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1. Introduction 

The Dedekind t/-function defined in the upper-half plane H by 

(1 .1 )  , t (~)  = e ~'~'12 ~ ( l  - e 2 ..... ) 
n = l  

is one of the most famous and well-studied functions in mathematics, particularly in 
relation to elliptic curves and modular forms. Its 24th power !/24 is a modular form 
of weight 12 for the group SL(2, Z) or equivalently the expression 

I I (T) 24 (d77) 6 

is invariant under the action of  SL (2, Z). This gives the transformation properties 
of log t/(r) under SL (2, Z), up to the addition of  an integer multiple ot'rri/12. In [12] 
Dedekind investigated this integer ambiguity and its dependence on a general 
element 

of SL (2, Z), expressing the answer in terms of  the Dedekind sums (for c =# 0) 

{(:)) (/a:)) 
where for any real number x 

for integral x 

otherwise. 



336 M. Atiyah 

Dedekind's formula (for c 4 = 0) is 

(a~ + b ~ 
log q \o r  + d / / =  logq (z) + �88 { - (cT + d) 2} 

. (a+d ) 
(1.3) + ~l ~12-~i - signc, s(a, c) . 

Here log { - (cT + d) 2 } is that branch whose imaginary part has absolute value less 
than ~z, while logq is any fixed branch defined on H: for example that branch for 
which 

l o g q ( r ) -  ~ 0  as l m T ~ o o .  
12 

For c = 0, A acts by an integer translation on r and the effect on log q (r) is trivially 
read off from the definition of  q (r). 

It should be noted that the problem which Dedekind posed and solved with the 
above formula is essentially a topological one. Using the cohomological properties 
of  SL (2, Z) it is not hard to show that, up to equivariant homotopy,  there is a 
unique section 

s = f ( r )  d r  ~' 

of T -(' (T being the tangent bundle of H) which is nowhere zero and SL(2, Z)- 
invariant. The transformation properties of l og fund e r  SL (2, Z) are then the same 
as those of  log q2~. Thus the analyticity of r t is not directly involved in Dedekind's 
formula. 

In the past hundred years these ideas have been pursued in different directions 
by many people including Rademacher [31], C. Meyer [23, 24], Siegel [34], Hirze- 
bruch [16, 17], W. Meyer [25], Atiyah et al. [6], Atiyah et al. [5], and Mfiller [27]. 
Recently ideas emerging from the physics of  gauge theories and developed by 
Witten [35], Quillen [29, 30], and Bismut and Freed [9, 10] have cast new light on 
these problems. It seems therefore timely to attempt to survey the whole development 
of  the theory of log r/, putting results in their natural order and in the appropriate 
general context. This is the aim of the present paper, in which the emphasis will be 
strongly geometrical. In a sense we shall show that the latest ideas from physics 
provide the key to a proper understanding of  Dedekind's original results. 

From a mathematical point of view the general context is that of  the index 
theory of elliptic operators as applied to the signature of manifolds. We shall use 
many versions and generalizations of  the original Hirzebruch signature theorem, 
involving families o f  operators, manifolds with boundary and group actions. All 
are involved in the story. 

We shall now review the history of the subject in a little more detail. 
Rademacher [31 ] put the emphasis on an integer-valued class function ~u, defined on 
SL (2, Z) by the formula 

a+d 
q/(A) = 12signc's(a'c)-3sign(c(a+d)) for c4=0 

C 

b 
(1.4) d for c 0 
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which is closely related to the Dedekind formula. In particular Rademacher gave a 
simple formula for ~, (A) when A is expressed explicitly in terms of the standard 
generators of SL (2, Z). Meyer [24] and Siegel [34], following methods introduced 
by Hecke, computed the values L A (0) of certain L-functions LA (s) attached to real 
quadratic fields, in terms of the modular behaviour of log ~ (T) and hence in terms of 
Dedekind sums or the Rademacher invariant ~u. 

Hirzebruch [16] made an extensive study of the "cusps" of Hilbert modular 
surfaces for real quadratic fields and found in particular an explicit resolution for 
them. He also attached a "singular defect" 6 (A) to each such cusp, this being the 
correction term due to a cusp in the general Hirzebruch formula for the signature of 
a 4-manifold. Using his explicit resolution he was able to compute ~ (A), finding the 
formula 

6 (A) = 1 - ~ , ( A ) ,  

where ~u (A) appeared explicitly through the Rademacher formula in terms of the 
generators. 

Comparing this formula for ~ (A) with Meyer's evaluation of L A (0) Hirzebruch 
found that (5 (A) = L A (0). He then conjectured that this formula might continue to 
hold for totally real number fields of any degree, since both (3 (A) and L A (0) could be 
defined quite generally. Hirzebruch also drew attention to another formula of 
Rademacher, giving an alternative expression for Dedekind sums, namely 

I , I 1  ~k rrak 
(1.5) 4 l c t s ( a , c ) =  ~ cot - c o t  - 

k - 1  C C 

(this formula is obtained by taking "Fourier  transforms" over the finite abelian 
group of integers modulo c). This new expression appears in the equivariant 
signature theorem [2, 3] as the "signature defect" due to a cyclic singularity (i.e 
arising from an isolated fixed point for the action of a cyclic group). It seemed 
somewhat mysterious that the Dedekind sums should appear in connection with 
modular forms and also in topology. 

Motivated in part by Hirzebruch's conjecture on totally real fields Atiyah, 
Patodi and Singer introduced in [6] a differential geometric L-function defined in 
terms of eigenvalues 2 of  a certain first order differential operator (on odd- 
dimensional manifolds' by the series 

y, (sign r t,~ I ~'. 
,i~:0 

To avoid confusion with the Hirzebruch L-polynomials, which appear in the 
general formula for the signature of a 4k-dimensional manifold, this series was not 
denoted by L (s) but by q (s) instead [unsigned series were traditionally denoted by 
~(s)]. This will now lead to an unfortunate but by now inescapable clash of 
notation, since our main concern here is the Dedekind 1/-function t t (T)! The main 
result of [6] was to identify r/(0), computed for a manifold Y, as the boundary 
correction to the Hirzebruch signature formula for a manifold X with boundary Y. 
This was in a differential-geometric context, characteristic classes being represented 
by the appropriate Pontrjagin forms. 



338 M. Atiyah 

In [5] the results of  [6] were applied to manifolds which occur as boundaries of  
neighbourhoods of the cusps of  Hilbert modular  surfaces. In this way the 
Hirzebruch conjecture was established, both 6 (A) and L a (0) being identified with 
~/y(0). An independent but related proof  was given by Mfiller in [27]. 

Recently Witten [35] has argued that "global anomalies" in gauge theories can 
be expressed in terms of the invariants r/(0) o f  [6]. Witten's arguments have been put 
on a rigorous footing and established quite generally by Bismut and Freed [9, 10], 
on the basis of  earlier ideas of  Quillen [29, 30]. The situation is roughly as follows. 

I f  M is an even-dimensional compact Riemannian manifold with a spin- 
structure one can define the Dirac operator  D acting from positive to negative 
spinors and the index-theorem [3] gives a topological formula for index D in terms 
of Pontrjagin classes. More generally one can consider the Dirac-type operators, 
including the operator whose index is the signature, and there are corresponding 
formulae. The index theorem for families of  elliptic operators [4] generalizes this 
situation to include "parameters" ,  i.e. for a fibre bundle Z ~ X with fibre M. The 
index theorem now becomes a formula in K(X) or, on passing to cohomology, a 
formula in H* (X). This theorem can then be "localized" to a formula in terms of 
differential forms on X, the main point being to define an appropriate local form of 
the index of families. This programme has been carried out by Bismut [8] following 
ideas of Quillen [30] and motivated by the ideas of  local anomalies in the physics of  
gauge theories. The 2-dimensional component  of  the index of a family is of  special 
interest as the first Chern class of  the "determinant  line-bundle" 50 over X. 

Physicists need to introduce determinants of  operators, and there is no difficulty 
in "regularizing" such determinants for positive self-adjoint elliptic operators (e. g. 
of  Laplace type). The most elegant way is the ~-function regularization introduced 
by Ray and Singer [32], in which one puts 

~(s) = X2 -~', det = e x p ( - ~ ' ( 0 ) ) .  

For  an operator D of Dirac type this procedure, applied to D*D enables one to 
define I det D 1, but since D is naturally complex there remains a problem of phase. It 
turns out that there is an essential difficulty (anomaly) in attempting to define this 
phase in an invariant way. However  one can define its logarithmic derivative and 
this endows the line-bundle 2 '  above with a unitary connection. The curvature of  
this connection is then a measure of  the (local) anomaly. 

Even if 5 ~ is flat, so that the local anomaly is zero, there may still be "global 
anomalies" arising from non-trivial monodromy of  50 round non-contractible 
closed loops in X. To each such loop one gets an odd-dimensional manifold W 
fibred over the circle with fibre M. Witten has argued that the global anomaly is 
given essentially by the "adiabatic  limit" of  exp~i~/w(0 ), the limit in which the 
metrics on M are shrunk by a factor e with ~: ~ 0. Bismut and Freed [9] using the 
earlier work of Bismut [8] have proved this result even when 50 is not flat, although 
in that case both sides depend on the actual loop (not just on its homotopy  class). 

All this discussion applies to any operator  of  Dirac-type. Note also that adding 
an even integer to qw(0) leaves the monodromy of 50 unaffected. This is related to 
the fact that, as an eigenvalue changes sign, q (0) jumps by 2, so q (0) mod 2 Z  is a 
continuous function of  the parameters. In general we cannot control the 
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appearance of zero-eigenvalues, leading to such jumps. However, for the special 
case of the signature operator the zero-eigenspace represents harmonic forms so 
that, by Hodge theory, it is determined by the cohomology and cannot jump. Thus, 
tbr the signature, t/(0) is continuous and enables us to define a natural logarithm for 
the monodromy of 5O. It is this extra refinement of the general theory which will 
specially concern us. 

The relevance of these general ideas involving anomalies and index theory to 
our particular situation is fairly clear. From its very definition as an infinite product 
it is clear that the Dedekind q-function should be some regularized determinant, the 
manifold M of  the general theory will be a 2-torus with flat metric and SL (2, Z) will 
appear as the group of components of  the diffeomorphisms of  M (preserving 
orientation). 

The topological properties of the signature are also important for us. It is well- 
known that the signature is multiplicative for products of manifolds. More 
generally [11 ] the same is true for fibrations provided the fundamental group of the 
base acts trivially on the cohomology of the fibre. However, multiplicativity fails for 
general fibrations and this can be understood in terms of  the index theorem for 
families. This failure already takes place in the lowest dimension when base and 
fibre are both Riemann surfaces, as explained in [1] and [19]. 

The more general situation of the signature ['or a local coefficient system (not 
necessarily arising from a fibration) was investigated by Lusztig [21 ], while Meyer 
[25] studied surface fibrations over a surface with boundary. In particular, when the 
fibre M is a torus, Meyer introduced a rational-valued class-function 4~ on SL (2, Z) 
with the property that </) (A) measures the signature defect (in the category oftorus-  
bundles) for the 3-manifold W(A)  associated to A: W(A)  ~ S 1 is the torus bundle 
with monodromy A. Meyer showed that his invariant (/> was closely related to the 
Rademacher invariant ~ and that, for hyperbolic elements A of  SL (2, Z), 

(1.6) </~(A)= 1 -3v'(A). 

Our presentation will start with this topological situation studied by Meyer and 
Lusztig. The main result is the signature theorem (2.13) for a local coefficient 
system on a surt;ace with boundary. The theorem expresses the signature as the 
relative Chern class of  a certain line-bundle L, with a trivialization a on the 
boundary. This trivialization is given by (and essentially equivalent to) a certain 
2-cocycle for the group G (indefinite unitary) of the local system. Equivalently 
can be viewed as a section of a certain group extension G 2 of  G (with kernel Z). For  
semi-simple elements A of G we give an explicit computation of a (A). In particular 
when A is a hyperbolic element of  Sg (2, R) we show (2.15) that a = a 0, where ao is 
the natural section defined by the one-parameter group through + A. The proofs in 
Sect. 2 use the theory of group extensions of Lie groups and are essentially 
geometric versions of Meyer's results. In Sect. 3 we give an alternative analytic 
approach based on the index of  elliptic operators and generalizing Lusztig's proof. 

In Sect. 4 we consider fibrations over a surface X (with fibre M of dimension 
4k - 2). The cohomology of  the fibres then gives a local coefficient system of  the 
type studied in Sect. 2 and Sect. 3. We describe the Quillen determinant line-bundle 
5 ~ and the results of Bismut and Freed [9] for the signature operator. The conclusion 



340 M. Atiyah 

is that A ~, restricted to the boundary of  X, has a canonical trivialization determined 
by the ~7-invariant, that ~ = L* (where L is the line-bundle of  Sect. 2) and that the 
r/-trivialization of  ~ 2  coincides with the (dual of the) a-trivialization of  L 2 if 
dim M = 2, or more generally i fHom (Diff + (M), Z) = 0. This can be viewed as the 
appropriate refinement, for the signature operator, of the general Bismut-Freed 
result. In the last part of  Sect. 4 we recall various versions of the equivariant 
signature theorem and show in particular how Dedekind sums enter from isolated 
fixed-points. We derive formulae relating ~-invariants for finite coverings with such 
fixed-point contributions. This material is essentially a summary of [7, Sect. 2]. 

In Sect. 5 we specialize to the case when the fibre M is a 2-torus with flat 
(normalized) metric, so that the natural parameter space is the upper-half plane 
Hmodulo  SL(2, Z). The signature cocycle o- of  Sect. 2, for the group SL(2, Z), is 
now a coboundary and this leads to Meyer's invariant 4: 

-~=(5,/>. 

Using the main result of Atiyah et al. [6] we prove (5.12) that 4) (A) = t/~ (A) where 
q ~  is the ad iaba t i c  limit Ofqw(0 ) with W =  W ( A )  being the 3-manifold, fibred 
over S 1, associated to A. Moreover the results of Sect. 2 enable us to identify 0 (A), 
for A hyperbolic, with another topological invariant x(A) which is essentially the 
quantity Dedekind studied. In fact i f o )  a is the natural A-invariant differential (i.e. 
invariant under the corresponding one-parameter group) then 

q ( z ) 4  d~ 
] ( r )  - 

O) A 

is (up to 6-th roots of  unity) A-invariant, and so we can define x(A) by 

logf (A r) - l og f ( r )  : - ~iz (A). 

Since it is easy to deal with the explicit term (")A it is clear that determining )~(A) is 
effectively equivalent to Dedekind's problem. 

We then move on to study Quillen's determinant line-bundle L- ~ and we prove, 
by several methods, that ~ i s f l a t  or, as physicists say, the local anomaly vanishes. 
Moreover 

~1J = ~i (r) ~ dr 

gives a covariant constant section o f Y .  I f now A ~ SL (2, Z) is hyperbolic and, i f H  A 

is the quotient of H by the group generated by A, we can descend :go to H A . Since L, ~ 
is flat it will have a well-defined monodromy round the fundamental loop of  H A. 

Using the standard trivialization cr 0 of ~ (given by the one-parameter group 
through + A) we can take the logarithm of this monodromy. Dividing by 7;i then 
defines an invariant/t  (A). Topological considerations (or the use of  e)) then show 
that / t (A)  = z(A). 

A direct analytical computation of/t  (A) on classical lines (as in [34]) shows that 
/ ~ ( A ) = L A ( O  ) where LA(s ) is the L-series defined in (5.49). Together with the 
previous results this then proves that, for hyperbolic A, we have the equalities: 

L A (0) = 12 ( A )  = Z ( A )  = 4) ( A )  = tl ~ ( A ) .  
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By a simple argument, based on conformal invariance, we then prove that q (A) 
= r/~ provided we use the natural metric on W(A)  given by the A-invariant 
geodesic in H. We also show fairly directly that Hirzebruch's signature defect 6 (A) 
coincides with Meyer's invariant (/~ (A). 

These results, based on the Bismut-Freed theorem, give therefore a new 
analytical proof of  the main result of  [5] (for quadratic fields), namely the equalities 

LA (0) = ,~ (A) = ~ (A) .  

In fact the analysis in [5] has common features with the Bismut-Freed approach, 
notably the use of the adiabatic limit. The main results of Sect. 5 are summarized in 
the final Theorem (5.60). 

Having thus identified 4~ (A), by general methods, with various other invariants 
we proceed in Sect. 6 to the question of explicit computation. Again our approach 
will be based on geometrical methods, and in particular on the use of  the fixed-point 
formula in the equivariant signature theorem. We use this first, in an obvious way, 
to compute q5 (A) for elliptic elements A (i.e. of finite order). We then move on to 
consider parabolic elements. These, together with the elliptic elements, occur 
naturally as the monodromy round exceptional fibres in algebraic families of 
elliptic curves. We prove a simple general formula (6.3) for 4)(A) in terms of  the 
structure of the associated exceptional fibre. 

We then turn to the main case when A is hyperbolic beginning with the simple 
case when c = - 1, a + d > 0, A being as usual 

Following Hirzebruch [16] we show that the 3-manifold W(A)  is in this case the 
boundary of the neighbourhood of a nodal rational curve F embedded with normal 
degree - (a + d). This leads, as in [16], to the simple formula (6.9) for the signature 
defect 8(A) = (/~(A). 

The general case is then related to this special case by a covering argument and a 
further application of the fixed-point formula for the signature operator. The 
manifold W(A) has W(B)  as a finite covering of  order Icl, where (for c < 0) 

The difference 

1 l 
(1.8) ,])(A) - F~ (/)( B) = ~I(A) - IC[ ~I(B) 

is then an example of  the invariant for finite coverings (independent of all metrics) 
described in Sect. 4. As explained in Sect. 4 it can be computed by using the 
manifold Z(B)  with boundary W(B).  The covering W(B)  -+ W(A)  extends to Z(B)  
with a single singular or fixed-point. The Dedekind sum arising from this fixed- 
point then gives the difference (1.8). Together with the simple formula (6.3) for 
4~(B) this then leads to the general formula (6.14) for (h (A); in view of (1.6) this 
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essentially becomes the Rademacher formula (1.4). Moreover the equality ~/~ (A) 
= z(A) then leads (for hyperbolic A) to Dedekind's original formula (1.3). 

For non-hyperbolic elements we can still (for c=# 0) use the same covering 
method to compare 0 (A) and 0 (B), and hence derive Dedekind~ formula (/.3) in 
general. 

In earlier treatments Dedekind sums appear at the beginning of  the story and 
are made the basis for subsequent developments. Here we have deliberately 
postponed them until the computational stage. The general theoretical ideas are 
best understood without reference to Dedekind sums. These are then easily seen to 
enter via fixed-point ideas related to finite coverings. In the introduction to [5], 
describing the contribution to the signature of  Hilbert modular surfaces due to the 
various singularities, it was stated that elliptic fixed-points were easy to understand 
(via the G-signature theorem) but that cusps were much more subtle. Although the 
cusp story is indeed more subtle, and involves the ideas explained in the present 
paper, the computation of the cusp contribution to the signature is again related to 
the G-signature theorem in a natural way. 

In [17] Hirzebruch notes the appearance of Dedekind sums in number theory 
(via the Dedekind q-function) and in topology (through the G-signature theorem). 
He asks whether there is perhaps some deep explanation for this fact. Hopefully this 
paper, following Hirzebruch's work on cusps, provides an answer by showing that 
the real connection between number theory and topology, in this context, hinges on 
fundamental ideas from the physics of gauge theories! 

There are a number of generalizations and further problems which remain to be 
investigated. As explained in Sect. 3 a full generalization of  [6] to deal with local 
coefficient systems would be desirable. Also there are obvious generalizations of  
many aspects of Sect. 5 in which we twist by a character of the torus. Such questions 
are treated classically in [34] and from a topological view-point in [26]. For  surfaces 
of  genus > 2  detailed formulae involving the Selberg zeta function might be 
interesting to derive. The computation of local anomalies in this case is of interest in 
string theory and is being actively investigated by many authors at the present time. 
The general identification of  the ~ and ~/trivializations of the Quillen line-bundle 
remains an open question in higher dimensions, as explained in Sect. 4. Moreover 
the question of  providing some geometric interpretation of  the results of  [5, 27] for 
number fields of higher degree is rather intriguing. What should replace the 
monodromy of the determinant line-bundle when the base circle is replaced by a 
torus ? 

It will be clear by now that many of the ideas and problems investigated here 
have their origin in the work ofHirzebruch,  i am also indebted to D. Quillen and D. 
Freed for their help in understanding the key role of  the determinant line-bundle. 
Finally I should record the great stimulus provided in this whole area by the 
penetrating insight of  E. Witten. 

Because this paper attempts to present many points of  view and integrate many 
previous results there are inevitably severe problems of  notation and compatibility. 
In particular there are innumerable sign conventions and, while I have attempted to 
achieve consistency, it would be a minor miracle if I have completely succeeded. 

Finally, a small comment on the normalization of" the various invariants. In 
order to eliminate small numerical differences in the final theorem I have chosen to 
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normalize the various definitions appropriately. However, the notations remain 
consistent with the literature. 

The material in this paper was presented in my Rademacher  Lectures given at 
the University of  Pennsylvania in January 1987. 

2. The Signature of Local Coefficient Systems 

In this section we shall review and extend results of  Meyer [25] concerning the 
signature of  local coefficient systems. We consider the following situation: a 
compact  oriented surface X with boundary Y (consisting of disjoint circles 
$1 . . . . .  St) and a local coefficient system E over X of  flat hermitian vector spaces. 
The hermitian form on E is (possibly) indefinite and such a coefficient system 
corresponds to a homomorphism 

c~: r C l ( X ) ~ U ( p , q ) ,  

p q 

where U (p, q) is the unitary group of the hermitian form ~ [z i I 2 - ~" I zjl 2. We 
i 1 i -  l 

then have a skew-hermitian form A on H 1 (X, Y; E) induced by the cup-product and 
the hermitian form on E. The signature of  the hermitian form iA will be denoted by 
sign (X, E) or sign (X, c 0. 

Consider in particular the surfaces X, obtained by deleting n discs from the 
2-sphere. Since ~l(X,)  is free on ( n - 1 )  generators, a homomorphism ~: 
~1 ( X,) --* U (p, q) is just given by n - 1 elements At ,  A 2 . . . . .  A n ~ of U (p, q) so that 
we can write 

sign (X,, c~) = sign (A 1 , m 2 . . . . .  A n -  1) 

indicating that we have a function of (n - 1) elements of  U(p, q). Note that it is a 
symmetric function of the A i. 

The additivity property of  the usual signature extends to local coefficients. 
Decomposing X, as the connected sum of  X 3 and X, ~ leads to the formula 

(2.1) s i g n ( A 1 , A z ) + s i g n ( A 1 A 2 , A  3 . . . . .  A , _ l ) = s i g n ( A 1 , A  2 . . . . .  A,_I) .  

In particular taking n = 4 and using the symmetry we deduce 

(2.2) s i g n ( A 1 , A z ) + s i g n ( A i A z ,  A 3 ) = s i g n ( A l , A 2 A 3 ) + s i g n ( A z , A 3 ) .  

This identity expresses the fact that sign (A 1, A 2) is a 2-cocycleJor the group U (p, q). 
We shall call it the signature cocvcle and its properties will be our main concern. 
Note that 

(2.3) sign (A, B) = 0 if A = I , B = I  or A B = I ,  

(2.4) sign(A 1,B ~ ) = - s i g n ( A , B ) .  

Note. The signature cocycle was introduced along these lines by Meyer [25], though 
he considered only the symplectic groups Sp(2p, R), and the associated real 
quadratic form on H ~ (X, Y;E).  Of course Sp(2p, R) ~ U(p,p) and our cocycle on 
U(p,p) restricts to Meyer 's  cocycle on Sp (2p, R). The signature for hermitian local 
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coefficient systems was introduced quite generally by Lusztig [21] and we shall 
return shortly to his results. 

The signature cocycle is not continuous in its arguments but it is measurable. It 
therefore defines a signature cohomology class sign E H  2 (U(p, q), Z), By general 
theory [18; 22] this cohomology group classifies central extensions of  U (p, q) by Z 
and these in turn correspond to homomorphisms 

~1 (U(p,  q)) ~ z .  

Our first task is to identify the signature homomorphism arising from the 
signature class. Consider as basic case p = 1, q =  0 so that U(p,q)= U(I)  and 
ul (U(1)) ~ Z .  The signature homomorphism Z ~  Z is therefore determined by 
some integer M which we shall compute later. Switching to p = 0, q =  1 (i.e. 
changing the sign of  the hermitian form) changes M to - M. The naturality of  the 
signature with respect to changes in p and q then shows that for pq + 0 

sign: ~r I (U(p, q)) ~ Z 

is given by (M, - M ) ,  relative to the canonical generators coming from ~1 (U(p)) 
and ~l (U(q)). I f p  or q = 0 then the corresponding factor is omitted. 

To compute the integer M we will explicitly identify the signature cocycle for 
U(1). From (2.3) we may assume none of A, B, AB equal to 1. For U(I )  this implies 
that each bounding circle of  X =  X 3 is acyclic for our local coefficient system, so 
that H I(X, Y, E ) ~ H  ~ (X,E). This makes the hermitian form non-degenerate. 
Since H 1 (X, E) is one-dimensional we must have 

sign (A, B) = +_ 1. 

Putting A = e x p 2 ~ i 0 ,  B =  exp2~zich with 0 < 0  < 1, 0 < c/~ < 1 consider the (0,~h) 
plane, sign(0, ~/~)= sign (A, B) must be constant in each triangle. From (2.4) it 
follows that 

sign (1 - 0, 1 - ~h) = - sign (0, ~/)). 

0 0 

Hence sign (0, ~h) is + 1 on one triangle and - 1  on the other. The correct sign 
depends on a careful check of  our sign connections. We shall see in Sect. 3 (by other 
methods) that the correct sign is + 1 on the upper triangle. 

The canonical generator g o f H  2 (U(1), Z) corresponds to the universal covering 

Z ~ R ~ U ( 1 ) .  
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For  n > 1, the element ng corresponds to the extension 

(2.5) z ' , R x Z ,  p ,  U(1),  

where Z,  are the integers modulo  n and 

In particular, taking n = 2, define the section 

(2.6) a:  U ( I ) ~ R x Z  2 

by or(l) = (0, 0) 

cr(exp27riO)=(O-�89 0 < 0 < 1 .  

The associated 2-cocycle ~ o f  U(1) is defined by 

.i~ ( L  s~) = <5 (;0 + ~ ( /0 - o- (,~/~). 

A direct computat ion using (2.6) then shows that z is our signature cocycle. Thus we 
have established 

(2.7) Proposition. The signature cohomology class oJU (1) is to'ice the generator, and 
the signature cocycle is &ff}ned by the section (2.6). 

As noted earlier this then implies 

(2.8) Corollary. The signature cohomology class' of U(p, q) is (2, - 2) relative to the 
basis q/'Tt I U(p) x ~1 U(q): ~[p or q = 0 the corresponding term is omitted. 

It  is useful to have explicit models o f  the central extensions o f  G = U(p, q). 
Consider  first the universal central extension, i.e. the universal covering 

(2.9) Z 2 -+ (7---, G. 

Given a h o m o m o r p h i s m  2: Z 2 --+ Z we form the associated extension as 

(2.10) G a = (7 x a Z ,  

where (aou, n)~(~f, 2(u) + n ) for u e Z  2, ne  Z, ,~ e~a. To construct  (7 explicitly 
we introduce the homogeneous  space H(p ,q )=  U(p ,q) /U(p)x  U(q) and the 
two homogeneous  vector bundles F +, F -  o f  dimensions p, q respectively. Let 
L • = dot F ~ be the corresponding line-bundles and denote by log L ~ the C-bundles 
which are the universal coverings o f  L .  ~ = L* - (0-section). Let 

N = log L + @ log L -  (fibre-wise product)  

be the C @ C-bundle over H(p, q). Then (7 is the subgroup ofd i f feomorph isms  of  N 
which commutes  with the natural action o f  Z 2 and induces the action o f  G on the 
C* x C*-bundle L § x L ,  @ 

I f  2: Z 2 --+ Z is given by the pair o f  integers (m, n) it follows that G;. acts on 
l o g L  a, where L * = ( L + ) m |  ", commut ing  with the natural  Z-act ion and 
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inducing the action o f  G on L ~" An element ql" Ga is therefore an element g o[ G 
together with a l(ft of  the action o f g  to log L a. Equivalently, associating to g (in the 
s tandard way) the line-bundle L~(g) over the circle, an eh, ment of  Ga consists oJg 
together with a homotopy class 0 /  triviaHzations of L ~ (g). 

Remarks. I ) The central U (1) o f  G = U (p, q) acts trivially on H(p, q) and acts via 
---* ~ P, { --+ {q on L + and L respectively. Hence it acts via ~ -+ ~"'P + "'~ on U,  where 

2 = (m, n). Thus the action is trivial if mp+ nq = 0. In particular th is holds for (m, n) 
= (2, - 2 )  and p =  q. 

2) G~ is connected if m and n are coprime. In general it has k components  where 
k is the H .C .F  o f  m and n. 

In view o f  Corol lary (2.8) we are especially interested in the case 2 = (2, - 2 )  
in which case L ~ =  (L+)2 | ( L - )  -2.  For  brevity we shall put G~, = G 2. Since the 
signature cocycle defines this extension it follows that  there is a section o-: G ~ G 2 
such that 

(2.11) ~7(A)a(B) [o-(AB)] ' = s i g n ( A , B )  

for all A, BGG. Since there is no hom om orph i sm  G-+  Z (other than 0) o- is 
necessarily unique. Moreover ,  the naturali ty properties o f  the signature imply that 
sign ( A, B) and hence o- is invariant under inner automorphisms. 

From its definition o- is clearly additive for direct sums. Hence formula (2.6), 
extended to direct sums, essentially identifies o- on U(p) • U(q), i.e. on all elliptic 
elements of  G. Later we shall discuss the identification o f  cr on  other classes o f  
elements. 

We now return to the question o f  comput ing  sign (X, E) for a general local 
coefficient system E over a surface X with boundary  Y. Fol lowing [21 ] we first fix a 
splitting of  E, i.e. a vector bundle decomposi t ion 

E = E + @ E  

which is o r thogona l  relative to the hermitian form and such that the form is positive 
on E + and negative on E - .  Such a splitting is equiwdent  to reducing the structure 
g roup  of  E from U(p,q) to U(p) x U(q) and corresponds to an equivariant  map  

U(p, q) 
j !  )7--+ H(p, q) = U(p) x U(q)" 

Here )~ is the universal covering of  X and equivariance means that 

/(gx) = ~ ( g ) f ( . v ) ,  

where g~=~ (X) and ~: =~ (X)---> U(p,q) is the representation defining the local 
coefficient system E. Since H(p,q) is contractible such splittings exist and are 
unique up to homotopy .  

The universal vector bundles F • on H(p, q) pull back v i a f t o  a~ (X)-equivariant 
vector bundles on )7 and these descend to give E • on X. The same then follows for 
the corresponding determinant  line-bundles. Consider  in particular the line-bundle 
on X 

L = ( d e t E + ) |  ) ~. 
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Our  interpretat ion o f  the extension G 2 o f  G shows that an element of  G2 over 
c~ (g), for g e 7r 1 (X), defines a h o m o t o p y  class o f  trivializations for the restriction o f  
L 2 to the closed loop S o on X. In particular the signature section c;: G -~ G2 gives rise 
to a (class of) trivializations o f  L 2 on each closed loop in X: note that  this is base- 
point  independent  (because conjugat ion acts trivially on line-bundles). Applying 
this to each boundary  componen t  o f  X we see that  we can define a relative first 
Chern class c 1 (L 2, 0") as an element o f H  2 (X, Y) ~ Z. Note  that o- can also be viewed 
as an isomorphism (L+) 2 --+ ( L ) 2  on Y =  (2X, SO we can form a line-bundle on the 
double o f  X and its Chern  class (as an integer) coicides with cl (L, a). 

Taking X = X3, the 2-sphere with 3 discs deleted, it is then a routine matter  of  
reinterpretation to see that  

(2.12) cl(L,c*)=cr(A)c*(B)[~r(AB)]  l = s i g n ( A , B ) ,  

by definition o f  o-. Here A, B are as before the elements o f  G associated to two 
generating loops on X 3. 

Since both the signature and the relative Chern class are additive for connected 
sums it follows that  (2,/2) holds for all X. Thus we have established 

(2.13) Theorem. Let  E be a j l a t  hermitian vector bundle over the sutJitce X, with a 
,splitting E =  E 4 @ E . Let G 2 be the extension o/" the appropriate unitao' group 
G = U(p, q) with class (2, - 2 ) .  Then there is a unique section c,: G--+ G 2 such that 

sign (X, E) = c I (L 2, o-), 

where L 2 = (de tE+)  2 | ( d e t E )  2 is trivialized over ? X  by the section or. The 
section c~ gil~es rise to the signature cocvcle q f  G by (2.11). 

I f  X is closed then Theorem (2.13) yields the following: 

(2.14) Corollary. l f  E is aJlat hermitian vector bundle over the closed smJm'e X then 

sign (X, E) = 2 [c 1 (L + ) - c~ ( L ) ] ,  

where L •  det E • and E =  E + @ E -  is a splitting q/'E. 

This corollary was given a different (analytic) p r o o f  by Lusztig [21 ] and we shall 
return in Sect. 3 to his viewpoint. Note  however  that the correct sign in (2.7) is 
determined by the correct sign in (2.14), and this follows from Lusztig 's  proof.  

Theorem (2.1 3) needs to be complemented by a more explicit determinat ion o f  
the section a. For  elliptic elements we have already seen how o is determined 
[extending (2.6) by additivity]. We now turn our  at tention to the general semi- 
simple element o f  U(p, q). Such an element is conjugate to a direct sum: 

A = A  1 @ A2@ ... @ A,.@ B, 

where B is an elliptic element o f  U ( p - r , q - r )  and each A i is a hyperbolic 
element o f  U( 1,1 ), i.e. whose two eigenvalues 2,/~ have a real ratio 2//z. By additivity 
o f  a it is then sufficient to consider hyperbolic  elements A of  U(1, 1). Such an ele- 
ment lies on a one-parameter  g roup  exp (to0, with t = 1 giving A. The extension 
G 2 ---+ G = U(p,  q) pulled back to R (i.e. restricted to the one-parameter  subgroup 
R ~  G) splits canonically, and this canonical splitting o- o corresponds to the 
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natural trivialization of the bundle L ~ over the circle given by contracting A to 1 
along exp t~. We shall prove 

(2.15) Proposition. For a hyperbolic element q/'U(1, 1) cr is the canonical splitting ~ o. 

Proo f  The key fact about  a hyperbolic element A of U(1, 1) is that, modulo the 
centre, it is conjugate to its own inverse [the adjoint group is PSL (2, R) and here we 
have real eigenvalues 2, 2 -  1 ]. On the other hand the section a is compatible with 
inverses (2.4). These two facts together will give the proof. Formally let us enlarge 
the one-parameter  group by adding the U(1)-centre to give a homomorphism 
/1~2 ___> U ( / ,  ~). The extension G 2 -~ G = U(I ,  1) when pulled back to R 2 again splits 
canonically. Let ~0 denote this canonical splitting and put a =  %f i  so that 
fi: R 2 ~ Z measures the difference. Then fi (written additively) has the following 
properties 

f i ( -  u, -v )=  - fi(u, v) 

fi(u, - v )  =f i (u ,v )  

fi (u, v) 

(compatibility with inverses) 

(conjugacy invariance) 

independent of  u. 

Here u generates the centre and v lies in SU (1, 1). The independence of  u follows 
from the trivial action of the centre on the line-bundle L a. Clearly these properties of  
fi together imply fi = 0 and so a = % is the canonical section as required. 

We have thus identified the signature section ~ on all senu-simple elements of  
U(p, q). One should go further and examine in particular the unipotent elements 
but we shall not pursue this line. 

3. The Analytic Approach 

In this section we present briefly an alternative approach to Theorem (2.13) based 
on the analysis of  elliptic operators. We begin by recalling the result of  Lusztig [21 ] 
for a closed Riemann surface X with a flat hermitian vector bundle E. From a 
Riemannian metric on X and a splitting E = E + | E -  Lusztig defines an involution 

on Q* (X, E), the differential forms on X with coefficients in E. He also defines an 
operator D: ~+ (X, E) -* C2 - (X, E) where sQ= are the + 1-eigenspaces of  r, and 
shows that 

index D = sign (X, E). 

This construction works for all even-dimensional Xand  is a generalization of that in 
[3]. Moreover the general index theorem for elliptic operators [3] then leads to the 
formula in Corollary (2.14). 

Since the index theorem of [3] has been generalized in [6] to deal with manifolds 
with boundary it would be natural to attempt to extend (2.14) to the case of  surfaces 
with boundary, and so prove (2.13). Whilst such an approach should be possible it 
cannot be carried out immediately because Lusztig's operator D is not, near the 
boundary,  of  the type assumed in [6]. We recall that in [6] the elliptic operator  near 
the boundary was assumed to be of  the form 

c~ ~-u+A , 
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where u is the normal variable and A is a self-adjoint operator on the boundary, For 
Lusztig's operator A has a sdf-adjoint symbol, but is not itself self-adjoint. Thus the 
results of  [6] would first have to be extended to such situations. In fact this is a quite 
natural extension and it is currently under investigation in various contexts. 

Another possible approach would be to exploit the complex structure of  X. The 
flat bundle Ecan then be viewed as holomorphic and endowed with a meromorphic  
connection (on a compactification of X). One could then at tempt to use the theory 
of differential equations with regular singular points in its modern form as 
developed by Deligne [13]. 

Instead of pursuing either of  these interesting but somewhat lengthy 
programmes we shall adopt  a hybrid method which will rapidly reproduce the 
results of  Sect. 2. 

We first extend Lusztig's result to the case of  a surface X with boundary Y, under 
the assumption that each monodromy element of  the flat bundle E on each of the 
components of Yis elliptic'. This assumption is just what is needed to bring Lusztig's 
operator into the standard form considered in [6]. We can therefore apply the main 
results of  [6]. In [6, (4.14)] only 4k-dimensional manifolds were considered and 
there was no auxiliary flat bunde E. However the appropriate  modifications are 
easily made and, as in Lusztig [21 ], we have to use a homotopy  connecting D to the 
standard signature operator  with coefficients in a bundle used in [3]: the important 
point is that the homotopy  can be chosen trivial near the boundary,  so that the 
boundary condition and so the index is unaltered. The conclusion is that 

(3.7) sign (X, E) = .f 2 [<'1 (E + ) - c, ( E - ) l  - ~ '1 (A./), 
x J 

where in the integrand c~ stands for the first Chern tbrm (using product connections 
near the boundary) and q (A j) is the q-invariant on thej th-bounding circle (with Aj 
being the monodromy).  

To put (3.1) into a more topological form we proceed as follows. By hypothesis 
each Aj is elliptic and so lies in a maximal compact torus T ~ x T ~ of U(p, q). Inside 
this torus we now deform Aj by leaving fixed the l-eigenspace and detbrming all 
other eigenvalues to the value - 1 (without crossing the value 1 in the process). Let 
Bj be the resulting element. Then Bj = B / l  and so t/(Bj) = 0. Also this deformation 
leads to a deformation of  our elliptic boundary value problem in which the index is 
unaltered (because no new eigenvalues equal to 1 are introduced). Thus, applying 
this for each j, (3.1) gets deformed to the formula 

(3.2) sign (X, E) = ~2 [c, (E + ) - c, ( E ) ] ,  
X 

where c 1 now stands for the Chern form defined by the product connections coming 
from the B~. Since B 2 = I these are just trivializations of the line-bundles (det E +)2 
and (det E - )  z. Thus (3.2) is a topological formula and is easily seen to coincide with 
that given by Theorem (2.13). 

Having derived the elliptic case of  (2.13) from Lusztig's formula we now 
proceed to the general case. Let A e U(p, q), then we can write A = BC where 
B e S U ( p , q )  and C is in the central U(1). Since SU(p ,q )  is the commuta tor  
subgroup of U (p, q) it follows that we can find a surface X o with one bounding circle 
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and a fiat bundle on X o with m o n o d r o m y  B on ~X o. Hence at taching a sphere with 3 
holes we get a surface X with two bounding  circles having m o n o d r o m y  A and C 1 
respectively. 

(3.3) 

Using the trivialization o f L  = (det E+) 2 | (det E -) 2 over the C-boundary  (which 
is elliptic) given above there is then a unique trivialization o f  L over the A-boundary  
which will give the correct signature formula in (2.13). To see that this is 
independent o f  the choice o f  B, C, X 0 we take another  choice and then double up 
along the A-boundary .  Additivity and formula  (3.2) (for elliptic boundaries)  proves 
the independence. Thus we have defined the trivialization o f  L for all A, or 
equivalently a section a o f  G 2--* G =  U(p ,q)  (see Sect. 2). Finally if X has 
boundaries  S1 . . . . .  S k and E is a fiat bundle with monodromies  A ~ . . . . .  A k we at tach 
a figure like (3.3) to each boundary .  This reduces us to elliptic monodromies  and 
additivity then completes the p r o o f  of  the general case o f  Theorem (2.12). 

The one merit o f  the above p r o o f  is that  it avoids recourse to the theory of  group 
extensions of  Lie groups used in Sect. 2. 

4. The Signature of Fibrations 

We shall now consider fibrations Z M, X, where X as before is an oriented surface 
with boundary  Y and the fibre M is a compact  oriented manifold of  dimension 
4k - 2. We further assume that the total space Z is oriented (this is equivalent 
to assuming that ~z~ (X) acts trivially on H ~k 2 (M)). In particular the signature 
on H2k(Z)  denoted by s ign(Z)  is defined. 

We shall use Riemannian  metrics on Z adapted to this fibration. More  precisely 
we assume that X is given a metric and that  the projection Z ~ X is a Riemannian 
submersion. We also assume that the metrics on X and Z are products  near their 
boundaries.  

The main theorem of  [6] then gives a formula for the signature o f  Z, namely 

(4.1) sign Z = ~ Lk(P) -- ~1 (~Z),  
Z 

where L~ is the Hirzebruch polynomial  in the Pontr jagin forms pj of  Z and ~l (~ Z) is 
the spectral invariant int roduced in [6]. We recall that on ? Z  there is a self-adjoint 
opera tor  A defined on even differential forms by (/~-, ( - - l )k+P+~(*d--d*)( /~  for 
~h e f22P, and that the function r/(s) is then defined in terms o f  the eigenvalues 2 o f  A 
by 

sign 2 

~( , , )=  Z i21" " 1 + 0  

This function is ho lomorphic  tbr Re (s) > 0 and its value at s = 0 is the ~#-invariant in 
(4.1). 
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Of  course if OX has components  S~ . . . . .  S r then ~?Z has corresponding 
components  W~ . . . . .  W,., fibred over the S i, and 

(4.2) ~I (~?Z) = ~ '1(Wj). 
i 

Following ideas o f  Witten [35], Bismut and Freed [9] have studied the 
"adiabat ic  limit" o f  (4.1) in which the metric gx of  X is rescaled to gx/s 2 and ~: --* 0. 
Each term in (4.1) and (4.2) converges to a limit. Moreover  the integral in (4.1), 
when written as a double integral S 5 L~,(p), converges locally on X, so that (4.1) 
gives a" M 

(4.3) sign Z = . I  [ l im !1L~,(p)] - ~ q ~  

where v/~ lira ~/' and Jl' refers to the rescaled metric. Note  that the Pontrjagin 
~0 

forms and hence tl are conformal ly  invariant, so that the adiabatic limit is 
equivalently desribed by shrinking the metric on the fibre. 

Formula  (4.3), when reduced modulo  integers, has an interesting interpretation 
in terms o f  Quillen's "de terminant  l ine-bundle" which we shall now briefly recall. 

Consider  the signature opera tor  D of  the manifold M. This is defined as 
d +  d* : K2 + -+ f2 where fU  are the _+ l-eigenspaces o f  the involution 

(/)~ip(p 1)+2k 1@(/) for ~/, 6 f2 v . 

Let H + and H denote the solution spaces ofDu = 0 and D* c = 0 respectively, i.e. 
they consist o f  the harmonic  forms in f2 + and f2 . I fwe  now vary M over the fibres 
of  Z --+ X we get a ['amily D;  o f  operators  and corresponding spaces H ]  and H ,  of  
harmonic  forms which define vector bundles H + and H over X. The Quillen line- 
bundle ~ / i s  the bundle det H | (det H + ) 1 over X endowed with a natural unitao' 
connection defined in [9] to which we shall return shortly. Bismut and Freed prove 
that thefirst  (Tlern./brm of  ~ is given by: 

1 lim ~ L},(p). (4.4) c, (,g') = - ~,  *0 

Note. Actually Bismut and Freed work with Dirac operators  which requires a spin 
hypothesis, but this should be irrelewmt for the signature operator .  The minus sign 
arises because o f  Quillen's sign convention,  which is dictated by ho lomorphic  
considerations (see below). The factor �89 arises because we are dealing with the 
L-polynomials  rather than the A-polynomials  as in [9]. 

I f  we apply (4.3) modulo  integers when X is a disc then we see that the 
momMromy of  ~ a round  the bounding  circle o f  X is just exp ( - 7zi~7 ~ (W)). Bismut 
and Freed establish this quite generally. In other  words - ~zi~l ~ (W) is a distinguished 
choicejbr the logarithm of  the monodromy ql~ha arounda circle. Moreover  (4.3) then 
links these distinguished choices on {~X with sign Z. 

Belbre proceeding further we should spell out  the data on which ~I~ 
depends. Lifting the fibration W--+ S ~ to a fibration W-+ R the metric on Wdefines 
a di f feomorphism W ~ M x R, and the metric then takes the form 

&z = 0:, + dx2 
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where L~_~ is a one-parameter  family of  metrics on M. This path ~: R ~ , J #  in the 
space . #  of  metrics on M must be periodic under the diffeomorphism g of  M 
[identifying M x (x) with M x (x + 1)]. Then t/~ (W) depends only on the pair (g, 4~) 
and is also invariant under the natural action of  Diff + (M) (orientation preserving 
diffeomorphisms) on such pairs. I fD i f f  + (M) acts freely on M then we could replace 
this data by a closed path in ~ / D i f f  + (M) representing the conjugacy class of  
[g] e n0 (Diff + (M)) = n 1 (, ~ /Di f f  + (M)). 

The work of Bismut-Freed identifies �89176 modulo integers in terms of  the 
monodromy of Quillen's line bundle 50. The question we now raise is that of  
extending this identification to take account of  the integer ambiguity. At this point 
we should remark that, in the general framework of Dirac operators studied by 
Bismut and Freed, there is no way of fixing the integer ambiguity. This is because we 
cannot in general control the 0-eigenvalue of  Dirac operators. However, for the 
special case of the signature operator, Hodge theory identifies harmonic forms with 
cohomology and this is what fixes the integer ambiguity and leads to the formula 
(4.3), with the topologically defined term sign Z on the left-hand side. 

At this point we should make a comment  on the connection in the Quillen line- 
bundle • .  This is defined quite generally (not just for the signature operator) but 
because of  jumps in the 0-eigenvalue the connection is defined using all eigenvalues 
and it involves regularized infinite determinants. For  the signature operator  D this 
implies the following. Let D'  be the restriction of D to the orthogonal complement 
of  the harmonic spaces H • The ~-function definition of determinants [as exp 
- ~ ' ( 0 ) ]  applied to (D') *D' enables one to define [ det D'] in a natural fashion, but 
there is an "anomaly"  in trying to define a complex-valued determinant. However, 
one can define the logarithmic variation along any path. This leads to Quillen's 
point of  view in which det D'  is interpreted not as a function on Xbut  as a section of  
a line-bundle cS' with unitary connection over X. Since det D '  is nowhere zero this 
section trivializes c~, but not in a unitary or covariant constant manner. 

To pass from Y '  to the Quillen line-bundle c~o one has to consider the 
0-eigenvalues, i.e. the harmonic bundles H • These have natural metrics and 
connections inherited (by orthogonal projection) from the Hilbert space bundles of  
all forms and so 

(4.5) ~,~ = d e t H -  | (det H+)  -1 

is a line-bundle with unitary connection. We then take 

(4.6) LP = 5 '~' | ~;r 

with its induced unitary connection. Note that, as ~ '  is trivialized by det D', 5 r' ~ ; ~  
as a line-bundle but the isomorphism does not preserve metric or connection. 

We return now to the re-interpretation of  (4.3), rewriting it, using (4.4) as 

(4.7) sign Z = - 2 ~ e 1 ( ~ )  -- 2 #70 (Wj). 
x J 

As we remarked earlier Bismut and Freed have shown, for each bounding circle Sj 
of  X, that -n i~1~ is a (distinguished) choice for the logarithm of  the 
monodromy o f 5  ~ around Sj. This means that we can use this choice to trivialize 5~ 
(up to homotopy)  on each Si and hence obtain a relative Chern class which we shall 
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denote by c~ (5r r/) to indicate that it arises from using ~l-invariants. Then (4.5) 
simply becomes 

(4.8) sign Z = - 2 q  ( ~ ,  t/). 

We now compare (4.8) with Theorem (2.13) for the signature of  local coefficient 
systems over X. The fibration Z --+ X gives a local coefficient system corresponding 
to the representation of rc I (X) on H * ( M ) .  In particular the middle cohomology 
H2k l ( M )  gives a flat bundle with a skew-form. Complexifying coefficients and 
multiplying by i gives a fiat bundle with a hermitian form [of type (p,p) where 
2 p = d i m H e k - l ( M ) ] .  It is easy to see (as in [11]) that the signature of  X with 
coefficients in this fiat bundle is equal to the signature of  the total space Z, i.e. 

(4.9) sign (X, H 2k l (M)) = sign Z.  

Thus (4.8) and (2.13) both give a formula for sign Z in terms of  a relative first 
Chern class. Moreover, the line bundle k,(' in (4.6) is topologically just the dual of  the 
line-bundle L in (2.13). This follows from (4.5), (4.6), the triviality of S ' ,  the 
definition of  L and the fact that contributions to H • from H i(M) and H 2k 1 i(M), 
f o r / +  2 k - 1 ,  cancel. The same cancellation is actually involved in establishing 
(4.9), and an alternative approach would have been to replace H 2k- 1 (M) in (4.9) by 
H* (M), with appropriate  Factors of  + i to define the hermitian form. 

It is now natural to ask whether the (homotopy) trivializations ofSa 2 given by ~l 
and L 2 given by o- coincide. The difference between these two trivializations would 
assign an integer N i to each component  S# of  X. These integers would be homotopy  
invariants depending only on the diffeomorphisms gs of  M, and subtracting (4.8) 
f iom (2.13) shows that 

N(gi)  = O. 
i 

In particular, taking X to be a sphere with three holes, this shows that 

(4.10) N: Diff + (M) -+ Z 

is a homomorphism.  Of  course N depends only on the group of components  of  
Difi" (M). If there are no such homomorphisms (except zero) then it tk~llows that 
the q and ~r trivializations agree. This can then be viewed as giving a formula for the 
variation ($ of  log det D' around closed paths in.///'Dill" + (M) (or more precisely for 
pairs (g, 0) as before). More precisely we have 

(4.11) 6 log det D'  = - ~zill ~ - �89 log~ Mon (+;4/2 ), 

where the symbols have the following meaning. The pair (g, 0) define a bundle W 
over S 1 with fibre M and q0 = qo(~, 0) = ~1~ is the adiabatic limit of~l (W). The 
line bundle~" is defined by (4.5) and is endowed with its natural connection coming 
from the spaces of  harmonic forms, Mon 0~ ~2) denotes the monodromy along a 
period of  the path 0 of  metrics and log~ denotes the branch of  the logarithm defined 
by the signature section rr of  Sect. 2. As a formula in R/2rciZ (4.11) is just a special 
case of  the Bismut-Freed-Witten formula. The main point of  (4.11 ) is therefore the 
identification of  the integer ambiguity. 
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We should emphasize that (4.11) has only been established under the 
assumption that Di f f+M has no non-zero homomorphisms to the integers. It 
would be interesting to know if this restriction is superfluous. Put another way the 
difference of the q and ~ trivializations gave the homomorphism N of (4. / 0) and this 
is then an invariant of  the manifold M. Perhaps it is always zero? 

We may now ask for examples of  manifolds M having no non-trivial 
homomorphisms Diff + M --+ Z. Consider the case of dim M = 2. For the 2-sphere 
S 2 the group Diff + (S 2) is connected. I f  M = ]w2 is a 2-torus then the group of 
components of Di l l  + (M) is SL (2, Z) whose abelianization is finite. I f M  is a surface 
of  genus g > 2 the group of  components of Diff ) (M) is the Teichmuller group l~q 
and Mumford [28] has shown that its abelianization is also finite. Hence our 
discussion and the conclusion (4.11) holds for d imM = 2. 

If" we use the complex structure of  the Riemann surface M then the signature 
operator D is equivalent to the operator  

~: f20,o | f21.o ~ f2o,1 | (j1,1 

and the fibre of the line-bundle ~ can be identified with 

(det H0,X | det H i . l )  | (detHO.0 | det H1.0) 1 

where H P q = H q ( M ,  (2 p) with ~1, here standing for holomorphic p-forms. The 
terms H ~176 and H 1"1 cancel by duality while H ~ and H 1"~ are Serre duals. Hence 
the fibre of  ~ '  can be identified with 

(4.12) [det HO(M, ~1)] 2 

I f Z  ~ X is a holomorphic family of  Riemann surfaces then (4.12) shows that ~ 
is naturally a holomorphic line-bundle. Moreover i f Z  has a K~ihler metric then the 
Bismut-Freed connection on ,~: coincides with that determined by its metric and 
holomorphic structure, as shown by Freed [15] (see also Donaldson [15a]). The 
same applies to the Quillen line-bundle S .  

In the next section we shall investigate in detail the case when M has genus 1, the 
original motivation for this paper. The case when M has genus > 2 also merits 
further treatment using the explicit formula for det (? in terms of the Selberg zeta 
function [33], but we shall not pursue this here. 

In Sect. 6 we shall carry out some computations which rely on the equivariant 
version of(4.1). It will therefore be convenient to summarize here the general results 
in this direction: for a fuller account we refer to [7, Sect. 2]. In the situation of(4.1) 
assume that g: Z ~ Z is an isometry havin~, no f i x e d  points on (~Z. Then we can 
define sign (Z, ,7) as in [3] by considering the induced action o fg  on the cohomology 
of  Z and (4.1) generalizes to: 

(4.13) sign ( Z , g ) =  Lk(p ,g  ) -- ~I(~Z,~'), 

where Lk( p, g) is the sum over the fixed point set components o f g  which occurs in 
the G-signature theorem for closed manifolds [3] and the boundary term t/(~Z, g) is 
defined by evaluating at s = 0 the function 

sign 2 
(4.14) , l (g , s )=  Y, i),] ~ (Trg; ) ,  

24-0 
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where the eigenvalues 2 are as before those o f  the opera to r  A on (3Z and ga is the 
induced act ion o f g  on the 2-eigenspace (the sum is now over  distinct 2). Thus (4.13) 
is a c o m m o n  generalizat ion of(4.1)  and the G-signature theorem o f  [3]. The p r o o f  is 
essentially the same as that  in [6] except that  the f ixed-point  contr ibut ion is 
identified as in [14]. Note  that,  since g has no fixed-points on ~3 Z, the term Lk (p, g) is 
actually independent  o f  the metric  on Z: it is a topological  invariant  o f  the action of  
g o n Z .  

I f g  generates a finite (cyclic) g roup  G act ing freely on W = ?Z ,  then we can form 
the quotient  manifold  W'  = WIG and we can relate the term r/(~?Z, g) in (4.13) with 
~I(W'). Elementary  character  theory shows that 

1 
(4.15) ~(W') = [UI }~ 'l(W'g)" 

g ~ G  

Thus  the deviat ion f rom multiplicativity 

1 1 
(4.16) q ( W ' ) -  iGr q(W)= IG( 5 ,1(W,g) 

1 
= IO:l ~ {Lk(p'g) s ign(Z ,g ) ]  

g a - i  

[using (4.13)], is independent of the metric. 
If  the fixed points  of  g are isolated, then at each fixed point  P the differential o f g  

is a ro ta t ion  on the tangent  space at P and  is given by angles ~j (,j = 1 . . . . .  2k)  in 
o r thogona l  planes (the c~ i are determined up to an even number  of  sign changes). 
The  fixed point  cont r ibut ion  L k (p ,g)  is then given by 

n ~j 
(4.17) Lk(p,g)= i " lq cot n= 2k 

j = l  2 ' 

27zaj 
I f  I G I =  c each c~i= , with ai an integer prime to c. Hence 

C 

(4. I 8) ~ L,, (p, g) = i " Z cot , 
g + I q = 1 j = 1 

where the aj arise f rom a genera tor  o f  G. In part icular  if k = 1 (so that  dim Z = 4) 
and  G acts with integers (1, a), we recognize on the right the R a d e m a c h e r  version 
(1.5) o f  the Dedekind sum, i.e. 

1 
(4.19) JGI ~ L ~ ( p , g ) = - 4 s ( a , c ) .  

g4cl 

Returning to (4.16), for k = 1, and assuming for simplicity that  G has just  one 
fixed point,  o f  type (1, a), we get 

(4.20) ~I(W')- I~I(W) 4s (a , c ) -  I , 1 . . . . .  sign (Z, gU), 
C C q :  1 
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where g generates G. Note that Z' = ZIG is a rational homology manifold (with just 
one "cyclic" singularity) and the last term in (4.20) can be rewritten as 

(4.21) 1 ~- 1 1 sign (Z,g  q) = sign(Z')  - sign (Z) 
C q - I  C 

so that (4.20) becomes 

(4.22) ~/(W') - -1- t/(W) = c - 4 s ( a , c ) - { s i g n ( Z ' ) - -  cl sign (Z)}.  

Notice now that none of  the terms in (4.22) depends on the choice of  a generator 
of  G. The formula would therefore continue to make sense if the c-fold covering 
W ~  W' and its singular extension to Z--+ Z' are not given by a group action. This 
means W ~  W' is not a Galois covering and the singular point of Z '  is locally the 
quotient by a finite cyclic group. It is easy to extend (4.22) to this non-Galois 
situation as follows. Excising a small ball B around the singular point we get a c-fold 
covering Z o Z o, where Z 0 = Z -  B and 

0 Z o = W - S ,  3 Z o = W ' - S ' ,  

S = c?B being the 3-sphere and S' the quotient lens space. Applying (4.1) to Z o and 
Z~ and observing that the Pontrjagin form expression behaves multiplicatively for 
any covering we deduce 

(4.23) ~ ( W ' ) - I ~ I ( W ) = [ ~ ( S  ') l l / ( s ) ]  IsignZ~ 
C C 

Now the additivity of the signature shows that 

(4.24) sign Z;  = sign Z' ,  sign Z o = sign Z 

1 c sign Z~  

while (4.20) applied with W= S, where we do have a cyclic group action, gives 

1 
(4.25) t/(S') - - r/(S) = - 4s(a, c). 

C 

Substituting (4.24) and (4.25) in (4.23) then gives (4.22) as required. Note that, since 
S has an orientation reversing isometry (for the standard metric), r / (S)= 0 and 
(4.25) then shows that the Dedekind sum s(a, c) is (up to a factor - 4 )  given by the 
r/-invariant of the appropriate lens space. 

If we apply these ideas for dimension 2, i.e. when W is the circle, then for a 
rotation with angle 0, 

t/(0, 0) = - i cot 0/2. 

As pointed out in [7, Sect. 2], taking the Fourier transform over a finite group of 
rotations leads naturally to the invariants r/~ (0) associated to characters of c~ of  ~1. 
Moreover it was verified in [7] that ifc~ takes the generator of~l  to exp (2z~ia) then 

- � 8 9  = a - [ a ] -  �89 = ( ( a ) ) ,  

the function which enters in the original version (1.2) of  the Dedekind sum. 
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5. Families of Elliptic Curves 

We shall now come to the main topic of  the paper and consider fibrations Z ~ X 
where the fibre M is a 2-torus. The local coefficient system over X given by H 1 (M) 
then arises from a representation 

7/71 (X) --~ SL (2, Z).  

As noted in Sect. 4 we have 

(5.1) sign (X, H 1 (M)) = sign (Z).  

Now since 

(5.2) H ~  Z ) , Q ) = O ,  for q =  1,2, 

the signature cohomology class of  Sect. 2 for the group 

SL (2, R) = SU (1,1) 

vanishes (over Q) when restricted to SL (2, Z) and there is then a unique function 

(5.3) 4~: SL(2, Z) ~ Q 

whose coboundary is (minus) the signature cocycle. More specifically if X 3 is the 
sphere minus 3 discs and if the monodromies  around the 3 boundary circles are 
given by A, B, (AB)  i eSL  (2, Z), then the signature o f X  3 with the local coefficient 
system is 

(5.4) sign ( A, B)  = ~]~ (AB)  - ~ ( A) - d) (B) .  

The additivity of  the signature then gives the general formula for (5.1) 

(5.5) sign Z = - ~ + (A j), 
i 

where the Aj are the monodromy matrices around the bounding circles Sj of  X, 
given by the action on H t (M). 

Geometrically the monodromy is more naturally thought of as the induced 
action A* on H 1 (M). However, the canonical duality between H ~ (M) and HI (M) 
means that A and A* (in dual bases) are conjugate in SL (2, Z). Since all our 
invariants will be class functions it essentially makes no difference which definition 
we adopt. 

Remark.  The definition of (/~ and the formula (5.5) are due to W. Meyer [25]. 

We shall now explain how (5.5) fits into the general situation of Theorem (2.13). 
When G =  SU (1,1) the central extension G; ~ G, restricted to F = SL(2, Z), has 
[by (5.2)] a canonical splitting a t ,  provided we extend the Z-kernel to Q. Meyer's 
invariant ~/~ is then defined as the ratio of  cr 1 to the signature section cr of  Sect. 2: 

~/, = ~ 1 / ~ .  

If  we interpret a and a 1 as defining trivializations of (some power ot) the line-bundle 
L 2 of  (2.13) then al gives a trivialization over X while a gives trivializations only 



358 M. Atiyah 

over the boundary components S~. The relative Chern class c I (L 2, a) is then clearly 
given by 

e I (L  2,ry)-~ - - E + ( d j )  
J 

SO that (5.5) coincides with (2.13). 
The extension G 2 ~ G of Sect. 2 has class (2, - 2 )  when G = U(I , | ) .  Restricting 

to S U (1,1) this gives 4 times the generator [since the class (1,1) generates the kernel ]. 
Since for F = SL (2, Z) 

H 2 ( F ~ Z )  ~ H o m ( F ,  U(I)) -'~'Z12 

(5.6) 

it follows that we only have to adjoin �89 to construct a l .  Equivalently 30 is 
integral as was proved by Meyer. Thus ol gives naturally a trivialization of  the 
line-bundle U'. 

From the definition of ~/~, or from the properties of  a in Sect. 2, we have 

~/, ( 1 ) = 0  

+(A 1) = -# , (A)  

O ( B A B  ' )  = 4,(A) if B eS L(2 ,  Z) ,  

= - + ( A )  if B e G L ( 2 ,  Z)  with d e t B = - l .  

Next we shall define another function 

(5.7) g: SL(2, Z) ~ Q 

which will turn up later in connection with the Dedekind q-function. I f A  is elliptic 
we put Z (A) = 0. Otherwise let exp tc~ with A = exp ~ be a one-parameter subgroup 
of U(I , I ) :  it is uniquely determined (modulo the centre) by A. As in Sect. 2 let o 0 be 
the canonical splitting of  the extension G 2 --* G restricted to this one-parameter 
group. Then Cro(A ) is well-defined and we put 

(5.8) z ( A )  = 0, (A) /oo(A) .  

As before we can interpret this in terms of  the line-bundle U'.  The splitting 01 gives 
an SL (2, Z)-invariant trivialization of L 6 (unique up to homotopy)  while oo gives 
an A-invariant trivialization. These two trivializations differ by the integer 3z(A). 

Note that Z satisfies the same relations (5.6) as + and in addition, since 01 and a 0 
are both homomorphisms on the one-parameter subgroup: 

(5.9) Z (Ak) =- kz  (A).  

With these definitions we see that Proposition (2.15) implies 

(5.10) Proposition. / f A  6SL(2,  Z)  is hyperbolic then #~(A)= z(A). 

Remark. ~h is defined via the signature while g is a type of Chern class. Thus (5.10) 
is a version of  the signature theorem, relating signature invariants to characteristic 
classes. In Sect. 2 we gave a cohomological proof(leading to (5.10)) while in Sect. 3 
we gave an analytical version. 
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We shall return later in Sect. 6 to the question o f  evaluating ~/~ explicitly on 
various classes o f  elements in SL (2, Z), but we shall now relate ~/~ to ~l-invariants. 
For  this we need to introduce metrics and we shall always take fiat metrics on the 2- 
torus, normalized to have unit total area. Such metrics (or conformal  structures) are 
then parametrized by the upper  half-plane H modulo  the action o f  SL (2, Z). To fix 
our  notat ion let (3', .W r) be coordinates  for R 2 • H and hence local coordinates for 
T 2 x H, where T 2 = RE/z  2 is the quotient  by the s tandard integer lattice. We take 

(iO r =- dX q- "C all' 

to be the ho lomorphic  differential on T e • {r}. The group SL (2, R) acts on R 2 • H 

(: b),he  as follows. If  A--- d 

+ 
A ( y , . w r ) =  d y - c x :  - b y + a . v ; • + d j .  

The induced action takes ~,)~ into r162 1 while dr goes into dr(c'c + d) 2. 
Thus (~)~/dz is invariant and this enables us to identify canonically the square o f  the 
bundle o f  ho lomorphic  differentials along the (torus) fibres with the cotangent  
bundle o f  tt. I f  r = u + i~ then A (~) = ~ ]cr + d] e, and, for the torus metric with 

i 
area normalized to l, we have J{~)r 12 = 2r. Thus 2"c ~) ~' & is the K~hler form on the 
torus over the point r e H. 

Remark. Note  that the complex orientat ion o f  the torus has here been chosen 
opposite to the s tandard orientat ion o f  R 2. 

A fibration Z --+ X with 2-torus fibres then acquires a metric by picking a metric 
on X and an equivariant  m a p f o f  the universal covering )7 to H, i.e. 

f ( g ( x ) )  = ~ (g) . / (x) ,  

where :~: nl (X) --+ SL (2, Z)  is the m o n o d r o m y  [action o n  H 1 (T2)] o f  the fibration. 
If  the metric on X is a product  near the boundary  and if . / is chosen appropriately 
then the metric on Z will also be a product  near the boundary.  Moreover ,  for each 
bounding  circle o f  X with m o n o d r o m y  A c SL (2, Z), the metric on the component  
W(A)  of  (?Z is induced by an A-invariant path R ~ H. 

Given such a metric on W(A)  we can, as in Sect. 4, consider rescaling the base 
metric by c 2 In part icular  we shall here take t :=  m ~ with m an integer and 
consider the integer adiabatic limit 

(5.11) ~l~ lira ~I(W,,,(A)), 
m ~ ~c 

where W,,, (A) is W(A)  with the rescaled metric. Without  invoking the general results 
o f  Bismut and Freed [9] we shall now give a direct p roo f  o f  the following: 

(5.12) Proposition. For an)' A e SL (2, Z) the integer adiabatic limit ~I ~ (W(A)), de f  
ined by (5.11), exists amt is independent o1 the metric. Moreover tl~ ( W ( A ) )=  ~/~ ( A). 

ProoJl Let Z--+ X be any 2-torus fibration endowed with a metric as described 
above, and let Z(m)--+ X be the new fibration obtained by dividing each torus 
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by its points of  period m. Then Z-+ Z ( m )  is a covering of  degree m 2 and the 
covering t ransformat ions  are isometries, so that Z ( m )  inerits a metric (induced by 
the same path R ---* H). Thus Z(m)  is essentially the same manifold as Z but with 
its fibre metric shrunk by m-2 .  Since q is a conformal  invariant it follows that 
r/((?Z(m)) = q (~Z,,,) where Z,, is the manifold Z with base metric stretched by the 
factor m 2. N o w  apply (4.1) to Z ( m )  and we get 

o r  

1 
sign Z ( m )  = 3 z!,,) pl - ~1 ((~Z(m)) 

1 
s i g n Z  = 3rtl 2 .iF1 - II(('~Z,,,) . 

Z�9 

Letting m-+  < we deduce 

(5.13) s i g n Z =  - lim JI((?Z,,,). 

I f  we knew the limit ~1 ~ existed for all W(A)  then (5.13) would yield 

(5.13)' sign Z = - ~ , I ~  
i 

summed over the boundary  components .  Moreover ,  the metrics over these 
components  can be varied independently and so this formula shows each boundary  
term is independent o f  the metric. Finally, compar ison with (5.5) which defines 4~ 
uniquely would prove the equality (/~ ( A ) =  r  for all A. To prove the limit 
exists we can argue as follows. First, i fA is elliptic, W(A)  has as finite covering the 
product  T 2 x S I, and we can choose the product  with an A-invariant  metric. The 
general arguments  concerning the behaviour  o f  ~/under finite coverings explained 
in Sect. 4 show that ~I(W(A)) is a topological invariant and in particular scale 
i nwman t  [note that T 2 • S 1 has an orientation reversing isometry so ~I(T 2 x S ~) 
= 0]. Thus the limit (5.11) trivially exists for elliptic A and invariant metrics. Since 
the elliptic elements generate SL (2, Z)  we can use (5.13) inductively (with X =  X 3 
the sphere minus three discs) to show that the limit (5.11) exists for all A. This 
completes the proof.  

In view o f  the fact that  r  is independent o f  the metric we shall also 
denote it by tl~ 

We now turn to Quillen's determinant  line-bundle f over X, determined by the 
metric fibration Z -+ X. In Sect. 4 using the general results o f  Bismut and Freed, we 
derived formula (4.7). Compar ing  it with (5.13)' we see that the first Chern form 
c~ (5~ ~ integrates to zero over X. Applying this when Xis a small disc mapped into H 
we see easily that, for the universal family T 2 x H, and hence for any fibration 
Z x X, c~ ( ~ )  - 0. In other  words we have the impor tant  result: 

(5.14) Proposit ion.  For a 2-torus Ji'bration Z--+ X the Quillen determinant line- 
bundle is fiat. 
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Since this is a key result we shall give several alternative and more  direct proofs. 
Note first that  it is sufficient to consider the universal case when Z = T 2 x H and 
that this is naturally holomorphic .  Thus the general formula (4.4) reduces here to 

c, ( ~ ) =  - l l i m  ~ c, (Z,,) 2 
2,  ~0 3 

where Z, is Z with the -~ -me t r i c  stretched by c z. Now the ho lomorphic  tangent 
bundle T(Z)  splits in an exact sequence 

0 --+ T(fibre) --+ T(Z)  --+ T(base) -+ 0. 

If  this was an or thogonal  direct sum then the Chern form of  Z would be the sum of  
the Chern forms of  fibre and base: in particular, since the Chern form of  the (torus) 
fibre is zero, c 1 (Z) would come f rom the base. In Nct the sequence is not a direct 
sum but it becomes one in the adiabatic limit when c --+ 0. This means that  

C 1 (No) = g*  c I (base) + 0(c) 

and so cl (Z,) 2 =  0(c), which gives c 1 (5(~) = 0 proving (5.14). 
Actually we have here reversed an argument  o f  [9]. Formula  (4.4) is really 

deduced from the formula  

1 
= - j" L~ (/)(fibre)), (5 ,15)  CI (~'~) 2 72 

wherep (fibre) stands for the Pontr jagin tbrm of  the tangent bundle along the fibres. 
In our  case this is a ho lomorphic  line-bundle which (including its metric) is pulled 
back from the base. Thus its Chern form comes from the base and hencep~ = c~ = 0 
which, by (5.15), implies cj ( - U ) = 0 .  

Yet a further p roo f  o f  (5.14) comes fu a direct computa t ion  of  its curvature.  
This will also introduce explicitly the Dedekind ~/-function. Observe first that the 
metric on the universal space T 2 • H is Kfihler so that the Bismut-Freed connect ion 
on cd~ coincides with that introduced by Quillen using the ho lomorphic  structure. 
Actually, it will be convenient first to consider the Quillen line-bundle ~Y'z 
associated to the family o f  operators  ?j  for a fixed character Z of  the fundamental  
group of  the torus. If  Z4 = 1, then ?z is invertible and the determinant  o f  the 
Laplacian (~*(?xx (defined by its ~-function), was computed  in [33] based on 
Kronecker ' s  second limit formula as expounded in [34]. In [331 the metric used was 
that giving total area c =  lm(r )  for the torus with periods 1 and r e l l .  However,  a 
change of  scale does not alter tile determinant  in view o f  the fact that  the relevant 
(-function vanishes at s =  0; in general 

(5.16) exp ( - ~i,, (0)) = exp ( - ~'~ (0)) exp ( - ((0)  log k).  

The formula in [33, Theorem (4.1)] shows in particular that 

det ?* r = I . / , ( r )  12 , 

where lz (r) is a holomorphic function o f  r e H. According to Quillen's definition o f  
the connection on 5~ this means that 2~x is fiat since it has a ho lomorphic  section 
.fS(r)-1 det~ z of  norm 1. 
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Lett ing 7, ~ 1 so that  ~x---* i~ it follows that the Quillen line-bundle o f  the 
~-family over  H is also flat. Now the signature ope ra to r  D = (? + (71, where ~91 is the 
? -ope ra to r  on f21'~ But on an elliptic curve mult ipl icat ion by the basic 
ho lomorph ic  differential converts  ~ into ~1 �9 More  precisely ~ is the tensor product  
o f ~  and the identity on the canonical  line-bundle. Their  de te rminant  l ine-bundles 
are therefore i somorphic  and so the de terminant  l ine-bundle L~ oFD is also flat, as 
asserted in (5.14). 

For  the ~-opera tor  (unlike ~ with Z #  1) we have to separate  out the 
0-eigenwtlue. The calculation in [33] applied to the non-zero eigenvalues, and 
adjusted For our  normal iza t ion  of  the metric, gives 

I 
(5.17) I det '  21 = Iq(r)(2v)Yl,  

where q(r)  is the Dedekind  q-function, defined in (1.1). Here det '  indicates that,  in 
defining the ~-function and so the determinant ,  we have omit ted  the 0-eigenvalue. 
Note  that  the modified ~-Function no longer vanishes at s =  0: it gives the value - 1. 
As a restllt scale changes alter det '  as given by (5.16) and this has been incorpora ted  
in passing f rom the formula  of  [33] to (5.17). 

Since our opera to r  D is essentially two copies of  ~ (5.17) leads to 

(5.18) Ide t 'DI  = Iq(~)42r] .  

Now recall the Factorization (4.6) expressing ~ as the tensor p roduc t  o t ' ~ '  and ~X/', 
cor responding  to the non-zero  and zero eigenvalues respectively. 2,'~" has a 
ho lomorph ic  section d e t ' D  whose norm is given by (5.18), while (4.12) identifies 
~ ' *  as the square of  the bundle o f  ho lomorph ic  differentials a long the fibres. Thus 
-~' has the ho lomorph ic  section ~),-2 whose norm is (2 v) 1. The  product  ~,)[ 2 de t 'D  
is therefore a ho lomorph ic  section o f ~  with norm ] q (r)41, the v-factors cancelling 
out.  Iden t i fy ing ,~  ~* with the cotangent  bundle T * ( H ) ,  by (z)2 _, dr it Follows that  
#9 ~ can be ho lomorphica l ly  identified with T*(H) with a no rm for which 

(5.19) q (~)'~ dr 

has norm 1. This characterizes (5.19) up to a constant  factor  of  norm 1. 
The l ine-bundle ~c,,, over  H is acted on natural ly by SL (2, Z). It follows that  the 

form (5.19) is invariant ,  up to roots  o f  unity, by SL (2, Z).  This is the well-known 
modu la r  p roper ty  of  the Dedekind q-function. 

We are now in a posit ion to take up the p rob lem investigated by Dedekind 
concerning the t rans format ion  propert ies  o f  logq( r )  under  SL(2,  Z). We shall 
concentra te  on the interesting case of  hrperbolic elements A of  SL (2, Z). Such an 
element has two fixed points,  c~, [7 on the real axis (say c~ < [/) and the differential 

du . z - ~  ( / ~ -  ~.)dr 
(5.20) O )  A = , I t  = l . . . . .  

u z - f l  ( r -  ~ ) ( z - / ] )  

is invariant  under A and under the whole one -pa rame te r  g roup  u ~ 2u in PSL (2, R) 
determined by A. Hence 

f(%-) =- ~ (~C) 4 d r  

O )  A 
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is a function invariant (up to 6th roots of  units) by A. Thus 

(5.21) logf (Az)  - log,/(r) = 2reiN(A) 

for some rational number N(A) with denominator  dividing 6. Here l ogJ i s  some 
definite branch of the logarithm in the upper half-plane: it is immaterial which. 
Since the funct ionsf  (T) and q (~)4 differ by the elementary factors in (5.20) it is clear 
that Dedekind's problem is essentially equivalent to determining N(A). 

In fact it is just a matter  of reinterpretation to see that N(A) = - �89  the 
topological inwtriant defined in (5.8). To see this recall that (as noted in Sect. 4) the 
line bundle L of Sect. 2 is just the dual L,<F* of the Quillen line-bundle L/', and this can 
also be identified with T*(H) .  The differential form q(z)4dz raised to the 6-th 
power is then a section of (~'*)~' = U' which is SL(2, Z)-invariant.  Since it is 
nowhere zero it defines a trivialization of U' and so (by uniqueness) it must define 
the (homotopy) trivialization given by the SL (2, Z)-invariant splitting a 1 described 
at the beginning of this section. Similarly ~"~A defines the trivialization given by a 0. 
Thus 6N(A) measures the difference of  these two trivializations of  U' which [by the 
observation following (5.8)] is equal to 3z(A ). There is also a sign change because 
(as noted earlier) the orientation of the complex torus we have taken corresponds to 
the opposite of  the standard orientation of R 2. Thus we have 

(5.22) logJ'(At) - l ogJ ( r )  = - 7tix (A) 

so that 7~(A) essentially describes the behaviour of  logt/(r) under the transfor- 
mation A. 

The number )~ (A) can also be related to the monodromy of  the line-bundle eve.*. 
Because of SL(2, Z)-invariance we can consider 5,0* as a line-bundle on the 
quotient H A of the upper halt-plane by the infinite cyclic group generated by A. 
Moreover d *  has its standard trivialization, defined by the one-parameter  group 
through _+ A. Since 5a* is fiat the fundamental loop of H A gives rise to a well- 
defined logarithmic monodromy nicz(A), for some real-valued invariant/~(A). 
Now identifying 5a* with the bundle of differentials on H a with its natural basis ~')A 
and using the fact that q (r)4 c& is a covariant constant section o f ~ *  it follows from 
(5.22) that 

(5.23) /~(A) = z(A ) . 

Remark. The preceding discussion applies just as well to parabolic A. By 
conjugation we may take 

giving the translation r ~ r + k  on the upper half-plane. The A-invariant 
differential defined by the one-parameter  group is just & so that J ( r ) =  ~(r) 4. 
Formula (5.22) then enables one trivially to evaluate z(A) as 

(5.24) )~ (A) = -/ ,- /3.  

The monodromy invariant I*(A) can be computed directly from its definition as 
follows. Take the semi-circle S in H with diameter (~, fi), the fixed points of  A. This 
gives the unique A-invariant geodesic and descends to a closed geodesic SA in the 
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quotient H A . Since ~ ~ T ( H )  and S is a geodesic, parallel transport for ~ along S 
coincides with the one-parameter group action, so that ~;r acquires a natural 
trivialization with basis o)~ ~. Thus ~zi/~ (A) is the logarithmic monodromy round 
SA of  the (trivial) line-bundle 5r so that formally (since D is essentially two 
copies of {) 

(5.25) 7z/~ (A) = 2A s arg (det' ~), 

where As, is the variation in the argument of the determinant on going round S A. 
The rigorous definition of  the connection [9] means that we have to use a ~-function 
regularization. Moreover, since ~ takes functions to (0,1)-forms we have to use the 
natural connection on the space of  (0,1)-forms in computing the variation. This 
means we should use the A-invariant basis 

2 ]/(~--~)(~Z[4) 

essentially the square-root of (5.20). Relative to the standard exponential basis 
e x p ( 2 ~ i ( m y + n x ) ) ,  the family of  ~-operators along S can be simultaneously 
diagonalized with eigenvalues 

(5.26) 2(,,,>(T)=---(m-n~)]/(~-~)(~-fl),, v C = q  2 " 

As we move once round S A we move by A along the semi-circle S and the eigenvalues 
given by (5.26) get transformed into one another. A direct verification shows that 

(5.27) 2AI .... ) (A (z)) = 21~ ..)(z). 

Here A acts on the lattice Z 2 of characters dually to its action on the (y, x) variables, 
so that 

Now the rigorous version of  (5.25) becomes 

2 i { ~ ' ~ , 2 <  ...... )(z) ,-~d(log2< .... )(z))} . (5.28) H ( A ) = - ~ -  ( .... > ,=o 

Here the integral is taken along any fundamental arc (to, A (to)) for the action of  A 
on the semi-circle, the sum 27' is over non-zero lattice points and s is put equal to 
zero after analytic continuation. Note that l~(A), as given by (5.28), is real because 
I detC'l is unambiguously defined. 

Before proceeding to analyze formula (5.28) we shall make a brief notational 
digression. From the definition of/L we have 

/~( -  A) =/~ (A) = - /~ (A-~) .  

Hence. replacing A by - A  if necessary, we can assume 

(5.29) TrA = a +  d >  0. 
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Moreover ,  replac ing A by A-1  if  necessary,  we can then ensure 

(5.30) c < 0.  

Assumpt ion  (5.29) means  that  A lies on a one -pa rame te r  g roup  A t. In terms o f  the 
var iable  u defined in (5.20) A t is given by 

= ~ 2  (5.31) A, (u)  = ~ 'u ,  ~ = ~_/,~+ < 1, 

where 2• are  the e igenvalues  o f  A given by 

(5.32) 2-E - (a + d) _+ I//A, A = (a + d) 2 - 4. 
2 

The condi t ion  (5.30) means  that  

(a-  d) + (a-  d) - / 5  
~ =  . . . .  , f l - -  2c 2c 

f rom which it follows that  A i = A. Since e < 1 in (5.31) it fol lows that ,  for any  po in t  
r on the semi-circle S with d iamete r  (e, fl), we have 

(5.33) A t (r) ~ c~ as l ~ + o~ 

A, (r) --+/3 as t --* -- oo. 

The ac t ion  of  A on the lat t ice Z 2 extends to an ac t ion  of At on the plane R 2 ~ Z 2, 
with coord ina tes  Y, X na tura l ly  dual  to y ,x .  This  ac t ion  o f  A t preserves the 
quad ra t i c  form 

(5.34) N ( Y , X )  =-- cY 2 + ( d -  a ) X Y -  bX 2 

= c ( r -  ~ x ) ( Y - / ~ x ) ,  

and  the orb i t  o f  any  po in t  (Yo, Xo)4= (0,0) is one branch  o f  the hype rbo la  

(5.35) N(  Y, X) = N ( Y  o, Xo). 

Moreover ,  as t increases,  the b ranches  are  t raversed in the posi t ive sense if N < 0 
and  in the negat ive sense if N > 0 (see figure). 

N< 0 - Y = ~ X  

• 
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We now extend the definition of 2(,,.,~ (~) in (5.26) to non-integer values ( f ,  X). 
Then (5.27) continues to hold with A replaced by A t and (m, n) by (g, X). 

We now return to formula (5.28) and consider all the terms arising from a single 
A-orbit, i.e. from all lattice points 

(mk,nk)=Ak(mo,no) k e Z ,  

obtained by applying A k = A k to a given point (m o, no). For  brevity denote by 
f ( m ,  n, ~) the expression being integrated in (5.28). Then (5.27) implies 

Az ~ A~ ~ Ak+ 1 ~o 

f(m~,n k;r)= ~ f (m  0,n o;A - k r ) =  ~ . f (mo ,no : r ) .  
ro ro Ak~o 

Summing over the whole A-orbit, and noting (5.33), then leads to the single integral 

(5.36) ~f(mo, no ' j .  

Note also that this integral is unchanged if we now replace (mo, no) by any point 
(Y, X) lying on the same branch of the hyperbola (5.35). This follows from (5.27) by 
the substitution r ~ A , ( T )  w i t h  t chosen so that 

A, ( Y, X) = (m 0, no). 

On each branch of  the hyperbola choose the unique point (Y, X) with 

(5.37) Y = L  X, c =  +_ 1, 

where],~,], ~are fixed constants w i t h y _ ~ < c ~ < 7 ~ < [ L T h e n  

N(71,1) >0 ,  N(7 _1 ,1 )<0  

so that 

(5.38) c = sign N(Y,X). 

Moreover, the value of X is determined by 

(5.39) X2 = N!_Y__,X) 

the choice of square-root depending on the branch. 
Computing the integral (5.36) by using this value of  (Y, X) and recalling the 

formula (5.26) [with (m, n) replaced by (Y, X)] we get 

Since v=  Imr ~ 0 as r ~ c~ or z ~[4  this integral converges for R e s >  0 and is 
holomorphic in s. Moreover for Re s = 0 the divergent term arises tu dlog v. This 
gives rise to a simple pole at s = 0 with real residue. Thus we can rewrite (5.40) 
briefly as 

(5.41) I CX[-' l~(s), 
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where I, (s) is meromorphic  in s, depends only on ~: (and ~, fi) and near s = 0. 

(5.42) l,.(s) = R, + (P~ + iQ~) + . . . .  
S 

where P, Q, R are real and 

(5.43) iQ~ = .[ d log  [(7, - r) V"(f --c 0 (f ~ [])]. 
// 

Now, on traversing the semi-circle S from fi to c~, one finds the following variation in 
the arguments  

A arg(Tl - r ) =  7: 

Aarg(7  l - r ) = 0  

A arg ] / ( i  C :t)('c 2[3) = - re/2. 

Hence, f rom (5.43), we get 

(5.44) Q~ = c~/2. 

Substituting (5.40) [i.e. (5.41)], for the contr ibut ion o f  each A-orbit in (5.28) we 
get 

2i 
s , (A)=  - { ~ l c x l  %(.,.)},=0. 

TC 

where the sum is taken over all A-orbits. Writ ing 2," = 2." + + S where S • is the sum 
over all A-orbits with sign N = +_ 1, and using (5.39) we have 

2i 
- ' 1 s / 2  t (5.45) /~(A)=  {C"+I , ( s lX+INI  ,2+C , ( s ) s  INI ~,=o, 

T~ 

where C• are the constants  
1 

C = C  ~IN(7 , , I ) I  ~. 

We now consider the two "( - funct ions" ,  associated to A. 

,.A (,s) = IN[ 

and the L-function, given by this difference, 

(5.46) LA(S ) = ~] (s) -- ~a (s) = s  ' 

the sums being over the appropr ia te  A-orbits o f  the lattice and N being as before the 
quadrat ic  form (5.34) defined by A. In a slightly different notat ion these are familiar 
quantities in the theory o f  real quadrat ic  fields (here the field is generated by the 
eigenvalues o f  A). In particular all these functions have meromorph ic  cont inuat ions 
in s [from the region Re (s) > 1 o f  convergence] and are finite at s = 0. The values of  
the functions and their derivatives at s = 0 are all real. Using these facts and the 
value (5.44), for the relevant coefficient Q in the expansion (5.42), formula (5.45) 
leads to 

(5.47) /~(A) = L A (0). 
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We recall that, in establishing (5.47), we made the inessential assumptions (5.29) 
and (5.30). We can now remove this restriction, and still have formula (5.47), 
provided we redefine the quadratic form N by 

(5.48) N( Y, X) = sign (a + d) (eY z + ( d -  a) XY  - bX2). 

Finally therefore we have established the following: 

(5.49) Proposition. Let A = be a hyperbolic element (if' SL(2, Z) with 

associated quadratic form N ( K X) given by (5.48). D(ffi'rw the L-series L A (s) by 

signN 
L A (s) = ~ ]NI:=" 

where the sum is over (non-=er@ A-orbits eft the integer lattice. Let ~ be the 
determinant line-bundle order t t  J))r the./amily (?[ signature ot)erators of the torus 
bundle over H, attd let ~il~ (A) be the logarithmic rnonodromy g / ~  round the basic' 
loop S A in H A relative to the triviali=ation determined by the one-parameter group 
through +_ A. Then 

IL(A) = LA(O ). 

Remarks. l) The calculations involved in deriving this formula fbr/~ (A) are similar 
to calculations in [34], based on ideas of Hecke, for computing LA(I). The 
functional equation for L a (s) enables one to determine the values for s = 0,1 from 
one another, but s = 0 is the value which is most natural from the geometric point of 
view. 

2) The L-function LA(S ) in (5.49) is essentially the same as the Shimizu L- 
function introduced in [16]. We embed the lattice Z 2 in the quadratic field 

K-- Q ( [ / ~ )  by sending 
(1,0) -~ - I ,  (0,1) ~ ~. 

For the dual lattice we replace ~ by - ~ - ~ .  Hopefully our sign conventions are 
consistent with those of [16]. 

Hirzebruch [16] showed that 

(5.50) LA (0) = c~ (A) 

where 6 (A), the -signature defect", is closely related to Meyer's invariant <h (A). It is 
defined by the formula 

(5.51 ) s ign Z = l p l  (Z, c Z )  - (~ (A) ,  

where Z is any oriented 4-manifold with boundary W(A) (the 2-torus bundle fibred 
over S ~ defined by A), and the relative Pontrjagin class p~ is defined by the natural 
parallelism on W(A) given by the eigenvectors of A. We shall shortly give a direct 
proof that 

(5.52) ~ (A) = 4' (A). 

Thus Hirzebruch's result essentially identifies the analytic invariant L a (0) with the 
topological inwlriant + (A). H irzebruch used the resolution of  "cusp singularities" 
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to construct explicit choices of  Z and compared this with the explicit evaluation of 
L A (0) (see [16]). 

In [5] a direct analytical proof  based on [6] was given that 

(5.53) LA(0) = ,7(A) = ,~(A),  

where q (A) = q ( W (A)) with the standard metric given by the A-invariant geodesic S 
in H. Moreover, the result in [5] applied to totally real fields of  any degree whereas 
here we are discussing only the quadratic case. 

In our approach,  combining (5.10), (5.12), (5.23), and (5.49) we get an 
independent direct proof  of  the equalities 

(5.54) L A (0) = ~1 ~ ( A) = ,/, (A ) .  

We will shortly give a direct proof  of: 

(5.55) F/(A) = q~ 

so that [in view of(5.52)], (5.53) is essentially the same as (5.54). Thus the Bismut- 
Freed results which we have used can be viewed as a generalization of  the results in 
[5] (at least for quadratic fields), in fact the techniques used in both papers have 
common features, notably the use of  the "adiabat ic"  limit. 

As promised we shall now give direct proofs of (5.52) and (5.55) in the form of 
two lemmas. We begin with the latter. 

(5.56) Lemma. For an), hyperbol ic  e l emen t  A o[SL(2 ,  Z), q ( W ( A ) ) =  ~?~ 
i.e. the adiabatic  l imi t  is unnecessary.  

Proq[i We have to show that q ( W ( A ) )  is unchanged if we rescale the torus metric, or 
equivalently if we rescale the circle metric. Now the standard metric on the universal 
covering R 2 • R o f  W ( A )  is 

ds2 = c,a.t d x  2 _]_ • ).t tiT2 _~_ dt 2 

k 

relative to (x, y) coordinates of  R 2 given by the eigenvectors of  A, with e +~ being the 
corresponding eigenvalue of  A z. Now let 0(r) be a function of  the real variable r 
with graph as indicated. Consider the metric on R z • R x R given by 

(5.57) e;~t d.v2 ~- C 2tdv2 ~- o(r)2 dt 2 + dr 2 . 

This induces a metric on the 4-manifold Z = W ( A )  x I which is a product near the 
boundary, giving the standard metric on W ( A )  x 0 and this metric rescaled by a 
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factor  k 2, in the circle direction, on W(A) x 1. By the main result o f  [6] the 
difference of  the ii-invariants for the two boundary  componen t s  is therefore given 

1 " ~ , by 3 j t  ~ where Pl is the Pontr jagin form for the metric (5.57). It is therefore 
z 

sufficient to show that  p l  = 0. But (5.57) is conformal ly  equivalent  (by the factor  
e ~") to 

d x 2 + l e  2 " : - ' d 3 , 2 + e  ;,, o ( r )2  dl2  + e ;~' d1-2} 

which is a product  metric  on R 1 • R :~. Now for such produc t  metrics p~ = 0  
trivially, and quite generally p~ is conformal ly  invariant.  Hence p~ = 0 and the 
l emma is established. 

Next we prove:  

(5.58) Lemma.  For any hyperbolic element A of SL(2, Z), the signature d@'cts o/  
Hirzebruch aml Meyer coincide, i.e. 6 (A) = (/1 (A). 

Proq/i Assume first that  A lies in the c o m m u t a t o r  subgroup  F '  o f  F = SL (2, Z).  
Then we can choose the 4-manifold  Z with bounda ry  W(A) to be a 2-torus bundle 
over  a surface X with just one bounding circle: we use the appropr ia t e  
representat ion IT 1 ( f l ( )  ---+ SL(2, Z).  Then we apply  the a rgumen t  used earlier, 
mapp ing  Z--+ Z(m),  where each torus is factored by the points  o f  period m. Since 
Z ( m )  is essentially the same manifo ld  as Z, while the relative pl gets divided by m 2, 
(5.51) applied to Z ( m )  shows that  t h e p l  term must  vanish. Compar i son  with (5.5) 
then shows ~ (A) = ~/~ (A). In general since F '  has finite index in 1' (in fact index 12), 
we get ~5(A k) = 4>(A ~) for some integer k. It is therefore sufficient to establish 

(5.59) 4,(Ak)= k{/,(A), ,3(Ak)= k,3(A). 

The first par t  of(5.59)  follows f rom (5.9) and (5.10). For  ~3 we shall use the fact that  
we can always choose the 4-manifo ld  Z with boundary  W(A) to have a m a p  to S l 
extending the proiect ion W(A) -+ S j . This follows easily f rom the vanishing of  the 
oriented cobord i sm groups  in dimensions  2 and 3. Note  also that  the explicit model  
for Z given by the cusp resolut ion o f  Hirzebruch [16], which we shall meet later, has 
this proper ty .  We can then take the k-fold cover  2 of  Z induced by the k-fold cover  
of  S ~. Then ? Z =  W(Ak). C o m p a r i n g  (5.51) for Z and Z, and using the 
mult ipl icat ivi ty o f  the p l - t e rm  we see that  

6(A k ) -  kO(A)= - [ s i g n Z -  k s i g n Z ] .  

But for such a cyclic covering wi thout  fixed points the general formula  (4.16) gives 

q(A k) - ktl(A) = - [sign 2 -  k sign Z ] .  

This is true for all metrics hence ~1 can be replaced by ~1 ~ [or appeal  to (5.56)]. Then 
(5.12) replaces ~1 ~ by q~ and we already know (5.59) for ~/~. Thus  iS(A k) = k(5(A) as 
required. 

Remark. The last part  o f  this p r o o f  is somewhat  circuitous. It uses [6] but not [9], 
nor  does it depend on explicit computa t ions .  An al ternat ive and more  natural  
me thod  is to use the manifold  Z constructed by Hirzebruch [16], and to verify 
sign 2 = k sign Z directly. 
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It may now be convenient to summarize all our results in an omnibus theorem: 

(5.60) Theorem, Let A e SL (2, Z) be hyperbolic. Then thej~dlowing invariants oj  A 
coincide. 

1) Meyer's signature invariant ~/: (A) (see (5.3)). 
2) Hirzebruch's signature dr ~ (A). 
3) The invariant Z (A) describing the tran~:[brmation properties oJlog q (r) under A 

(see (5.22)). 
4) it(A) the logarithmic monodromy (divided by r~i) (~[ Quillen's determinant 

line-bundle ~'. 
5) The value L A (0) q/' the Shimizu L-/hnction (see (5.49)). 
6) The At(vah-Pato~ff-Singer invariant t I(A). 
7) The "adiabatic limit" ~1 ~ (A). 

Remark. For brevity we have not spelled out in the theorem all the relevant data on 
which these invariants depend, for example the parallelism of W(A)  [to define 
~i (A)], the trivialization of Sq needed to define/l (A), or the choice of metric on W(A) 
to define q(A) or ~I~ These were explained earlier. 

Because of the large number of quantities (all equal) involved in the theorem, it 
may be helpful to recall briefly the way in which they are related and the order in 
which the equalities are established. 

The two inwlriants + and 6 are of very similar cohomological character, both 
being "signature defects". The main difference is that O is only defined for torus 
bundles over S ~ whereas 6 is defined for all parallelized 3-manifolds. Despite its 
apparent analytical nature X is also a cohomological invariant as is clear fi'om our 
original definition (5.8). (See also the remarks in the introduction.) The equality 
Ch = Z is, as noted before, a "signature theorem" and is essentially proved in Sect. 2 
(with an alternative in Sect. 3). The monodromy/~ uses the analyticity of~l (T) and its 
appearance in the formula for [det?'  I, but the equality Z = IL is then an immediate 
consequence. The formula p ( A ) = L A ( O  ) is a classical but straightforward 
computation. The equality it = ~1 ~ is a refinement of  the general Bismut-Freed result 
and is proved by identifying both terms with (~. The equality ~/~ (A) = q0 (A) is in fact 
true for all A e SL(2, Z), not just hyperbolic A. Finally ~1 = qo wets established by a 
direct elementary computation based on conformal invariance. 

6. Compulations and Dedekind Sums 

We shall now show how to give explicit formulae for the invariant 0 of Sect. 5. We 
recall that 

'h: SL(2, Z) ~ Q 

is a class-function, and that the conjugacy classes in SL (2, Z) are of 3 types 
(i) elliptic, 

(ii) parabolic, 
(iii) hyperbolic. 

Moreover, there are few classes in (i) and (ii), most classes being hyperbolic. We 
shall begin by considering the elliptic classes. In principle, we could use the explicit 
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determinat ion  ofcr (A) in Sect. 2 to compute  </) (A), but we shall instead use the fixed- 
point  methods  described in Sect. 4. 

If  A e SL (2, Z )  is of  finite o rder  N then the associated 3-manifold  W ( A )  is the 
quotient  o f  

W = T 2 •  1 

by a cyclic group  o f  order  N acting s imultaneously on both factors. Moreover ,  the 
(product)  metric  can be chosen so that  this action is isometric. Since S 1 and hence I~ 
admits  an or ientat ion-revers ing i sometry  we have t 1 (I~) = 0. Hence applying (4.16) 
and (4.18) for the finite cover ing t~P--+ W and, not ing that  the quadra t ic  form on 
H 2 ( T 2 •  D 2) is zero, we get 

I N ~ ' y ' c o t ~ c o t f l  2_ 
(6.1) q ( W ) = - - ~ k = l  e 2 ' 

where the second s u m m a t i o n  is over  the fixed points  o fA k acting on T 2 • D 2 (where 
D 2 is the unit disc), and c~, fi are the cor responding  ro ta t ion  angles. 

As noted  in Sect. 5 the adiabat ic  limit is irrelevant for elliptic elements  so that  by 
(5.12) 

'1 ( W  (A))  = tl ~ ( W ( A ) )  = ,/, (A) 

are all given by (6.1), and it is then a simple ma t t e r  to carry out  the compu ta t ion  
explicitly in each case. Since ~/> ( I )  = 0, + (A - 1) = _ 4~ (A) we also have ~/~ ( - I) = 0 
and it is enough to consider the following 3 cases. 

haveo e ,  d po,n, wl,  

~t/3, A 2 and A 4 have 3 fixed points  with all angles 27r/3, A 3 has 4 fixed points  with 
angles ~z; 

4 (A)=-~ ,~31 '  + 3 ( ~ ) + 0 + 3 ( ~ ) + 3 } -  ~'3, 

(ii) A = ( - I 1  - 1 )  ~ 1 7 6 1 7 6 1 7 6  ( f ~  

4,(A) = - ~ { 1 + 1 }  ~. - -  3 ,  

:) (iii) A = o f  order  4: A and A 3 have 2 fixed points  with both angles 7r/2 

while A 2 has 4 fixed points  with angles ~z; 

, / , (A) = - � 8 8  = - 1 .  

We turn next to the parabol ic  elements. Perhaps  the most  elegant and 
interesting way to deal with these is to consider elliptic suffuces,  i.e. complex 
analytic families o f  elliptic curves arising f rom a ho lomorph ic  m a p  

,/! Z --+ X 

of  a compac t  analyt ic  surface Z on to  an algebraic  curve X. The  generic fibre f -  1 (x) 
is assumed to be an elliptic curve but there are special exceptional  fibres which 
degenerate.  We will assume there are no mult iple fibres. The  m o n o d r o m y  round  
each such fibre is then [20] parabol ic  or  elliptic. 
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The  signature of  such an elliptic surthce is given in terms of  its Chern  classes cl ,  
c 2 by 

sign (A) = q - _ z c .  
3 

N o w  the canonical divisor lies purely in the fibres so that  c f = 0 while the Euler 
number  c2 is easily seen to be given by the Euler numbers  of  the exceptional fibres. 

c~ = y~ e (F,)  
i 

so that  
2 

sign (Z) = - ~ e (iv,.). 
-7 

On the other  hand letting Z '  = Z - ~ F i we have 
i 

sign (Z) = sign (Z ' )  + ~ sign Fi, 
i 

where for simplicity we have put F i instead of f  1 (Di) with D i a small disc a round  
xi =f(Fi). 

Hence, for Z ' ,  we have 

~(2e(Fi)+signFi) (6.2) s i g n ( Z ' ) =  - , 3 " 

C o m p a r i n g  (6.2) with (5.5) strongly suggests that  

(6.3) ~/) (A) = ~e(F) + sign (F) ,  

where A is the m o n o d r o m y  a round  the exceptional fibre F. Here  the m o n o d r o m y  is 
defined by the external or ienta t ion (i.e. as the boundary  of  Z ' ) .  However ,  this 
coincides with the s tandard  algebraic-geometr ic  convent ion for the m o n o d r o m y  
(relative to the internal or ienta t ion near  F) because of  the different or ientat ion used 
for the torus (see Sect. 5). 

There are various possible ways to prove  (6.3). The  most  direct would be to 
replace + (A) by t/~ (A) and to deduce (6.3) by differential-geometric  methods,  f rom 
(4.1) applied to a ne ighbourhood  of  F ( taking the adiabat ic  limit). A second 
approach  would be to exhibit sufficiently many  global examples  of  elliptic surfaces 
so that  (6.3) would follow from (6.2) by linear independence.  We shall adop t  a 
var iant  o f  lhis method.  

The degenerate  fibres F have been classified by Koda i ra  [20] and the 
corresponding m o n o d r o m y  matrices A are either elliptic or conjugate  to _+ U k with 
k > 0, where 

For  the elliptic cases (6.3) can be directly verified using our  formula  above  for ~h (A) 
and Koda i r a ' s  descript ion of  the degenerate  fibres. Note  that,  if F has r 
components ,  then sign (F) = - (r - 1). 
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To compute (/)(U) we consider the standard elliptic surface Z obtained by 
blowing up 9 general points in the plane. Each F is then a nodal cubic and the 
corresponding monodromy is just U. Since all terms in the summation in (6.2) [and 
(5.5)] are equal we can deduce (6.3) for A = U. Moreover sign F =  0, e(F) = 1 so 
that 

(6.5) (/, ( u )  = 32. 

To compute (/,(U ~) take the standard fibration Z--* P1 above, consider the 
induced fibration Z ' - *  P1 given by the k-fold cover P1 -~ P~ (Y = xk), and then 
resolve its singularities to give Z"  -~ P~. If  we choose the branch point x = 0 to give 
an exceptional fibre of  Z then y =  0 gives an exceptional fibre of  Z"  with 
monodromy U k. M oreover, the exceptional fibres of  Z"  are either of  type U or U k. 
Since (6.3) has been proved for U the global formula (6.2) proves (6.3) also for U k. 
The corresponding fibre F k consists of  a cycle of  k rational curves so that 

sign (FD = - ( k -  1), e ( F ~ ) = k  

(6.6) (/> (U k) = - k/3 + 1. 

An alternative way of deriving (6.6) is to consider the cyclic cover 
W ( U  ~) ---, W(U)  and apply the methods described at the end of  Sect. 4. The 3- 
manifold W(U ~) is tile boundary o f a  neighbourhood Z k of the exceptional f ibre /~ 
and the cyclic group of order k acts naturally without fixed points. Thus (taking 
care with orientation conventions) we get 

(/) ( U  k) = k(/,  ( U )  - ( k  - 1) 

which, together with (6.5), yields (6.6). 
Similarly, to compute 4 ) ( - U  k) we can consider the double covering 

W(U 2~`)-~ W ( - U k ) .  The induced involution a on Zzk has 4 fixed points and 
sign (Z2k, a) = -- 1, SO that by (4.16), (and recalling again that we have the "wrong"  
orientation) 

1 ~, ( -  o h ) - �89 ( u  2~) - 

- k  
(6.7) (/) ( - U k) -- 

3 

This completes the computat ion of(/~ for all elliptic and parabolic elements, and 
our results agree with those of Meyer which are based directly on the defining 
property (5.3) of  + and the explicit computat ion of  sign (A, B). 

We come now to the more interesting case of  hyperbolic elements. Here we shall 
work with actual matrices, not just conjugacy classes, and we begin with the simple 
c a s e  

As usual we can form the 3-manifold W(A),  fibred over S 1 with T 2 as fibre and A as 
monodromy.  We shall construct explicitly a 4-manilbld Z with boundary W(A)  and 
use (5.51 ) to compute the signature defect 6 (A), using the standard parallelism of  
W(A) given by the eigenvectors of  A. In view of (5.52) we have 4)(A) = 6 (A) and so 
(h (A) will be computed in this case. Moreover,  our  manifold Z will be a complex 
manifold and we can replace Pl by c~ - 2 ( '  2 .  



Logarithm of the Dedekind ~l-Funktion 375 

The const ruct ion  of  Z and  the compu ta t ion  o f  ~(A) is a special case o f  the 
cons t ruc t ion  given in [16] by Hirzebruch.  In fact Z is jus t  the ne ighbou rhood  o f  a 
nodal  ra t iona l  curve F with normal  degree - a. The canonical  divisor  of  Z is - F so 
that ,  a l lowing for the node,  

c ~ = F 2 =  - a + 2  

c z = e ( F )  = 1 

sign Z = - 1. 

N o w  our  or ien ta t ion  of  W(A) turns  out  to be oppos i te  to the or ien ta t ion  o f  ?Z, 
induced by the complex or ien ta t ion  o f  A. Hence 

(6.9) <5(A)= ( 3 s i g n Z  = 3 -  " 

These calcula t ions  are s imilar  to those made  above  for the except ional  fibres o f  
elliptic surfaces except that  there the s ignature  term was zero. One must  o f  course 
check that  the t r iv ia l izat ion o f  the canonical  bundle  on W(A)=~Z given 
ho lomorph ica l ly  is consis tent  with our  paral lel ism. 

Since we shall be using Z again  short ly  it is convenient  to give its explicit  
cons t ruc t ion  at this stage. We star t  with the l ine-bundle  o f  degree - a  over  the 
project ive line P~. If  we paramet r ize  P~ by two local coord ina tes  uo and v~ with 

a , vl = uo 1 the corresponding fibre coordinates  ul and co will be related by u 1 = u 0 to. 
I f  we now make  the further ident i f ica t ion (u 0` u x ) ~  (v o, t~) we clearly find the 
nodal  ra t iona l  curve F with no rma l  degree a (see figure) 

P1 [ U 

To be precise we must describe appropriate neighbourhoods for the identification. 
This will then give us an explicit neighbourhood Z of F with boundary W(A). 
Tak ing  logar i thms  we get the equat ions  

Iogu l = a l o g u  o + log % 

log t, 1 = - log u o 

exhibing the matr ix  A. Tak ing  abso lu te  wdues  and put t ing  Y =  log lul, x =  log Icl 
we have as in Sect. 5 the figure associa ted  to the quad ra t i c  form 

N(Y,X)-(Y2 +aXY+ y2) 

\ 

Y=fiX 
N~<~I 
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Note that the roots Y = c~ X, Y = fi X of N ( Y, X) = 0 are both negative as indicated in 
the figure. The matrix A acts on the Y, X plane preserving N(Y, X) and hence the 
hyperpolas N(Y, X ) =  constant. Consider the region N(Y, X ) <  - 1  and take the 
component  containing the negative quadrant  (shaded region). The manifold Z is 
defined by this constraint on the absolute values and it is clear that the boundary is 
precisely W(A). Our orientation of W(A) is opposite to that coming from the 
complex structure of  Z because we take the imaginary parts (of the logarithms) first 
(giving the torus), followed by the real parts (illustrated in the figure). 

Now let us pass to a general hyperbolic element 

As before, without loss of  generality, we may assume c < 0, a + d > 0. We define 

and note that B =  DB'D i where 

Hence, by (6.9) we know ~/~ (B), namely 
a+d 

(6.10) 4,(B)=~/,(B')= 3 - - 1 .  

We shall compute ~/~ (A) by relating W(A) to W(B) and then using (6.10). So let 

C :  Z 2 --+ Z 2 

be the embedding of  lattices given by 

Since A C =  CB the matric C induces a Icl-fold covering T 2 -+  T 2 w h i c h  is  

compatible with the actions of  B and A on the two tori. Hence we get an induced 
Ic I-fold covering 

(6.11) W(B)~ W(A). 

Now let us introduce the manifold Z constructed above (with a + d replacing a) 
whose boundary is W(B). We recall that Z arises from the line-bundle of  degree 
- (a + d) over P1 by suitable identifications. Now the cyclic group of order I c l acts 
naturally on the line-bundle. In terms of  the local coordinates this is given by 

(u0, vo) -~ (~Uo, ~ "Vo) 

(b/ l ,  V 1)---)" (+'d/'/1, ~ " -1Vl )  , 

where ~ is a primitive root of  unity. Note that these formulae are consistent with the 
equations of  the line-bundle 

/'/1 ~ b/~) +d [0  

D 1 ~ /AO 1 
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The identification (u 0, v0) ~ (Ul, u1) which produces Z is not compatible with this 
action. However, the identification just corresponds to replacing r by another 
primitive root, namely ~ (note that a d -  be = 1, so that a = d i rood c). Hence we 
get a well-defined equivalence relation on Z. This induces the covering 
W(B)--+ W(A) on the boundary and has a unique fixed point of  type (1, - a ) .  

We are now just in the position discussed at the end of Sect. 4 for computing the 
deviation from multiplicativity of  ~/-invariants. Moreover, this deviation is 
independent of  the choice of  metric and so we can pass to the adiabatic limit qo 
Since we have shown (5.12) that q0 (W(A)) = 4~ (A), and since W(A) has the negative 
orientation of ('~Z, formula (4.22) with (a, c)-~ ( - a , - c )  gives 

(6.12) - ( / ~ ( A ) + ~ q ~ ( B ) = - 4 s ( - a " c l ) - (  s i g n Z ' -  l,c, s , gnZ)  

( ,:) = 4 s ( a , c ) -  - 1 +  . 

Substituting the formula (6.10) for q~ (B) and recalling that c < 0 we get the formula 
for q~(A) in the hyperbolic case: 

a+d  
(6.13) </>(A) . . . . . .  4s(a, c ) -  1 for c < 0 ,  a + d > 0 .  

3c 

Since q~(-A)  = + (A) = -~/~ (A-  l) and s(a, e) = s(d, c) we can drop the conditions 
on c and a + d, giving finally 

a+d  
(6.14) ~/~ (A) = - -+4signc .s (a ,c)+signc(a+d)  for c=#0. 

3c 

This formula was established by Meyer [25] by quite different methods. 
As explained in Sect. 4 this approach to computing + (A) arises from the natural 

cobordism implicitly constructed above between the 3-manifold W(A) and the lens 
space L (I c I, - a). Formula (6.13) expresses the difference of  their signature defects 
in terms of the relative (rational) Pontrjagin class of  the cobordism. To get the 
cobordism we remove a neighbourhood of  the fixed point in Z and pass to the 
quotient, i.e. we cut out the singular point of  Z ' .  Note that, ifA is a diffeomorphism 
of any manifold Tand T =  ~:X, there is a natural cobordism between W(A) (the fibre 
bundle over S 1 with T as fibre and A as monodromy)  and M (A) = X w X (the 
double of X using A to glue the common boundary). When T =  T 2, X= S ~ • D 2 
and M(A) is a lens space. 

If we resolve the cyclic singularity of Z '  we get a manifold Z(A), still having 
W(A) as boundary. This contains a cycle of  rational curves consisting of  the 
resolution of P together with the transform o f F '  (image of F in Z') .  This cycle is just 
the Hirzebruch resolution [16] of  the "cusp" associated to A. Thus a cusp 
singularity may be resolved in two steps, the first leading to a cyclic singularity lying 
on a unique exceptional curve and the second being the standard resolution of a 
cyclic singularity. This relationship between cusp and cyclic singularities can again 
be viewed as the general explanation of the formula (6.13). As in Hirzebruch [16, p. 
44] the manifold Z(A), containing the resolution of the cusp, can be used to 
compute the signature defect W(A). The resulting formula is different from (6.13). 



378 M. Atiyah 

It involves the integers occurring in the Euclidean algorithm for the pair (a, c). By 
comparing this with (6.13) we get another formula for the Dedekind sum which is 
proved differently by Rademacher [31]. This formula can also be obtained by just 
using the resolution of a cyclic singularity to compute its signature defect. 

The relation between W(B) and W(A) which we have just used to compute (/~ (A) 
from q5 (B) in the hyperbolic case can also be used in the elliptic and parabolic cases. 
There are minor modifications in the answers due to sign changes. The manifold 
Z(B) exists in all cases as the boundary of a nodal rational curve F of degree 
- (a + d). The difference is that, for a + d > 0, 

142= - ( a + d )  + 2 

is negative in the hyperbolic case, zero in the parabolic case and positive in the 
elliptic case. Formula (6.10) for </~(A) in the hyperbolic case generalizes to 

a + d  
(6.15) </5 (B) -- t-c, 

3 

where c = - 1,0, + 1 according as B is hyperbolic, parabolic or elliptic. This can be 
checked directly from the explicit formulae for the elliptic and parabolic elements 
given earlier. In fact for the parabolic case we gave a direct geometric proof  on the 
lines of(6.9) in the hyperbolic case. Now apply (6.12), substituting (/) (B) from (6.15) 
and noting that 

sign(Z) = sign(Z')  = ~:. 

This gives 
a + d  

(6.16) ( h ( A ) -  3c - 4 s ( a , c ) + c  for c < 0 ,  a + d > 0  

and hence the general formula (see [26]): 

a + d  
(6.17) 4>(A)- 3c ~-4signc.s(a ,c)-cs ignc(a+d) for c4=0. 

Of course, if c = 0, A is parabolic and we have the elementary formulae for ~/> (A), 
given in (6.6) and (6.7). 

The Dedekind formula (1.3) for the transformation o f logq( r )  under A, in the 
elliptic or parabolic case, is then easily deduced from the formula (6.17) for ~h (A). 
The argument is formally similar to the hyperbolic case but much more elementary. 
For parabolic A our computations of (/> (A) in (6.6) and (6.7) and of  )~ (A) in (5.24) 
show that 

(6.18) (h(A)=z(A)+ I if A = U  k 

= z ( A )  if A = - U  k. 

Since Z (A) essentially describes the effect of A on log q (T) formulae (6.18) and (6. ! 7) 
lead to (1.3). In the elliptic case we took x ( A ) =  0 because, for a finite group, the 
rational cohomology is trivial and q (r)24 &~, can be homotopically identified as 
giving the unique equivariant trivialization of  T ~' (Tthe  tangent bundle of H). The 
formulae at the beginning of this section for </~ (A) with A elliptic therefore replace 
(6.18), and (6.17) then leads to (1.3). 
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