tl))~HI(Y; ~) is injective. Therefore, 
by Lemma 3.2, rq(X)--*rcl(Y) and rq(X')-*rq(Y) are isomorphisms. 

Now X is homotopy equivalent to a finite 2-complex, and 

Y=X x Iul-handlesu2-handles; 

hence Y is also homotopy equivalent to a finite 2-complex. Moreover, 
~I(X)~t(Y),  ~2(X)=0, and H2(X)'~H2(Y)=O. Hence 7~2(Y) :0  , by [4, 
Theorem2]. Therefore Y is a K(~,I), and the inclusions X~Y,  X'-->Y are 
homotopy equivalences. Finally, they are simple homotopy equivalences since 
Wh(~zl(X))=0 by [25, Theorem 17.5]. [] 

4. Anisotropy 

Throughout this section, F will denote either Q or IlL Note that IR-anisotropy 
implies ~-anisotropy. 

As usual, we regard Ht(X;F) as a module over the Laurent polynomial ring 
A=F[t,t -1] by defining tx=z(x) for all x~HI(X ;F). 

First, ignoring the form. ,  we consider the question of the existence of a proper 
z-invariant subspace of HI(X;F), i.e. a proper A-submodule. Since A is a principal 
ideal domain, HI(X;F) is isomorphic to a finite direct sum of cyclic A-modules, 
and its order is (d(t)), where A(t) is the Alexander polynomial of K. Hence 

Proposition 4.1. H I ~  ;F) has no proper Fit, t-1]-submodule if and only if A(t) is 
irreducible in Fit-]. [] 

Corollary 4.2. If  A(t) is irreducible in Q[t], (or equivalently ZIt]), then K is Q- 
anisotropic. [] 

For irreducible 2sA, let Va be the 2-primary summand of V=HI(J~;F). Since 
z(x).y=x.z-l(y), we have (2x).y=x.(2y), where - :  A--*A is the conjugation 
induced by t~ t  -1. It follows' that if (21) ~: (22), then Vz, and Vz2 are orthogonal 
with respect to .. In particular, if (2)+ (2), �9 vanishes on V~. Now (2)=(2) if and 
only if 2= +d'2, and the - sign is impossible since A(1)#0. Hence 

Proposition 4.3. I f  d(t) has a non-symmetric irreducible factor in Fit], then K is F- 
isotropic. [] 
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Let V a -  t~ A/(2r'), with r = m a x { r ~ : l < i < k } .  If r > l ,  then 2'-aVx is a non- 
i = 1  

zero submodule of Hi(l( ; F) on which �9 vanishes (compare [9, Lemma 12]). Since 
the minimum polynomial #(t) of z is just the product l--I 2' over the irreducible 
factors 2 of A, we see 

Proposition 4.4. I f  #(t) has a repeated root, then K is Q-isotropic. [] 

Following Milnor [15], one defines a symmetric form 

( , ) : H I ( X ; F ) x H I ( X ; F ) - ~ F  

by 
(x, y)  = z(x). y + z(y). x = ( z -  z -  1) (x). y. 

Clearly z is an isometry of ( , ) .  
Since A (1) d ( - 1 ) + 0, z - z - i is invertible, and hence ( , ) is non-singular. Also, 

�9 can be recovered from ( , ) by the formula 

x . y = ( ( z - z - x ) - X ( x ) , y ) .  

Hence, with the obvious terminology, 

Proposition 4.5. K is F-isotropic if and only if  ( , )  is F-isotropic. [] 

Consider the case F = ~,. Then any irreducible factor 2 of A has degree 1 or 2, 
and those of degree 1 are necessarily non-symmetric, since A( -  1)+ 0. So if K is to 
be lR-anisotropic, then by Proposition 4.3 all the irreducible factors of A must be of 
the form 2(t) = t 2 - 2t cos 0 + 1 = (t - e i~ ( t -  e -  io). In general, for such a 2 write 
Va= V0, and, as in [15], let ao(K ) be the signature of ( , ) I V  0. The minimum 
polynomial of zlV0 is of the form h r. If r >  1, then K is Q-isotropic by Proposition 
4.4. If r = l  and [o0(K)J<dimV0, then there exists a non-zero x~V 0 such that 
(x, x)  = 0, and hence, since the minimum polynomial 2 has degree 2, a non-zero A- 
submodule of V o on which ( , )  vanishes (see [9, Proposition 14]). If 
jao(K)[ = dim V 0, then (x, x)  :~ 0 for all non-zero x~ V e. Finally, ( , ) is F-isotropic if 
and only if ( , ) [Vz  is F-isotropic for all 2. Hence 

Proposition 4.6. K is IR-anisotropie if  and only if  all the roots of  A(t) lie on S 1 and, 
for each such root e i~ [ao(K)[ = dim V 0. [] 

Corollary 4.7. I f  all the roots of  A(t) are distinct and lie on S ~, then nK is IR- 
anisotropic for all n. 

Proof Let 2(0 = t 2 - 2t cosO + 1 be a factor of A(t). Since A(t) has distinct roots, for 
K we have Vz-~A/(2). Hence [ao(K)[=2 (see [15, pp. 128-129]). Therefore 
]%(nK)[ = [nao(K)[ = 2[n[, and the result follows from Proposition 4.6. [] 

Let [p, q] denote the torus knot of type p, q. In [19], Scharlemann proves that 
[p,q] is Q-anisotropic, by an explicit analysis of �9 : Hz(X;Q)x Hl(,g; Q)--*Q. 

( i f ' -  1 ) ( t -  1) 
However, the Alexander polynomial d(t) of [p, q] is ( tv_  1)(t ~ -  1)' so Corollary 

4.7 implies 

Corollary 4.8. n[p, q] is F,-anisotropic, for all n. [] 
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Note that A(t)= I-I ~Pd(t), where opt(t) is the cyclotomic polynomial whose 
alpq a,~p,q 

roots are the primitive d-th roots of 1. In particular, if p and q are prime, then the 
Q-anisotropy of [p, q] actually follows from Corollary 4.2. 

Let us say that ~ [p~, q~] is a connected sum of coherently oriented torus knots 
i = 1  

if either Piq~ > 0 for all i or Piqi < 0 for all i. 

Proposition 4.9. Any connected sum of coherently oriented torus knots is Q- 
anisotropic. 

As a preliminary to the proof of Proposition 4.9, we recall the connection 
between the Milnor signatures ao(K ) and the Tristram-Levine signature function 
a K : S 1 --*~ (see 123, 8]) defined by 

OK(~ ) = signature of (1 -- ~)A + (1 - ~)A r , 

where A is a Seifert matrix for K. Let Jx be the "jump function" associated with 
r K : 

JK(O)= ,~o+lim a~(e~*)-- lim_ ax(ei*). 

Then (see 1-13]), for 0 < 0 < n ,  

ao(K ) = JK(O). 

Proof of Proposition 4.9. A formula for Jtp,q](O) is given by Litherland in [10] (see 
the proof of Lemma 4.11 below), from which it follows easily that if p, q > 0 and 

= d '  then 0 

- 2, if dlpq, d~l,p, q 
%([P' q]) = 0, otherwise. 

Now let K = ~ [p~, qi], and assume without loss of generality that p~, qt > 0, 
i = l  

2~ 
1 < i--_ n. Let V= Hx0~ ; ~), 0=  -d-' and m the number of indices i such that dlp~q~, 

d~kPi, qv Then, by the preceding paragraph, [a0(K)] = 2m. 
Let ~p = cpa be the d-th cyclotomic polynomial. Then 

m 

V,~-(~A/(cp), where A=ff2l,t,t-1]. 
1 

Suppose ( , ) I V ,  were r Then it would be Witt equivalent to a form 
1 

on a proper quotient A-module of V,, which is necessarily of the form ~ A/(~0), for 

some l<m. But then, interpreting this over R[t,  t-1],  we would have 

Io0(K)l < 21 < 2m, 

a contradiction. 
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This shows that (,)1V~, is Q-anisotropic for all irreducible factors ~o of A, and 
hence that ( , )  is Q-anisotropic. [] 

We now make a few remarks about the iterated torus knots [Pl, ql ; P2, q2 ; ... ; 
P,, q,l (the (pl, ql)-cable of the (P2, q2) -cable of ... the p,,q~ torus knot). These 
include the algebraic knots [21. 

First, the Alexander polynomial of the (p, q)-cable of a knot K is Ap.q(t)A(t~), 
where Ap,q is the polynomial of [p, q] and A that of K. It follows that all the roots 
of the polynomial of [p~, q~ ; ... ; p,, q,] lie on S :, and it is not hard to work out the 
condition on the p~, q~ which is necessary and sufficient for these roots to be 
distinct. When this occurs, the knot will be ~.-anisotropic by Corollary 4.7. 

It is possible to obtain more delicate information by considering the signatures 
00, using the results of Litherland [101. For example, one can show that most 2- 
stage iterated torus knots are ~-anisotropic. In particular, we have 

Proposition 4.10. I f  Plql is odd, then [Pl, ql ; P2, q2] is •-anisotropic. 

This is not the strongest possible statement; what we shall actually show is that 
[Pl, qt ; P2, q2] is Q-anisotropic if there do not exist distinct prime factors m, n of pl 
and q of ql such that either {m, n, q} = {2, 3, 5} or q = 2. 

Adopting the notation of [10], write fp,q(X)= �89 ql(2nx). So, for 0 < x <  1/2, 
a2~x([P, q]) = 2fp, q(x). 

Recall that fv,Q(x)4= 0 if and only if x = k/pq, say, where (k, pq)= 1, PIP, qlQ, and 
p, q 4: _+ 1. Thus we may write P = pp', Q = qq'. 

Lemma 4.11. 
fpp,,qq,(k/pq) is independent o f  p' and q'. 

Proof. According to Litherland [101, fpp,,qr is +_ 1 according as 

~ + ~-~ + [pp,.qq,] 

is even or odd, where a and b are given by expressing pp'. qq'(k/pq)= kp'q' as 

kp' q' = a . pp' + b . qq' . 

But suppose 

Then 

Suppose p, q 4: + 1, p', q' >= 1, (pp', qq') = 1, and (k, pq) = 1. Then 

k=otp + flq. 

kp' q' = ~q'. pp' + tip'. qq', 

[]  s~ that (*) = [~] + (fl] + ~k] is independent of P' and q ' �9 

~*) 

Proof of  Proposition 4.10. The Alexander polynomial A(O of K = [Pl, ql ; Pz, q2] is 

Avl.~l(t)Ap2,~2(tql ). Let A = Q [ t , t - 1 ] ,  and V=HI(3f;Q). If q~ is an irreducible 
factor of d over A, (so (o = tp a, say, the d-th cyclotomic polynomial), then V, is 
isomorphic to either A/(q~) or A/(~o)@A/(tp). Hence if ( ,)IVy, is Q-isotropic, then 
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V, ~- A/(~o)@ A/(qg) and ( , ) l  V, is Witt trivial, which implies that go(K) = 0 for all 0 of 
2nk 

the form --d-' (k, d) = 1. 

Now tpa is a repeated factor of A if and only ifd=pq, PIP1, qlq~, P >  1, q >  1, and 
2niqi 

e P~ is a primitive c-th root of 1, where c[p2q2, r q 2. Let r=ql/q. Then 
ql/pq=r/p, and (r ,p)=l .  Hence we must have p=c=mn, say, where mlP2, nlq2, 

m > l ,  n > l .  By [10], for 0 =--2dk, (k,d)= 1, and 0 < 0 < n  (mod2rc), 

1 k 

Hence, appealing to Lemma 4.11 and remembering that fe ,e(x)=-fe ,e(-x) ,  
f-P,o. = -fe,Q, the vanishing of all these ao(K ) implies that for some r such that 
(r, mn) = 1, 

f, k (**) 

for all k such that (k, ran)= 1. 
The following lemma will therefore complete the proof of Proposition 4.10. 

L e m a  4.12. I f  an equation of the form (**) holds, with m, n, q coprime and > 1, then 
either {m, n, q} = {2, 3, 5}, or q = 2. 

Proof. (**) implies that if (ki, mnq)=l, i=1,2 ,  and kl=_k2(modmn), then 

finn,, ~ =fmn,q -~nq" But it is implicitly proved in [10, Appendix] (see 

particularly Lemma A3), that this implies (q, ran)--(3, 4), (5, 6), or (3, 10), or q = 2. 
Since m, n are coprime and > 1, (3, 4) is impossible, and the proof is complete. []  

For {m,n,q}={2,3,5}, equations of type (**) do exist; namely, for 
(m, n, q ; r) = (2, 3, 5 ; 5), (2, 5, 3 ; 7), and (3, 5, 2; 8). There is some evidence that the last 
is in fact the only example with q = 2, in which case the phrase "or q -- 2" in Lemma 
4.12 could be dropped. 

Using Lemma 4.11 again, it follows for example that if K = [6x, 25; 3, 2], 
[10x, 21 ; 5, 2], or [15x, 6; 5, 3], with x > 1 and coprime to 5, 21, and 2 respectively, 
then the signatures ao(K) corresponding to the primitive 30-th roots of 1 are all 
zero. We can therefore at least conclude that 4K is tl)-isotropic (see [9]). These can 
be realized by algebraic knots, the smallest examples being [156, 25 ; 3, 2], [220, 21 ; 
5, 2], and [255,16; 5, 3]. We do not know whether or not any of these, or related 
examples, is itself Q-isotropic, but at any rate the limitation of signature 
arguments is apparent. Also, as n increases, the class of n-stage iterated torus knots 
K for which ll~-isotropy is not precluded by the cr0(K), becomes increasingly large. 

5. Transfinite Nilpotency 

If K is a knot with exterior X, we shall throughout this section write n(K)= n~(X), 
and y(K)=nl(X)=[n(K), n(K)]. We shall also assume that y(K):~ 1, i.e. that K is 
non-trivial. 
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First note that 7(K) is never nilpotent, as it contains a free subgroup of rank 
29, 9 > 1, namely, the image of the fundamental group of a minimal Seifert surface. 
So the least possible ordinal a such that v(K),--1 is a=~o. (Clearly Go,= 1 is 
equivalent to G being residually nilpotent.) 

Question 5.1. Does 7(K)~ = 1 for some ~ imply y(K)o, = 1 ? 

One obvious remark is that the least ordinal �9 for which 7(K), = 1 is necessarily a 
limit ordinal, for otherwise ~(K) would have a non-trivial centre, namely ~(K)~_ 1- 
But [16] y(K) is either free of rank 29,9>1,  or a non-trivial free product with 
amalgamation A.vB,  where F is free of rank 29, 9->-1, and is therefore centreless. 

The fibred knots are precisely those with ~(K) free, and a free group is 
residually nilpotent [11, Sect. 5.5], in fact, residually torsion-free nilpotent [11, 
Sect. 5.7]. 

Other examples of K with 7(K) residually nilpotent are provided by the 2- 
bridge knots. For  Mayland [14] has shown that for such a knot, y(K) can be 
expressed as a union of parafree groups in such a way that [1, Proposition 2.1] 
applies. It follows that y(K) is residually torsion-free nilpotent. 

If 3(0)=_+1, then it follows easily from [20, Theorem 3.4] that 
y(K),/v(K), + 1 ~- F,/F,  + 1, 1 < n < o~, where F is free of rank equal to that of H I(~')- 
In particular, y(K),/y(K),+ 1 is torsion-free. Recently, Strebel [21] has shown that 
in fact y(K),/7(K), + 1 is torsion-free for any K, so that v(K) is residually nilpotent if 
and only if it is residually torsion-free nilpotent. 

Finally, v(K 1 +K2)~Y(K1)*v(K2), and by [12] a free product of residually 
torsion-free nilpotent groups is residually torsion-free nilpotent. 

It would be interesting to know more about which knots are transfinitely 
nilpotent. [Of course not all are ; if A(t) = 1, then 7(K) is perfect.] Here is a specific 
question. 

Question 5.2. Are alternatin9 knots transfinitely nilpotent ? 

We now make some remarks on satellite knots. Let K be a knot, and 
h:S  ~ x D 2-~S 3 an embedding such that h(S 1 x O)= K, and, for xe  OD 2, the linking 
number Lk(h(S 1 x x), K)=0.  Let J be a simple closed curve in S 1 x D 2 which does 
not lie in a ball in S 1 x D 2, and write J(K) for h(J). [If  K4~0, the unknot, and J is 
not a core of S 1 x D 2, then J(K) is a satellite, of K.] 

Suppose K 40 ,  and write n(J )=  nI(S x x D 2 -  J). Then ~r(J(K)) is a free product 
with amalgamation n(J)*z• In particular, y(K)CT(J(K)), so 7(J(K)) ,=I  
implies 7(K), = 1, and y(J(K)) free implies v(K) free. 

Let q > 0  be the (homological) winding number of J in S ~ x D 2. If q =0,  then it 
is easy to see that in the above free product with amalgamation decomposition, 
n(K)Cv(J(K)). Since n(K), = v(K), ~ > 1, it follows that J(K) is not transfinitely 
nilpotent. 

Consider the standard embedding of S 1 x D 2 in S 3, and let C be the core of the 
complementary solid torus. Suppose J(0) can be fibred in such a way that C meets 
each fibre transversely, (necessarily) in q points. This is equivalent to the existence 
of a fibring of J in S ~ x D 2 such that the intersection of each fibre with O(S ~ x D 2) 
consists of q longitudes. If this holds, let us say that J is fibred. An example is the 
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curve J such that J(K) is the (p, q)-cable of K. (Another, trivial, example is the 
curve obtained by locally tying a fibred knot in a core of S 1 x D2.) 

Let J be fibred, and let S be the corresponding fibre of the exterior of J in 
S 1 x D 2, a surface of genus g, say, with q+  1 boundary components. I f X  is the 
exterior of K, then the infinite cyclic covering of the exterior of J(K) is 

q 

S x R 1 u l i X ,  identified in the obvious way along the q copies of S 1 x R 1. Hence 
1 

q 

y(J(K))_~F**y(K), where F is free of rank 2g. Therefore by [12], ?(J(K)) is 

residually nilpotent if and only if v(K) is residually nilpotent. Also, ?(J(K)) is free if 
and only if y(K) is free. 

Finally, the surjection 7r(K)-~Z induces a surjection 7r(d(K)) 
~lr(J),z• Hence ?(J(0)) is a quotient of 7(J(K)), so that 
y(J(K)) finitely generated implies 7(J(0)) finitely generated. Hence [16] 7(J(K)) free 
implies ?(J(0)) free. 

Collecting the above observations [and calling a knot K residually nilpotent if 
?(K) is], we have 

Proposition 5.3. (1) I f  q=0,  then J(K) is not transfinitely nilpotent. 
(2) I f  q~O, then J(K) transfinitely nilpotent implies K transfinitely nilpotent, 

and J(K) fibred implies K and J(O) fibred. 
(3) I f  J is fibred, then J(K) is residually nilpotent if and only if K is residually 

nilpotent, and J(K) is fibred if and only if K is fibred. [] 

Corollary 5.4. I f  K is in the class of knots generated by fibred knots and 2-bridge 
knots under the operations of connected sum and cabling, then K is residually 
nilpotent. [] 

6. Some Questions 

The notion of concordance can be expressed in terms of >_-. For it is well-known 
that, ordering critical points by their values, any concordance can be isotoped so 
that its critical points have non-decreasing index, and those of a given index occur 
in any desired order (see [17], for example). Hence (as is equally well-known), any 
concordance C from K o to K1, say, canbe adjusted so that C•S 3 x {1/2} is a knot 
K', CnS  3 x [0,1/2] is ribbon from K' to K0, and CnS  3 x [1/2, 1] is ribbon from K' 
to K 1. Thus two knots K o and K 1 are concordant if and only if these exists K' such 
that K ' ~  K 0 and K ' ~  K 1. (In other words, if Conjecture 1.1 is true, a concordance 
class is a directed set with respect to >__.) 

Question 6.1. Let K o be minimal with respect to >-_. Does K concordant to K o imply 
K >  Ko? Equivalently, if K ' ~ K  and K'> Ko, is K ~ K o ?  

If K 0 =0, the unknot, then Question 6.1 is just the question as to whether all 
slice knots are ribbon knots [6, Problem 25]. 

Of course there definitely exist concordant knots Ko, K 1 such that neither 
K 1 > K  o nor K o > K  1. For example, let K 0 = T + ( -  T), where T is the trefoil, and 
K1 = E + ( -  E), where E is the figure eight knot. Then K o > 0, K 1 = 0, so K o and K 1 
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are concordant .  But bo th  are transfinitely nilpotent (in fact, fibred), and 
d(Ko)=d(K1)(=4), and therefore by Lemma 3.4(ii), either K x > K  o or K o > K  1 
would imply K 0 = K  r 

Question 6.2. I f  K 1 >=K2 >= .... does there exist some m such that K , = K  m for all 
n>m? 

An affirmative answer to Quest ion 6.2 would imply that  every concordance  
class contains a minimal representative. 

Question 6.3. Does every concordance class contain a unique minimal representative 
with respect to >= ? 

This would follow from affirmative answers to Questions 6.1 and 6.2 and 
Conjecture 1.1. 

Recall [22, Sect. 6] the Gromov-Mi lno r -Thurs ton  not ion of the volume v(M) of 
a compact  3-manifold M, and define v(K)= v(X). 

Question 6.4. Does K 1 > K o imply v(Ki)>v(Ko)? 

In the p roof  of  Theorem 1.4, we had to show that  fez(Y)=0. The following 
seems reasonable. 

Conjecture 6.5. The exterior of a ribbon concordance is aspherical. 

The exterior Y of  a r ibbon concordance  C is h o m o t o p y  equivalent to a 2- 
complex, and therefore the asphericity of  Y is equivalent to n2(Y)=0.  No te  also 
that  if E is a meridian 2-disc of  C, then YwE is contractible. Hence Conjecture 6.5 
is implied by the Whitehead conjecture [26,1 that  a subcomplex of  an aspherical 2- 
complex is aspherical. 

Since the latter is known  to be true for a subcomplex with a single 2-cell [3-1, it 
follows that Conjecture 6.5 is true for any r ibbon concordance  from K, say, to the 
unknot ,  with a single saddle-point. Equivalently, the exterior of  any r ibbon disc in 
B 4 with only one saddle point  is aspherical. 
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Notes added in proof. (1) In the proof of Lemma 3.1, instead of using [7] and the fact that knot groups 
are residually finite, we may use the main result of Howie, J.: On pairs of 2-complexes and systems 
of equations over groups. J. reine angew. Math. 324, 165-t74 (1981), and the fact that knot groups 
are locally indicable [this follows from Scott, G.P.: Compact submanifolds of 3-manifolds. J. London 
Math. Soc. 7, 246-250 (1973)]. 

(2) Regarding Question 5.2, Theorem B of Mayland, E.J., Jr. and Murasugi, K.: On a structural 
property of the groups of alternating links. Can. J. Math. 28, 568-588 (1976) asserts that if K is an 
alternating knot with A(0)=p', p prime, then y(K) is residually a finite q-group for all primes q 4=p, 
and hence residually nilpotent. It follows that such knots may be included with fibred and 2-bridge 
knots in statement of Corollary 5.4. 


