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1. Introduction

In this paper, we study the parallelizability of manifolds of the form G/H where G is
asimple simply connected compact Lie group and H a closed connected subgroup.
That G is simple means that its Lie algebra g is simple; some authors call such a
group almost simple.

Theorem 1. Let G be a simple 1-connected compact Lie group and H a closed
connected subgroup. Then G/H is stably parallelizable if and only if the adjoint
representation Ady of H is contained in the image of the restriction map of real
representation rings RO(G)— RO(H).

Observe that Theorem 1 allows to construct explicit framings of such
manifolds G/H as soon as they are stably parallelizable: Extend e.g. the method of
Proposition 4.1 of [20] to virtual representations.

One direction of Theorem 1 is well known: Atiyah and Hirzebruch [3]
introduced a homomorphism of rings «:RO(H)—>KO(G/H) as follows: If
0: H—>GL(V) is a representation of H in a vector space V, let «(¢) be the vector
bundle over G/H with total space G x ;V. In [9] it was observed that the tangent
bundle ©(G/H) equals a(1) where 1=Adg/H — Ady is the isotropy representation.
Naturality of o then implies that G/H is stably parallelizable if Ad, is contained in
the image of the restriction map RO(G)—RO(H) (cf. I (2.4) — by I we denote [25]).

The opposite direction is quite cumbersome in that it depends on the explicit
classification of all stably parallelizable homogeneous spaces of the above type in
Theorem 2 below; it would be interesting to have an a priori proof.

We do not know whether Theorem 1 remains true when G is a product of
simple groups. On the other hand, the result is wrong if G is not assumed to be
simply connected. Here is a counter-example: Take G=SO(8) and H=SU(4) and
embed H into G by realification. Then Ady is not contained in Im(RO(G)
—RO(H)). However, the inclusion SO(7)-SO(8) induces a diffeomorphism
SO(7)/SU(3)—SO(8)/SU(4), and SO(7)/SU(3) is stably parallelizable by I (2.4).
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Theorem 2. Let G and H be as in Theorem 1. Then G/H is stably parallelizable if and
only if either H is abelian, or if G/H is diffeomorphic to one of the following
manifolds:
(i) the real, complex, or quaternionic Stiefel manifolds;
(i) SUm)/SU@2)x ... xSU(2))=X,, where k denotes the number of
Jactors SU(2), with 2k<n;
(iii) SU(4)/SO4);
(iv) SU(4)/H, where H, is the subgroup isomorphic to SU(2) consisting of all
matrices <g 3) with AeSU(2);
(v) Sp(m)/(Sp(1) x ... xSp(1))=1Y, , where k denotes the number of factors
Sp(1), with k<n;
(vi) Sp(m)/SUQ2), n=2;
(vii) Spin(n)/Adg,(H) with H 1-connected and n=max {5, dimH};
(viii) Spin(n)/SU(2), n=5;
(ix) Spin(n)/SU(3), n=6;
(x) Spin(n)/SU(4), 8<n=10;
(xi) Spin(10)/SU(5);
(xii) Spin(n)/(SU(2)xSU(2)) for 8<n<12;
(xiii) Spin(12)/(SU(2) x SU(2) x SU(2)),
(xiv) Spin(n)/H, for n=8, 9, H, as in (iv);
(xv) Spin(n)/Sp(2) for n=38, 9;
(xvi) Spin(n)/K,, where K, is the universal cover of the group
0 2) A e SO(4)} for n=8,9;
(xvii) Spin(n)/G, for n=7;
(xviii) F,/SU(3), F,/Spin(8), E¢/Spin(8), E,/Spin(8).

Remarks. 1. The embeddings in Theorem 2 are supposed to be the obvious ones. In
particular, we consider the inclusions Sp(n) CSU(2n) £ SO(4n) and their lifts into
Spin(4n).

2. Theorem 2 does not list all the pairs (G, H) such that G/H is stably
parallelizable. On the other hand it is not true that the listed manifolds are pairwise
non-diffeomorphic. We had to be somewhat inconsequent in order to have a
reasonably short and clear statement.

3. In the course of the proof, we will also find a number of stably parallelizable
quotients of SO(n). We didn’t pursue their classification further.

4. Recall from I (3.4) that p,(G/H)=+0 if H is neither abelian nor semisimple.
Therefore it suffices for the proof of Theorem 2 to assume H semisimple.

Theorem 3. Let G and H be as in Theorem 1 and suppose that G/H is stably
parallelizable but not parallelizable. Then G/H is a sphere or rank G=rank H.

Observe that if rank G=rank H then y(G/H)= # W(G)/# W(H)+0 so that
G/H is certainly not parallelizable. Here is a list of all stably parallelizable
homogeneous spaces G/H which are not parallelizable (G and H as in Theorem 1):
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(i) G/T, T a maximal torus of G;

(i) the spheres S", n¥1,3,7;

(iti) Y, ,=Sp(n)/Sp(1)";

(iv) F,/Spin(8).

The proof of the Theorem 2 is based on the methods developed in [I] and,
moreover, on the consideration of Stiefel-Whitney classes. These are of course also
discussed by Borel-Hirzebruch [9] and in [29], but only in the restricted situation
in which there is a satisfactory theory of 2-roots. Therefore we had to establish a
fairly general criterion for the non-vanishing of Stiefel-Whitney classes (Sects. 4
and 5).

In Sect. 2 we use the index of a Lie group homomorphism as introduced by
Dynkin to obtain a necessary condition for the parallelizability of homogeneous
spaces.

In Sects. 3, 6, 7, and 8 we study quotients of the exceptional groups, of SU(n),
Sp(n), and Spin(n), respectively. We make extensive use of Hsiang’s computations
[171.

Finally, in Sect. 9 we show the parallelizability of the quotients SO (n)/Ad(H)
for n=dimH. This is independent from the ecarlier sections.

This paper is a combination of a 1983 THES preprint of the first author and the thesis [32] of
the second author; we refer to [32] for details of several hard computations

2. The Index of a Lie Group Homomorphism

Let G be a simple compact Lie group with Lie algebra g. There exists a unique
Ad G-invariant scalar product (- | - )¢ on g with (uglitg)e =2 where g is the highest
root of G. If H is another such group and ¢ : H—~G a homomorphism with induced
homomorphism g, : h—g then, following Dynkin [137, we define its index I(¢) e R
by

(Mo )e=1(e)- (xy)g for x,yebh.

This number is topologically relevant because of

(2.1) Proposition. If G and H are moreover simply connected, the homomorphism
(Bo)*: H{BG; Z)-H*(BH;Z) is multiplication by I(g). (Observe that these
cohomology groups can be unambiguously identified with Z by stipulating that the
sum of the squares of the roots be negative.)

This proposition is stated in [23]; when G and H are classical groups, a proofis
given in [14, Sect. 15]. For the sake of completeness, we reduce the proof of the
general statement to the special case H=SU(2), G=SU(n) by an argument
similar to {4, Sect. 8]:

Let K, be the rank one subgroup of an arbitrary simple group H associated to
its highest root u. Since K, is isomorphic to SU(2), we obtain an embedding
j:SU(2)—H, and 1(j) = 1 by definition of the index. On the other hand, j induces an
isomorphism j, :n5(SU(2)—n;(H) by [10, Proposition 10.2]. Applying the
theorem of Hurewicz and transgression, we find that (Bj)* is the identity on H*.
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The index is multiplicative with respect to the composition of homomor-
phisms. Hence our assertion follows if G happens to be SU (n). The general case is
then obtained by comparing with a non-trivial homomorphism from G to SU(n).

As afirst application, we give a criterion for the vanishing of the first Pontrjagin
class of a homogeneous space. If ¢ is a complex representation of H we define I(¢)
unambiguously by considering ¢ as a homomorphism H—-SU(n). If ¢ is a real
representation, put I(p): =I(o®T).

(2.2) Proposition. Let H, G be simply connected compact Lie groups and assume that
G is simple and H=H, x ... x H,, with simple factors H;. Let g: H—G be a non-
trivial homomorphism, ¢;: = ¢|H; and H,: =Img. Then the following assertions are
equivalent :

() py(G/H,)=0.

(ii) The vector (I(Ady)),....,I(Ady,)) is an integral multiple of (I(0,), ..., I(en)).

Proof. Let ¢ : G/H,—BSU(N) be the classifying map for the complexification of
the stable tangent bundle. The following diagram is commutative up to sign (cf.
1.3.):

(BAdu)*

H*BH) - H*BSU(N))

(*) M I‘(Bﬂ)* Mﬂp)* ‘l’(p*

H4BG)-"> H4BH,)—~ H*G/H,)

Let ¢, e H4(BSU(N)) be the universal Chern class. Since the lower row of (*) is
exact, p(G/H,)=0 iff (BAdg)*c,elmg*. This is equivalent with
(BAdpg)*c, € Im(Bg)* since (Bm)* is injective: In fact, N : =Ker(H—-H)) is finite,
and therefore H'(BN) =0 for odd integers i; apply then the Serre exact sequence of
the fibration BN—BH—-BH,,

Assertion (2.2) now follows from (2.1).

Thus the vanishing of p; can be read off from Dynkin’s table of indices [13,
Table 5] (see also [21] for corrections).

For our next application, we extend the definition of the index to homomor-
phisms ¢:H—G where G is simple but H is only semisimple: Let
n:Hx ... xH,— H be the universal covering of H with simple groups H;. Then

we put
I(g): =§I(eonIHj)-

(2.3) Proposition. Let G be a simple, simply connected Lie group and H a semisimple
subgroup with inclusion ¢ : H-G. Denote by ¢ a fundamental representation of G
of lowest dimension and assume that G/H is stably parallelizable. Then I(Ady) is
divisible by I(¢g) - 1(0).

The proof of (2.3) requires some preparations: Since I{(¢, + @,)=I{¢,) +1(¢,)
for representations ¢; of H we can consider I as an additive homomorphism
R(H)-Z.

I is not multiplicative; instead we have [13, p. 133]

(2.4) I(@y - @2)=1(p,)-dime, +dime, - I(¢,) .
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We will show the following assertion which contains (2.3) as a special case:

(2.5) Let o: R(H)— K(G/H) be the usual map. If v e Kera then I(pg) - I(o) divides
1().

Denote by 1: S* ¢, SU(2) the usual inclusion and write R(S!)=Z[z,z " ]. The
additive homomorphism x : R(S)—@ defined by x(z*)=k?/2 has the following
property: Let J be the ideal of R(S") generated by the elements ¢ o 1 —dim ¢ with
¢ RSU(2)). Then x(J)CZ and

k(¢ o1—dime)- )=I1(¢)-dima (*)

for @ € R(SU(2)) and A e R(S"). This can be verified by direct computation.
From Table 5 of [13] we deduce that I{¢p.) divides I{a) for o € R(G); therefore

Kog)-I(@) | 1(alH). (**)

With the notation as above, choose homomorphisms g;: SU(2)— H; with index
1 and let g be the composition

X X gm

SU@)-Hsu@r -2 X L x Hy o H

Then
I(p)=I(p-g) for ypeR(H). (%)

Denote the subgroup g (S!) of H again by S! and consider a: R(S")—K(G/S").
By naturality of «, we have a(ip|S')=0. Now we can apply Snaith’s theorem [26,
Theorem 5.5] to the pair (G, S') and obtain

p|S' —dimyp=3 (¢,|S' ~dima)i;eJ

with ¢, e R(G), 4;€ R(S*). Hence, by (*) and (x**),
I(p)=1(y - g)=k(y|S' —dimy)=3 I(6;° g) - dim 4
=Y I(o}{H)-dim4;,

and we are done by (**).

3. Quotients of the Exceptional Groups

Proposition (2.3) is a quite powerful tool for quotients of the exceptional groups
because I(¢g) is relatively large in these cases. In fact, for G=G,, ..., Eg, the
numbers I(¢pg) are 2, 6, 6, 12, 60.

In this section, G will then be a simply connected exceptional group and H a
simple subgroup such that G/H is stably parallelizable.

(3.1) H is locally isomorphic to SU(2), SU(3), G,, Spin(8), F,, Ee, or E,.

For otherwise 0+ p,(G/H) € H(G/H;R) by [1],(3.2), since for the exceptional
groups H8(BG;R)=H*(BG;R)- H(BG;R).



162 W. Singhof and D. Wemmer

There is a natural sequence of inclusions
SU(2)-»SU(3)-»G,—-Spin(8)>F,~»E;—E,—Eg;

these embeddings are up to conjugation determined by having index 1.

From (2.3), (3.1) and Dynkin’s tables 5, 16, and 25 [13] we conclude:
(3.2) The pair (G,H) is isomorphic to (G,,SU(Q2)), (G,,SU(3)), (F,,SU@3)),
(F4,Spin(8)), (E¢,Spin(8)), (E,, Spin(8)), (Ee, SUQ)), (Es, F4), (E4, Eg) with the
natural embeddings.

Remark. The first six pairs lead to stably parallelizable quotients which appear in
items (i) and (xviii) of Theorem 2; we have to show that the last three pairs don’t
give stably parallelizable quotients.

(3.3) E¢/F, is not stably parallelizable.

Proof. By [13] there exists an index 1 subgroup Spin(10) of E,. Therefore we have a
commutative diagram of inclusions

e o~

Spin(9) E,

\F4 -

Spin(10)

from which we get a map
q:S° =Spin(10)/Spin(9)— E/F, .

By an argument similar tol (6.4) it can be shown that g*7(E¢/F,) represents the
non-trivial element in KO(S?).

(3.4) E,/E¢ is not stably parallelizable.

Proof. Denote E,/E, by X. The integral cohomology of X was calculated in [31,
p. 3631]; additively, we have:

HYX;Z)=Z{1,210,218 237,245, 255} DL, - 2,5 With degz;=1i. (1

For dimensional reasons, the following is then clear:

The Atiyah-Hirzebruch spectral sequence converging to K(X)
collapses, and K(X)=Za,,®Za,3BZ,a,z with indices denot-
ing filtration. (2)

Comparing with real K-theory, we find:

KNO(X ) is a group of 8 elements, r: K(X)—KO(X) is onto and
hence r(a;o+b)=+0 for be Za,s®Z,a,5. 3)

Let teKO(X) be the tangent bundle, ¢ a fundamental representation of E¢ of
lowest dimension and n: =a(p —27) e K(X).

rm)=t. 4)
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Information on the integral cohomology of BE; and BE, can be foundin 8, 1, 18,
19]; we conclude that the natural map j: X —BE, induces

¥ HY(BEg)=Z— > H'(X)=TZ.

Let ¢cse H'%(BSU;Z) be the universal Chern class. Then cs(17)=j*(Bp)*(cs).
There exists an embedding f:SU(6)—E4 with @ o f=g,+2¢g, (cf. [13, p. 206];

01,02 ... are the fundamental representations of SU(6)). Thus
(BN)*(Bp)*(cs) = —12¢5. We conclude:
cs(M=k-zi0e H'UX;Z) with k|24. )

Write n =ma, , + b as above. Denote by ch® the homogeneous part of degree 10 of
the Chern character. Then ch®(y)=m- ch®(a,,). On the other hand, by (1), (2) and
the integrality theorem, ch®(r) = fki Zi0-
m=1. Thus we are done by (3) and (4).

(3.5) E4/SU(3) is not stably parallelizable.

Comparison yields by (5) that k=24 and

Proof. Write Y:=E;/SU(3) and Z:=E¢/F, There are inclusions
SU(3)— F4—je E,; therefore we have a fibration F,/SU(3)—> Y-S Z. The
tangent bundle of Y is given by 7(Y) =n*1(Z)@®#, where n is the bundle along the
fibres, and n=o(Ad,|SU(3)—Adgys)- A standard calculation shows that n is
stably trivial. Therefore 7(Y) is stably equivalent to n*7(Z).

By [2,2.6], j*: H*(Eq; Z/2)—H*(F,;Z/2) is surjective. The Serre spectral
sequence implies that H*(Z; Z/2)— H*(E; Z/2) is injective; consequently:
(3.6) n*: H¥(Z,Z)Z)~ H*(Y; Z/2) is injective.

Furthermore,

H*(Eq; Z/2) 2 Z/2[ x31/(x3)® A(x5, Xo, X1 5, X1 7, X23)
by [2, 2.7]. Since it is well known ([7], Chap. V) that
i*: H¥(F,; Z/2)-»H*(SU(3); Z/2)

is surjective, we have that i* - j* is surjective. Therefore the mod2 Serre spectral
sequence of the fibration SU(3)—E¢—Z collapses, and we conclude that up to
dimension 10 the cohomology of Z is given by

Z/2 for i=0,6,9;
0 for i=1,2,3,4,5,7,8,10.

By [2, 2.5] we know that H*(Ee/F,; Z)= A(z4, 2,,). Hence (3.6) and (3.7) yield
(3.8) n*: HY(Y;Z/2)—» H°(Z;Z/2) is an isomorphism.

(3.7) H(Z;Z/2)= {

Now apply the Atiyah-Hirzebruch spectral sequence to the spaces and maps

vz s
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where g is as in (3.3). Since g*7(Z) —dim Z is the non-trivial element in KNO(Sg) and
since 7(Y) is stably equivalent to n*t(Z), we conclude from (3.7) and (3.8) that 7(Y)
is not stably trivial.

(3.9) Quotients of the exceptional group G by non-simple subgroups are not stably
parallelizable.

Proof. Let f: H, x ... x H,—Gbea Lie group homomorphism with simple groups
H;such that G/Im f is stably parallelizable. Then we have principal fibrations G/K,
—G/Im f, with

Ki=f(Ix..x1xH;x1x..xl),

and by I (2.6.c) their total spaces are stably parallelizable. By (3.2) we see that
2Rank K;>Rank G, hence k=2, and (G, K;) is isomorphic to (G,,SU(2)) or
(F,,SU(3)). The classification of subgroups of maximal rank tells us that there are
no homomorphisms f of this type.

4. Stiefel-Whitney Classes of Homogeneous Spaces

In this section, let G be a compact connected Lie group and H a closed connected
subgroup. Then G/H is orientable, that is, w,(G/H)=0. It is also easy to deal with
w(G/H):

(4.1) Let T be a maximal torus of H and consider the natural maps

G/H-2> BH < -BT.
In cohomology, they induce

HY(G/H; Z,) < — H*(BH; Z;) —— HX(BT; Z,) < H*(BT; 7)
where red denotes reduction of coefficients. Let S* C H*(BT; Z) denote the set of
positive roots of H. Then
w,(G/H)=j*(x) with i*(x)=red< 3 oc).
ae§*
When is w,(G/H)=07? Recall the following definition [30, p. 59]: H is called
acceptable if £ 3 o is a weight of H. Introduce an Ad-invariant scalar product

ae$S*t

on h=Lie (H). Then we have as an immediate consequence of (4.1):

(4.2) Corollary. Let G be simply connected. The following assertions are equivalent:
a) G/H admits a spin structure, that is, w,(G/H)=0.
b) Ad: H—-SO(®) lifts to Spin(h).
¢) H is acceptable.

Here is a complete list of those simple groups which are not acceptable:

(4.3) (i) SU(n)/N where N is a subgroup of the center of SU(n) with v,(n)
=v,(ord(N)) = 1; here, as usually, v,(n) is the exponent of 2 in the decomposition
of n into prime powers.
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(i) SO@2n+1), n21

(iii) PSp(n) with n=1(4) or n=2(4).

(iv) PSO(2n) with n=2(4) or n=3(4).

(v) Ss(4n), the semi-spinor group, with n=1(2).

(vi) Ad(E,).

For the higher Stiefel-Whitney classes, there is a useful criterion for which we
need some notation: Write R(S')=Z[z, z~ !]in the usual way; if ¢ € R(S*) we have
¢=Y N{0)7' with N(¢) € Z. Define N°*%(g) by

NOdd(Q): =;Nzi+ 1(0).

(4.4) Proposition. Let H be a closed connected subgroup of SU(n), ¢: Ho SU(n),
and let 1:S'<, H be an embedding. Assume that N°*%(Adg-1)+0 and that
vi=v,(N°Ady 1)) S v(N°%g o 1)). Then

wy(SU (n)/H)=+0.
Proof. Let q:SU(n)/S'—>SU(n)/H be the natural projection. We show that
wo(@*t(SU(n)/H))+0:

Write M;: =N{Ad-1); then M;=M _;; and in RO(S"), we have Ad 1 stably

equivalent to r{ Y M,z"\, where
i>0

r: R(S')— RO(S") is realification.

There is the standard fibration SU(n)/S'—> BS'—5 BSU(n). Let # be the
canonical complex line bundle over BS?, that is, n=a(z) with «: R(S")—K(BS").
Since ©(SU(n)/H) is stably equivalent to —a(Ad) in KO(SU(n)/H), naturality of «
gives that g*1(SU(n)/H) is stably equivalent to —a(Ad - 1), and this in turn is stably
equivalent to —j*r (ZO M i;f). So it suffices to show that the first non-zero Stiefel-
Whitney class of j*r(.zo M\ is wy..

Now the total Stiefel-Whitney class of this bundle is j* red (c*<}: Mini»,
i>0

where ¢, denotes the total Chern class. As an easy application of the Cartan
formula, one has: _
The smallest integer s= 1 with redcs( >M ,-n‘) +0is s=2""1.
i>0

Writing H*(BS'; Z)=2Z[y] with y=c,(#), this means that
w{q*t(SU(n)/H)=0 for 0<i<2

and w,.(q*1(SU (n)/H))=j*red(y*" ). By the Gugenheim-May theorem [16],
this will be non-zero if we can show that

*=0: H(BSU(n);Z,)~H'(BS";Z;) for 0<i=2".

But this is straightforward: Let T be a maximal torus of SU(n) and consider g as a
map from BS! to BT. We can choose X, ..., X, in H*(BT;Z,) such that

H*BT;Zy) =Zy[xy, -, X, /(%) 5

e jredy for 1<i<N%go1)
PED=10 T for NMgon<isn.
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Let o; be the i'™ elementary symmetric functionin x,, ..., x,. Then H*(BSU(n); Z,)
is the subring of H*(BT;Z,) generated by the g, and an easy calculation with
binomial coefficients shows that ¢*(c;)=0 for 1 <i<2* with u=v,(N*%¢g-1)).
Since dimg;=2i and, by hypothesis, v< u, the result follows.

Remark. This proposition can obviously be generalized to a criterion for the non-
vanishing of Stiefel-Whitney classes for any homogeneous vector bundle, that is, a
vector bundle in Im(a: RO(H)—-KO(SU(m)/H)). The following corollary is,
strictly speaking, a consequence of this generalization.

{4.5) Corollary. Let H be a closed connected subgroup of Sp(n), ¢: H< Sp(n), and
let 1: S &, H be an embedding. Let v : Sp(n)—SU (2n) be the natural homomorphism.
Assume that N°*YAd, -1)+0 and that

vi=vy(N**HAdy o 1) Svo(N**(ogot)).

Then
w,(Sp(n)/H)+0.

Proof. Apply (4.4), as generalized in the preceding remark, to the vector bundle
E=o(Ady o 1) over SU(2n)/S'. We find that w,.(£)#0. Consider the natural maps
SU@2n)/S" < Sp(n)/S' -2 Sp(n)/H .

Since P*(&) is stably equivalent to —g*t(Sp(n)/H), it suffices to show that

P*(w,(€) % 0. This, however, follows from the commutative diagram

Sp(n)/S' — BS' —— BSp(n)

| |

SU(2n)/S! —— BS'— BSU(2n),

from the Gugenheim-May theorem and the fact that
(By)*: H¥*(BSU(2n))—H*(BSp(n))

is surjective [6].

5. Some Applications of Stiefel-Whitney Classes

In I (2.5), we observed that SO(h)/Ad (H) is always stably parallelizable, ) =Lie(H)
being endowed with an Ad-invariant scalar product. If h denotes the complexifi-
cation of b, it seems therefore natural to ask whether SU(h)/Ad(H) is also stably
parallelizable; it is obvious that the complexification of its tangent bundle is stably
trivial.

The following proposition was stated without proofin [17]; a long case by case
proof was given in [29].

(5.1) Proposition. If H is not abelian then there exists an i>0 such that
w{SU(b¢)/Ad(H))=+0.
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Proof. 1t is easy to check that for each non-abelian H the group Ad(H) contains a
subgroup which is isomorphic to SO(3). For any closed subgroup K of a Lie group
G, the restriction Ad4;|K contains Adg as a subrepresentation. Apply this
observation to the pair (G, K) =(Ad(H), SO(3)): Since Adgq 3, is just the inclusion
SO(3) SU(3), we find that Ad 4 4)|SO(3) contains this inclusion. Now apply (4.4),
where 1 is the following composite:

1:5'=80(2)c, SO(3)c, Ad(H).

We have seen that Ad,yg, ot contains the inclusion S'=SO(2)¢,SU(2) as a
subrepresentation, that is, Ad -1 contains z+z~!. This verifies the hypothesis
N°%(Ado1)+0 in (4.4). The second hypothesis of (4.4) is trivially satisfied since
o =Ad. The result follows.

Next we consider the fourth Stiefel-Whitney class. We need the following
auxiliary observation:

(5.2) Lemma. Let H be a simple Lie group and g:SU(Q2)—H the standard
homomorphism with image K, as in the proof of (2.1). Let ¢ be the identical
representation of SU(2). Then Ady o g is stably the same as @*+ (I(Adg)—4) - ¢ in
RESU@Q2)=Z[¢].

Proof. From [11, Ch. VL1, Proposition 8(ii)] we deduce that
Adyog=*+n-@+l, nleZ.

Applying the index to both sides gives the desired result since I,=1.

(5.3) Proposition. Let H and G be compact connected simple Lie groups. Fur-

thermore, let G be 1-connected and f: H— G an embedding with even index I ,. With
the notation of Sect. 4, assume that v,(I(Ady))=1. Then w,(G/H)=+0.

The proof is a modification of the proof of (4.4) in that the Gugenheim-May
theorem is simply replaced by the Serre exact sequence:

We choose for i the composition S’ c)SU(Z)é’,H where g is as in (5.2).
Comparing the exact mod?2 Serre cohomology sequences of the fibrations G/S !
—BS!'-BG and G/SU(2)—BSU(2)—BG we find that

HY(BS';Z/2)-H'(G/S*; Z/2) is injective for i<4.
By the proof of (4.4) it remains to compute N°%(Ady © g - 1). From (5.2) we see that
Vva(N*U4(Ady o go1)=v,(2 - (I(Ady)—4)=2.

The simple, simply connected groups H with vo(I(Adg))=1 are SUQ2n+1),
Spin(2n+ 1) with n=3, Sp(2n), and F,.

(5.4) Corollary. Let G=SU(N) or Sp(N) and let H be a subgroup locally
isomorphic to Spin(2n+ 1) with n23 or F,. Then

wa(G/H)+0.

This is clear since any representation of H and hence any homomorphism
f+H-G has even index.
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6. Quotients of SU(n)

(6.1) Lemma. Let H be a subgroup of SU(n) such that SU(n)/H is stably
parallelizable, and suppose that H is locally isomorphic, but not isomorphic, to
SUQRYy"=SU(Q2) x ... xSU(2). Then SU(n)/H is SU(4)/SO(4).

Proof. For m=1 the assertion follows from (2.2) and (5.1). So assume that
H=Im(g:SUQR)"—>SU(n))

with m>2. Then o=+ ... 40" with g@ =019 x ... x ™9, the ') being

irreducible representations of SU(2). Let 1, : SU(2)—-SU(2)" be the inclusion as the

' factor. Then [e.g. by I (2.6¢)] SU (n)/Im(g - 1,) is stably parallelizable. As we saw
in the case m=1 above, g o 1, has to be injective; therefore, by I (5.1), either o1,

=0,+ N, or =2¢,. On the other hand, go1,= 3 (]_[ dimg‘“)> 0", So either
i=1\j*r

each p®¥isof theform 1 x ... x Ix g, x I x ... xl,orm=2and g =g, x ¢;. In the

first case, H=SU(2)™, and in the second case, SU(n)/H =SU(4)/SO(4).

(6.2) Lemma. Let n=k =2, and assume that SU(n)/SO(k) is stably parallelizable.
Then k=2, or n=k=4.

Proof. By (4.2) and (4.3), k has to be even. In I, Sect. 4, we studied the spaces
Sp(n)/SU (k). Imitating the proof of I, (4.2), we find: If SU(n)/SO(n) is stably
parallelizable then so is SU(n—1)/SO(n—2). Since SU(5)/SO(4) is not stably
parallelizable by (6.1), the result follows.

(6.3) Lemma. Let K be a subgroup of SU(n) such that SU(n)/K is stably
parallelizable, and assume that K is locally isomorphic to SU(k). Then K is
isomorphic to SU(k).

Proof. This follows from the non-vanishing of Pontrjagin classes as computed in
[17, Theorem 1].

(6.4) Lemma. For n=2k, consider the natural embedding of Sp(k) into SU(n).
Assume that k>1 and that SUn)/Sp(k) is stably parallelizable. Then n=4 and
k=2.

Proof. The inclusion SU(2n—1)—SU(2n) induces a diffeomorphism
SU(2n—1)/Sp(n—1)->SU(2n)/Sp(n).

Therefore, it is sufficient to show that SU(5)/Sp(2)is not stably parallelizable. Now
SU(4)/Sp(2)= 5% and SU(5)/SU(4)=S? so that there is a fibre bundle

$555 SUG)Sp(2) > 5°.

Arguing asin [, Sect. 6, we find that 1(SU(5)/Sp(2)) — 14 = p*(z), where z is the non-
zero element of KO(S®), and that p*: KO(5°)— KO(SU(5)/Sp(2)) is injective.
The study of the other quotients of SU(n) now goes along familiar lines:

(6.5) Lemma. Let H be a closed connected non-abelian subgroup of SU (n) such that
SU(n)/H is stably parallelizable. Then SU(n)/H is diffeomorphic to a Stiefel
manifold, to SU(n)/(SU(Q2) x ... x SU(2)), to SU(4)/H,, or to SU(4)/SO(4).
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Proof. By 1 (3.4), H is semisimple. If H is simple and not covered by the preceding
lemmas and I (5.1), proceed as follows: Look at Pontrjagin classes [17];if py, p,,
and p; vanish, look at Stiefel-Whitney classes (Sect. 5 or [29]); in the few cases
where they also vanish, do calculations in the complex representation ring using
[26].

If H is semisimple but not simple, reread the proof of (6.1).

7. Quotients of Sp(n)

The non-parallelizability of these manifolds will be an easy consequence of what
we have done so far and of the following observation:

(7.1) Suppose that G=Sp(n;)x ... xSp(n,) and that H is a subgroup of G
isomorphic to Sp(k,) x ... xSp(k,). Then

&: RO(H)® goyZ—~KO(G/H)
is injective.

The proof is essentially the same as that of Proposition 5.1 of [26], replacing
complex K-theory by real K-theory and taking into account that H'(BG; Z) and
H(BH; Z) are 0 for i£0(mod4).

In order to apply (7.1), one has to know explicitly the structure of RO(Sp(n)):
(7.2) Write R(Sp(n)) =Z[A,, ..., A,), where A; are the fundamental representations,

with A,; orthogonal and A; . | symplectic. Then RO(Sp(n)) is the subring of R(Sp(n))
generated by Ao a2 )
pARAZ ERAT T I

241,243,245, ... s
Aid; for all odd i,j.
See [12, VI, 4.8].

(7.3) Corollary. The 30-dimensional manifold Sp(4)/(SU(2) x SU(2)) is not stably
parallelizable.

(7.4) Lemma. Let H be a subgroup of Sp(n) such that SU(2n)/H is stably
parallelizable. Then Sp(n)/H is diffeomorphic to Sp(n)/(Sp(1)x ... X Sp(1)) or to
Sp(2)/SU(2).

Proof. This follows from (6.5).

(7.5 Lemma. Let H be a subgroup of Sp(n) such that Sp(n)/H is stably
parallelizable, but SU(2n)/H is not. Then Sp(n)/H is diffeomorphic to Sp(n)/SU(2),
n>2, or to Sp(n)/Sp(k).

This follows by considering Pontrjagin and Stiefel-Whitney classes.

In order to settle the question of parallelizability, it remains to show:

(7.6) Sp(n)/Sp(1)*=Y, , is parallelizable for n>k.

For n=k+2, Y, , admits a free Z, x Z ,-action and is hence paralle}izable by
[27], Lemma 3.4. So it suffices that the semicharacteristic k(Y, . ,; Z,) is zero. By



170 W. Singhof and D. Wemmer

an easy spectral sequence argument, H®*(Y,,, , )=H*(Y,,; and
dimH*(Y, ,)=n!

8. Quotients of Spin(#n)

As the parallelizable quotients of Spin(n) are more numerous than those of the
other simple groups it is not surprising that the amount of technical work is quite
formidable in this situation. We refer to [32] for fuller details. We begin with a
modification of the techniques of Hsiang [17] to obtain at least sufficient criteria
for the non-vanishing of the low-dimensional Pontrjagin classes of Spin quotients:

Let y: H—SO(n) be a real representation of a compact connected Lie group
such that the lift ¢ : H— Spin(n) exists. Let T be a maximal torus of H and $* (H)
the set of positive roots of H with respect to 7. We define P*H € H**(BT; Z) as the

homogeneous components of [] (1—a?). More generally, let Q7 (yp) be the
aeSt(H

)
positive weights of y and let P*yp € H**(BT; Z) be the homogeneous components of
[T (1—w?. Finally, let

0eQ* (v)
P*p=3P*pe H*BT;Z),
PAp=3(P*y—GP*y)*) e HY(BT; Z),
PO — 1PSy ifiPSype H'%(BT;Z)
v= P®p  otherwise.

(8.1) Proposition. Let n=13. If p{(Spin(n)/{p(H))=0 for i=1,2,3 then P*H is
contained in the ideal of H*(BT;Z) generated by P*p, P*p, PS¢ for k=1,2,3.

The corresponding result for quotients of SO(n) can be found in [17]. The
cohomology groups H* ~Y(Spin(n); Z) are infinite cyclic by [7, 12.1]. Let y,,_ , be
generators. Following [17] it suffices to show:

a) ys, 7, and 2y, are universally transgressive.

b) g*(x(y3)) = P*, ¢*(2(y;))=P*P, §*(x(2y,,)) =Py, where 7 is the trans-
gression of the universal bundle

Spin(n)— E Spin(n)— B Spin(n)

and ¢ is the composition BT—-BH . B Spin(n).

The relevant cohomological information for a) is contained in [7] and [24, 6.5].
For b), consider the following commutative diagram:

BSpin(n) «—— BS
2]
BT—> BSO(n) «——BS’,

where S and §’ are the standard maximal tori. Observe that Py is the pull-back
under g of the k™ universal Pontrjagin class [9]. In order to identify the images of
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the low-dimensional Pontrjagin classes under (Br)* we can work in the
cohomology of BS, cf. [15].

The following two criteria are immediate from (2.3) resp. from I (2.6.b):
Let 1p be a homomorphism from the semisimple group H into Spin () such that
Spin(n)/p(H) is stably parallelizable.

(8.2) 2- () divides I(Adp).

(8.3) If ¢ factors as HS SU(m)—-Spin(n) then SU(m)/@(H) is stably
parallelizable.

Application of (8.3), (8.2), (8.1) resp. (5.3) yields the desired non-parallelizability

results for quotients of Spin(n) by simple groups H except in the following four
cases:

(1) Spin(14)/%(Spin(6)) with p=0g,+ 4% +47;
(2) Spin(26)/yp(F,) where p =@, is the first fundamental representation;
(3) Spin(10)/4(Spin(7));
(4) Spin(n)/SU (k) with n=2k.
In case (1), consider the fibration
Spin(6)/SU(2)— Spin(14)/g(SU(2)) - Spin(14)/y(Spin(6))

where g=4¢ + 6. Observe that the bundle along the fibres is trivial. We know
already that the total space is not stably parallelizable. Therefore, the base isn’t.
Similarly, in case (2) we use the fibration

F4/SU(3)—Spin(27)/g(SU(3))—Spin(27)/F 4

with g=3(e,+0.)+9.
In case (3), we have the fibration

Spin(9)/4(Spin(7))—Spin(10)/4(Spin(7))—S° .
The fiber is diffeomorphic to S'3 [33, Appendix A]; the tangent bundle of the total

space comes from the non-vanishing element of KO(S°), cf. I (6.2) and I (6.3).
Finally, in case (4), we have the following result:

(8.4) Lemma. Spin(n)/SU (k) is stably parallelizable if and only if either k=2, 3, and
n=2k or k=4, 5, and 2k<n<10.

Proof. Using the fact that the natural map
Spin(2n—1)/SU(n—1)—Spin(2n)/SU(n)

is a diffeomorphism the proof is easily reduced to the case Spin(11)/SU(4). We
denote Spin(n)/SU4) by X,.

®.5) H*(X ;)= Az, 27)
This follows from the fact that SU(4)—Spin(8) has index 1.

(8.6) H*Xo; Z)= A(z4,245)
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Apply the Serre spectral sequence of the fibration X¢— X, —S® and the exact
cohomology sequence of

Xy,—BSU(4)— B Spin(9).
The collapsing of the spectral sequence of X¢— X ,,—S° yields:
(8.7) H*X 0; Z)= A(24,29,2,5) .

(8.8) Up to dimension 10, the only non-vanishing cohomology groups of X, are
HYX,;Z)=Z and H'(X , ;) =Z)2.

Proof. Let Y,: =Spin(n)/SU(5). Consider the following diagram of fibrations:
S9 SQ

L

X9 Xll V11,2

RN

Yio— Y — §'°

By [16], H*¢(Y;,;IR)=R. Compare the spectral sequences of the two horizontal
lines: Both collapse.

We can now conclude the proof of (8.4) as follows:

Let p:X,; —»S'° be the fibration with fibre X,,. Its exact cohomology
sequence together with (8.7) and (8.8) implies that p*:H 10(§10.7Z/2)

—-H'Y(X,,;Z/2) is bijective. Comparison of the Atiyah-Hirzebruch spectral

sequences of X,, and $'° shows that p*: KO(5'%)—» KO(X,,) is s injective. Finally
1(X,,)—dim X, = p*(«) where o is the non-zero element of KO(S'°).

Let now H be a semisimple but not simple subgroup of Spin(n). Most cases can
be handled by the techniques introduced so far and offer no particular difficulties.
There remains one hard case, namely Spin(13)/SU(2)2.

(8.9) Spin(13)/SU(2)? is not stably parallelizable.

Proof. Let Z,,: =Spin(n)/SU (2)*. Itis easy to see that Z, has the same cohomology
groupsas V, 3 x $1°. The cohomology of Z, ; up to dimension 12 can be computed
from the spectral sequence of Zy—Z,3— V|, 4; there are no differentials in the
interesting range. Let p: Z,;—S"? be the fibration with fibre Z,,.

From the cohomological facts we conclude that

p*: KO(S'H)>KO(Z,5)

is non-trivial. The tangent bundle of Z, ; is the image of a generator of KO(S'2).

This completes the proof of Theorem 2 and Theorem 1. As to Theorem 3,
parallelizability of Spin(n)/Adg(H) will be shown in Sect. 9. In the remaining
cases, it is not difficult to show the vanishing of the semicharacteristics, either by
determination of the cohomology or by application of [27].
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9, Parallelizability of SO(n)/Ad(H)

In order to complete the proof of Theorem 3, we have to consider the following
situation: Let H be a compact connected Lie group of dimension n. Endow § with
an Ad-invariant scalar product and identify }) with Euclidean space IR". Then
Ad(H) is identified with a subgroup of SO(n), and, for m=n, with a subgroup of
SO(m). The homogeneous space SO(m)/Ad(H) is stably parallelizable.

(9.1) Proposition. For any m=n=dim H, SO(m)/Ad(H) is parallelizable.
Remark. In the special case H=S0O(3) x ... x SO(3), this result was recently shown
in [22] and [28].

Proof. We only have to show that k(SO (m)/Ad(H); Z,)=0 if dimSO(m)/Ad(H) is
odd. It suffices to assume that H is semisimple and with center {e}; then H is a
product of centerfree simple groups. Our assertion is quite easy if H contains either
no or at least three factors of type A, ; in the other cases it seems to be more subtle.
We make again use of the fact [27, 3.4] that the semicharacteristic vanishes if there
exists a free Z, x Z,-operation.

Let I, be the k x k unit matrix; for m= 3k, define Y, ;eSO(m), i=1,2,3, by
Y, i =diag(— I, =T, I, Li—30) ,
Y, o =diag(— I, Iy, — L, Ln—34) »
Y, s=diag(ly, — Ly — L In-31)-

These, together with the identity, form a subgroup &, of SO(m) of type
Z,xZ,.

(9.2) If H contains at least 3 factors of type A, then there is a free Z, X Z,-
operation on SO(m)/Ad(H).
Indeed, we may write
Ad(H)=S0(3)x SO(3)xSO(3)x H’
with H'CSO(m—9). The group ®; operates freely by
A-Ad(H)—>AY, ;- Ad(H)
for AeSO(m). .
Now we have to introduce some more notation: Let {o;, ..., o} be a basis for

the root system S of H, and let I': =@Za,~. If o:I'>{+1,—1} is a group
homomorphism, put =t
N(p):=|{BeSlp(f)=—1}|.
Finally, let M(H) : = {N(¢)|¢ € Hom(I', {1, —1})}. Then
IMM(H, x H,) = {ky +k,lk; € M(H)} .
(9.3) If H is simple and Rank(H)>r, then, for any non-constant ¢, we have
N(p)=2r.

We begin with an easy graph-theoretical observation: Let T be a connected
tree with r vertices, M a non-empty subset of the set of vertices of T, and & the set of
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all connected subgraphs of T containing exactly one vertex which lies in M. Then
\F|zr.

Now choose T to be the Dynkin graph of H; let M be the set of those «; for
which g(a)= — 1. If {«; , ..., o, } € #,thena; + ... +a;, is a positive root of H and
@(o;, + ... + ;)= —1. Hence there are at least 2r roots  with ¢(f)= —1.

(9.4) Suppose there is a natural number k such that 2k ¢ (H) and 3k<m. Then
Z,xZ, acts freely on SO(m)/Ad(H).

Let G, act in the ordinary way, i.e. from the left, on SO(m)/Ad(H). We have to
show that this operation is free. If not, there would exist AeSO(m) with
Y, :A-Ad(H)=A-Ad(H),ie. A~'Y, ;Ae Ad(H). Let T be a maximal torus of H.
Then there exists X € SO(m) with X 'Y, ;X € Ad(T), and therefore uet with
X 'Y, ;X =Ad(expu)=e*?*. Hence ¢*** has the cigenvalue 1 with multiplicity
m—2k and the eigenvalue — 1 with multiplicity 2k.

On the other hand, ¢*** has the eigenvalues e*® for a € S and, in addition, the
eigenvalue 1 with multiplicity Rank (H).

Hence the map ¢ : a—e*® is a group homomorphism I' - {1, — 1} with N(¢)
=2k, contradicting the assumption that 2k ¢ (H).

(9.5) If H does not contain a factor of type A, there exists a free Z, x Z,-action on
SO(m)/Ad(H).

Indeed, by (9.3), we know that 2¢ I(H), and we can apply (9.4) with k=1.

(9.6) maxMM(H)<2/3-dimH for any semisimple H. Moreover, if H contains a
simple factor of rank =3, then max9(H)+2=<2/3dimH.

For the proof, it suffices to consider the different simple groups separately. The
verification is elementary but tedious and will not be given here. It turns out that
more is true: For groups of high rank, the ratio between max#(H) and dim(H)
approaches 1/2.

Anyhow, if H contains a simple factor of rank = 3, (9.6) allows to apply (9.4)
with k=1/2 maxR(H) + 1. Therefore it remains to prove (9.1) for groups H which
only contain factors of types A4,, B,, G, and one or two factors of type A4,. Observe
that IM(A4,)={0,4}, I(B,)={0,4,6}, M(G,)={0,8}. Consequently, (9.4) also
applies with k=1/2maxM(H)+ 1 except in very few cases. Of these, only those
with dim SO (m)/Ad(H) = 3(mod4) need to be considered [5]. So we are actually
left with H=A, x G, and H=A, x A, x B, x B,. Since M(4, x G,)={0, 2, 3,10},
we may apply (9.4) with k=2 in the first case. In the second case, we may finally
apply the following observation whose proof is similar to that of (9.2):

(9.7) If H contains two (not necessarily simple) factors of positive even dimension,
then Z, x Z, acts freely on SO (m)/Ad(H).

This concludes the proof of (9.1).
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