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Introduction 

The study of the periods of F-automorphic forms, for F____ SL 2 (IR) a Fuchsian group 
of the first kind, led Eichler [3] and Shimura [6] to establish an isomorphism 

sk+2 , n (r, 
between the space Sk+ 2 of cusp forms with respect to F of weight k+2,  and the 
parabolic Eichler cohomology group H~(F, V~ ), where Vk~ denotes the k-th 
symmetric power of the standard representation of SL2(IR ) on ~2. 

As is well-known, this correspondence between cusp forms and cohomology 
classes is the starting point of the derivation of the Ramanujan-Petersson 
conjecture from the Well conjectures. Deligne remarked in [1] that the Shimura 
isomorphism could be written in the form of a Hodge decomposition: the cusp 
forms can be interpreted as the global sections of a sheaf r174 on the compact 
Riemann surface S = F\~I (see Sect. 1 for the definition of co), and the Shimura 
isomorphism is essentially equivalent to 

n~ ogkQf21)on~ o~k| x) ~,  nl(~, Vk), (*) 

where V k denotes here a sheaf on S whose restriction to S =F\K-I is locally 
isomorphic to Symk(~_2), but which has degenerate stalks at the points of S-S. In 
fact, for k=0, ( .)  is just the well-known Hodge decomposition of HI(S, IE). 

The aim of this paper is to give a direct proof of the preceeding isomorphism in 
the spirit of Hodge theory with degenerating coefficients. 

A decomposition theorem of Hodge type for the cohomology of a complex 
non-singular projective variety with values in a local system of ~-vector spaces 
was proved by Deligne. In the special case of dimension 1, Zucker has generalized 
Deligne's theorem by allowing the system to have isolated degenerate stalks. 
However, in our particular case, we show that the exact knowledge of the sheaves 
involved (especially the explicit description of the degenerate stalks) makes it 
possible to avoid the technical difficulties in Zucker's work. We avoid any use of 
techniques such as L2-cohomology, weight filtration or Laplace operators. 
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Some of the classical computat ions in Eichler and Shimura's proof, such as the 
computat ion of dimensions on both sides of (*), are circumvented in our proof  by 
Serre duality. Others, such as those involving the Petersson scalar product, do 
occur in what seems to be a more natural context. 

O. Some General Remarks on Sheaves 

Let X be a topological space, S c___X a subset of isolated points, Y = X - Z  and 
j : Y ~ X  the inclusion. Let F r be a sheaf (of abelian groups, rings, modules) on Y. 
The s h e a f j , F  r is an extension of F r to X and its stalks are given by 

(j, Fr) x = l i m F r ( U n  Y), 
u 

where U runs through the open neighborhoods of a point x in X. Thus an element 
of (/,FOx, for x~27, is the germ of a section f of F r defined on a punctured 
neighborhood U - x  of x. 

In this paper we shall consider only such extensions of F r to X which are 
subsheaves o f j , F  r. These sheaves are described by the 

(0.1) Proposition. Given any subgroup A~__c(j,Fr) x for each x e Z ,  there exists a 
unique extension F x c=j,F r of F r to X with 

Fx .~=A x for x ~ S .  

Proof. If U is an open neighborhood of x in X, then we have the canonical map 
Fr(UnY)=(J,Fr)(U)-~( j ,  Fr)~,, f ~ f ~ .  We define the extension F x of F r by 

Fx(U)= { f  ~ F r ( U n  Y)lf, e A  x for all xe  U n Z } .  

If G x s r is a further extension such that Gx, ~ = A~ for x e 27, then clearly G x z__ F x 
and this inclusion is an equality, since it is so on the stalks. 

Now let F be a group acting continuously from the left on the topological 
space X. If F is a sheaf on X, then we say that F acts on F (from the right), or that F 
is a F-sheaf, if for every 7 e F  we have an isomorphism 

F:-+7,F 

[i.e., an isomorphism F(U)~(7 ,F)(U)= F(?-IU)  for each open set U =cx], satisfy- 
ing the obvious conditions with respect to the group structure of F. We say that a 
homomorphism F--+G between sheaves with F-action is equivariant, if for each 
) ,eF the diagram 

F--~ y , F  

1 l 
G ~ ? , G  

is commutative. 
Consider now the quotient space S = F ~  and the projection 

n :X-~S. 
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For every F-sheaf F x on X the f ixed sheaf 

F =(Fx) r 

on S is defined in the following way: if Uc=S is open, then n- l (U) is an open and 
F-invariant subset of X and Fx(Ir-I(U)) is a F-module. We set 

F( U) = F x ( ~ -  ~( v ) )  r �9 

For each point x e X  we set F~= {?r In the situation in which we shall 
work, every point x ~ X  has a basis of Fx-invariant open neighborhoods such that 

Uc~yU=0 for ? ~ F - F  x. 

Under this assumption we show 

(0.2) Proposition. I f  F = (Fx) r and Y, = lr(x), then 

F~ = (Fx, x) rx . 

Proof. Let U be a Fx-invariant neighborhood of x such that Uc~yU=fl for 
?~F-Fx.Then lr-l(Tr(U))= U ?U (disjoint union), and hence Fx(Tr-l(lr(U))) 

y ~ F / F ~  

= I-I Fx(vU) is the F-module induced by the F~-module Fx(U), i.e., 
~ ,e F / Fx  

F(~( U)) = F x(Tr- 1 (Tr( U))) r = Fx( U) r~ . 

Let J x  be a F-sheaf of rings and ~r its fixed sheaf on S. We call a F - d  x- 
module ~x  stalkwise free, if for every point xEX  there exists a F~-equivariant ~r 
isomorphism ~x,~_-__zg;~,x. It is easy to prove the 

(0.3) Proposition. Let ~x,  (r be F-~r and ~ ,  fr the associated f ixed 
sheaves on S. I f  ~ x  or fgx is stalkwise free, then 

1. Sheaf Theoretic Interpretation of Automorphic Forms 

of  eal matri  s (: with determinant, acts on the 

upper half plane IH= {ze IrlIm(z)>0} from the left by 

az+b  
Z-- - .~GZ ~ - -  

c z + d '  

and on the sheaf g~n of holomorphic functions on IH (from the right) by 
f(z)--} f~ : = f(trz). 

Let F be a discrete subgroup of SL2(IR ). A point seR~{oo} is a cusp o f f  if it is 
the only fixed point of an element veF. We can write s=aoo  with o-r If 

Fs= {?e Fl~s= s}, then the gr~ F~~ =tr- ' F~ is generated by a matrix ~ = (lo ~ )  
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or by -~ ,  or by z and - z .  The cusp is called regular if ~eF: ,  and irregular 
otherwise. We denote by X the set of cusps of s and we set 

~I=ll-IwS. 

Taking the sets UN=o'IHNw{s}, where l H N = { z e C l I m ( z ) > N  }, as a basis of 
neighborhoods of the cusps s=croo, ~I becomes a topological space with a 
continuous F-action. Let 

j : lH- -q f l  

be the inclusion. We make IH into a ringed space as follows: 

(1.1) Definition. Let 0n____j,0Hdenote the extension of (9~a to It7-I given at the cusps 
s = t r ~  by 

On, s = { f  e(j,O~)slf~(z) = O(Izlm), (Im(z)-+ ~)} .  

That  is, the germs in Off. s are given by the holomorphic functions f on the sets 
alHN, such that z -" f~(z )  is bounded on IH N for some integer m=m(f ) .  These are 
the functions meromorphic at the cusps: 

i f ( z )  = ~ a , z - "  (Izl > N').  
n > . - m  

If s = croo is a cusp, then the function az is an invertible global section of (9 n. When 
4= 0, we shall assume, without restriction, that ~ e S. 

The left action of s on ~I induces a right action on (9~, 

O n ~ 7 , O  n ,  f ( z ) ~  f~(z). 

On the constant sheaf V~ = C_2 we have the standard action of F : we let ~ = (~ bd) 
act from the right by 

(x ,Y)7=(x ,Y) ( :  bd). 

We consider the F-sheaf 

%( v) : = % | vf, 

of •2-valued meromorphic functions on ~ which are holomorphic on ~I. 
Throughout  our  considerations the global section 

e I - ze z e On(V)(~) = On(~)e 1 ~ On(ItZI)e2, 

where e 1 =(1,0), e2=(0, 1) plays a predominant role. An elementary calculation 
shows that, up to a constant, it is characterized by the transformation formula 

(e I = ze2) ~ = (cz + d)- l(e t - ze2) 

(I .2) Definition. We define the s On-submodule con of OR(V) by 

con = On(el - ze2) , 
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k =(9~(e~--ze2) k its k-th tensor power, k z Z  and denote by ~oa 

~o~ can be interpreted as the "square root" of the (P~-module 

O ~ : = d(.O ~ = #g fadz 

of differentials df  = dd@ dz because of the isomorphism 

2 ~ e)n ~ 0~ ,  (el - ze2)2 ~ d z ,  

which is F-equivariant since (dz) ~ = d(yz) = (cz + d)- Zdz. 

From now on we assume that F = SL 2 (IR) is a Fuchsian group of the first kind, 
Then, as is well known, the quotient space S=  F\~I has a natural structure of a 
compact Riemann surface. We consider the projection 

r~ : IH--*S. 

The images of the cusps are again called cusps. We set S = F \ H  = S -  {cusps}. 

(1.3) Proposition. (i) (Cn) r is the sheaf (9 of holomorphic functions on S, 
(ii) (O~) r is the sheaf 01(s of meromorphic 1-[brms on S which are holo- 

morphic on S and have a pole of order at most 1 at the cusps. 

Proof. (i) Let UCg be open and fz(r f is a F-invariant 
function on re- t(U) and thus defines a function f on U. Since f is holomorphic on 
re- t(U)nM, f is holomorphic on UcaS. f is, in particular, invariant under F~ for 
each cusp s = aoos ~r- ~(U), so the function F(z)  is invariant under the translation 

z=(10 hl~)~F~ andholomorphic  on ~I~, f o r N l a r g e .  It t h u s h a s a  Fourier 

expansion c o  

f" (z)=  ~ a,q", q=e 2=~z/h~, 
n =  - o o  

in which the coefficients a, must be 0 for n <0,  since i f (z)= O(Izl'), q = 0(1), but 
q-  x =~ O(iztm) for all m. We therefore have 

f(z) = ~ a~q~, q, = e2~io- ~/h,, 
n = O  

in the punctured neighborhood aR-I N of s. Since the analytic structure of S is 
defined in such a way that the F~-invariant function q~ is a uniformizing parameter 
at s, f is also holomorphic at ~=rc(s). Hence ((9~)r(u) is in fact the space of 
holomorphic functions on U. 

(ii) For each cusp s=troo we have 

hs dqs where a - e  2~*-~/ho 
d(tr- lz) = 2~i qs 

and hence 

1 F__ 1 r ,_  Z)) =qs (~Ptq, s) dqs. ( ~ )  _(f2~,s ) _((pf~,sd(a-1 r, -1 r~ 
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By what we have seen above the elements of this space can be interpreted as germs 
of meromorphic 1-forms at ~ having a pole of order at most 1. The elements of 
(tz~)r(u)=fZ~(rr-l(U))r are thus in 1-1-correspondence with the meromorphic 
I-forms on U which are holomorphic on U n S  and have at most a simple pole at 
the cusps. 

If f is a function on UC=~-I, then for each a= (~ bd)~SL2(IR) and k e Z  we 
define the function fo[a]k on a -  1 U by 

f o [a]k(Z ) = (CZ + d)- kf '(z).  

The following theorem shows that the F-automorphic forms of weight k in the 
classical sense are the global sections of the sheaf 

~o ~ : = ( o ~ )  r . 

(1.4) Theorem. I f  U c_ ~ is open, then cok(u) is canonically isomorphic to the space of  
holomorphic functions f(z)  on 7z- l(U)c~-I with the properties : 

(i) fo[~]k(Z)= f(z)  for all ~ F ,  z~rc-l(U)nlkI. 
(ii) For each cusp s=troo~zr-I(U) we have a Fourier expansion 

fo[a]k(Z)=q ~ ~ a,qn, q = e  2~z/hS, z~IHN, 
n = O  

where e = 0 if k is even or s is regular and e = 1/2, otherwise. 

Proof. ~o*(U) = ~o~(~- l(U))r = [ O n ( r e -  ~ ( U ) ) ( e ~  - zez)*] r consists of the F-invariant 
sections 

q~ = f (e  1 - ze2) k , fE  (9r I(U)), 

and we associate to tp the function f on IH~zr- I(U). The F-invariance means 

f (e  1 - z e 2 )  k = (f(e 1 - z e 2 ) k ) ~  _~ f o [ ~ ' ] k ( e  1 - -  z e 2 )  k ' 

i.e., f=f~ For  the function g = f o [ a ] k  this means in particular go[Q]k=g for 

all 0eF~ =tr-1F~tr. Since F~ is generated by z = (10 ~ )  or by z and - z  if s is 

regular (respectively by - z if s is irregular) we have 

g(z + h,) = g(z) [respectively g(z + h~) = ( - 1)kg(z)] . 

Therefore fo[a]k has a Fourier expansion 

fo[a]k(Z)=q ~ ~, a,q" for z~lH N, 
n = - o o  

with e defined as in (ii). The coefficients a, must be zero for n < 0 because of the 
growth condition fo [a]k(Z ) = f ' ( z )  (CZ + d)- k = O(Izlm). 

An automorphic form is a cusp form if the constant coefficient a o in its Fourier 
expansion at each cusp is zero. We denote by Sk(F) the space of cusp forms of 
weight k with respect to F. By (1.4) this is the space of global sections of the sheaf 

~o~: = (o~ |  ~:))r, 
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where (9~(- Z) is the sheaf of functions on II:I which are holomorphic on IH and 
zero at the cusps. 

We obtain a very simple description of the sheaf (ok if F has no elements of 
finite order and no irregular cusps. In this case the isotropy group F~ is trivial for 

(1 h ~ ) a _ l i f s = a ~ i s a c u s p ,  i t i s e a s y t o  each point seIH, and is generated by a 0 

see the following 

(1.5) Lemma. Assume that F has no elements of finite order and no irregular cusps. 
Then for each point selFI we have 

(9~(V)s=(9~,sVl @(9~,sv2 , ~o~,~=(9~,svl , 

with the F~-invariant germs v 1 =(e 1 - ze2)a- l, v2 =e2a- 1, where a is given by s=aoo 
if s is a cusp and is 1 if se lH. 

In particular (9~(V) and ~o~ are stalkwise free F-(9~-modules. 

Remark. Since the germs vl, v 2 are Fs-invariant, they can also be considered as 
germs in (9(V),, "~=~(s), by (0.2), so that 

(9(V)~=(P~vlG(9~v 2 and c~=(9~v 1. 

We shall make use of this fact later. 

(1.6) Corollary. I f  F has no elements of finite order and no irregular cusps, then 

Sk + 2(F) = H ~  oJ~(~O1) .  

Proof. By (1.3) the F-equivariant isomorphism .2 ~ r yields an isomorphism 

~o 2 = Ol(Z). 

Since co G is a stalkwise free F-(9~-module  we obtain by (0.3) 

(.ok+ 2 = ((.0~ (~ (D2 (~) (9~t( - -  z~))F = r (~)~r~l(~) ~) (9( - -  z~) : (.O k ~) ~,'~1. 

2. Hodge Structures 

Although we shall make no use of the known results from Hodge theory, let us 
briefly recall the basic set up of this theory. The result we are aiming at, the 
Shimura isomorphism, turns out to be of a typical Hodge theoretical nature. We 
shall present a proof of it, which follows perfectly the formulation of Hodge theory 
given by Deligne and Griffiths (cf. [2, 9]), with the difference that we need not to 
make any use of harmonic forms, and thus can keep our arguments rather 
elementary. 

Let V be a finite dimensional complex vector space, defined over R, so that we 
have a complex conjugation v ~  on V. 

(2.1) Definition. A Hodge decomposition of V of weight k is a decomposition 

V= ( ~  V pq with Vpq=[zqp 
p+q=k 
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To each Hodge decomposition one assigns the Hodge filtration 

V= F~ ~_ ... ~Fk~_Fk+ l =O , 

k 
where FP= (~  W "k-~. This filtration has the property 

j=p 

FPGffq=V, p + q = k + l .  

(1) 

(2) 

Conversely, every decreasing filtration (1) of V with the property (2) determines a 
Hodge decomposition of weight k, namely 

VPq=FP~Fq~-FP/F p+I for p+q=k .  

A polarization of a Hodge structure is a non-degenerate bilinear form (,) on V, 
defined over P,, such that (x, y ) : =  iP-~(x, y) is a positive definite hermitian inner 
product on V pq, and that the Hodge decomposition is orthogonal. The classical 
example of a polarized Hodge structure of weight k is the cohomology 
V = Hk(X, ~) of a non-singular projective variety X, or more generally of a compact 
K~ihler manifold. In this case V pq is the space of harmonic forms of type (p, q) on X. 

Now let S be a complex non-singular quasi-projective variety. We denote by 
t2 p, 8 p the sheaves of holomorphic and of complex valued C| forms of 
degree p on S, respectively; we set �9 = f2 ~ o ~ = r 

Let Vbe a complex local system on S defined over R, that is V= V~(~)~_ where 
!( 

V~ is a locally constant sheaf of finite dimensional real vector spaces. Let 

ap(v): =ap( v, 

be the sheaves of holomorphic, resp. C ~ -p-forms "with values in V". If 

f : X ~ S  

is a proper smooth morphism of quasi-projective complex varieties, then the sheaf 

V=Rkf ,  (Is 

is an example of such a local system. In this case the fibers of the {P-module 

O(V)=r174162 

(i.e. the fibers of the associated vector bundle) are the cohomology groups 
Hk(Xs, (E) of the fibers X s o f f  Each of these cohomology groups carries a Hodge 
structure and these Hodge structures vary with s. The 0-module (9(V) certainly has 
no decomposition into a direct sum of (P-modules analogous to (2.1), since 
holomorphic functions do not remain holomorphic under complex conjugation. 
However one can prove that there exists a decomposition of ~-modules 

r = O ~Pq(V), (3) 
p+q=k 

which in the fibers induces the Hodge decomposition of Hk(Xs, r 
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Thus, the Hodge decomposition of Hk(Xs, C) varies differentiably with s. But 
this "variation of Hodge structures" is induced by a holomorphic structure, 
namely, there is a filtration (~P) of the O-module O(V), which in the fibers induces 
the Hodge filtration of Hk(x~, ~) and by which one gets the decomposition (3) by 

g p q ( V ) - ~ p : , ~ q ~ p / o ~ p + l  for = k ,  - ~  ~' '~ ,r=~" ~/~" ,~ P+q 

where ~ f  =.~P(~)g.  By the "transversality theorem" of Griffiths we have for this 
e 

filtration 

where 

v=d| :o(v)-,~l(v) 

is induced by the complex differentiation d :O~t2  a. V is called the Gaufl-Manin 
connection. 

These results now lead to the following abstract definition of a Hodge structure 
on a local system. 

(2.2) Definition. Let V be a complex local system defined over IR on the smooth, 
quasi-projective variety S. A Hodge structure of weight k on V (or a variation of 
Hodge structures) is a filtration (~P) of the O-module O(V) such that 

(i) V~P-C_~-P-I| 
(ii) ~(V)= ( ~  gPq(V), where ~pq(V)=~c~o~-~ for p+q=k.  

p+q=k 
There is also the notion of a polarization on V and the central result in this 

context is the theorem of Deligne (cf. [9]): a polarized Hodge structure of weight k 
on V induces a polarized Hodge structure of weight k+  q on the cohomology 
Hq(S, V) of S with coefficients in the local system V, if S is projective. 

3. The Sheaf V k and its Polarized Hodge Structure 

We consider the constant F-sheaf Vfl = ~2 = C_el ~ e  2 on the extended upper half 
plane IH and its k-th symmetric power 

k 
V k = Sym~(~_ 2) = ( ~  ~ "  e k- J, 

j=O 

and we define the sheaf V k on S by 

v k  = (V~ , )  r . 

For the next three paragraphs we assume that F has no elements of finite order 
and no irregular cusps. In this case the stalks of IA are given by 

JSymk(~ 2) for 3= rt(s)e S, 
V~k=Symk(~2)G= [~(e20"-l) k for ~--~(tr~)~S\S. 
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Thus V k is a complex local system of dimension k + 1 on S (defined over IR) and has 
degenerate stalks of dimension 1 at the cusps. We are going to show that V k is in a 
natural way endowed with a polarized Hodge structure (in a modified sense) of 
weight k. 

a) The connection V. Let C~l(gk)=(Q~l @ V~f and ~~(vk)=~-~ @ V k. We set 

(9(vk):=(gn(vk) r and O~(E)(vk):=O~(Vk)r=f2~(E)@(9(vk). 

The F-equivariant, C-linear, surjective map 

d |  1 : (9~q(Vk) ~ (2~(V k) 

induces a ~-linear map 

which we call the connection of (9(Vk). We denote by ~l(Vk) the image of V. 

(3.1) Proposition. The sequence 

Vk- (9(Vb ,  vb- o 
is exact. 

Proof Tensoring the exact sequence 0~1I?---,(9~ n-L. f2~-*0 with the constant sheaf 
I/~ we obtain the exact sequence 

o_ v _ (gdvb o (vb- o, 

to which we apply the left exact functor F ~ F  r. 

b) The Hodoe filtration. Given an (gn-module or an O-module o ~ ,  we denote by 
~ k  its k-th symmetric power (k >0) over (gf~ or (9, respectively, and by �9 the 

product in the symmetric algebra + o~k. 
k=O 

Regarding that (gn(Vk)=(gn(V) k, the filtration (gn(V)=~co~0 induces a 
F-equivariant filtration 

(gdvb=  o =D ... = 0  

given by ~ = ~P-(gn(vk-P). By (1.5) all these F-(gn-modules  are stalkwise free. 
Passing to the fixed sheaves we obtain the filtration 

( 9 ( V k ) = ~ o ~ l  ~ ... ~k___~k+ 1 = 0  

where ,~P=~oP.(9(V k-p) by (0.3). 

(3.2) Proposition. V~ p ~_ ~ P -  i @ 91 (E). 

Proof On IgI we have 

~ p  __(Dp k-p ~ -  f~'(9f~(V )=(9fa(el-ze2)P.V~ -p. 
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I f f  is a section of d) n and x a section of V k-~, then 

(d| 1) (f(e~ - ze2) ~. x) = (ea - ze2F. x |  - pf(e~ - ze2) ~- 1. e2x |  ' 

and this is a section of ~-P- 1 |  since e2 .x  is a section of V k-p+1. Therefore 
d |  maps ~n~e into _~.~-P-1 | Hence 

v:~c__ ( ~ -  ~ |  ) ~ = : , - '  |  

by (1.5), (0.3) and (1.3). 

e) The Hodge decomposition. In order to establish the Hodge decomposition it is 
not sufficient to tensor the above filtration with the sheaf of Coo-functions on S. We 
shall work with a larger sheaf which we define as follows. Let 8~ be the sheaf of 
complex valued C~ on IH. We define the extension ~ of ~ by 

~'~ .~={f~(J ,~q)~lO~+uf f=O(lzr ' ) fora l lv ,#  >0  } O z ~ O - i ~  

for s = ao~s ,~, where m = m ( f  v, #). We set 

= (g~)r. 

The restriction gs of g to S is the sheaf of complex valued C~176 on S. Now 
the sheaf 

e ( v  = (en @ r = e | 

which obviously admits a complex conjugation, also admits a Hodge 
decomposition : 

(3.3) Proposition. 8(vk)= ( ~  P . -q  and P . -q  P -q o)~ co~ o~ o~ = ~ c ~ ,  where the subscript 
p+q=k 

indicates the tensor product with the (~-module ~. 

Proof. Since o~(V k) is the k-th symmetric power of 8(V) over #, it suffices to prove 
the proposition for k=  1. Each section v = f e  I +ge 2 of 

# ~i( V ) = 8 ~ ( ~  V~ = # ~ e a (~ o~ e 2 
r 

can be written in the form 

v = f ( e  I - ze2) + O(e I -- ~e2), 

where f = ( - ~ - z ) - l ( ' ~ f + g ) ,  ~7=(z - '~ ) - l ( z f+g)  are again sections of 8~. This 
decomposition is unique, i.e., 

k r / \ % / 

and thus 

~ ( V ) = ~ .  
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The Propositions (3.2) and (3.3) show that the filtration (~,~P) of ~(V k) satisfies 
the conditions of a Hodge structure of V k in a modified sense, due to the presence 
of degenerate stalks. 

d) The polarization. We now show that the Hodge structure of V k is endowed with 
a natural polarization. We consider the bilinear form 

Bl(x, y) = - det (x, y) 

on ~2, and its k-th symmetric power 

1 k 
BR(x,' ' ' ' 'xk,y,' ' ' ' 'yk) = ~ E 1-[ B'(x..ti).Y.,)) 

a,~:~t~k i = 1 

on V k = Symk(~2). This form is defined over 1R, is F-invariant and its linear 
extension is a F-invariant ~-bi l inear  form on r k) 

B* : a (V *) x 

Taking fixed sheaves we obtain an ~'-bilinear form 

B k : o~(V k) x o~(vk)--,~. 

(3.4) Proposition. B k is a non-degenerate bilinear form on the 8-module 8(V k) with 
the properties 

(i) Bk(x, y)=(--1)kBk(y,x) for any sections x ,y  of ~(vk). 
(ii) The Hodge decomposition ~(vR)= @ O9 tp. Og~-q is orthogonal with respect 

p + q = k  

to the form Bk(x, y?). 
(iii) The form ( x, y)  : = i~-qBk(x, ~V) is positive definite on co~. Coq~, p + q = k, i.e., 

for a section x of ~0~. &} we have 

( x , x ) > O  and ( x , x ) = 0  /ff x = 0 .  

Proof. Let sGl~ v I =(el -- ze2)tr -1, ~l=(el--~e2)a -1, where a = I d  if sGIH and 
troo =s  if s is a cusp. Since by (1.5) v 1 is a F:invariant basis of ~or the stalk of 
#(V k) at : =  n(s) is given by 

e(v%= 0 , | Cv, v,. 0 ) 8 ,  ~ ( '08,  ~ - -  P ' ~ q  
p + q = k  p + q = k  

An easy calculation shows that 

p.r,q p'.r,r _ I l k  )[\p if p:~p' (Vl V1'131 Vl, ) -  l (2Ima- lz )k  if p=p' 

for p + q = p '+  q '=  k, and this immediately implies the proposition. 

We now extend the sheaves d'~of complex-valued C~ forms on IH 
of degree i to IZI by 
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and g~ :=A'g~ (of course ~ -=0  for i>2). We set ,~( l# ' )=g~@ V~. The total 

differential "" '~ ' ~+ d . g~--, d~ I and d . l ,~ - - - ' , J ,~  induces the F-invariant maps �9 '~ i+ 

d |  i k i+ ~'~I(V )--~v n l (vk) .  

Hence, for the fixed sheaves 

gi: =(#~)r and d~(Vk): = ~ ( v ~ ) r = d  ~ k) 

we obtain the maps d : 8i--*d ~+ 1 and 

v : ~ ( v ~ ) ~  '+'(Vk), 

induced by d |  
The bilinear form B k : 6~(V k) x #(Vk)--}#, together with the exterior product of 

differential forms #i |  ^ ~ $~+~ defines a product 

~ ( V  k) x ~ ( V  ~) ^ ,  ~+~ 

by the rule (a| fl| w)a ^ ft. It is easy to check the following 

(3.5) Lemma. I f  ~,tl are sections of #~(V~),N~(V~), then 
(i) ~ ^ q = ( -  1)U+~r/ A ~. 

(ii) d(r A rl)=(Vr A rl+(-1)~r ^ (D/). 

4. The Hodge Filtration of H'(S, V k) 

Again w,e assume that F has no elements of finite order and no irregular cusps. We 
now show that the filtration (~P) of (9(V k) together with the connection V induces 
a filtration of the C-vector space Hi(S, vk). We consider the complex 

rr (  vk)  : rg( vk)  --, ~ , ( v~) --, o , 

which by (3.1) is a resolution of the sheaf V k. Because of (3.2) the filtration (ffP) of 
g0(V k) yields a filtration (~P) of the complex O'(Vk): 

m y  *) = i~ ~ : c~(v*)-~ fil(vk) 
k.)ll k)ll 

This filtration yields for every p a complex ~p/~p+l and we obtain a hyper- 
cohomology spectral sequence 

E~,q = ~Ip + q(~, ~p/~p + ~)~IH~ + q(~, 0 IVY)) = HP+q(~, V~), 

which converges to the cohomology H ~S, V ~) because Q'(V k) is a resolution of V k. 

(4.1) Proposition. The terms E~ 'q are given by 

[ Hq(S, o9- k) for p = 0 

EPl,q=IHP+q(S,~P/q~P+I)=iHk+q(S,o)k@~I ) for p = k + l  

for p=k0,k+ 1. 
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Proof. Let v~ = (e~ -Zez)a-~, I) 2 = e 2 f f - ~  d~fa ' s where a is chosen such that s = a ~  
if s is a cusp and a = Id if s e IH. By (1.5) the germs v j .  1)k-j~ (9~, ~(V k) are F~-invariant 
and form a basis of the d~-module r ~= n(S). Moreover we have 

k 
~ =  | r .1)~-J. 

j = p  

The homomorphism (9~(l,~)~co~ k given by (e~-Zez)J.e~-~--+O for j < k ,  
e~-- , (e l -ze2)  -k is F-equivariant and has kernel ~O~'C~(vk-1). Taking fixed 
sheaves we get a homomorphism (9(vk)--'CO -k with kernel co.(9(V k-x) which is 
surjective, since at every point ~ S  the germ 1)~ is mapped onto the germ v~ k. 
Therefore we have o~~  ~ ~ o  -k. This means that ~ o / ~  is the complex co-k--->0, 
and therefore 

We next show that 

7~ = ~ ( ~ ,  ~ o / ~ )  = H~(~, o~-*). 

(~ |  ~) = to~| ~ 

This equation holds trivially on S because fP (Z)ls = f2~. Let ~= rc(aoo) be a cusp. In 
order to compute the stalk 

(2(V% = v(r = (d | 1)(r v~)~ ") 

we observe that Vv I = - v:d(a-  ~z), Vvz = O. For 

k 

j=O 

we thus have 

k k 

j=O j=O 

k - 1  

= y~ 1){. 1)~- ~| (i + 1)f j  + ,  d ( o - '  ~)) + v~ | d L .  
j=O 

An element v~|174 (9~v~| belongs therefore to f)l(vk)~ iff 
V~ | = V~ |  where fE  r and henceiff v~ |162 (ogk| This gives the result 
that ~k+ 1/itCh+ 2 = ~k+l is the complex 0~cok| SO that 

E~+ 1,q = iFik+ 1 +q(~, ~k+ 1)_____ Hk+q(~, o ) k |  . 

We now show that the complex ~p/~v+l is acyclic for p+O, k+  1. For each 
point ~ S we have 

- -  ~-~ ~ 1  " ~ 2  ~ * * v ~  , /  g 

and by the above computation 

V(fv~, . v~ - ~) = v~, . v~ - ~ | d f  - pfv, ,  - ~ . v~-  ~ + '  | d ( ,  - ~ z)  

m --pfv~- 1. V~-p+ l |  lz) mod(~p| 
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This shows that  the map  

~ I ~ P .  1: k - P m ~ c l  )c~'p + 1 _~V (ggt~ p - 1. V~- p + 1 | ~-~ 1 (~)g  m o d  ( ~ - P  (~  ~'~ 1 (~)g) ('3 ~'~ 1 (vk)~ 
~ 1  ~2 ~ ~ 

is an isomorphism for p = 1 . . . . .  k. Therefore ~P/~P+ a is acyclic and 

E U  = flip + q(~, ~ p / ~  + ,) = 0 

for p # O , k +  1. 

(4.2) Theorem. (i) The spectral sequence IHP+q(CS,~P/~P+I)=~HP+q(S, V k) deoen- 
erates and yields a filtration 

HI(~,  Vk)=F~ 1 ~ ... ~ F  k+l =~0, 

where F~ 1 = H i ( S ,  co -k) and F 1 . . . . .  Fk+ 1 =HO(~, cok| 
(ii) H~(S, v k ) = 0  for i # l  if k#O. 

Proof. We have to show that  all the differentials 

dp, q. Ep,,~_+Ep+,',,j-~+ x (r>= 1) 
r " - - r  - - r  

are zero. We first assume k>O. Then H~ because there are no 
au tomorph ic  forms of negative weight, and H q ( S , ~ - k ) = o  for q > l ,  since this 
group is dual to H 1 -r ~ k |  by Serre's duality theorem. Therefore E ~ = 0 for 
q4 : l .  Since Ekl+l'q=Hk+q(S, ook| 1) is also zero for k+q4:0  (again by Serre 
duality), we see that  the only terms E~ '~ different from zero are E ~ ~ and E] + x, -k. 
This implies dff' q = 0 for all r > 1. If k = 0, then d = d o' 0 sits in the exact sequence 

0-~H~ C)-~H~ (9) ~ H~ 0 1) 

associated to the exact sequence 0 ~ r  f2 ~ ~ 0 .  Since H~ IE)= H~ (9)= tE 
we have d = 0  also in this case. Thus the spectral sequence degenerates, i.e., 
EPl "q =E~ q and therefore 

F r o m  (4.1) follows 

FO/F 1 = Ht(~, co-k) 

I S ' P / 1 5 " P  + 1 _ _  ~ ' p ,  1 - p _ _  r~,p, I - p 

and F 1 . . . . .  Fk+ l=Ek+ l ' -k=H~ COk| 

(4.3) Corollary. dim H 1 (~, V k) = 2 dim S k + 2(F). 

Proof. F r o m  the theorem we obtain the exact sequence 

0 ~ H ~  a~*| f21) ~ H 1  (;~, Vk)~H1(g, o9-k)~O, 

in which the last group is dual to the first one by Serre duality. 

5. The Polarized Hodge Decomposition of HI(S ,  V k) 

We are going to show in this paragraph that the filtration of HI(S, V k) obtained by 
(4.2) is in fact a Hodge structure of Hi(S, vk). 
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We consider the sheaves o ~i, 8i(V k) on S, which we have defined in Sect. 3, with 
the connection V ' S i ( v k ) ~ 8  i+ ~(V k) and the product &(V k) x o~](V k) ~o ~+~. We 
denote by ~l(vk) the image of r k) under the map V : r In the same 
way as Proposition (3.1) we obtain the 

(5.1) Proposition. The sequence O~ v k ~ ( v k ) - ' * ~ l ( v k ) ~ o  is exact. 

The sheaves cok| g~ l (vk )  and cok| =ZQI(F k) are subsheaves of ~l(l/k) 
and we obtain from the exact sequence (5.1) a homomorphism 

nO(s, gok|174 no({~,81(Vk)) ~ , H i ( S ,  V/C). 

We know already by (4.3) that the direct sum and Hi(S, V/C) have the same 
dimension and we now prove the 

(5.2) Theorem. (i) For Hi(S, V k) we have the Hodge decomposition of  type 
(k+ 1,0), (0,k+ 1) 

ul(g, vk)," HO(g,~ok@Ol)@HO(g,~ok| 

(ii) The polarization on 8 (V  k) induces a polarization of this Hodge structure, 
which agrees with the Petersson scalar product on the vector space on the right. 

Proof Let to~ Sk+ 2 = H ~  ~, ('0k(~)s 1) and ~ = Sk+ 2" Considering to and ~v as sections 
over S we have 

toe ~~ ~o~ @a~) = n~ ~h@ ~ } "  

and we can write 

to= f(el--ze2)k| and ~=g(el--ze2)k| 

where f ,  g6 (_9n(IH) are cusp forms of weight k + 2. We now form the product (p A 
defined in Sect. 3. A straightforward calculation shows that 

q> A ~ = (-- 2i)kf �9 ~ Im(z)kdz A d-~. 

It is very well known (and elementary to prove) that the integral ~ to A ~ is 
S 

convergent, and we get a non-degenerate bilinear form on Sk+20)SR+ z by 

(~ , Ip ) :  ~--- I t o  A 9}0. 
8 

In order to prove (i) we have only to show that 6 is injective on Sk+ 2~)Sk+ 2' i.e., 
that 

VH~ ~, {f(Vk))c~(Sk + 2GSk+ 2) =(0). 

This is now a computation of well known type. Let heH~162 be such that 
Fhe & +  2 ~ S k  + 2, and let to = f ( e ~  - ze2) k| be an element in Sk + 2" Since by (3 .5)  

Fh A to = d(h A to)--h A Vto = d(h A to), we have 

S Vh A tp = ~ d(h A to), 
8 S 
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where d ( h ^  q~)eH~ N2). Let S N = S -  U UN,~, where UN,~=n(UN, s) is the 

neighborhood of the cusp g=rc(a~)  given by UN, s=alHNw{S}. Since 

Vh ^ ~o = lim ~ d(h ^ ~o), 
S N * ~  SN 

we can now use Stokes' theorem. Thus 

I d(hAqo)-- I h A q ~  ~ h^q~.  
S ~  OSN ~ dUN, "~ 

We rewrite the last integrals in the variable of g-I N. In the neighborhood UN, s of 
k 

s = a o e  we can write h=  Y'. hjv~.v~ -~, where v 1 = ( e l - z e z ) a  - I ,  v2=ez  a -1  and 
j=O 

hie dn(um~) rs. The map a: II-[N~ UN, ~ --{S} transforms q~ into 

q~a = ff(z)((e t - zeE)a)k| = f o [a]k+ 2(z)(el -- ze2)k| 

and therefore h ^ ~o into 

(h ^ q))a = 2 h~(z)(e~ - ze2) j.e~ - j  ^ (fo[a]k+ 2(z)(e~ -- ze2)k| 
\ j=O 

= hi(z  ). f o [o-] k + 2(Z) dz" 

Setting z = x + iy we thus have 

h A  q)= I h;(z) f~ ~ h~o(x+iN)f~ x + i N ) d x "  
OUN,..r y=N [xl <hs 

Ixl < h, 

Since f is a cusp form of weight k + 2, we can write for large N 

f ~ z(z)=qg(q) 

where q = e 2niz/h~, 2E 1HN, and g is a holomorphic function in q. Since 9 remains 
bounded on this neighborhood, and since h o e (No. ~)r~, we can find a constant c and 
an integer m such that 

Ih~(z)'f~ [a]k+ z(Z)[ < c(Imz) m" Iql = c(Imz) me- 2~zlm(z)/hs 

for z6 II-I N and N sufficiently large. We get 

J h ^ ~ p  < ~ [h~(x+iN) . fo[a]k+z(x+iN) ldx  
O ,~ Ixl <h~ 

< c ~ N " e -  Z,,N/h,dx < 2h~cN"e- 2,,N/h~, 
Ixl<hs 

which tends to zero as N ~  or. We have proved that 

~ Vh ^ ~o=O 
s 

for every ~oe Sk+ 2- Analogously one sees that ~ Vh ^ ~0 = 0 for every ~e  Sk+ z. That 
s 

is, the element Vh is orthogonal to Sk+ z~Sk+ 2 under the non-degenerate pairing 
on this space. This proves that Vh =0. 
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In order to prove (ii) we need only to observe that, if q~,~Sk+ 2, then 
(r ug): = i k+ :(tp, ~) is the Petersson scalar product of the two cusp forms. 

6. The General Shimura Isomorphism 

Throughout  the last three paragraphs we have assumed that F has no elements of 
finite order and no irregular cusps. The reason for this was, that under this 
assumption the ~q-modules which we have considered were stalkwise F - (_9~-free, 
so that the functor F-+F r preserved the tensor product. We can now drop this 
assumption because a Fuchsian group of the first kind contains always a normal 
subgroup F' of finite index without elements of finite order and without irregular 
cusps (cf. [8]). 

Let X : F--*IE* be an abelian character. A cusp form of weight k with character X 
is defined by replacing the condition fo  [~]k = f in the usual definition by f o [~]k 
= g(7)f. We denote by Sk(_F, X) the space of cusp forms of weight k with character Z. 

If Fr is a F-sheaf on 1H, then we denote by F~(X) the F-sheaf which as a sheaf is 
Fr but on which the action f ~ f f  of 7~F is changed into f ~ g ( 7 ) ' f f .  We set 

F(Z)= F~(Z)". 
(6.1) Theorem (The Shimura isomorphism). Let F be a Fuchsian group of  the f irs t  
kind, z : F -+C *  an abelian character and k>O. Then we have a canonical 
isomorphism 

Sk+ 2(F, z)@Sk+ 2(F, Z) ~ H'(g,  Vk(Z)) �9 

Proof. Let F' ~ F be a normal subgroup of finite index without elements of finite 
order and without irregular cusps on which Z is trivial. Let S '=  F'\II7-I. Then S'-+ S is 
a ramified Galois covering with Galois group A = F/F'. The sheaves 

cok(z)~, | t2~, k 1 =(con(Z)| r" and vk(x)~,=vk(z) r' 

are A-sheaves on S'. By (5.2) we have an isomorphism 

n ~  ' , co*(Z)s, | f2~,) '~ @ H~ ' , cok(z)S, | f2~, )4 ~ n ~(rS', Vk(z)~, )4. 

Furthermore we have 

~.~ 0 -- k ~'~1 F 0 - t  k I d Sk+2(F,x )=H (S,(og~(Z)@ ~ ( - Z ) )  ) = H  (S,o9 (Z)~,@O~,) . 

The first isomorphism was proved in Sect. 1 for g = 1, but the same proof holds for 
the general case. Hence we have only to show that 

Hi(S,  v k ( x ) ) = H ' ( S  ', Vk(z)~,) d . 

Since/A is finite, the functor F ~ F  A is exact on sheaves of G-vector spaces. 
Therefore we have a spectral sequence (cf. [4], Proposition 5.2.3) 

E~ J = Hi(A, HJ(g ', Vk(z)~,)) ~ n '  + J(g, vR(z)). 

The finiteness of A implies E~ ~ = 0 for i4:0, and thus the spectral sequence yields 
the required isomorphism. 
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