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1. Introduction 

In this paper, we study the parallelizability of manifolds of the form G/H where G is 
a simple simply connected compact Lie group and H a closed connected subgroup. 
That G is simple means that its Lie algebra g is simple; some authors call such a 
group almost simple. 

Theorem 1. Let G be a simple 1-connected compact Lie 9roup and H a closed 
connected subgroup. Then G/H is stably parallelizable if and only if the adjoint 
representation Ad n of H is contained in the image of the restriction map of real 
representation rings RO(G)-~ RO(H). 

Observe that Theorem 1 allows to construct explicit framings of such 
manifolds G/H as soon as they are stably parallelizable: Extend e.g. the method of 
Proposition 4.1 of [20] to virtual representations. 

One direction of Theorem 1 is well known: Atiyah and Hirzebruch [3] 
introduced a homomorphism of rings ~:RO(H)~KO(G/H) as follows: If 
Q : H ~ G L ( V )  is a representation of H in a vector space V, let ~(~) be the vector 
bundle over G/H with total space G x ,V. In [-9] it was observed that the tangent 
bundle 7:(G/H) equals ~(1) where t=  AdGIH-AdH is the isotropy representation. 
Naturality of c~ then implies that G/H is stably parallelizable if Ad ,  is contained in 
the image of the restriction map RO(G)~RO(H) (cf. 1 (2.4) by I we denote [25]). 

The opposite direction is quite cumbersome in that it depends on the explicit 
classification of all stably parallelizable homogeneous spaces of the above type in 
Theorem 2 below; it would be interesting to have an a priori proof. 

We do not know whether Theorem 1 remains true when G is a product of 
simple groups. On the other hand, the result is wrong if G is not assumed to be 
simply connected. Here is a counter-example: Take G = SO(8) and H = SU(4) and 
embed H into G by realification. Then Ad n is not contained in Im(RO(G) 
~RO(H)). However, the inclusion SO(7)~SO(8) induces a diffeomorphism 
SO(7)/SU(3)~SO(8)/SU(4), and SO(7)/SU(3) is stably parallelizable by I (2.4). 
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Theorem 2. Let G and H be as in Theorem 1. Then G/H is stably parallelizable if and 
only if either H is abelian, or if G/H is diffeomorphic to one of the followin9 
manifolds: 

(i) the real, complex, or quaternionic Stiefel manifolds; 
(ii) SU(n)/(SU(2)x ... •  k where k denotes the number of 

factors SU(2), with 2k < n; 
(iii) SU(4)/SO(4); 
(iv) SU(4)/Ho, where H o is the subgroup isomorphic to SU(2) consisting of all 

matrices( A OA) With A E SU(2); 

(v) Sp(n)/(Sp(1) • ... • Sp(1))= Y,,k where k denotes the number of factors 
Sp(1), with k<n;  

(vi) Sp (n)/SU (2), n > 2; 
(vii) Spin (n)/Adn (H) with H 1-connected and n > max {5, dim H}; 

(viii) Spin(n)/SU(2), n > 5; 
(ix) Spin(n)/SU(3), n > 6 ;  
(x) Spin(n)/SU(4), 8<n_< 10; 

(xi) Spin(10)/SU(5); 
(xii) Spin(n)/(SU(2) x SU(2)) for 8 < n <_ 12; 

(xiii) Spin(12)/(SU(2) x SU(2) x SU(2)); 
(xiv) Spin(n)/H o for n=8 ,  9, H o as in (iv); 
(xv) Spin(n)/Sp(2) for n = 8, 9; 

(xvi) Spin(n)/Ko, where K o is the universal cover of the 9roup 

(xvii) Spin(n)/G2 for n > 7; 
(xviii) FJSU(3) ,  F4/Spin(8), E6/Spin(8), ET/Spin(8 ). 

Remarks. 1. The embeddings in Theorem 2 are supposed to be the obvious ones. In 
particular, we consider the inclusions Sp(n)__c SU(2n)_c SO (4n) and their lifts into 
Spin(4n). 

2. Theorem 2 does not list all the pairs (G,H) such that G/H is stably 
parallelizable. On the other hand it is not true that the listed manifolds are pairwise 
non-diffeomorphic. We had to be somewhat inconsequent in order to have a 
reasonably short and clear statement. 

3. In the course of the proof, we will also find a number of stably parallelizable 
quotients of SO(n). We didn't pursue their classification further. 

4. Recall from I (3.4) that pl(G/H)+O if H is neither abelian nor semisimple. 
Therefore it suffices for the proof of Theorem 2 to assume H semisimple. 

Theorem 3. Let G and H be as in Theorem 1 and suppose that G/H is stably 
parallelizable but not parallelizable. Then G/H is a sphere or r a n k G = r a n k H .  

Observe that if rank G = r a n k H  then x(G/H)= ~ W(G) /#  W(H)~eO so that 
G/H is certainly not parallelizable. Here is a list of all stably parallelizable 
homogeneous spaces G/H which are not parallelizable (G and H as in Theorem 1): 
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(i) G/T, T a maximal torus of G; 
(ii) the spheres S", n =~ 1,3, 7; 

(iii) I1,,, = Sp(n)/Sp(1)"; 
(iv) F4/Spin(8 ). 
The proof of the Theorem 2 is based on the methods developed in [I] and, 

moreover, on the consideration of Stiefel-Whitney classes. These are of course also 
discussed by Borel-Hirzebruch [9] and in [29], but only in the restricted situation 
in which there is a satisfactory theory of 2-roots. Therefore we had to establish a 
fairly general criterion for the non-vanishing of Stiefel-Whitney classes (Sects. 4 
and 5). 

In Sect. 2 we use the index of a Lie group homomorphism as introduced by 
Dynkin to obtain a necessary condition for the parallelizability of homogeneous 
spaces. 

In Sects. 3, 6, 7, and 8 we study quotients of the exceptional groups, of SU(n), 
Sp (n), and Spin (n), respectively. We make extensive use of Hsiang's computations 
[17]. 

Finally, in Sect. 9 we show the parallelizability of the quotients SO (n)/Adn(H) 
for n > d i mH .  This is independent from the earlier sections. 

This paper is a combination of a 1983 IHES preprint of the first author and the thesis [32] of 
the second author; we refer to [-32] for details of several hard computations 

2. The Index of a Lie Group Homomorphism 

Let G be a simple compact Lie group with Lie algebra g. There exists a unique 
Ad G-invariant scalar product (. I" )G on g with (#~]#~)G = 2 where/~G is the highest 
root of G. I fH  is another such group and Q : H-~G a homomorphism with induced 
homomorphism Q, : b ~ g  then, following Dynkin [13], we define its index I(Q) ~ P~ 
by 

(Q,(x)lo,(y))G=I(o).(xly)u for x, y e b .  

This number is topologically relevant because of 

(2.1) Proposition. I f  G and H are moreover simply connected, the homomorphism 
(B~)*:H4(BG;Z)--.H4(BH;7Z) is multiplication by I(~). (Observe that these 
cohomology 9roups can be unambiguously identified with Z by stipulatin9 that the 
sum of the squares of the roots be negative.) 

This proposition is stated in [23]; when G and H are classical groups, a proof is 
given in [14, Sect. 15]. For the sake of completeness, we reduce the proof of the 
general statement to the special case H=SU(2),  G=SU(n)  by an argument 
similar to [4, Sect. 8]: 

Let Ku be the rank one subgroup of an arbitrary simple group H associated to 
its highest root #. Since K ,  is isomorphic to SU(2), we obtain an embedding 
j : SU(2)~H,  and I(j) = 1 by definition of the index. On the other hand,j  induces an 
isomorphism j,:Tt3(SU(2))--*Tt3(H) by [10, Proposition 10.2]. Applying the 
theorem of Hurewicz and transgression, we find that (Bj)* is the identity on H 4. 
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The index is multiplicative with respect to the composition of homomor- 
phisms. Hence our assertion follows if G happens to be SU (n). The general case is 
then obtained by comparing with a non-trivial homomorphism from G to SU(n). 

As a first application, we give a criterion for the vanishing of the first Pontrjagin 
class of a homogeneous space. If q~ is a complex representation of H we define I(q0 
unambiguously by considering q~ as a homomorphism H~SU(n) .  If ~p is a real 
representation, put I(~0): = I(~0| 

(2.2) Proposition. Let H, G be simply connected compact Lie groups and assume that 
G is simple and H = H  1 • ... • H,, with simple factors Hj. Let p : H ~ G  be a non- 
trivial homomorphism, pj : = p[H ~ and HQ : = Imp. Then the following assertions are 
equivalent: 

(i) px(G/HQ)=O. 
(ii) The vector (I(AdH,) ... . .  I(Adm,)) is an integral multiple of (I(01), ..., I(pm)). 

Proof Let q~ : G/HQ--*B SU(N) be the classifying map for the complexification of 
the stable tangent bundle. The following diagram is commutative up to sign (cf. 
1.3.): 

H4(BH) ~ ( B A d H ) *  __ Hg(B SU(N)) 

Ha(BG) q*, Ha(BHo) J* , HA(G/He) 

Let Cz ~ Ha(B SU (N)) be the universal Chern class. Since the lower row of (*) is 
exact, pI(G/He)=O iff (BAdu~)*Cz~Imq*. This is equivalent with 
(B Adu)*c 2 ~ Im(Bp)* since (Buff is injective: In fact, N:  = Ker(H~HQ) is finite, 
and therefore Hi(BN)= 0 for odd integers i; apply then the Serre exact sequence of 
the fibration BN-*BH--,BHq. 

Assertion (2.2) now follows from (2.1). 
Thus the vanishing of Pl can be read off from Dynkin's table of indices [13, 

Table 5] (see also [21] for corrections). 
For  our next application, we extend the definition of the index to homomor- 

phisms q:H-~G where G is simple but H is only semisimple: Let 
u : HI x ... x H,,-~H be the universal covering of H with simple groups H r. Then 
we put 

I(0) : -- Z I(po 7r[Hj). 
J 

(2.3) Proposition. Let G be a simple, simply connected Lie group and H a semisimple 
subgroup with inclusion O : H ~ G .  Denote by ~o~ a fundamental representation of G 
of lowest dimension and assume that G/H is stably parallelizable. Then I(Adn) is 
divisible by I((p~). I(p). 

The proof of (2.3) requires some preparations: Since I(tp I + q~2) = I((pl) + I(go2) 
for representations (Pi of H we can consider I as an additive homomorphism 
R ( H ) ~ Z .  

I is not multiplicative; instead we have [13, p. 133] 

(2.4) I(qh" ~02) = I(r 1) �9 dim ~02 + dim~pa �9 1((02). 
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We will show the following assertion which contains (2.3) as a special case: 

(2.5) Let ~: R(H)--*K(G/H) be the usual map. I f  ~p ~ Kere  then I(~pG ) . 1(0) divides 
lop). 

Denote by t : S ~ ~ SU (2) the usual inclusion and write R(S 1) = Z[z, z -  ~ ]. The 
additive homomorphism ~:R(SX)~Q defined by rc(z k) = k2/2 has the following 
property: Let J be the ideal of R(S ~) generated by the elements ~0 o t -dimq~ with 
~o e R(SU(2)). Then ~(J)__ ~E and 

K((~p o t - dim ~o). 2) = I(~o). dim 2 (*) 

for q~ e R(SU(2)) and 2 E R(S~). This can be verified by direct computation. 
F rom Table 5 of [13] we deduce that I(~oG) divides I(a) for a e R(G); therefore 

I(tp~). I(e ) I I(alH). (**) 

With the notation as above, choose homomorphisms g~ : SU (2)~ H i with index 
1 and let g be the composition 

d g l  x . , -  •  

SU(2) , SU(2)" �9 H1 x ... x H,,---~ H .  

Then 

I(w)=IOpog) for ~p~R(H). (***) 

Denote the subgroup g ~ t($1) of H again by S l and consider ~'R(S~)~K(G/S1).  
By naturality of ~, we have ~(~pIS 1) = 0. Now we can apply Snaith's theorem [26, 
Theorem 5.5] to the pair (G, S ~) and obtain 

~p]S ~ - dim lp = Y' (ailS 1 - dim tri)2 i ~ 3 
i 

with ai~ R(G), 2 i ~ R(S1). Hence, by (*) and (***), 

10p) = I(q~ o g) = ~r l - dim ~o) = Z l(ai o g)" dim 2i 
i 

= Z l(a~[H), dim2~, 
i 

and we are done by (**). 

3. Quotients of the Exceptional Groups 

Proposition (2.3) is a quite powerful tool for quotients of the exceptional groups 
because I(q~) is relatively large in these cases. In fact, for G =  G 2 . . . . .  Es ,  the 
numbers 1(~0o) are 2, 6, 6, 12, 60. 

In this section, G will then be a simply connected exceptional group and H a 
simple subgroup such that G/H is stably parallelizable. 

(3.1) H is locally isomorphic to SU(2), SU(3), G2, Spin(8), F4, E 6, or  E 7. 

For  otherwise 0 + p2(G/H) ~ HS(G/H;R) by [I],  (3.2), since for the exceptional 
groups HS(BG; R)  = H4(BG; R) .  H4(BG; R). 
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There is a natural sequence of inclusions 

SU(2)---~SU(3)--.G2---~Spin(8)---~ F4---~ E6--~ E7-~ E8 ; 

these embeddings are up to conjugation determined by having index 1. 
From (2.3), (3.1) and Dynkin's tables 5, 16, and 25 [13] we conclude: 

(3.2) The pair (G,H) is isomorphic to (Gz, SU(2)), (Gz, SU(3) ), (Fg, SU(3)), 
(F4, Spin(8)), (E6, Spin(8)), (ET, Spin(8)), (E 6, SU(3)), (E6, F4), (Ev, E6) with the 
natural embeddings. 

Remark. The first six pairs lead to stably parallelizable quotients which appear in 
items (i) and (xviii) of Theorem 2; we have to show that the last three pairs don't 
give stably parallelizable quotients. 

(3.3) E6/F 4 is not stably parallelizable. 

Proof By [13] there exists an index 1 subgroup Spin(10) of E 6. Therefore we have a 
commutative diagram of inclusions 

Spin(10) 

Spin(9) ' E  6 

" - -~F4 J  

from which we get a map 

q : S 9 = Spin(lO)/Spin(9)~E6/F 4 . 

By an argument similar to I (6.4) it can be shown that q*z(E6/F4) represents the 
non-trivial element in K~O(S9). 

(3.4) ET/E 6 is not stably parallelizabIe. 

Proof Denote ET/E 6 by X. The integral cohomology of X was calculated in [31, 
p. 363]; additively, we have: 

H*(X;Z)=7Z .  {1,Zlo, Zls, z37,z45,zss}•7Z.2-z28 with degzi=i.  (1) 

For dimensional reasons, the following is then clear: 

The Atiyah-Hirzebruch spectral sequence converging to K(X) 
collapses, and K(X)=7Z.alo| with indices denot- 
ing filtration. (2) 

Comparing with real K-theory, we find: 

l~O(X) is a group of 8 elements, r: I((X)~I~O(X) is onto and 
hence r(alo+b)~eO for bEZalsOZza2s .  (3) 

Let z~K~O(X) be the tangent bundle, (p a fundamental representation of E 6 of 
lowest dimension and q : = ~(~o - 27) ~/s 

r(q)=z. (4) 
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Information on the integral cohomology of BE 6 and BEy can be found in [8, 1, 18, 
19]; we conclude that the natural map j:X--~BE 6 induces 

j*:HI~ . 2  HlO(x)=z .  

Let cseHI~ be the universal Chern class. Then cs(q)=j*(Btp)*(cs). 
There exists an embedding f :  SU(6)--*E 6 with ~o ~  +2~1 (cf. [13, p. 206]; 
Q1, ~2 .. . .  are the fundamental representations of SU(6)). Thus 
(Bf)*(Btp)*(cs) = - 12c 5. We conclude: 

cs(~l) = k.zlo ~ H~~ Z) with kl24. (5) 

Write r/= malo + b as above. Denote by ch 5 the homogeneous part of degree 10 of 
the Chern character. Then chS(q)=m, chS(a~o). On the other hand, by (1), (2) and 

k 
the integrality theorem, chS(~/) = ~ . z ~  o. Comparison yields by (5) that k = 24 and 

m = 1. Thus we are done by (3) and (4). 

(3.5) E6/SU(3 ) is not stably parallelizable. 

Proof. Write Y: = E6/SU(3 ) and Z : = E6/F 4. There are inclusions 

SU(3)---', F 4 ~  E6; therefore we have a fibration F 4 / S U ( 3 ) ~  Y - - - Z .  The 
tangent bundle of Y is given by z(Y)= 7z*z(Z)| where ~/is the bundle along the 
fibres, and q=0~(AdFn]SU(3)-Adsu(3)). A standard calculation shows that ~/ is 
stably trivial. Therefore ~(Y) is stably equivalent to ~r*r(Z). 

By [2, 2.6], j* : H*(E6; Z/2)~H*(F4;Z/2) is surjective. The Serre spectral 
sequence implies that H*(Z;  ~E/2)~H*(E6;Tl/2) is injective; consequently: 

(3.6) rr* : H*(Z;  Z/Z)--*H*(Y; Z/2) is injective. 

Furthermore, 

n*(E6;2~/2) ~-~,/2[x3]/(x'~)@A(xs, X9, X15, X17' X23) 

by [2, 2.7]. Since it is well known ([7], Chap. V) that 

i* : H*(F4; Z/2)--,H*(SU(3); 7Z/2) 

is surjective, we have that i* o j* is surjective. Therefore the mod2 Serre spectral 
sequence of the fibration SU(3)--*E6~Z collapses, and we conclude that up to 
dimension 10 the cohomology of Z is given by 

Hi(z;~E/2)=~;E/2 for i = 0 , 6 , 9 ;  (3.7) lo for i=  1,2, 3,4, 5,7,8, 10. 

By [2, 2.5] we know that H*(E6/F4;Z)~ A(z9, Z l 7). Hence (3.6) and (3.7) yield 

(3.8) 7z* :H9(y ;  ~/2)--* H9(Z; 77,,/2) is an isomorphism. 

Now apply the Atiyah-Hirzebruch spectral sequence to the spaces and maps 

Y ~  Z ~ S 9 
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where q is as in (3.3). Since q*z(Z) - d i m Z  is the non-trivial element in K~O(S 9) and 
since z(Y) is stably equivalent to n*z(Z), we conclude from (3.7) and (3.8) that z(Y) 
is not stably trivial. 

(3.9) Quotients of the exceptional group G by non-simple subgroups are not stably 
parallelizable. 

Proof. Let f :  H~ • ... • H k ~ G be a Lie group homomorphism with simple groups 
Hi such that G/Im f is stably parallelizable. Then we have principal fibrations G/Ki 
~G/Im f, with 

Ki=f( l •  ... •215  i•215 ... •  

and by I (2.6.c) their total spaces are stably paraUelizable. By (3.2) we see that 
2RankKi>RankG, hence k = 2 ,  and (G, Ki) is isomorphic to (Gz, SU(2)) or 
(F4, SU(3)). The classification of subgroups of maximal rank tells us that there are 
no homomorphisms f of this type. 

4. Stiefel-Whitney Classes of Homogeneous Spaces 

In this section, let G be a compact connected Lie group and H a closed connected 
subgroup. Then G/H is orientable, that is, wl(G/H)= 0. It is also easy to deal with 
wz(G/H): 

(4.1) Let T be a maximal torus of H and consider the natural maps 

�9 i 

6 / n  Bu , - - B T .  

In cohomology, they induce 

H E ( G / H ;  7~2 ) j~_H2(BH;Z2), i* , H2(BT; 7~2 ) red H2(BT;Z) 

where red denotes reduction of coefficients. Let S + C H2(BT; 2~) denote the set of 
positive roots of H. Then 

w2( G/H)=j*(x) with i*(x)=red (~+ a).  

When is w2(G/H)= 0? Recall the following definition [30, p. 59]: H is called 
acceptable if �89 Z " is a weight of H. Introduce an Ad-invariant scalar product 

ac~S + 
on b = L i e  (H). Then we have as an immediate consequence of (4.1): 

(4.2) Corollary. Let G be simply connected. The following assertions are equivalent: 
a) G/H admits a spin structure, that is, w2(G/H)= O. 
b) A d : H ~ S O ( b )  lifts to Spin(b). 
c) H is acceptable. 

Here is a complete list of those simple groups which are not acceptable: 

(4.3) (i) SU(n)/N where N is a subgroup of the center of SU(n) with v2(n) 
= v2(ord(N))> 1; here, as usually, v2(n ) is the exponent of 2 in the decomposition 
of n into prime powers. 
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(ii) SO(2n+ 1), n ~  1 
(iii) PSp(n) with n- = - 1(4) or n=2(4). 
(iv) PSO(2n) with n=2(4) or n-3(4) .  
(v) Ss(4n), the semi-spinor group, with n = 1(2). 

(vi) Ad(ET). 
For the higher Stiefel-Whitney classes, there is a useful criterion for which we 

need some notation: Write R(S 1) = Z[z, z- x] in the usual way; ifq e R(S 1) we have 
q = ~, Ni(Q)z i with Ni(t0 e 7/. Define N~ by 

i 

N~ : = Z N2i + I(Q)" 
i 

(4.4) Proposition. Let H be a closed connected subgroup of SU(n), Q:Hc~ SU(n), 
and let t :S l%H be an embedding. Assume that N~ and that 
V" = v2(N~ o l)) < VE(N~ ~ l)). Then 

w2~(SU (n)/H) # O. 

Proof. Let q:SU(n)/SloSU(n)/H be the natural projection. We show that 
w2v(q*z(SU(n)/H)) # 0: 

Write Mi" =Ni(Ad o l); then Mi=M i; and in RO(S1), we have Ado z stably 
equivalent to r ( Z  mizi~, where 

\i>o / 
r: R(SI)-~ RO(S ~) is realification. 

1 J There is the standard fibration SU(n)/S ~ B S X ~  BSU(n). Let r/be the 
canonical complex line bundle over BS 1, that is, t/= ~(z) with ~'R(S1)-~K(BSI). 
Since z(SU(n)/H) is stably equivalent to -c((Ad) in KO(SU (n)/H), naturality of 
gives that q*z(SU(n)/H) is stably equivalent to -~(Ad o l), and this in turn is stably 
equivalent to - j*r  (iZ>o Mill). So it suffices to show that the first non-zero Stiefel- 

k - -  / 

Whitney class of j ' r (  ~ mirli~ is Wzv. 
V>o / 

Now the total Stiefel-Whitney class of this bundle isj*red(c,(iZ>nMiqill, 
k \ - -  / I  

where c.  denotes the total Chern class. As an easy application of the Cartan 
formula, one has: 

The smallest integer s > l  with redcs (,>~o Mi"i) # 0  is s=  2 v- '  

Writing H*(BS~; Z ) = Z [ y ]  with y=c~(r/), this means that 

wi(q*z(SU(n)/H)=O for 0 < i < 2  * 

and w2~(q*z(SU(n)/H))=j*red(y2~-~). By the Gugenheim-May theorem [16], 
this will be non-zero if we can show that 

qg*=O:Hi(BSU(n);Zz)---~Hi(BSI;Z2) for 0 < i < 2  v. 

But this is straightforward: Let T be a maximal turns of SU (n) and consider q~ as a 
map from BS ~ to BT. We can choose xl . . . . .  x, in HZ(BT; Z2) such that 

H*(BT; Z2) = Zz[Xl . . . . .  x , ] / (Z xi), 

( redy for 1 <--i<<-N~ or) 
~0*(xi) = for N~ o l) < i ~ n. 
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Let ai be the -th Z elementary symmetric function in x l . . . . .  x,. Then H*(B SU(n); Z2) 
is the subring of H*(BT; Z2) generated by the al, and an easy calculation with 
binomial coefficients shows that ~p*(ai)= 0 for 1 < i <  2" with # = v2(N~ o 0)" 
Since dimai = 2i and, by hypothesis, v < #, the result follows. 

Remark. This proposition can obviously be generalized to a criterion for the non- 
vanishing of Stiefel-Whitney classes for any homogeneous vector bundle, that is, a 
vector bundle in I m ( ~ : R O ( H ) ~ K O ( S U ( n ) / H ) ) .  The following corollary is, 
strictly speaking, a consequence of this generalization. 

(4.5) Corollary. Let H be a closed connected subgroup of  Sp(n), Q : H ~ Sp(n), and 
let l" S 1 ~ H be an embedding. Let ~v : Sp(n)~SU(2n) be the natural homomorphism. 
Assume that N~ o Z)#: 0 and that 

v" = VE(N~ o 1)) < v2(N~ ~ Q ~ 0)" 

Then 
w2v(S p ( n ) / H ) .  O. 

Proof  Apply (4.4), as generalized in the preceding remark, to the vector bundle 
= a(AdH o z) over SU (2n)/S 1. We find that w2v(~)~: 0. Consider the natural maps 

SU(2n)/S ~ ~ Sp(n)/S ~ ~ Sp(n) /H.  

Since ~*(~) is stably equivalent to -q*z (Sp(n) /H) ,  it suffices to show that 
~*(w2v(0) + 0. This, however, follows from the commutative diagram 

Sp(n)/S ~ ) BS 1 > BSp(n)  

SU(2n)/S 1 , BS 1 , B SU(2n), 

from the Gugenheim-May theorem and the fact that 

(B~p)* " H*(B SU (Zn))~ H*(B Sp(n)) 

is surjective [6]. 

5. Some Applications of Stiefel-Whitney Classes 

In I (2.5), we observed that SO (D)/Ad (H) is always stably parallelizable, D = Lie (H) 
being endowed with an Ad-invariant scalar product. If Dc denotes the complexifi- 
cation of D, it seems therefore natural to ask whether SU(Ic)/Ad(H) is also stably 
parallelizable; it is obvious that the complexification of its tangent bundle is stably 
trivial. 

The following proposition was stated without proof in [17]; a long case by case 
proof was given in [29]. 

(5.1) Proposition. I f  H is not abelian then there exists an i > 0  such that 

w~(SU (I~r (H)) :V O. 
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Proof. It is easy to check that for each non-abelian H the group Ad (H) contains a 
subgroup which is isomorphic to SO(3). For any closed subgroup K of a Lie group 
G, the restriction AdalK contains Ad~ as a subrepresentation. Apply this 
observation to the pair (G, K) = (Ad (H), SO(3)): Since Adso t3) is just the inclusion 
SO(3) % SU(3), we find that AdAdtmiSO(3 ) contains this inclusion. Now apply (4.4), 
where z is the following composite: 

z' S ~ = SO(2) c_, SO(3) c~ Ad (H) .  

We have seen that AdAdtmOZ contains the inclusion $1=SO(2)c>SU(2) as a 
subrepresentation, that is, Ado z contains z + z-1. This verifies the hypothesis 
N~ o z)oe 0 in (4.4). The second hypothesis of (4.4) is trivially satisfied since 
Q = Ad. The result follows. 

Next we consider the fourth Stiefel-Whitney class. We need the following 
auxiliary observation: 

(5.2) Lemma. Let H be a simple Lie group and 9 :SU(2 )~H the standard 
homomorphism with image K,  as in the proof of (2.1). Let ~o be the identical 
representation of SU(2). Then Ad z o g is stably the same as cO2+ (I(AdR)-4).(p in 
R(SU(2)) = Z[~o]. 

Proof. From [11, Ch. VI.1, Proposition 8(ii)] we deduce that 

Aduog=q)Z+n.~o+l,  n, 16Z.  

Applying the index to both sides gives the desired result since I 0 = 1. 

(5.3) Proposition. Let H and G be compact connected simple Lie groups. Fur- 
thermore, let G be l-connected and f :  H--*G an embedding with even index I/. With 
the notation of Sect. 4, assume that Vz(I(Adu)) = 1. Then w4(G/H) # O. 

The proof is a modification of the proof of (4.4) in that the Gugenheim-May 
theorem is simply replaced by the Serre exact sequence: 

We choose for z the composition SI~SU(2)c~H where g is as in (5.2). 
Comparing the exact rood2 Serre cohomology sequences of the fibrations G/S ~ 
--*BS ~ o B G  and G/SU(2)~B SU(2)--*BG we find that 

Hi(BS~;Z/2)-~Hi(G/S1;Z/2) is injective for i < 4 .  

By the proof of (4.4) it remains to compute N~ o g ~ z). From (5.2) we see that 

vz(N~ o g o z)) = v2(2. (I(Ad u) - 4)) = 2. 

The simple, simply connected groups H with VE(I(Adn))= 1 are SU(2n+ 1), 
Spin(2n+ l )wi th  n>3 ,  Sp(2n), and F4. 

(5.4) Corollary. Let G=SU(N)  or Sp(N) and let H be a subgroup locally 
isomorphic to Spin(2n+ l) with n~3  or F4. Then 

w4(G/H ) ~ O. 

This is clear since any representation of H and hence any homomorphism 
f :  H o G  has even index. 
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6. Quotients of SU(n) 

(6.1) Lemma. Let H be a subgroup of SU(n) such that SU(n)/H is stably 
parallelizable, and suppose that H is locally isomorphic, but not isomorphic, to 
SU(2) m= SU(2) • ... • SU(2). Then SU(n)/H is SU(4)/SO(4). 

Proof. For  m = 1 the assertion follows from (2.2) and (5.1). So assume that 

H = Im(Q : SU (2)m-*SU (n)) 

with m=>2. Then ~=QI1)+ ... +Olv) with ~ti)=~l, i)•  ... • the Q~i,~) being 
irreducible representations of SU(2). Let zr : SU(2)~  SU (2) m be the inclusion as the 
r th factor. Then [e.g. by I (2.6c)] SU(n)/Im(Q o zr) is stably parallelizable. As we saw 
in the case m= 1 above, Q o t r has to be injective; therefore, by I (5.1), either ~ o tr 

=Ql +No ~ :2Qr  On the ~ hand' ~~ ~=~(j~, dim~(J'~)) Q(r'~ S~ either 

eachQ")is o f t h e f o r m  1 x ... x 1 xp~ • 1 x ... x 1, o r m = 2 a n d Q = Q ~  x ~l. In the 
first case, H - S U ( 2 )  m, and in the second case, SU(n)/H=SU(4)/SO(4). 

(6.2) Lemma. Let n >_ k > 2, and assume that SU (n)/SO (k) is stably parallelizable. 
Then k = 2, or n = k = 4. 

Proof. By (4.2) and (4.3), k has to be even. In I, Sect. 4, we studied the spaces 
Sp(n)/SU(k). Imitating the proof of I, (4.2), we find: If SU(n)/SO(n) is stably 
parallelizable then so is S U ( n - 1 ) / S O ( n - 2 ) .  Since SU(5)/SO(4) is not stably 
parallelizable by (6.1), the result follows. 

(6.3) Lemma. Let K be a subgroup of SU(n) such that SU(n)/K is stably 
parallelizable, and assume that K is locally isomorphic to SU(k). Then K is 
isomorphic to SU(k). 

Proof. This follows from the non-vanishing of Pontrjagin classes as computed in 
[17, Theorem 1]. 

(6.4) Lemma. For n> 2k, consider the natural embedding of Sp(k) into SU(n). 
Assume that k> 1 and that SU(n)/Sp(k) is stably parallelizable. Then n = 4  and 
k= 2 .  

Proof. The inclusion S U ( 2 n - 1 ) ~ S U ( 2 n )  induces a diffeomorphism 

S U ( 2 n -  1 ) /Sp(n -  1)~SU(2n)/Sp(n). 

Therefore, it is sufficient to show that SU (5)/Sp(2) is not stably parallelizable. Now 
SU(4)/Sp(2) = S 5 and SU(5)/SU(4)= S 9 so that there is a fibre bundle 

$5 i SU(5)/Sp(2) v $9 

Arguing as in I, Sect. 6, we find that z(SU(5)/Sp(2)) - 14 = p*(z), where z is the non- 
zero element of K~O(S9), and that p* : KO(S9)-~KO(SU(5)/Sp(2)) is injective. 

The study of the other quotients of SU(n) now goes along familiar lines: 

(6.5) Lemma. Let H be a closed connected non-abelian subgroup of SU(n) such that 
SU(n)/H is stably parallelizable. Then SU(n)/H is diffeomorphic to a Stiefel 
manifold, to SU(n)/(SU(2) • ... • SU(2)), to SU(4)/H o, or to SU(4)/SO(4). 
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Proof. By 1 (3.4), H is semisimple. If H is simple and not covered by the preceding 
lemmas and I (5.1), proceed as follows: Look at Pontrjagin classes [,17]; ifp~, P2, 
and P3 vanish, look at Stiefel-Whitney classes (Sect. 5 or [-29]); in the few cases 
where they also vanish, do calculations in the complex representation ring using 
[263. 

If H is semisimple but not simple, reread the proof of (6.1). 

7. Quotients of Sp(n) 

The non-parallelizability of these manifolds will be an easy consequence of what 
we have done so far and of the following observation: 

(7.1) Suppose that G : S p ( n l ) •  ... • and that H is a subgroup of G 
isomorphic to Sp(k 0 • ... • Sp(kr). Then 

~ : RO(H)| K O(G/H) 
is injective. 

The proof is essentially the same as that of Proposition 5.1 of [26], replacing 
complex K-theory by real K-theory and taking into account that Hi(BG; 7Z) and 
Hi(BH;Z)  are 0 for i$0(mod4) .  

In order to apply (7.1), one has to know explicitly the structure of RO(Sp(n)): 

(7.2) Write R(Sp(n))= Z[21 ..... 2,], where 2 i are the fundamental representations, 
with 22i orthogonal and 22/+ 1 symplectic. Then RO(Sp(n)) is the subring of R(Sp(n)) 

generated by 22 , 24 , 26 . . . .  . 

22~, 223, 225 .. . .  ; 
2i2 j for all odd i,j. 

See [,12, VI, 4.8]. 

(7.3) Corollary. The 30-dimensional manifold Sp(4)/(SU(2)• SU(2)) is not stably 
parallelizable. 

(7.4) Lemma. Let H be a subgroup of Sp(n) such that SU(2n)/H is stably 
parallelizable. Then Sp(n)/H is diffeomorphic to Sp(n)/(Sp(1) x ... x Sp(1)) or to 
Sp(2)/SU(2). 

Proof. This follows from (6.5). 

(7.5) Lemma. Let H be a subgroup of Sp(n) such that Sp(n)/H is stably 
parallelizable, but SU(2n)/H is not. Then Sp(n)/H is diffeomorphic to Sp(n)/SU(2), 
n >2,  or to Sp(n)/Sp(k). 

This follows by considering Pontrjagin and Stiefel-Whitney classes. 
In order to settle the question of parallelizability, it remains to show: 

(7.6) Sp(n)/Sp(1) k = Y.,k is parallelizable for n > k. 

For n >_ k + 2, Yn,k admits a free 7~, 2 X 7ZE-action and is hence parallelizable by 
[27], Lem~na 3.4. So it suffices that the semicharacteristic k(Y. +1,. ;Z2)is zero. By 
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an easy spectral 
dimH*(Y.,.)=n! 

sequence argument, 

w. Singhof and D. Wemmer 

n .. . .  (y. + 1,.)___ H.(y.,n) ; and 

8. Quotients of Spin(n) 

As the parallelizable quotients of Spin(n) are more numerous than those of the 
other simple groups it is not surprising that the amount of technical work is quite 
formidable in this situation. We refer to [32] for fuller details. We begin with a 
modification of the techniques of Hsiang [17] to obtain at least sufficient criteria 
for the non-vanishing of the low-dimensional Pontrjagin classes of Spin quotients: 

Let ~p : H~SO(n)  be a real representation of a compact connected Lie group 
such that the lift ~ : H~Spin(n) exists. Let T be a maximal torus of H and S+(H) 
the set of positive roots of H with respect to T We define pkH E H2k(BT; Z) as the 
homogeneous components of 1-[ (1 _~2). More generally, let f2+(~v) be the 

~$+(H) 
positive weights of~p and let pk~p E HZk(BT; Z) be the homogeneous components of 

1-[ (1-co2). Finally, let 
wel'~+ (W) 

p2q3 =�89 ~ H 4 ( B T ;  ~r), 

paq5 = ~(p4~p _ (�89 e HS(BT; 7Z), 

~�89 if �89 H12(BT; 7Z) 
p6q) = [p6~p otherwise. 

(8.1) Proposition. Let n> 13. If  pi(Spin(n)/~(H))=O for i= 1,2,3 then p2kH is 
contained in the ideal of H*(BT; Z) generated by pZ~, p4~, p6~ for k = l, 2, 3. 

The corresponding result for quotients of SO(n) can be found in [17]. The 
cohomology groups H 4k - 1(Spin (n); Z) are infinite cyclic by [7, 12.1]. Let Y4k- 1 be 
generators. Following [17] it suffices to show: 

a) Y3, YT, and 2yll are universally transgressive. 
b) O*(z(y3))= p2~, O,(z(yT))=p4~, 0*(z(2yl0)=P61p, where z is the trans- 

gression of the universal bundle 

Spin (n)-~ E Spin (n) ~ B Spin (n) 

and 0 is the composition BT-,BH ~ B Spin(n). 

The relevant cohomological information for a) is contained in [7] and [24, 6.5]. 
For b), consider the following commutative diagram: 

B Spin (n), BS 

B i  % BSO(n) , BS', 

where S and S' are the standard maximal toil. Observe that p2klp is the pull-back 
under e of the k th universal Pontrjagin class [9]. In order to identify the images of 
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the low-dimensional Pontrjagin classes under (Bn)* we can work in the 
cohomology of BS, cf. [15]. 

The following two criteria are immediate from (2.3) resp. from / (2.6.b): 
Let ~ be a homomorphism from the semisimple group H into Spin(n) such that 

Spin(n)/~(H) is stably parallelizable. 

(8.2) 2.1(1/5) divides I(Adn). 

(8.3) I f  ~ factors as H ~ S U ( m ) ~ S p i n ( n )  then SU(m)/q~(H) is stably 
parallelizable. 

Application of (8.3), (8.2), (8.1) resp. (5.3) yields the desired non-parallelizability 
results for quotients of Spin(n) by simple groups H except in the following four 
cases: 

(1) Spin(14)/~(Spin(6)) with ~p = ol + A + + A - ; 
(2) Spin(26)/~(F4) where ~p = ~oe4 is the first fundamental representation; 
(3) Spin(10)/A(Spin(7)); 
(4) Spin (n)/SU (k) with n > 2k. 
In case (i), consider the fibration 

Spin(6)/SU(2)-oSpin(14)/g(SU(2))---,Spin(14)/w(Spin(6)) 

where g = 4~0 + 6. Observe that the bundle along the fibres is trivial. We know 
already that the total space is not stably parallelizable. Therefore, the base isn't. 

Similarly, in case (2) we use the fibration 

F4/SU (3) --, Spin (27)/g(SU (3))--* Spin (27)/F 4 

with g =  3(Q~ + ~ 0 + 9 .  
In case (3), we have the fibration 

Spin (9)/A (Spin (7)) ~ Spin (10)/A (Spin (7)) ~ S 9 . 

The fiber is diffeomorphic to S is [33, Appendix A]; the tangent bundle of the total 
space comes from the non-vanishing element of K~O(S9), cf. I (6.2) and I (6.3). 

Finally, in case (4), we have the following result: 

(8.4) Lemma. Spin (n)/SU (k ) is stably parallelizable if and only if either k = 2, 3, and 
n>2k or k=4 ,  5, and 2 k < n <  10. 

Proof. Using the fact that the natural map 

Spin ( 2 n -  1)/SU ( n -  1)--,Spin(2n)/SU(n) 

is a diffeomorphism the proof is easily reduced to the case Spin(ll)/SU(4). We 
denote Spin(n)/SU(4) by X,. 

(8.5) H*(X8; ~) ~ A(26, z7) 

This follows from the fact that SU(4)~Spin(8) has index 1. 

(8.6) H*(X9; ~) ~ A(26, Zl 5) 
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Apply the Serre spectral sequence of the fibration Xa---~X 9---'~$8 and the exact 
cohomology sequence of 

X9~B SU(4)~B Spin(9). 

The collapsing of the spectral sequence of X9---~Xlo---~S 9 yields: 

(8.7) H * ( X l o  ; Z )  ~ A(z6,  z9, Z15 ) . 

(8.8) Up to dimension 10, the only non-vanishin9 cohomology 9roups of X~I are 
H6(X11;~)~---7[  and Hl~ 7~-7Z/2. 

Proof. Let Y,: = Spin(n)/SU(5). Consider the following diagram of fibrations: 

S 9 - -  S 9 

X 9 >Xll-------~ Vi i ,2  

1 I 
I11o ' Yll ' $1~ 

By [161 H16(Ylx; P')---F,. Compare the spectral sequences of the two horizontal 
lines: Both collapse. 

We can now conclude the proof of (8.4) as follows: 
Let p:Xl l -~S 1~ be the fibration with fibre Xlo. Its exact cohomology 

sequence together with (8.7) and (8.8) implies that p*:HI~176 
-~HI~ is bijective. Comparison of the Atiyah-Hirzebruch spectral 
sequences of X 11 and $1 o shows that p* : K~O(S x o)___, K~O(X 11) is injective. Finally 

, 10 z ( X l l ) - d i m X l l  =p  (~) where ~ is the non-zero element of K~O(S ). 
Let now H be a semisimple but not simple subgroup of Spin(n). Most cases can 

be handled by the techniques introduced so far and offer no particular difficulties. 
There remains one hard case, namely Spin(13)/SU(2) 1. 

(8.9) Spin(13)/SU(2) 2 is not stably parallelizable. 

Proof. Let Z,  : = Spin(n)/SU (2) 2. It is easy to see that Z9 has the same cohomology 
groups as VT, 3 x S ~ 5. The cohomology of Z~ 3 up to dimension 12 can be computed 
from the spectral sequence of Zg~Z~a-~V~3,4; there are no differentials in the 
interesting range. Let p:ZI3~S 12 be the fibration with fbre Z12. 

From the cohomological facts we conclude that 

p* : K~O(S12)~ K~O(Za3) 

is non-trivial. The tangent bundle of Z13 is the image of a generator of /~O(S12) .  
This completes the proof of Theorem 2 and Theorem 1. As to Theorem 3, 

parallelizability of Spin(n)/Adn(H) will be shown in Sect. 9. In the remaining 
cases, it is not difficult to show the vanishing of the semicharacteristics, either by 
determination of the cohomology or by application of [27]. 
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9. Parallelizability of SO (n)]Ad (H) 

In order to complete the proof of Theorem 3, we have to consider the following 
situation: Let H be a compact connected Lie group of dimension n. Endow b with 
an Ad-invariant scalar product and identify I) with Euclidean space ~".  Then 
Ad (H) is identified with a subgroup of SO (n), and, for m __> n, with a subgroup of 
SO(m). The homogeneous space SO(m)/Ad(H) is stably parallelizable. 

(9.1) Proposition. For any m >= n = dim H, SO (m)/Ad (H) is parallelizable. 

Remark. In the special case H- -  SO(3) x ... x SO(3), this result was recently shown 
in [22] and [28]. 

Proof We only have to show that k(SO(m)/Ad(H);Z2)= 0 if dim SO(m)/Ad(H) is 
odd. It suffices to assume that H is semisimple and with center {e}; then H is a 
product of centerfree simple groups. Our assertion is quite easy if H contains either 
no or at least three factors of type A 1; in the other cases it seems to be more subtle. 
We make again use of the fact [27, 3.4] that the semicharacteristic vanishes if there 
exists a free 2g z x Zz-operation. 

Let Ik be the k x k unit matrix; for m > 3k, define Yk.i e SO (m), i=  1,2, 3, by 

Yk, 1 = diag( - I~, - Ik, Ik, I,,_ 3k), 

Yk, z = d i a g ( -  Ik, Ik, - I~, Ira- 3k), 

Yk, 3 = diag(Ik, -- Ik, -- Ik, I~_ 3k). 

These, together with the identity, form a subgroup (5 k of SO(m) of type 
Z2 x Z2. 

(9.2) I f  H contains at least 3 factors of type At,  then there is a free Z 2 x Z 2- 
operation on SO(m)/Ad(H).  

Indeed, we may write 
Ad(H) = SO(3) x SO(3) x SO(3) x H '  

with H'____ S O ( m - 9 ) .  The group (~3 operates freely by 

A. Ad (H)--} A Y3,i" Ad (H) 
for A e SO(m). 

Now we have to introduce some more notation: Let (~1 ..... ctr) be a basis for 
r 

the root system S of H, and let F:  = _ ~ Z ~ .  If ~ 0 : F ~ { + l , - 1 }  is a group 
homomorphism, put 

N(go) : = [{fl e S1~o(/3) = - 1}l. 

Finally, let 9JI(H) : = {N(rp)lrp e Horn(F, {1, - 1})}. Then 

931(H1 x H2) = {k 1 + k2lki e ~ft(Hi)}. 

(9.3) I f  H is simple and Rank(H)>_-r, then, for any non-constant rp, we have 

N(cp) >= 2r. 
We begin with an easy graph-theoretical observation: Let T be a connected 

tree with r vertices, M a non-empty subset of the set of vertices of T, and o ~ the set of 
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all connected subgraphs of T containing exactly one vertex which lies in M. Then 
]~l_-_r. 

Now choose T to be the Dynkin graph of H; let M be the set of those ~i for 
which q~(~g) = - 1. If {~i~ . . . . .  ai~} e ~ ,  then ~i, + .-. + ~i~ is a positive root of H and 
~o(~il + ... + ~ J - -  - 1 .  Hence there are at least 2r roots fl with q~(fl)-- - 1 .  

(9.4) Suppose there is a natural number k such that 2k ~ ?91(H) and 3k < m. Then 
7Z 2 • Z 2 acts freely on SO(m)/Ad(H).  

Let (~k act in the ordinary way, i.e. from the left, on SO(m)/Ad(H).  We have to 
show that this operation is free. If not, there would exist A ~ SO(m) with 
Yk, i A" Ad (H) = A. Ad (H), i.e. A -  1 Yk, i A ~ Ad (H). Let T be a maximal torus of H. 
Then there exists X ~ S O ( m )  with X-1Yk, iX E A d ( T  ), and therefore u e t  with 
X - 1  Yk,i X = A d ( e x p u ) =  e adu. Hence e adu has the eigenvalue 1 with multiplicity 
m - 2 k  and the eigenvalue - 1  with multiplicity 2k. 

On the other hand, e adu has the eigenvalues e "tu) for ~ E S and, in addition, the 
eigenvalue 1 with multiplicity Rank(H).  

Hence the map ~o: ~ e  "tu) is a group homomorphism F-~{1, - 1} with N(~o) 
= 2k, contradicting the assumption that 2k r 9J~(H). 

(9.5) I f  H does not contain a factor of type A 1, there exists a free 7~ 2 X 7Z2-action on 
SO(re)lAd(H). 

Indeed, by (9.3), we know that 2 ~ 9J~(H), and we can apply (9.4) with k = 1. 

(9.6) max931(H)<2/3, d imH for any semisimple H. Moreover, if H contains a 
simple factor of  rank __> 3, then maxgJ~(H) + 2 < 2/3 dimH. 

For  the proof, it suffices to consider the different simple groups separately. The 
verification is elementary but tedious and will not be given here. It turns out that 
more is true: For  groups of high rank, the ratio between maxgJ~(H) and dim(H) 
approaches 1/2. 

Anyhow, if H contains a simple factor of rank > 3, (9.6) allows to apply (9.4) 
with k = 1/2 m a x , ( H )  + 1. Therefore it remains to prove (9.1) for groups H which 
only contain factors of types A 2, B2, G 2 and one or two factors of type A1. Observe 
that 9J~(A2) = {0, 4}, 9J~(B2) = {0, 4, 6}, 9J~(G2) = {0, 8}. Consequently, (9.4) also 
applies with k = 1/2 maxgJ~(H)+ 1 except in very few cases. Of these, only those 
with dim S O ( r e ) l A d ( H ) - 3  (mod4) need to be considered [5]. So we are actually 
left with H = A  1 • G 2 and H = A  1 • A 1 • B 2 • B E. Since 9J~(A 1 • G 2 ) =  {0, 2, 3, 10}, 
we may apply (9.4) with k = 2 in the first case. In the second case, we may finally 
apply the following observation whose proof is similar to that of (9.2): 

(9.7) I f  H contains two (not necessarily simple) factors of positive even dimension, 
then 7],, 2 X 7~, 2 acts freely on SO(m)/Ad(H).  

This concludes the proof of (9.1). 
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