# Pure-Culture and Enzymatic Assay for Starch–Polyethylene Degradable Plastic Biodegradation with *Streptomyces* Species<sup>1</sup>

Anthony L. Pometto III,<sup>2,3</sup> Kenneth E. Johnson,<sup>2</sup> and Meera Kim<sup>2</sup>

Eleven starch-polyethylene degradable plastic films were prepared from masterbatches from Archer Daniels Midland Inc. (ADM), EcoStar Inc. (SLS), and Fully Compounded Plastic Inc. The biodegradability of initial and 70°C heat-treated materials was determined using a pure-culture assay with Streptomyces badius 252, S. setonii 75Vi2, or S. viridosporus T7A or without bacterial culture (control). Films were treated with 10-fold S. setonii culture concentrates and compared with inactive enzyme controls. Changes in each films mechanical property, molecular weight distribution, and Fourier-transformed infrared spectrum (FT-IR) were determined, and results were evaluated for significant differences by analysis of variance. Cell mass accumulation on each film was quite pronounced. In pure-culture studies, biodegradation was demonstrated for ADM-7 and SLS-2 initial films and for ADM-6 heat-treated films, whereas after 3-week treatment with active S. setonii culture concentrates (enzyme assay), reductions in mechanical properties and changes in FT-IR spectrum were illustrated by all the films except SLS-2. Thus the absence of biofilm formation on the film surface permitted enzymatic attack of the materials. Furthermore, inhibition of chemical oxidative degradation in the pure-culture assay was demonstrated for ADM-11, SLS-5, and SLS-10 initial materials and for ADM-4, ADM-7, SLS-8, and SLS-10 heat-treated films. These data suggest that biological and chemical degradation were directly affected by the reduction in oxygen tension on the plastic film surface due to cell mass accumulation. This same phenomenon could be the cause for slow degradation rates in nature.

**KEY WORDS:** Biodegradation; chemical degradation; *Streptomyces*; starch-polyethylene; degradable plastics.

### INTRODUCTION

There is a growing interest in the development of degradable plastics to enhance the biodegradability of plastic products in landfills and compost sites. One type of these novel materials is starch–polyethylene degradable plastic. Degradable plastic must retain all the mechanical properties expected by the consumer and then, when placed in the appropriate environment, degrade more rapidly than conventional disposable plastics. To enhance degradation of polyethylene, chemical and/or photoinitiators are added to the degradable plastic films. For polyethylene films containing pro- and/or photooxidants, the primary initiators of oxidation are oxygen plus temperature or light, respectively. Both the prooxidant and the photooxidant produce free radicals on the long polyethylene chain, which react with oxygen and cause the material to lose some of its mechanical properties, to become oxidized, to prompt molecular weight reductions, and to become more accessible to microbial biodegradation [1–8].

The bottleneck facing this new industry, however, is test methods. The American Society for Testing and Materials is working to develop standard methods for evaluating the degradation performance of these mate-

<sup>&</sup>lt;sup>1</sup>Journal Paper No. J-15061 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project Nos. 0178 and 2889.

<sup>&</sup>lt;sup>2</sup>Department of Food Science and Human Nutrition and Center for Crops Utilization Research, Iowa State University, Ames, Iowa 50011.

<sup>&</sup>lt;sup>3</sup>To whom correspondence should be addressed.

rials. One suggested method is the use of pure-culture assay, which has the advantage of being reproducible from lab to lab and permits the distinction between degradation due to chemical or photodegradation and degradation due to biological activity. Recently, Lee *et al.* [8] demonstrated the ability of lignin-degrading *Streptomyces viridosporus* T7A, *S. badius* 252, and *S. setonii* 75Vi2 to attack heat-treated polyethylene in degradable plastics in pure shake-flask culture studies. Biological degradation of polyethylene was further demonstrated by a treatment with bacterial extracellular culture concentrates prepared from these three cultures [9]. In this study, we used a modification of these procedures to evaluate the biodegradability of 11 starch-polyethylene degradable plastic films.

### MATERIALS AND METHODS

#### **Microorganisms**

The lignocellulose-degrading Streptomyces viridosporus T7A (ATCC 39115), Streptomyces badius 252 (ATCC 39117), and Streptomyces setonii 75Vi2 (ATCC 39116) were used. All cultures were maintained on agar slants at 4°C [10]. S. badius and S. viridosporus can degrade starch, whereas S. setonii does not [8].

### **Degradable Plastic Films**

Petoskey Plastic, Inc. (Petoskey, MI), prepared each material via blown extrusion, according to each company's specifications. Masterbatches containing corn starch, plus prooxidant, which consists of lipid (vegetable oil), and a specific transition metal(s) were provided by Archer Daniels Midland Inc., (Decatur, IL), EcoStar (Buffalo, NY), and Fully Compounded Plastic (Decatur, IL). These masterbatches were then mixed with specific lots of polyethylene to produce each film material (Table I). The starch concentration for each material was confirmed according to the method of Fratzke et al. [11]. The transition metal concentration of iron, manganese, and copper was determined by combusting each sample to ash and determining each specific metal concentration via atomic absorption spectroscopy [12]. Thermal degradation properties for each film at 70°C for 20 days were determined by measuring changes in polyethylene weight-average molecular weight  $(\overline{M}_{w})$  by high-temperature gel-permeation chromatography (HT-GPC) [8, 12] (Fig. 1). Films were 70°C heat-treated to the desired  $M_w$  of 120,000 to 180,000.

 Table I. Transition Metal Composition and Starch Concentration

 Present in Each Starch-Polyethylene Degradable Plastic<sup>a</sup>

| Plastic type       | Copper<br>(ppm) | Iron Manganese<br>(ppm) (ppm) |     | % starch |
|--------------------|-----------------|-------------------------------|-----|----------|
| Archer Daniels     | Midland Inc     | •                             |     |          |
| ADM-3              | 3               | 13                            | 140 | 6        |
| ADM-4              | 2               | 64                            | 135 | 6        |
| ADM-6              | 2               | 14                            | 91  | 6        |
| ADM-7              | 2               | 230                           | 74  | 6        |
| ADM-11             | 1               | 300                           | 113 | 6        |
| EcoStar Inc.       |                 |                               |     |          |
| SLS-2              | 51              | 203                           | 1   | 9        |
| SLS-5              | 43              | 153                           | 1   | 5        |
| SLS-8              | 4               | 19                            | 3   | 9        |
| SLS-8 <sub>n</sub> | 63              | 3                             | 210 | 9        |
| SLS-10             | 63              | 4                             | 214 | 6        |
| Fully Compoun      | ded Plastics    | Inc.                          |     |          |
| FCP                | 2               | 184                           | 100 | 6        |

<sup>a</sup>Transition metal levels were determined via atomic absorption of each plastic film ash [12]. Starch content was confirmed using the chemical assay developed by Fratzke *et al.* [11].



Fig. 1. Changes in weight-average molecular weights for each degradable plastic heat-treated (70°C) for 20 days.

### **Pure-Culture Biodegradation Assay**

A modified disinfection procedure from Lee et al. [8] was used. For each initial and heat-treated degradable plastic film, up to 21 strips cut in machine direction  $2.5 \times 15.2$  cm (0.06–0.07 mm thick) were placed in a covered 450-ml sterile specimen jar with a stir bar filled with 70% ethanol. Films were stirred for at least 4 h at room temperature. All transfers were performed in a bioguard hood with sterile forceps. All 21 films were washed in sterile water and aseptically added to a 1-L flask fitted with a cotton plug containing 300 ml of sterile 0.6% (w/v) yeast extract (Difco Laboratories, Detroit, MI) medium [8] plus 8 ml of sterile antibiotic solution (5000 U penicillin, 5 mg streptomycin, and 10 mg neomycin per ml of 0.9% NaCl solution) (Sigma Chemical Co., St. Louis, MO). The culture flask with films was incubated by shaking (125 rpm) at 37°C overnight ( $\geq 15$  h) to encourage spore germination and vegetative cell destruction. Films were placed into a covered beaker containing a fresh solution of universal disinfectant [13] (8 ml of filter-sterilized Tween-80, 20 ml of bleach, and 983 ml of sterile water) and stirred for 60-120 min at room temperature. Films were aseptically washed in sterile water for at least 60 min at room temperature, individually rinsed in 95% ethanol, transferred into a specimen jar containing fresh 70% (v/v) ethanol solution, and stirred for at least 60 min. Each film was separately and aseptically placed into a sterile petri dish and dried overnight at 45-50°C. Each film was added to a 250-ml Erlenmeyer flask fitted with a cotton plug containing 100 ml of sterile 0.6% (w/v) yeast extract medium [8] and subsequently incubated with shaking (125 rpm) at 37°C for 24 h. Properly disinfected films (no turbidity after 24-h incubation) were inoculated with specific Streptomyces spores. Controls were uninoculated-incubated, disinfected films. Each control and bacterial culture flask was done in replicates of four for each film. After a 4-week incubation with shaking (125 rpm) at 37°C, films were washed in 70% (w/v) ethanol, and their level of cell mass accumulation on the film was noted. Films were placed in petri dishes and dried at 45°C overnight. Changes in each film's mechanical properties and polyethylene molecular weight distributions were determined.

## Extracellular Enzyme Assay

Preparation of Streptomyces setonii Culture Concentrate. A 50-L culture of S. setonii 75Vi2 was prepared in a Braun U-50 fermentor (Allentown, PA) operated at 37°C (agitation at 300 rpm, dissolved oxygen controlled to 80% saturation and antifoam controlled).

A 0.6% (w/v) yeast extract medium with a modified mineral salt solution (0.5 g of Na<sub>2</sub>HPO<sub>4</sub>, 0.198 g of KH<sub>2</sub>PO<sub>4</sub>, 0.20 g of MgSO<sub>4</sub>-7H <sub>2</sub>O, 0.2 g of NaCl, 0.05 g of  $CaCl_2 - 2H_2O$ , plus 1 ml of trace-element solution [14] per liter of deionized H<sub>2</sub>O, pH 7.1 to 7.2) was used. The bacteria were incubated until a pH  $\ge$  8.0 was achieved. The reactor was harvested into a 50-L polypropylene carboy and stored refrigerated (4°C) overnight to allow the filamentous bacteria to settle to the bottom. The cell-free culture broth was maintained at 4°C throughout the concentration process, and the clear top layer was pumped from the carboy. The residual medium at the carboy bottom with cells was recovered by centrifugation, and the cell mass was discarded. To ensure complete cell-mass removal, this 50 L of cell-free culture broth was filtered via hollow-fiber filtration unit with a cutoff of 1  $\mu$ m (Amicon Corp., Danvers, MA). This filtrate was then concentrated to 4 L via hollow-fiber filtration unit with a 10,000 molecular weight cutoff.

Degradable Film Preparation. Each film was cut into strips  $(2.5 \times 15.2 \text{ cm})$  in machine direction and coded by a specific cut-design in the film. Two strips from each initial film were placed into a fresh solution of 70% (w/v) ethanol with stirring at room temperature for at least 4 h. Films were washed in sterile water and added to 300 ml of sterile 0.6% (w/v) yeast extract medium [8] with antibiotic solutions and incubated with shaking (125 rpm) overnight at 37°C. A duplicate set of films was prepared simultaneously.

Enzyme Treatment. Two 2-L Erlenmeyer flask were autoclaved for 15 min at 121°C connected to a Fisher (Fisher Scientific, Pittsburgh, PA) stainless-steel sanitary holder (142 mm with a 10-L capacity). This sterile filtration unit was fitted with a 0.5-µm glass prefilter and a 0.22-µm nylon filter from Micron Separation Inc. (Westboro, MA). A 1-L portion of the culture concentrate was filter-sterilized into each 2-L flask. Each flask was aseptically cotton plugged. One flask was autoclaved for 15 min at 121°C (inactive enzyme), and upon cooling, 20 ml of antibiotic solution was added. To the filter-sterilized flask (active enzyme), 20 ml of antibiotic solution was added. One set of these films was then aseptically transferred to each flask and incubated with shaking (125 rpm) for 3 weeks. Twenty milliliters of antibiotic solution was added each week. Changes in each film's mechanical properties and Fourier-transformed infrared spectrum were determined at termination.

# Test Used to Evaluate Changes in Degradable Plastics

Mechanical Properties of Films. Changes in tensile strength (stress at fracture of the specimen), percentage of elongation (extension of material under load), and strain energy (overall specimen toughness) were determined on an Instron Model 4502 Universal Tester (Instron Corporation, Canton, MA). Analysis was performed at room temperature and at 500 mm/min with a 5-cm gap. All samples were equilibrated to 50% relative humidity for at least 40 h before analysis (ASTM D882-83, Standard Test Method for Tensile Properties of Thin Plastic Sheeting).

Polyethylene Molecular Weight Distribution. A Waters Model 150-C (Waters/Millipore Co., Milford, MA) high-temperature gel-permeation high-pressure liquid chromatograph (HT-GPC) was used to determine changes in the molecular weight distribution for polyethylene. The procedure of Lee *et al.* [8] was used for sample preparation and chromatographic evaluation with a mobile phase of 1,2,4-trichlorobenzene, a flow rate of 1 ml/min, and an injection volume of 200  $\mu$ l. During each run, a set of polystyrene molecular weight standards (4016, 53,500, and 610,000 MW) was included. Maxima 820 computer software (Waters/Millipore Co., Milford, MA) was used to determine the weight-average molecular weight ( $\overline{M}_w$ ) and number-average molecular weight ( $\overline{M}_w$ ) of the polyethylene samples.

Fourier-Transform Infrared Spectroscopy (FT-IR) Analysis of Extracellular Bacterial Enzyme-Treated *Films.* The FT-IR spectrometer used was a Bruker Instruments (Billerica, MA) Model IR 113V controlled by Bruker IFS version 12/87 software. Polyethylene films were affixed directly to standard FT-IR sample plates, which were made from a 1-mm-thick aluminum plate. Wrinkles in the mounted films were avoided. The spectrum from 600 to 4000 cm<sup>-1</sup> was performed for each sample. Spectrum peak analysis was performed by dividing the peak area integration for the hydroxyl region (870 to 1190) by the methylene peak (1470 to 1485 cm<sup>-1</sup>).

# **Statistical Analysis**

The data were analyzed using an analysis of variance (ANOVA) to ascertain differences between films incubated with bacteria compared to their corresponding uninoculated control by SAS program [15]. Data from the Universal Tester and HT-GPC were evaluated, and values with P < 0.05 were considered significantly different.

# **RESULTS AND DISCUSSION**

# **Pure-Culture Assay**

Cell mass accumulation on each film in shake-flask culture was very extensive on almost every plastic film. High levels of bacterial attachment to these plastic films were observed in this study. Changes in each film's mechanical properties and molecular weight distributions for each degradable plastic are presented in Table II and

 Table II. Mechanical Properties and Molecular Weight Distribution of Each Degradable Plastic Before and After Pure-Culture Assay for Biodegradability of Initial and Heat-Treated Materials<sup>a</sup>

| Test measurement                                     | Zero time | Uninoculated-<br>Incubated<br>control | S. badius<br>252 | S. setonii<br>75Vi2 | S. viridosporus<br>T7A |
|------------------------------------------------------|-----------|---------------------------------------|------------------|---------------------|------------------------|
|                                                      |           | Film Type ADM-3                       |                  |                     |                        |
|                                                      |           | Initial material                      |                  |                     |                        |
| Tensile strength $(kg/mm^2)$                         | 2.07      | 1.61*                                 | 1.81             | 1.70*               | 1.76                   |
| Percentage elongation                                | 654       | 678                                   | 698              | 606                 | 710                    |
| Strain-energy (kg · mm)                              | 541       | 518                                   | 552              | 447                 | 557                    |
| Weight-average molecular number $(\overline{M}_n)$   | 65,390    | 33,420*                               | 33,120*          | 29,870*             | 32,250*                |
| Weight-average molecular weight $(\overline{M}_w)$   | 224,220   | 216,160                               | 209,375          | 200,950*            | 209,810                |
|                                                      |           | Heat-treated                          |                  |                     |                        |
| Tensile strength $(kg/mm^2)$                         | 1.47      | 0.98*                                 | 1.22             | 0.64*               | 1.11                   |
| Percentage elongation                                | 589       | 324*                                  | 472              | 201*                | 447                    |
| Strain-energy (kg · mm)                              | 422       | 218*                                  | 336              | 129*                | 304                    |
| Weight-average molecular number $(\overline{M}_n)$   | 48,760    | 50,130                                | 58,100***        | 51,690              | 52,000                 |
| Weight-average molecular weight $(\overline{M}_{w})$ | 148,880   | 170,220*                              | 194,020****      | 163,350             | 182,995*               |

| T                                                                                  |           | Uninoculated-<br>Incubated | S. badius             | S. setonii         | S. viridosporus          |
|------------------------------------------------------------------------------------|-----------|----------------------------|-----------------------|--------------------|--------------------------|
| Test measurement                                                                   | Zero time | control                    | 252                   | 75V12              | T7A                      |
|                                                                                    |           | Film Type ADM-4            |                       |                    |                          |
|                                                                                    |           | Initial material           |                       |                    |                          |
| Tensile strength (kg/mm <sup>2</sup> )                                             | 1.97      | 1.63                       | 1.67                  | 1.74               | 1.65                     |
| Percentage elongation                                                              | 661       | 542*                       | 531*                  | 586                | 524*                     |
| Strain-energy (kg $\cdot$ mm)<br>Weight guerness molecular number $(\overline{M})$ | 516       | 417                        | 414                   | 431                | 413                      |
| Weight-average molecular weight $(\overline{M}_n)$                                 | 253 230   | 243 025                    | 55,210*<br>239.645    | 49,095*<br>245 545 | 55,380*<br>242 520       |
| a organ a cougo morocatar norgan (mag)                                             | 200,200   | 243,025                    | 239,043               | 243,343            | 242,520                  |
|                                                                                    |           | Heat-treated               |                       |                    |                          |
| Tensile strength (kg/mm <sup>2</sup> )                                             | 1.43      | 0.76*                      | 0.93*                 | 0.91*              | 0.73*                    |
| Percentage elongation                                                              | 535       | 10*                        | 21*                   | 9*                 | 56***                    |
| Strain-energy (kg · mm)                                                            | 376       | 2*                         | 10*                   | 3*                 | 31*                      |
| Weight-average molecular weight $(\overline{M}_{u})$                               | 40,020    | 22,630*<br>75,535*         | 28.810****<br>87 480* | 27,230*<br>80.680* | 32,420*`**<br>98 350*`** |
|                                                                                    |           |                            | 07,100                | 00,000             | 96,550                   |
|                                                                                    |           | Film Type ADM-6            |                       |                    |                          |
|                                                                                    |           | Initial materials          |                       |                    |                          |
| Tensile strength (kg/mm <sup>2</sup> )                                             | 1.15      | 1.86*                      | 1.99*                 | 1.87*              | 1.80*                    |
| Percentage elongation                                                              | 448       | 615*                       | 663*                  | 632*               | 584*                     |
| Strain-energy (kg · mm)                                                            | 254       | 486*                       | 548*                  | 509*               | 438*                     |
| Weight-average molecular number $(M_n)$                                            | 63,830    | 50,170                     | 60,290                | 59,530             | 64,897                   |
| weight-average molecular weight $(M_w)$                                            | 235,000   | 248,800                    | 250,350               | 252,845            | 251,720                  |
|                                                                                    |           | Heat-treated               |                       |                    |                          |
| Tensile strength (kg/mm <sup>2</sup> )                                             | 1.82      | 1.45*                      | 1.26*                 | 1 11****           | 1 14****                 |
| Percentage elongation                                                              | 639       | 540*                       | 491*                  | 449* **            | 453****                  |
| Strain-energy (kg · mm)                                                            | 498       | 381*                       | 332*                  | 293****            | 297***                   |
| Weight-average molecular number $(\overline{M}_n)$                                 | 47,925    | 35,570*                    | 43,140**              | 37.130*            | 36,780*                  |
| Weight-average molecular weight $(\overline{M}_w)$                                 | 140,050   | 123,350                    | 126,910               | 120,600            | 127,490                  |
|                                                                                    |           | Film Type ADM-7            |                       |                    |                          |
|                                                                                    |           | Initial material           |                       |                    |                          |
| Tensile strength (kg/mm <sup>2</sup> )                                             | 2.00      | 2.11                       | 1.32****              | 1.41****           | 1 16* **                 |
| Percentage elongation                                                              | 632       | 635                        | 466* **               | 549                | 449*.**                  |
| Strain-energy (kg · mm)                                                            | 510       | 547                        | 323****               | 395                | 296* **                  |
| Weight-average molecular number $(M_n)$                                            | 67,680    | 61,660                     | 67,610                | 59,130*            | 65,220                   |
| Weight-average molecular weight $(M_w)$                                            | 235,110   | 231,000                    | 218,650               | 235,080            | 239,700**                |
|                                                                                    |           | Heat-treated               |                       |                    |                          |
| Tensile strength (kg/mm <sup>2</sup> )                                             | 0.63      | 0.83                       | 0.83                  | 1.02*              | 0.91                     |
| Percentage elongation                                                              | 137       | 8.1*                       | 7.4*                  | 13.6*              | 63.8*-**                 |
| Strain-energy (kf · mm)                                                            | 61.5      | 3.9*                       | 2.2*                  | 6.3*               | 45.6**                   |
| Weight-average molecular number $(M_n)$                                            | 31,840    | 19,480*                    | 26,880* **            | 24,620****         | 30,460**                 |
| Weight-average molecular weight $(M_w)$                                            | 91,300    | 62,620*                    | 88,260**              | 72,200*            | 92,910**                 |
|                                                                                    | 1         | Film Type ADM-11           |                       |                    |                          |
|                                                                                    |           | Initial material           |                       |                    |                          |
| rensile strength (kg/mm <sup>2</sup> )                                             | 1.67      | 1.11*                      | 1.50**                | 1.74**             | 1.62**                   |
| Percentage elongation                                                              | 578       | 498                        | 568                   | 615**              | 620**                    |
| strain-energy (kg · mm)                                                            | 417       | 284**                      | 383                   | 455**              | 457**                    |
| weight-average molecular number $(M_n)$                                            | 65,240    | 68,230                     | 52,130                | 57,220             | 56,450                   |
| weight-average molecular weight $(M_w)$                                            | 227,200   | 220,710                    | 260,360               | 207,610            | 222,880                  |

Table II. Continued

|                                                                                             |           | Tuble III Commude                     |                   |                     |                        |
|---------------------------------------------------------------------------------------------|-----------|---------------------------------------|-------------------|---------------------|------------------------|
| Test measurement                                                                            | Zero time | Uninoculated-<br>Incubated<br>control | S. badius<br>252  | S. setonii<br>75Vi2 | S. viridosporus<br>T7A |
|                                                                                             |           | Film Type ADM-11                      |                   |                     |                        |
|                                                                                             |           | Heat-treated                          |                   |                     |                        |
| Tensile strength $(kg/mm^2)$                                                                | 0.96      | 0.60                                  | 0.85              | 0.81                | 0.81                   |
| Percentage elongation                                                                       | 10        | 7                                     | 6                 | 9                   | 8                      |
| Strain-energy (kg · mm)                                                                     | 4         | 1*                                    | 2*                | 2                   | 1*                     |
| Weight-average molecular number $(\overline{M}_n)$                                          | 28,380    | 16,135*                               | 19,170*           | 18,830*             | 18,670*                |
| Weight-average molecular weight $(\overline{M}_w)$                                          | 82,175    | 54,950*                               | 65,450            | 61,410*             | 57,825*                |
|                                                                                             |           | Film Type SLS-2                       |                   |                     |                        |
|                                                                                             |           | Initial material                      |                   |                     |                        |
| Tensile strength (kg/mm <sup>2</sup> )                                                      | 0.93      | 1.24*                                 | 1.32*             | 1.52*               | 1.54*                  |
| Percentage elongation                                                                       | 456       | 527                                   | 543               | 573                 | 600*                   |
| Strain-energy (kg · mm)                                                                     | 261       | 298                                   | 325               | 360                 | 387                    |
| Weight-average molecular number $(M_n)$                                                     | 52,385    | 50,940                                | 49,060            | 40,100****          | 54,340                 |
| Weight-average molecular weight $(M_w)$                                                     | 235,045   | 185,420*                              | 213,055           | 210,000             | 224,290**              |
|                                                                                             |           | Film Type SLS-5                       |                   |                     |                        |
|                                                                                             |           | Initial material                      |                   |                     |                        |
| Tensile strength $(kg/mm^2)$                                                                | 2.26      | 1 81*                                 | 1.60*             | 1.41****            | 1.54*                  |
| Percentage elongation                                                                       | 625       | 610                                   | 583               | 529*                | 522*                   |
| Strain-energy (kg · mm)                                                                     | 580       | 474                                   | 441               | 346*                | 364*                   |
| Weight-average molecular number $(\overline{M}_n)$                                          | 65,570    | 50,860                                | 56,690            | 52,850*             | 50,390                 |
| Weight-average molecular weight $(\overline{M}_w)$                                          | 252,930   | 183,320*                              | 237,930**         | 229,930*`**         | 213,940****            |
|                                                                                             |           | Heat-treated                          |                   |                     |                        |
| Tensile strength (kg/mm <sup>2</sup> )                                                      | 1.59      | 1.44                                  | 1.60              | 1.49                | 1.58                   |
| Percentage elongation                                                                       | 509       | 515                                   | 534               | 555                 | 560                    |
| Strain-energy (kg · mm)                                                                     | 365       | 349                                   | 391               | 401                 | 413                    |
| Weight-average molecular number $(\overline{M}_n)$                                          | 64,520    | 61,360                                | 64,290            | 64,700              | 66,140                 |
| Weight-average molecular weight $(M_w)$                                                     | 230,660   | 212,020                               | 235,700**         | 232,320             | 229,310                |
|                                                                                             |           | Film Type SLS-8                       |                   |                     |                        |
|                                                                                             |           | Initial material                      |                   |                     |                        |
| Tensile strength (kg/mm <sup>2</sup> )                                                      | 1.07      | 1.25                                  | 1.07              | 1.34                | 1.06                   |
| Percentage elongation                                                                       | 655       | 648                                   | 563               | 660                 | 515                    |
| Strain-energy (kg · mm)                                                                     | 320       | 395                                   | 343               | 435                 | 300                    |
| Weight-average molecular number $(M_n)$                                                     | 81,670    | 74,850                                | 79,950            | 08,030              | 76,440<br>270,630      |
| Weight-average molecular weight $(M_w)$                                                     | 265,680   | 271,770                               | 205,510           | 228,830             | 270,050                |
|                                                                                             |           | Heat-treated                          |                   |                     |                        |
| Tensile strength (kg/mm <sup>2</sup> )                                                      | 0.64      | 0.54                                  | 0.85**            | 0.46                | 0.41*                  |
| Percentage elongation                                                                       | 285       | 82*                                   | 593* **           | 67*                 | 113*                   |
| Strain-energy (kg · mm)                                                                     | 161       | 43*                                   | 342****           | 33*                 | 62*<br>(2.240*         |
| Weight-average molecular number $(M_n)$<br>Weight average molecular weight $(\overline{M})$ | 52,880    | 60,280<br>176 610                     | 56,700<br>164-190 | 177.960             | 62,240*<br>180,370     |
| weight-average molecular weight (Mw)                                                        | 1,0,000   | Eller Trung CL C Q                    |                   |                     |                        |
|                                                                                             |           | Initial material                      |                   |                     |                        |
| $T_{\rm eff} = \frac{1}{2} \left( \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$          | 1 61      | 1 AQ                                  | 7 75***           | 1.61                | 1 35                   |
| Tensile strength (kg/mm <sup>-</sup> )                                                      | 617       | 576                                   | 657               | 629                 | 563                    |
| Strain-energy (kg · mm)                                                                     | 435       | 379                                   | 615**             | 467                 | 388                    |
| Weight-average molecular number $(\overline{M}_n)$                                          | 64,750    | 49,140*                               | 47,680*           | 53,300              | 45,850*                |
| Weight-average molecular weight $(\overline{M}_w)$                                          | 233,210   | 201,900                               | 191,740*          | 201,920*            | 195,710*               |

| Test measurement                                                                                                                                                                                                 | Zero time                               | Uninoculated-<br>Incubated<br>control      | S. badius<br>252                           | S. setonii<br>75Vi2                               | S. viridosporus<br>T7A                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------------|-----------------------------------------------------|
|                                                                                                                                                                                                                  | ]                                       | Film Type SLS-8 <sub>p</sub>               |                                            |                                                   |                                                     |
|                                                                                                                                                                                                                  |                                         | Heat-treated                               |                                            |                                                   |                                                     |
| Tensile strength (kg/mm <sup>2</sup> )<br>Percentage elongation<br>Strain-energy (kg $\cdot$ mm)<br>Weight-average molecular number ( $\overline{M}_n$ )<br>Weight-average molecular weight ( $\overline{M}_w$ ) | 1.64<br>587<br>437<br>43,480<br>132,790 | 1.15*<br>394*<br>282*<br>34,310<br>94,280* | 0.96*<br>449*<br>278*<br>40,435<br>109,005 | 0.98*<br>447*<br>270*<br>38,790<br>119,340        | 0.86****<br>334*<br>208*<br>41,730<br>118,270       |
|                                                                                                                                                                                                                  |                                         | Film Type SLS-10                           |                                            |                                                   |                                                     |
|                                                                                                                                                                                                                  |                                         | Initial material                           |                                            |                                                   |                                                     |
| Tensile strength (kg/mm <sup>2</sup> )<br>Percentage elongation<br>Strain-energy (kg mm)<br>Weight-average molecular number $(\overline{M}_n)$<br>Weight-average molecular weight $(\overline{M}_w)$             | 1.93<br>694<br>567<br>64,070<br>225,805 | 1.37*<br>560*<br>348*<br>64,670<br>185,060 | 1.92**<br>596<br>491<br>54,020<br>242,635  | 1.91**<br>628<br>506**<br>43,070<br>213,700       | 1.12*<br>494*<br>329*<br>56,350<br>252,680**        |
|                                                                                                                                                                                                                  |                                         | Heat-treated                               |                                            |                                                   |                                                     |
| Tensile strength (kg/mm <sup>2</sup> )<br>Percentage elongation<br>Strain-energy (kg $\cdot$ mm)<br>Weight-average molecular number ( $\overline{M}_n$ )<br>Weight-average molecular weight ( $\overline{M}_w$ ) | 1.36<br>520<br>359<br>48,700<br>150,260 | 0.85*<br>19*<br>8*<br>27,960*<br>81,530*   | 0.91*<br>30*<br>18*<br>30,780*<br>91,180*  | 0.65*<br>153*·**<br>90*<br>37,050*·**<br>100,290* | 0.75*<br>307****<br>148*<br>40,340****<br>122,160** |
|                                                                                                                                                                                                                  |                                         | Film Type FCP                              |                                            |                                                   |                                                     |
|                                                                                                                                                                                                                  |                                         | Initial material                           |                                            |                                                   |                                                     |
| Tensile strength (kg/mm <sup>2</sup> )<br>Percentage elongation<br>Strain-energy (kg $\cdot$ mm)<br>Weight-average molecular number ( $\overline{M}_n$ )<br>Weight-average molecular weight ( $\overline{M}_w$ ) | 2.38<br>390<br>249<br>67,560<br>250,605 | 2.14<br>414<br>245<br>50,460*<br>200,850*  | 2.52<br>427<br>284<br>54,480<br>228,670    | 2.27<br>368<br>226<br>58,250<br>236,520           | 2.43<br>421<br>242<br>54,400*<br>230,920            |
|                                                                                                                                                                                                                  |                                         | Heat-treated                               |                                            |                                                   |                                                     |
| Tensile strength (kg/mm <sup>2</sup> )<br>Percentage elongation<br>Strain-energy (kg $\cdot$ mm)<br>Weight-average molecular number ( $\overline{M}_n$ )<br>Weight-average molecular weight ( $\overline{M}_w$ ) | 2.31<br>418<br>267<br>58,820<br>199,670 | 1.68<br>331<br>185<br>61,930<br>249,360*   | 1.67<br>348<br>189<br>65,050<br>230,830*   | 1.28<br>327<br>182<br>64,165<br>239,010*          | 1.06*<br>244*<br>137<br>67,190*<br>246,720*         |

Table II. Continued

<sup>a</sup>Mechanical properties were determined with an Instron Universal Tester, and molecular weight distribution was determined using a high-temperature gel-permeation chromatograph (Waters' G-150). All values are the means of four replicates.

\*Significantly different (P < 0.05) from the mean of the corresponding zero-time value.

\*\* Significantly different (P < 0.05) from the mean of the corresponding control value.

summarized in Table III. It was very difficult to heattreat each of the films to a  $\overline{M}_w$  of 120,000 to 180,000. The heat-treated film had a  $\overline{M}_w$  average of 147,000, with a range of 82,000 to 230,000, and it was impossible to produce a stable heat-treated SLS-2 film.

Biodegradation was detected when significant reductions (P < 0.05) in film mechanical properties and molecular weight distributions were observed for films incubated with *Streptomycetes* compared to their corresponding uninoculated-control films. Biodegradation was detected for initial films ADM-7 and heat-treated films ADM-6, but only some biodegradation was detected for SLS-2 (Tables II and III). ADM-6 is the same degradable film used by Lee *et al.* [8], and these results almost match their previous findings by demonstrating biodegradation for heat-treated films but not for initial materials. In this study, however, biodegradation was not detected for heat-treated films by HT-GPC.

Inhibition of chemical oxidative degradation for these degradable films was observed when the uninoc-

|                    | Initia                      | al materials                        | Heat-treated materials   |                                     |  |
|--------------------|-----------------------------|-------------------------------------|--------------------------|-------------------------------------|--|
| Plastic type       | Mechanical<br>properties    | Molecular<br>weight<br>distribution | Mechanical<br>properties | Molecular<br>weight<br>distribution |  |
| ADM-3              | NC <sup>a</sup>             | NC                                  | NC                       | NC                                  |  |
| ADM-4              | NC                          | NC                                  | NC                       | Inhibition                          |  |
| ADM-6              | NC                          | NC                                  | Biodegradation           | NC                                  |  |
| ADN-7              | Biodegradation <sup>b</sup> | NC                                  | NC                       | Inhibition                          |  |
| ADM-11             | Inhibition                  | NC                                  | NC                       | NC                                  |  |
| SLS-2              | NC                          | Some biodegradation                 | $ND^d$                   | ND                                  |  |
| SLS-5              | NC                          | Inhibition                          | NC                       | NC                                  |  |
| SLS-8              | NC                          | NC                                  | Some inhibition          | NC                                  |  |
| SLS-8 <sub>n</sub> | NC                          | NC                                  | NC                       | NC                                  |  |
| SLS-10             | Some inhibition             | NC                                  | NC                       | Some inhibition                     |  |
| FCP                | NC                          | NC                                  | NC                       | NC                                  |  |

Table III. Summary of Pure-Culture Biodegradation Results Compared with The Corresponding Uninoculated Control Flasks

<sup>a</sup>No change.

<sup>b</sup>Biodegradation is when significant reductions in properties were present compared to the corresponding control.

<sup>c</sup>Inhibition of chemical degradation is when there were significantly high values in properties compared with the control.

<sup>d</sup>Not determined.

ulated-control films demonstrated a significant reduction in film properties compared with their corresponding bacterial inoculated culture flask. This inhibition of chemical degradation was demonstrated for initial materials ADM-11 and SLS-5, with some inhibition for SLS-10 and for heat-treated materials ADM-4 and ADM-7 and some inhibition for SLS-8 and SLS-10 (Tables II and III). This observation was also made by Lee et al. [8] when films were incubated with Phanerochaete chrysosporium, which also accumulated large amounts of cell mass on the film surface. Therefore, significant inhibition of thermal-oxidative degradation for the film with Streptomyces biofilm attachment suggests a corresponding reduction in oxygen tension at the film surface. This reduction in oxygen tension produces a corresponding reduction in chemical oxidative degradation. Finally, the majority of the results was scattered, with significant changes in mechanical properties rarely corresponding to changes in molecular weight distributions. This observation is very unusual because changes in mechanical properties almost always parallel some change in molecular weight distribution [6].

### **Extracellular Enzyme Assay**

S. setonii 75Vi2 extracellular culture concentrate treatment of initial films did demonstrate reduction in the film's mechanical properties except for SLS-2 (Ta-

ble IV). Previously, Pometto *et al.* [9] demonstrated extracellular activity on heat-treated ADM-6 film illustrating enzymatic activity on the initial materials. Furthermore, all films illustrated an increase in the hydroxyl region of the FT-IR spectrum except for SLS-8, which is the same region of the FT-IR spectrum that starch absorbs (*S. setonii* does not produce an amylase) [8]. Pometto *et al.* [9] previously demonstrated a substantial increase in this region when films were treated three times with *S. setonii* culture concentrate.

These data suggest that bacterial cell mass accumulation on the film surface resulted in an inhibition of biological and chemical degradation. This finding would also indicate an enzymatic requirement for oxygen at the film surface for degradation to take place. Therefore, this method needs to be modified to reduce film formation without affecting bacterial growth in the culture flask. Some suggested changes would be to increase the shaker speed from 125 to 250 rpm, or perhaps the addition of a nonionic detergent such as Tween-80 might also reduce biofilm formation. Additionally, the isolation of nonfilamentous or non-film-forming bacteria, which degrade these films, could be used in the assay. Finally, observations in laboratory tests need to be confirmed in field studies.

In a 12-month compost study using the same films, polyethylene degradation was observed for all the materials, with significant degradation being observed for

| Concentrat         |                                           |                  |                    |                  |                            |                  |                    |                  |
|--------------------|-------------------------------------------|------------------|--------------------|------------------|----------------------------|------------------|--------------------|------------------|
|                    | Tensile strength<br>(kg/mm <sup>2</sup> ) |                  | % elongation       |                  | Strain-energy<br>(kg · mm) |                  | FT-IR ratio"       |                  |
| Plastic film       | Inactive<br>enzyme                        | Active<br>enzyme | Inactive<br>enzyme | Active<br>enzyme | Inactive<br>enzyme         | Active<br>enzyme | Inactive<br>enzyme | Active<br>enzyme |
| ADM-3              | 2.21                                      | 1.59             | 629                | 559              | 562                        | 397              | 3.6                | 4.7              |
| ADM-4              | 2.70                                      | 1.90             | 668                | 529              | 667                        | 428              | 3.6                | 4.6              |
| ADM-6              | 2.79                                      | 2.19             | 678                | 592              | 682                        | 516              | 4.3                | 5.2              |
| ADM-7              | 2.26                                      | 1.98             | 582                | 605              | 518                        | 473              | 2.2                | 3.3              |
| ADM-11             | 2.51                                      | 2.03             | 715                | 616              | 653                        | 530              | 2.5                | 3.6              |
| SLS-2              | 1.80                                      | 1.97             | 518                | 611              | 395                        | 472              | 4.6                | 5.8              |
| SLS-5              | 2.66                                      | 2.53             | 626                | 589              | 635                        | 554              | 2.8                | 3.8              |
| SLS-8              | 1.45                                      | 1.15             | 639                | 602              | 389                        | 320              | 5.0                | 3.2              |
| SLS-8 <sub>p</sub> | 2.42                                      | 2.10             | 742                | 697              | 654                        | 563              | 2.2                | 6.3              |
| SLS-10             | 1.86                                      | 1.23             | 595                | 431              | 410                        | 289              | 2.2                | 3.4              |
| FCP                | 2.49                                      | 1.71             | 365                | 430              | 341                        | 219              | 5.3                | 6.3              |

 Table IV. Changes in Mechanical Properties and FT-IR Spectrum for Each Film After Treatment with S. setonii Extracellular Culture Concentrate

"Calculated by dividing the peak area integration for the hydroxyl region (870 to 1190) by the methylene peak (1470 to 1485 cm<sup>-1</sup>).

ADM-3, ADM-4, ADM-7, ADM-11, and FCP [16]. These results agree with the concentrated enzyme assay but not the pure-culture assay in this study. Johnson *et al.* [16] suggested that reductions in oxygen tension at the film surface in the compost environment might be responsible for slower degradation rates. This pure-culture study supports that conclusion. Therefore, the use of bacterial enzyme concentrate, reduced biofilm-forming microorganisms, or conditions in the pure-culture assay are valuable laboratory assays for determining degradable films biodegradability.

### ACKNOWLEDGMENTS

This research was supported by the Iowa State University Center for Crops Utilization Research, U.S. Department of Agriculture, the Iowa State Legislature General Assembly, the State of Iowa Department of Natural Resources, and the Iowa Agriculture and Home Economics Experiment Station. We thank Dr. Al Fratzke for the operation and maintenance of the HT-GPC and for atomic absorption determinations.

# REFERENCES

- A. C. Albertsson, Eighth Annual Conference on Advances in the Stabilization and Controlled Degradation of Polymers, Lucerne, May (1986).
- 2. A. C. Albertsson, J. Appl. Polym. Sci. 25, 1655-1671 (1978).
- A. C. Albertsson and S. Karlsson, J. Appl. Polym. Sci. 35, 1289– 1302 (1988).
- A. C. Albertsson, S. O. Andersson, and S. Karlsson, Polym. Degrad. Stabil. 18, 73-87 (1987).
- A. C. Albertsson and Z. G. Bánhidi, J. Appl. Polym. Sci. 25, 1655-1671 (1980).
- M. Chanda and S. K. Roy, *Plastic Technology Handbook* (Marcel Dekker, New York and Basel, 1986).
- J. Cornell, A. M. Kaplan, and M. R. Rogers, J. Appl. Polym. Sci. 29, 2581–2597 (1984).
- B. Lee, A. L. Pometto III, A. Fratzke, and T. B. Bailey, Jr., Appl. Environ. Microbiol. 57, 678-685 (1991).
- A. L. Pometto III, B. Lee, and K. E. Johnson, *Appl. Environ. Microbiol.* 58, 731-733 (1992).
- A. L. Pometto III and D. L. Crawford, Appl. Environ. Microbiol. 51, 171-179 (1986).
- A. R. Fratzke, W. Sung, R. L. Evangelista, and Z. L. Nikolov, Anal. Lett. 24, 847–856 (1991).
- K. E. Johnson, A. L. Pometto III, L. Somasundaram, and J. Coats, J. Environ. Polym. Deg. 1, 111-116, (1993).
- 13. P. Gerhardt, Manual of Methods for General Bacteriology (American Society for Microbiology, Washington, DC, 1981).
- 14. T. G. Pridham and G. Gottlieb, J. Bacteriol. 56, 107-114 (1948).
- SAS Institute Inc., SAS User's Guide: Statistics, Version 5 Edition (SAS Institute Inc., Cary, NC, 1985).
- K. E. Johnson, A. L. Pometto III, and Z. L. Nikolov, Appl. Environ. Microbiol. 59, 1156–1161 (1993).