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Introduction

The study of the periods of I'-automorphic forms, for I'CSL,(R) a Fuchsian group
of the first kind, led Eichler [3] and Shimura [6] to establish an isomorphism

818y — HYT, V)

between the space S, , of cusp forms with respect to I' of weight k+2, and the
parabolic Eichler cohomology group HL(I, V%), where V& denotes the k-th
symmetric power of the standard representation of SL,(RR) on IR

As is well-known, this correspondence between cusp forms and cohomology
classes is the starting point of the derivation of the Ramanujan-Petersson
conjecture from the Weil conjectures. Deligne remarked in [1] that the Shimura
isomorphism could be written in the form of a Hodge decomposition: the cusp
forms can be interpreted as the global sections of a sheaf w*®Q! on the compact
Riemann surface S=I\IH (see Sect. 1 for the definition of w), and the Shimura
isomorphism is essentially equivalent to

H°S, 0*®@Q"®H(S, 0*®Q") — H'(S, V¥), (+)

where V* denotes here a sheaf on S whose restriction to S=I'\H is locally
isomorphic to Sym*(C?), but which has degenerate stalks at the points of §—S.In
fact, for k=0, (x) is just the well-known Hodge decomposition of H(S, C).

The aim of this paper is to give a direct proof of the preceeding isomorphism in
the spirit of Hodge theory with degenerating coefficients.

A decomposition theorem of Hodge type for the cohomology of a complex
non-singular projective variety with values in a local system of C-vector spaces
was proved by Deligne. In the special case of dimension 1, Zucker has generalized
Deligne’s theorem by allowing the system to have isolated degenerate stalks.
However, in our particular case, we show that the exact knowledge of the sheaves
involved (especially the explicit description of the degenerate stalks) makes it
possible to avoid the technical difficulties in Zucker’s work. We avoid any use of
techniques such as L2-cohomology, weight filtration or Laplace operators.
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Some of the classical computations in Eichler and Shimura’s proof, such as the
computation of dimensions on both sides of (*), are circumvented in our proof by
Serre duality. Others, such as those involving the Petersson scalar product, do
occur in what seems to be a more natural context.

0. Some General Remarks on Sheaves

Let X be a topological space, ¥CX a subset of isolated points, Y=X—2 and
j:Y—X the inclusion. Let F, be a sheaf (of abelian groups, rings, modules) on Y.
The sheaf j_F, is an extension of Fy to X and its stalks are given by

(i*FY)x= 1_“_n,Fy(UmY),
U

where U runs through the open neighborhoods of a point x in X. Thus an element
of (jFy), for xeZ, is the germ of a section f of Fy defined on a punctured
neighborhood U —x of x.

In this paper we shall consider only such extensions of Fy to X which are
subsheaves of j, Fy. These sheaves are described by the

(0.1) Proposition. Given any subgroup A _C(j Fy), for each xeZ, there exists a
unique extension FyCj Fy of FytoX with

Fy,=A, for xel.

Proof. If U is an open neighborhood of x in X, then we have the canonical map
FAUNY)=( F)U)>( Fy),, fi=f,. We define the extension Fy of Fy by

Fy(U)y={feFUNY)|f,eA, forall xeUnZX}.

If Gy €j, Fyis a further extension such that Gy = A, for xe Z, then clearly Gy C Fy
and this inclusion is an equality, since it is so on the stalks.

Now let I' be a group acting continuously from the left on the topological
space X. If F is a sheaf on X, then we say that I' acts on F (from the right), or that F
is a I'-sheaf, if for every yeI” we have an isomorphism

F-y F

[i.e, an isomorphism F(U)-(y, F)YU)=F(y~'U) for each open set U £X], satisfy-
ing the obvious conditions with respect to the group structure of I'. We say thata
homomorphism F—G between sheaves with I'-action is equivariant, if for each
yel the diagram

F-—y F

L

G-7y,G

is commutative.
Consider now the quotient space $=I"\X and the projection

n:X-8S.
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For every I'-sheaf Fy on X the fixed sheaf
F=(Fy)f
on S is defined in the following way: if UCS is open, then ™ *(U) is an open and
I-invariant subset of X and F,(n~}(U)) is a I'-module. We set
F(U)=Fy(m~'(U)).
For each point xeX we set I, ={yeI'lyx=x}. In the situation in which we shall
work, every point xeX has a basis of I -invariant open neighborhoods such that
UnyU=@ for yel'-T,.

Under this assumption we show
(0.2) Proposition. If F=(Fy)" and X=n(x), then

Fe=(Fyx )™~

Proof. Let U be a I'-invariant neighborhood of x such that UnyU=§ for
yel—I.Then n~'(n(U))= () yU (disjoint union), and hence Fy(z~'(n(U)))

yel/Tx

= H F4(yU) is the I'-module induced by the I;-module F,(U), ie.,

velils
F(r(U))=Fy(n~ (n(U))" = Fy(U)"~.

Let oy be a I'-sheaf of rings and .« its fixed sheaf on S. We call a I' — oy-
module % stalkwise free, if for every point xe X there exists a I -equivariant .o/ -
isomorphism %, .o/} .. It is easy to prove the

(0.3) Proposition. Let %y, 9y be I' — of y-modules and F,% the associated fixed
sheaves on S. If Fy or 4y is stalkwise free, then

(ﬁxg@g,{)uf@g.

1. Sheaf Theoretic Interpretation of Automorphic Forms

The group SL,(R) of real matrices o= (2 b) with determinant 1 acts on the

d
upper half plane H= {ze C|Im(z) >0} from the left by

az+b

70z
cz+d’

and on the sheaf ¢, of holomorphic functions on H (from the right) by

f(2)=f(z): = f(oz). o
Let I' be a discrete subgroup of SL,(R). A point se Ru{oo} is a cusp of I' if it is

the only fixed point of an element yelI. We can write s=o00 with ¢eSL,(R). If

. . 1 h
I,={yerllys=s}, then the group I =0~ 'I,o is generated by a matrix = (O f)
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or by —1, or by 7 and —1. The cusp is called regular if teI?, and irregular
otherwise. We denote by X the set of cusps of I' and we set

H=HuZ.

Taking the sets Uy=0IH,uU{s}, where Hy={zeC|lm(z)> N}, as a basis of
neighborhoods of the cusps s=000, IH becomes a topological space with a
continuous I'-action. Let

j:H-H
be the inclusion. We make H into a ringed space as follows:

(1.1) Deginition. Let 05 <j,Opdenote the extension of O, to H given at the cusps
s=g¢wo by

Og,s={f €0 O)il f*(2) = O(|2["), (Im(2) - 00)} .

That is, the germs in ¢ ; are given by the holomorphic functions f on the sets
oH,, such that z7™f(z) is bounded on Hy for some integer m=m(f). These are
the functions meromorphic at the cusps:

[@= ) az™" (2d>N).

nz—m

If =000 is a cusp, then the function gz is an invertible global section of O, When
2 +§, we shall assume, without restriction, that coeX.

The left action of I' on IH induces a right action on Og»
O0g=7.05. f2)-f12).

On the constant sheaf V; =C? we have the standard action of I': we let y = (a Z)
act from the right by ¢

b
(x, yy=(x,y) (‘: d)'

We consider the I'-sheaf

of C2-valued meromorphic functions on IH which are holomorphic on H.
Throughout our considerations the global section

e, —ze,e Og(VI(H) = Og(H)e, @ Oy (He,,

where e, =(1,0), e, =(0,1) plays a predominant role. An elementary calculation
shows that, up to a constant, it is characterized by the transformation formula

(e, —ze,)y=(cz+d) (e, —ze,)

Z)e SL,(R).

(1.2) Definition. We define the I'-invariant Og-submodule wy of Ox(V) by

for all y= (z

wg=0gle, —ze,),
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and denote by wt, =0g(e, — ze,) its k-th tensor power, keZ.

wj, can be interpreted as the “square root” of the 0-module

QL =d0g=0gdz

=

of differentials df = Z—fdz because of the isomorphism
wh—QL, (e, —ze,)?—dz,

which is I'-equivariant since (dz)’ =d(yz)=(cz +d) ™ *dz.

From now on we assume that I'C SL, (R) is a Fuchsian group of the first kind.
Then, as is well known, the quotient space S=I'\H has a natural structure of a
compact Riemann surface. We consider the projection

T ]I:I—*S-
The images of the cusps are again called cusps. We set S=TI'\IH=5§— {cusps}.

(1.3) Proposition. (i) (Cg)" is the sheaf O of holomorphic functions on S.
(ii) (QE)" is the sheaf Q'(X) of meromorphic 1-forms on S which are holo-
morphic on S and have a pole of order at most 1 at the cusps.

Proof. (i) Let UCS be open and fe(0g) (U)=0x(n"*(U))'. f is a I-invariant
function on 1{U) and thus defines a function f on U. Since f is holomorphic on
n~ YU)nH, f is holomorphic on UnS. f is, in particular, invariant under I, for
each cusp s=oc0en™ 1(U), so the function f7(2) is invariant under the translation
T= ((1) ;;s)el“s" and holomorphic on H,, for N large. It thus has a Fourier

expansion °

fD= Y ad, q=eh,
in which the coefficients a, must be 0 for n<0, since f°(z)=0(z|™), g=0(1), but
q~ '+ 0(|z|") for all m. We therefore have

1A= L ag, g=e ",
in the punctured neighborhood oHy of s. Since the analytic structure of S is
defined in such a way that the [ -invariant function g, is a uniformizing parameter
at s, f is also holomorphic at §=n(s). Hence (0x)"(U) is in fact the space of
holomorphic functions on U.
(i) For each cusp s=co0 we have

hy d .
do™'2)= —-s—.—qi, where g, =e?™e ™ '#lhs
2ni g s

and hence

(@) =(Qk, )*=(Op, Ao~ )+ =g; '(Op, ) dg,.
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By what we have seen above the elements of this space can be interpreted as germs
of meromorphic 1-forms at 5 having a pole of order at most 1. The elements of
QL (U)=Qk(=~(U))" are thus in 1 — 1-correspondence with the meromorphic
1-forms on U which are holomorphic on UnS and have at most a simple pole at
the cusps.

If fis a function on USH, then for each o= (a Z)ESLZ(IR) and keZ we
define the function f-[¢], on ¢~ 'U by ¢

folol=(cz+d) *f(2).

The following theorem shows that the I'-automorphic forms of weight k in the
classical sense are the global sections of the sheaf

ot =(of)".
(1.4) Theorem. If U CS is open, then w*(U) is canonically isomorphic to the space of
holomorphic functions f(z) on n~'(U)nH with the properties :

@) fo[y12)=f(2) for all yeT, zen~{(U)nH.
(ii) For each cusp s=co0en™(U) we have a Fourier expansion

felolD)=¢" Y aq", q=e&"" zeHy,
n=0

where ¢=0 if k is even or s is regular and £=1/2, otherwise.

Proof. oMU)=wg(n™ {(U))" =[0g(n~ "(U))(e, — ze,)*]" consists of the I-invariant
sections

o=fle,—zey), felg(n™'(V)),
and we associate to ¢ the function f on Hnxr ™ }(U). The I'-invariance means
fles —ze =(f(e, — 2, = fo[¥lule; —ze,),
ie., f=fo[y];. For the function g= f-[¢], this means in particular g-[¢], =g for
all pelI?=0"'I0. Since I? is generated by 7= (1 h“) orby tand —t if s is

0 1
regular (respectively by —1 if s is irregular) we have

gz+h)=g(z) [respectively g(z+h)=(—1)g(z)].
Therefore f-[c], has a Fourier expansion

fololda)=q" Y aq" for zeH,,

with & defined as in (ii). The coefficients g, must be zero for n<0 because of the
growth condition fo[0],(2)= () (cz+d) ¥ =0(|z|").

An automorphic form is a cusp form if the constant coefficient a,, in its Fourier
expansion at each cusp is zero. We denote by S,{I") the space of cusp forms of
weight k with respect to I'. By (1.4) this is the space of global sections of the sheaf

aly: = (0 ®Ug(— ),
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where O (— ) is the sheaf of functions on H which are holomorphic on H and
zero at the cusps.

We obtain a very simple description of the sheaf w4 if I' has no elements of
finite order and no irregular cusps. In this case the isotropy group I is trivial for

. . 1 & . . .
each point seH, and is generated by ¢ ( 0 1“) o~ lif s=00 is a cusp. It is easy to

see the following

(1.5) Lemma. Assume that I' has no elements of finite order and no irregular cusps.
Then for each point seH we have

OIFI(V)S=(91F1,SUI ®0]FI,SUZ’ (l)u—{,s=@— Uy

H,s

with the I -invariant germs v, =(e, —ze,)6 "', v,=e,0 "~ *, where ¢ is given by s=0 0
if sis a cusp and is 1 if se H.

In particular Og(V) and wy are stalkwise free I'— O-modules.

Remark. Since the germs v,, v, are I -invariant, they can also be considered as
germs in O(V),, 5=n(s), by (0.2), so that

OV),=0p,®0p, and w;=0yp,.
We shall make use of this fact later.
(1.6) Corollary. If I has no elements of finite order and no irregular cusps, then
S, ,(N=HS, *®QY).
Proof. By (1.3) the I'-equivariant isomorphism w} =~ Q% yields an isomorphism
w?=QYZ).
Since wy; is a stalkwise free I' — O5-module we obtain by (0.3)

0" =(0ERVE 0~ 2)f = Q' ()®O(— 2)=w*@Q".

2. Hodge Structures

Although we shall make no use of the known results from Hodge theory, let us
briefly recall the basic set up of this theory. The result we are aiming at, the
Shimura isomorphism, turns out to be of a typical Hodge theoretical nature. We
shall present a proof of it, which follows perfectly the formulation of Hodge theory
given by Deligne and Griffiths (cf. [2, 9]), with the difference that we need not to
make any use of harmonic forms, and thus can keep our arguments rather
elementary.

Let V be a finite dimensional complex vector space, defined over R, so that we
have a complex conjugation v—7 on V.

(2.1) Definition. A Hodge decomposition of V of weight k is a decomposition
V= @ V™ with VH=V,

ptra=k
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To each Hodge decomposition one assigns the Hodge filtration

V=F°2F'2 .. 2F*2F**1=0, (1)
k
where F?=(P V>*~J. This filtration has the property
i=p
FPP@FI=V, p+q=k+1. )

Conversely, every decreasing filtration (1) of ¥ with the property (2) determines a
Hodge decomposition of weight k, namely

VP =FPnFi~F?/F**' for p+q=k.

A polarization of a Hodge structure is a non-degenerate bilinear form (,) on ¥,
defined over IR, such that {x, y>:=i""%x, )} is a positive definite hermitian inner
product on V74 and that the Hodge decomposition is orthogonal. The classical
example of a polarized Hodge structure of weight k is the cohomology
V = H¥X, €) of a non-singular projective variety X, or more generally of a compact
Kéhler manifold. In this case V?? is the space of harmonic forms of type (p, g) on X.

Now let S be a complex non-singular quasi-projective variety. We denote by
QP, &* the sheaves of holomorphic and of complex valued C*-differential forms of
degree p on S, respectively ; we set 0 =Q°, &=8°.

Let Vbe a complex local system on S defined over R, thatis V= VR®(_L_‘ where

R

Vg is a locally constant sheaf of finite dimensional real vector spaces. Let
W) =RV, E(V)=E"QRV
€ C

be the sheaves of holomorphic, resp. C* — p-forms “with values in V™. If
f:X-8
is a proper smooth morphism of quasi-projective complex varieties, then the sheaf
V=RY,C

is an example of such a local system. In this case the fibers of the 0-module
OV)=0RRY,C
[y

(ie. the fibers of the associated vector bundle) are the cohomology groups
H*X, ©) of the fibers X of f. Each of these cohomology groups carries a Hodge
structure and these Hodge structures vary with s. The @-module O(V) certainly has
no decomposition into a direct sum of @-modules analogous to (2.1), since
holomorphic functions do not remain holomorphic under complex conjugation.
However one can prove that there exists a decomposition of &£-modules

(V)= @ 67(V), ©)

ptq=k

which in the fibers induces the Hodge decomposition of H¥X , €).
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Thus, the Hodge decomposition of H¥X , €) varies differentiably with s. But
this “variation of Hodge structures” is induced by a holomorphic structure,
namely, there is a filtration (#7) of the @-module ¢(V), which in the fibers induces
the Hodge filtration of H*X , €) and by which one gets the decomposition (3) by

EVV)=FFPNFI=FPFP*' for p+q=k,

where Ff =F?(X)&. By the “transversality theorem” of Griffiths we have for this
7

filtration
VFPCF 1(@Q‘C@(V)®Q1 QYY)
where

V=d®1:0(V)~>Q'(V)

is induced by the complex differentiation d:0—Q*. V is called the Gauf-Manin
connection.

These results now lead to the following abstract definition of a Hodge structure
on a local system.

(2.2) Definition. Let V be a complex local system defined over R on the smooth,
quasi-projective variety S. A Hodge structure of weight k on V (or a variation of
Hodge structures) is a filtration (#7?) of the ¢-module @(V) such that

(i) VFrCFP IR

(i) &)= (—B cS’Pq(V) where E74V)=FFnF} for p+q=k.

There is also the notion of a polarization on V and the central result in this
context is the theorem of Deligne (cf. [9]): a polarized Hodge structure of weight k
on V induces a polarized Hodge structure of weight k+ ¢ on the cohomology
HYS, V) of S with coefficients in the local system V, if S is projective.

3. The Sheaf V* and its Polarized Hodge Structure

We consider the constant I'-sheaf V; =C?*=Ce, ®Ce, on the extended upper half
plane H and its k-th symmetric power

k
=Sym¥(C G;)
and we define the sheaf V* on S by
vE=(VE) .

For the next three paragraphs we assume that I" has no elements of finite order
and no irregular cusps. In this case the stalks of V* are given by

Sym&(C?) for 5=n(s)eS,

Vi =Sym{(C? = :
5 = Symg(C*) {q:(er_l)k for 5=mn(cw)eS\S.
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Thus V* is a complex local system of dimension k + 1 on S (defined over R) and has
degenerate stalks of dimension 1 at the cusps. We are going to show that V*isin a
natural way endowed with a polarized Hodge structure (in a modified sense) of
weight k.

a) The connection V. Let O (V") =05 X) Vi and Qf(V*)=Qk X) VE. We set
5 ¢

OV :=04(VH" and QYZ)(V9:=QL(VHF Q‘(Z)@(O(V")

The I'-equivariant, C-linear, surjective map
d®1:0,(VH)-QL(VY
induces a C-linear map
v:0(VY)-Q'Z)(VY),
which we call the connection of G(V¥). We denote by Q'(V*) the image of V.

(3.1) Proposition. The sequence
0- Vi o) 3(1)—0
is exact.

Proof. Tensoring the exact sequence 0—C— 0, LN QL —0 with the constant sheaf
V§ we obtain the exact sequence

0-VE - 0,(V9) 25 QL(1V9)-0,

to which we apply the left exact functor F—FT.

b) The Hodge filtration. Given an ¢z-module or an @-module %, we denote by
F* its k-th symmetric power (k>0) over O or O, respectively, and by - the
product in the symmetric algebra P F*.
k=0
Regarding that On(V¥=04(V), the filtration Oy(V)2w;20 induces a
I'-equivariant filtration

H(Vk) o~0 Dg;lfl 2 ;)_

given by Ff = wh - On(V* 7). By (1.5) all these I' — O ;-modules are stalkwise free.
Passing to the fixed sheaves we obtain the filtration

OVY)=F2F'2 .. QF QF 1 =0
where F?=q?-O(V*~?) by (0.3).

FE1=0

IIU

(3.2) Proposition. VFrPL FP 1 @91(2).
Proof. On H we have
Fh =l OV~ 1) =Ogle, —ze)P - VAP
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If f is a section of ¢y and x a section of Vf"{"’, then
(d®1)(fle, —ze,)" - x) = (e, —ze, ) - x®df —pf (e, —ze,)"” ! e,x®dz,

and this is a section of FE ' ®Q}, since e,-x is a section of V*7?* !, Therefore
d®1 maps Ff into FL~ 1®91 Hence

VFPC(FL T @QL) =F7 T R0Y2)
by (1.5), (0.3) and (1.3).

¢) The Hodge decomposition. In order to establish the Hodge decomposition it is
not sufficient to tensor the above filtration with the sheaf of C*-functions on S. We
shall work with a larger sheaf which we define as follows. Let &, be the sheaf of
complex valued C*-functions on H. We define the extension & of &, by

av+ufa

{f €l ,H)I pRpr =0(|z{")for all v,,u;O}

for s=o00e X, where m=m(f, v, u). We set
E=(6g)".

The restriction & of & to S is the sheaf of complex valued C*-functions on S. Now
the sheaf
EVY: = (é”ﬁ® V,ﬁ)r=¢‘”®@‘(V“) ,
Iy 0

which obviously admits a complex conjugation, also admits a Hodge
decomposition :

(3.3) Proposition. £(V*)= P b -d% and wf-0%=FFNFE, where the subscript
p+tq=k
& indicates the tensor product with the O-module &.

Proof. Since &(V*) is the k-th symmetric power of &(V) over &, it suffices to prove
the proposition for k=1. Each section v= fe, +ge, of

ébﬁ(w:épﬂ@vﬂ:gﬂel@gﬂez
can be written in the form
U=f(91"'zez)+g(e1_-z_ez),

where f=(z—2)"'(zf +g), =(2—2)"'(zf +g) are again sections of &;. This
decomposition is unique, i.e.,

8s(V)= (é",ﬁ Ci?{ w,,—,) & (é",ﬁ (w@ cz),ﬂ) ,
and thus
EV)=wsDd,.
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The Propositions (3.2) and (3.3) show that the filtration (#7) of O(V*) satisfies
the conditions of a Hodge structure of V* in a modified sense, due to the presence
of degenerate stalks.

d) The polarization. We now show that the Hodge structure of V'* is endowed with
a natural polarization. We consider the bilinear form

Bl(x,y)= ——det(x, _V)

on €2, and its k-th symmetric power

BX, o Xy Yy V)= k')2 y HB(xa(,),y,(,))

o, 1e@y i=

on Vl‘-Sym,t((Ez) This form is defined over R, is I'-invariant and its linear
extension is a I'-invariant £g-bilinear form on & (V")

B*: 8 (VH x E5(VH) > &

Taking fixed sheaves we obtain an &-bilinear form

B*: (V5 x E(VF) & .

(3.4) Proposition. B* is a non-degenerate bilinear form on the &-module &(V*) with
the properties
@) BXx,y)=(—1)*BXy,x) for any sections x,y of &(V*).
(ii) The Hodge decomposition (V¥ )= P wf @% is orthogonal with respect
ptg=k
to the form B¥(x,7).
(iii)y The form {x,y): =i""1B*(x,y) is positive definite on wh - @%, p+q=Kk, ie.,
for a section x of w}- % we have
{,x>20 and {(x,x>=0 iff x=0.

Proof. Let sclH, v, =(e, —ze,)0 ™!, b=(e, —Ze,)o ', where o=Id if seH and
goo=s if s is a cusp. Since by (1.5) v, is a I-invariant basis of wg, , the stalk of
&(V¥) at 5=mn(s) is given by

EVH;= @ wh 5 0% 5= C'B E7-15.

ptq=k pra=k

An easy calculation shows that
if p*p

R0} 0 >=1 _,
(p) (RImo~'2)* if p=p

for p+q=p +q =k, and this immediately implies the proposition.

We now extend the sheaves &5 of complex-valued C*-differential forms on H
of degree i to H by

&l =8 dz@EAZC) 6y
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and &% :=A'6} (of course &5=0 for i>2). We set &4(V*)=64&) V. The total
differential d:j, &/ j, & ' induces the I'-invariant maps d: 6’%,-% &5 and
d@1: VM- E5 (VY.
Hence, for the fixed sheaves
E=(&)F and £(VH): =é”§q(Vk)r=é""g<>£(V")
we obtain the maps d: & —>&+! and
V&V & VY,

induced by d®1.
The bilinear form B*: £(V¥) x &(V¥)— &, together with the exterior product of
differential forms &'® &/ -~ &'/ defines a product

EVH) x (VR Lo g
by the rule (¢®v, BQwW)—BXv, wjx A B. It is easy to check the following

(3.5) Lemma. If £,7 are sections of &(V¥),&(V¥), then
0 Ean=(=D)"" At
(i) dE A=V An+(—1)¢ A ().

4. The Hodge Filtration of H'(S, V%)

Again we assume that I has no elements of finite order and no irregular cusps. We
now show that the filtration (#°*) of COLV") together with the connection ¥ induces
a filtration of the C-vector space H'(S, V*). We consider the complex

QY (V- Q V90,
which by (3.1) is a resolution of the sheaf V*. Because of (3.2) the filtration (#7?) of
O(V*) yields a filtration (§?) of the complex Q(V*):

QY =F°: 0V — Q' (V™
Ut Uil
F: Fr — FrQQUDNQ (VY.

This filtration yields for every p a complex F?/F”*! and we obtain a hyper-
cohomology spectral sequence

B39 =HP*9(5, §/F )= HP*9(3, V) = H? 45, V),
which converges to the cohomology H (S, V*) because 2{V*) is a resolution of V*.
(4.1) Proposition. The terms E2? are given by
HYS, w0 %) for p=0
EXI=TH*9(S, F7/F* )= H' 4§, 0*®Q") for p=k+1
0 for px0,k+1.
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Proof Let v, =(e, —ze,)0 ™1, v,=e,6 '€ , where o 1s chosen such that s=0c0
ifsisacuspand o=Idif se lH By (1.5) the germs vl -k s .s(VY are I -invariant
and form a basis of the O;-module O(V¥),, 5=n(s). Moreover we have

k
FP o JopkJ
J§~@@§vl s

The homomorphism Oyx(V¥)-w* given by (e,—ze,)-é5" -0 for j<k,
ey—(e,—ze,)* is I'-equivariant and has kernel wg-Og(V*™!). Taking fixed
sheaves we get a homomorphism O(V¥)—w~* w1th Kernel w-O(V*~1) which is
surjective, since at every point seS the germ % is mapped onto the germ vrk
Therefore we have #°/# ' ~w~* This means that /& is the complex v ¥—0,
and therefore

E{1=MHYS, F/F)=HIS, 07".
We next show that
(F* QNN (V=R Q.
This equation holds trivially on § because Q*(Z)|g= QL. Let s=n(c0) be a cusp. In
order to compute the stalk
Q5= V(O =(d@ DOx(VM})
we observe that Vv, = —v,d(¢ ™ 'z), "o, =0. For

k
v=) fpl -k ieO(V;

j=o

we thus have

S
Il

<
—.

K
BRdf,— Y i I @d(67 2)
j=0

e

I

v4I -

<
%

AIRS~ G+ 1) Ao~ 2) + o ®dfy.

-
I
<

An element v’{@ae(?k®ﬂl(2))s-=(OEU’{®QI(Z)§ belongs therefore to Q(V*), iff
i ®@a =14 @df, where fe0,, and hence iff v¥ @ae(w*®Q!).. This gives the result
that FHYF =g is the complex 0—>w"®91 so that

E'i+ 1,q=Hk+ 1 +q(§’ g,k-% 1)=Hk+q(§, w"®Ql).

We now show that the complex §?/F*! is acyclic for p+0, k+ 1. For each
point 5e S we have
FPFPH =008 -0k P mod FPH!
and by the above computation
P57 =08 o5~ @df — pfof o5~ 1 @0 12)
= —pft 14 P 1 ®d(6 7 ) mod(FFL R QU Z) )N QL (V..
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This shows that the map
08 -5 Pmod FFH 1L 0081 kP Q). mod (FP R QN (Z))N QN (VY

is an isomorphism for p=1, ..., k. Therefore F?/F’*! is acyclic and
Ez;,q _____]Hp+q(§7 %p/gw 1)=0
for p£0,k+1.

(4.2) Theorem. (i) The spectral sequence TH?* 4§, F*/F**1)=H"" 4§, V*) degen-
erates and yields a filtration
HYS,V=F°2F'2 ... 2F**1 20,
where FO/F'=H'(S,0™") and F'= ... = F*"' =H(§, 0*®Q").
(i) H(S, V9)=0 for i+1 if k+0.
Proof. We have to show that all the differentials

P9 EPaEPTaTTHL (r2)

are zero. We first assume k>0. Then H°(S,w %) =0, because there are no
automorphic forms of negative weight, and H%S,w % =0 for ¢>1, since this
group is dual to H! ™ %S, 0*®Q!) by Serre’s duality theorem. Therefore E9?=0 for
g#+1. Since E**11=H**"%§,0*®Q*) is also zero for k+q+0 (again by Serre
duality), we see that the only terms E?-? different from zero are ES-! and EX* 1 %,
This implies d7%=0 for all r2 1. If k=0, then d=d%"° sits in the exact sequence

0—H°(S, ©)~»H°S, 0)- H°(S, @Y

associated to the exact sequence 0—C—@—Q'—0. Since H(S,C)=H{S, 0)=C
we have d=0 also in this case. Thus the spectral sequence degenerates, ie.,
E%9=E"9 and therefore

FP/FPri=ER1=P=ER1-P
From (4.1) follows
FO/F'=HS,0™% and F'=.. =F*1=fE*Y*=H°§ 0*@Q").
(4.3) Corollary. dimH'(S, V¥)=2dimS, , ,(I).
Proof. From the theorem we obtain the exact sequence
0-H°(S, 0*®@Q")—~ H'(S, V> H'(§, 0™ %0,

in which the last group is dual to the first one by Serre duality.

5. The Polarized Hodge Decomposition of H'(S, V%)

We are going to show in this paragraph that the filtration of H 1(§, V*) obtained by
(4.2) is in fact a Hodge structure of HY(S, V'*).
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We consider the sheaves &', &(V*) on S, which we have defined in Sect. 3, with
the connection V :&{(V*)% & (V¥ and the product & (V¥) x &/(V¥)— &'19. We
denote by &'(V*) the image of &(V*) under the map V : £(V*)—&*(V*). In the same
way as Proposition (3.1) we obtain the
(5.1) Proposition. The sequence 0—V*—&(V¥)—& (V9 -0 is exact.

The sheaves 0*®Q'CQ'(V*) and 0*®Q' CQ'(V¥) are subsheaves of &!(V¥)
and we obtain from the exact sequence (5.1) a homomorphism

H°B,0*®Q")Y®HS,o*F@QN S HS, 8 (V) H'(S, ).
We know already by (4.3) that the direct sum and H'(S,V*) have the same
dimension and we now prove the

(5.2) Theorem. (i) For H'(S,V*) we have the Hodge decomposition of type
(k+1,0),(0,k+1)
HY(S, V)< H°S, 0* @ QYO HG, 0 @2').
(ii) The polarization on &(V*) induces a polarization of this Hodge structure,
which agrees with the Petersson scalar product on the vector space on the right.

Proof. Let pe S, , , =H°(S, 0*®Q") and =S5, , ,. Considering ¢ and y as sections
over S we have

pe HS, 0k ®0Q3) = H(H, of,® Q})"
and we can write
p=fle,—ze,))®dz and y=g(e, —Z7e,)®dz,

where f, ge 0,,(H) are cusp forms of weight k + 2. We now form the product ¢ A y
defined in Sect. 3. A straightforward calculation shows that

@ Ap=(=2if-gIm(z)'dz A dz.
It is very well known (and elementary to prove) that the integral [¢ Ay is
S

convergent, and we get a non-degenerate bilinear form on S,,,®S,,, by
@v):=[ory
N

In order to prove (i) we have only to show that § is injective on S, , ,®S, , ,, i.e.,
that

VHOS, 8(VNA(S, 4 ,®S, . ) =(0).
This is now a computation of well known type. Let he H%(S, £(V*)) be such that
VheS, . ,®S,. ,, and let o= f(e, —ze,)*®dz be an element in S, , ,. Since by (3.5)
Vh A @o=dh A @)—h A Fp=d(h A @), we have

[VhAo=[dhn ),
h S
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where d(h A @)e HO(S,£2). Let Sy=8- | Uy.s where Uy ;=n(Uy ) is the
Sen(X)
neighborhood of the cusp §=n(oo) given by Uy ;=aHyu{s}. Since

th/\(p_ lim { dh A @),

N-o Sy

we can now use Stokes’ theorem. Thus

fd(h/\qo— [ hrae=Y | hnreo.

oSN 5 8Un,s

We rewrite the last integrals in the variable of Hy. In the neighborhood Uy ; of
k

3 — k= — -1 —_ -1
s=o000 we can write h= ) hw]-v47J, where v, =(e, —ze,)07 !, v,=e,07 ! and
i=0
he Eg(Uy )= The map o:Hy— Uy ,— {s} transforms ¢ into

PG = fu(z)((e1 - Zez)a)k®d(az) = folol s z(z)(e1 - Zez)k®dz s

and therefore h A ¢ into

(h A @)oo= (Z:o h3(z)e, - Zez)j'e’;j) A (fel0]is 2(2Ne; — 2e,)*®dz)

=hg(z)- fe[o]y4 ,(2)dz
Setting z=x + iy we thus have

[ hano= | B@f[0],(2dz= [ hy(x+iN)fe[o],. (x+iN)dx.

oUN, s =N |x| <hs
[x| <hs

Since f is a cusp form of weight k+2, we can write for large N
felolis ,(2)=a9(q)

where g=e?™?/*s, zeH,, and g is a holomorphic function in g. Since g remains
bounded on this neighborhood, and since hoe(é”ﬂs)’ = we can find a constant c and
an integer m such that

h3(2)- fo[0 ]+ (2l <c(Imz)™ |g| = c(Imz)"e ™ 2mImE)/he

for ze H,, and N sufficiently large. We get

\ { h/\(pl < [KS(x +iN)- fo[0], ,(x +iN)|dx

oUN, s ] <hs

<c j’ Nme—2nN/h,dx§2hscNme—2nN/hs’
|x} <hs

which tends to zero as N—o0. We have proved that

fVhA@=0
S

for every @eS, , ,. Analogously one sees that | Ph A p=0 for every ype S, ., That

_ S
is, the element Vh is orthogonal to S, , ,@®S,, , under the non-degenerate pairing
on this space. This proves that Vh=0.
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In order to prove (ii) we need only to observe that, if ¢,peS,,,, then
{o,p>: =i*"Y(p,P) is the Petersson scalar product of the two cusp forms.

6. The General Shimura Isomorphism

Throughout the last three paragraphs we have assumed that I' has no elements of
finite order and no irregular cusps. The reason for this was, that under this
assumption the Oz-modules which we have considered were stalkwise I" — O-free,
so that the functor F—FT preserved the tensor product. We can now drop this
assumption because a Fuchsian group of the first kind contains always a normal
subgroup I of finite index without elements of finite order and without irregular
cusps (cf. [8]).

Let y: '—>C* be an abelian character. A cusp form of weight k with character y
is defined by replacing the condition fe[y],= f in the usual definition by f-[y],
= x(y)f. We denote by S,(I', y) the space of cusp forms of weight k with character y.

If Fy, is a I'-sheaf on HH, then we denote by F(x) the I'-sheaf which as a sheaf is
Fg, but on which the action fi—f7 of yeI is changed into fi—x(y)- f*. We set

F()=Fg(0".

(6.1) Theorem (The Shimura isomorphism). Let I" be a Fuchsian group of the first
kind, y:I'->C* an abelian character and k=0. Then we have a canonical
isomorphism

Sk 2T @S, (T, )2 H' (S, VAR)).

Proof. Let I"CT be a normal subgroup of finite index without elements of finite
order and without irregular cusps on which y is trivial. Let §’=T"\H. Then §'—> S is
a ramified Galois covering with Galois group 4 =1I"/I". The sheaves

)5 Qs =(H(N®LL(—Z)" and V()5 = V()"

are A-sheaves on S'. By (5.2) we have an isomorphism

HOS, 0 (0)s @ QL @ HS , 0 (1)s QL) -5 HY(S, VH(p)s ).
Furthermore we have
Si+ 2T )= HS, (0} (0@ Q4 — )= HS, 0" (1) ®Q4 ).

The first isomorphism was proved in Sect. 1 for y =1, but the same proof holds for
the general case. Hence we have only to show that

Hl(gv Vk(X)) =H1('§’5 Vk(x)ﬁ’)A .
Since ;4 is finite, the functor Fi—F4 is exact on sheaves of C-vector spaces.
Therefore we have a spectral sequence (cf. [4], Proposition 5.2.3)
EYi=H{(4, HIS', V()5 )=H"* IS, V¥(y).

The finiteness of 4 implies E5/=0 for i+0, and thus the spectral sequence yields
the required isomorphism.
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