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0. Introduction 

The problem of classifying nilpotent Lie algebras is studied for the first time in 
1891 by a student of Engel, Umlauf, who gives the complete list over C up to the 
dimension 6 and a certain complex family at the dimensions 7, 8 and 9 [15]. Later 
on, several authors worked out the subject : Chevalley [3], Dixmier [4], Morozov 
[11], Vergne [16]. 

The introduction in 1972 by Bratzlavsky [2] and Favre [5, 6] of the root 
systems for the nilpotent Lie algebras constitutes an important step in the 
classification (Gurevic applied already this notion to the study of metabelian Lie 
algebras [7]). 

By using these root systems we establish a link between nilpotent Lie algebras 
and Kac-Moody Lie Algebras (which generalise semi-simple Lie algebras and are 
of infinite dimension). 

In [12] (published in [13]) we started with the maximal rank case and in [14] 
we continued with certain nilpotent Lie algebras [see 2.11(b)]. Here we give the 
main theorem (2.10) in the general case. 

All the structures are over an algebraically closed field K of characteristic 0. 

1. Root System and Caftan Matrix Associated to a Nilpotent Lie Algebra 

1.1. All through 1, g is a nilpotent Lie algebra of finite dimension, Derg its 
derivation algebra, Aut g its automorphism group. 

1.2. A torus on g is a commutative subalgebra of Der9 whose elements are semi- 
simple endomorphisms. We denote ~ the set of maximal tori on g (i.e. tori not 
contained in any other tori). 

1.3. Mostow's Theorem (4.1 of [10]). I f  T ,T 'e3-g  there exists 0eAutg  such 
that OTO- a = T'. 
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1.4. Let Te ~ and consider the root space decomposition of g relatively to T: 

g=  ~ g~, 
peR(T) 

g~ = {x~ g ; tx = t ( t )x  Vt~ T} ,  

R (T)= {tie T*;gt~+(0)} (root system). 

We denote: 

R'(T)  = {tie R(T); g~ ~t [g, g] }, 

l~=dim(gr ~) Vfl~R~(T). 

d~=dim g ~ V t e R J ( T ) ,  

The map: tv-~dp R~(T)~N * gives the partition: 

RI(T) = R'(T)m u . . .  wRl(T)p~, 

pl <. . .  <pq RI(T)~ =bO, 

R ~( r)p = {tim R a( r )  ; d a = p} . 

Let s i = # R ~ ( T )  m and s = s ~ + . . . + s q ;  we number the elements 
R~(T) : t l . . . f l ,  in such a way that : 

RI(T) m = { t l ' " t ~ , } ,  R l ( r ) p z = { t s ~ + l . . . t s 2 }  . . . . .  

of 

Let di=d~, , l i=l~ and l=l  1 + ... +l~ (one checks that /=dimg/[g ,g]) .  Let ~] ..... q be 
the group of permutations of {1 ...s} which leave {1...sl}, {s~ + 1 ...s2}... invariant. 

1.5. Let T'e ~-~g be another maximal torus; then there exists 0~Autg such that 
OTO- ~ = T' (1.3). For T', we use the notations of 1.4 with prime. The map : 

O : T * ~ T ' * ,  fl~-,Ot, Ot(OtO-~)=t(t) VfieT*, V t e T ,  

is a vector space isomorphism and one has obviously: 

09~=g 0~ V t e R ( T )  

therefore do~ = dp V fl~ R I( T) which gives: 

q' = q, P'z = Pi, s'i = si, l<i<=q, s '=s .  

Since 0[g, g] = [g, g], one has Io~=l ~ VteRI(T). The map 0 induces a bijection 
between: R(T) and R(T'), R~(T) and RI(T'), Rl(r)p,  and R~(r')p, 1 <=i<q; thus 
there exists v e ~  ..... q such that 

OBo=t;o l <-a<-s. 

In conclusion, we have the 

Lemma. The integers q, Pl""Pq, Sl""Sq, s, d l . . .d  ~, l l . . . l  ~, 1 defined in 1.4. are 
invariants of  g. 

I f  T, T'e ~ there exists 0eAutg  and ~e ~ ...... such that 0gP"=g/~;" 1 N a g s .  
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1.6. Let f : { 1  . . . . .  /}~{1 . . . . .  s} be defined by 

f ( i ) = l  if l < i < l  1 

= 2  if l l< i<l l+12  

= s  if I i + . . . + l s _ l < i < l .  

(I am thankful to the referee for his suggestion to introduce f instead of a double 
numbering in the original version.) 

Since f is onto,  there exists g :{1 . . . . .  s}--+{1 . . . . .  l} such that f o g = I d .  
Obviously 

~ ...... - + ~ ,  

a-~6 =goao f , 

is an one- to-one group homomorphism.  Define an action of ~ ..... ~ on the set of 
l • l matrices by setting : 

a(Aij)l <=i,j<l =(Aoi~j)l <i,j<-_l 

1.7. Theorem. For i , j~{1 . . . . .  l} i4=j let 

-- Aij(T ) = Min{ - n ~ N  ; (adv)-"  + ~w = 0 Vv~ g&"' Vwe g&(J)} 

with ( a d 0 ) ~  and let Aii(T)=2 for i= 1 . . . .  ,1. Then 
(1) A(T)=(Aij(T))l<:i,j<=l is a Cartan matrix (2.1). 
(2) The ~ ....... orbit of A(T) is an invariant of g. 

Proof. (1) Since adv is nilpotent, AIj(T ) is a well-defined non-posit ive integer for 
i4:j; if [ v , w ] = 0  then [ w , v ] = 0 ,  therefore Ai~(T)=0 implies Aj~(T)=O. Since 
Au(T ) = 2 by definition, A(T) is a Caf tan  matrix. 

t 07 ~ Sl Sq (2) I e t  T e • , b y  15 there exist 0 e A u t g a n d  r e d s "  such that  0ga-=ga;-  
1 -< a -< s; if vega~ and we ga~ and if i, j e  { 1 . . . . .  l} are such that f(i) = a, f(i) = b, then 
(adv) - a,j(r) + lW = 0 ; thus (ad Or) - a,j(r) + ~ Ow = 0 with Ove gP;" = ga~(~o and Owe ga;~ 
= ga?(~); therefore -A~iej(T')<= -Aij(T) ,  and by symmetry AeieCT')=Aij(T ) which 
proves that  rA(T')=A(T). 

1.8. Definition. We choose arbitrari ly A in the ~ ..... ,-orbit  of  A(T) (which has at 
\ 

" ) most  elements and we say by an abuse of language: "g is of  type A" or 
$ 1 !  . . .  S q !  

"A is the Cartan matr ix of g". We denote:  

3-~.q(A) = {Te3~;A(T )=A} ,  

~ ..... ~ ( A ) = { a ~  ...... ; a A = A } .  

1.9. L e m m a .  If T, T'e 3~,q(A) there exist Oe Autg and ze ~ ..... ~(A) such that: 

0g p" = ga;~ Va = 1 . . . s .  

Proof By 1.5 there exists 0e Autg  and r e  ~ '  ..... such that  0ga"= ga;o; by the proof  
of 1.7 (2), zA(T')= A(T); therefore zA = rA(T ') = A(T ) = A. 
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1.10. We denote by msg(g) the set of minimal systems of generators of g; by [1, 
Sect. 4, ex. 4, p. 119]: (xl. . .)emsg(g) if and only if (Xl+[g,g ] . . . .  ) is a basis of 
g/[g,g] therefore each element of msg(g) is an /-tuple (Xl...x 3 where 
l = dim g/[g, g]. 

Let r e  ~(A) and denote : 

rnsg( r) = msg(g)c~( (gP~ ) h x. . .  x (g/~)t0- 

For all (x~...xl)emsg(T) one has: 

(adxl)-a'~+lxj=O, l<=i+j<=l. 

2. Kac-Moody Lie Algebras and the Universal Element 
for the Category of Nilpotent Lie Algebras 

2.1. An 1• matrix with entries in 2E, A = ( A I )  is a Cartan matrix if: 
a) A u = 2  V i = l  .. . .  ,1, 
b) A~j<O Vi, j = I  . . . . .  1, i4=j, 
c) (A i j=Oi fA i j=O)  Vi, j = I  ... . .  l, i4:j. 

2.2. Let tlA II = Sup{IA/jl; i4:j}; denote h the Coxeter number of A if A is of finite 
type and + oo if not. 

For nelN such that IIAtl < n < h +  1 let Nilp,(A) be the category of nilpotent Lie 
algebras of nilpotency index n and of type A. 

2.3. To A one can associate a Lie algebra (called a Kac-Moody Lie algebra) 
defined by generators: 

{fl  ...fl hl. . .h, el . . .et} ,  
and relations : 

[hie j] = Aije j , [h,fj] = - A,j f j ,  (Vi, j = 1... l), 

[hlhj] = 0 ,  [eifi] =hl ,  (Vi, j = 1...l), 

[eJj] = 0 ,  (adel)-a'J+lej=O=(adfi)-a'J+~fj,  (Vi*j) .  

[8, 9]. Actually, this definition is not the usual one (ordinarily one has to take a 
quotient of the above algebra). 

2.4. Let H = K h  a + ... + Khi; denote s (A) (resp. Lf_(A)) the subalgebra of ~(A) 
generated by {e 1...el} (resp. {fl-..ft})- One shows that: 

2~~ = 2,f_ (A)@HO ~ +  (A). 

One can define ~+(A) by generators: {el...el} and relations: 

(adei) -a~j+tej=0 Vi, j =  1...l, i ~ j .  

2.5. Let L-Ln(A)=. .~+(A) /Cn+I~+(A)  where (CP~+(A))p>=I is the descending 
central series of &o+(A) with C1SF+(A)= ~97+(A). 

By abuse of notation, write e i instead of e i + C ~+ I~+(A).  One can define L,(A) 
by generators : {el...et} and relations : 

(adei)-A~+lej=O Vi, j = l . . . I ,  i=~j; 

[ei,...ei,+ ,] =0  Vik=l. . . /  V k = l . . . n + l .  
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2.6. If  A is of  finite type ~ +  (A) is a ni lpotent  Lie algebra of ni lpotency index h + 1 ; 
therefore C"L~+ (A) ~ C "+ 1Lf+(A) (since n < h + 1) thus C"L + (0). If  A is not  of  finite 
type then CPs (one says that  L~q+(A) is pro-ni lpotent)  
thus C"L ~ (0). 

In bo th  cases, one has C "+ tL  = (0); therefore L,(A) is a ni lpotent  Lie a lgebra  of  
ni lpotency index n. 

2.7. One  defines derivations c~1...c3 z of L by setting Vi, j=  1...I 

t?iej= {;  i i= j .  
i + j  

Let (%...cq) be the dual basis of  (~?~...t?z) and denote  D = K0~ + . . .  + Kt? v It  is easy 
to show that :  

D e ~ ,  R I ( D ) =  {%...cq}, I2'=Ke i Vi= 1.. . l ,  

di=l i=t  g i =  1...1, q = l ,  p l = l ,  s t= l ,  ~ ..... q : ~  

(permuta t ion  group  of {1...1}). We are therefore in the case 2.11(b). 

2.8. Let i,j~ {1... l} i#:j and assume that  -A,  (adei) ' e  j = 0  in L, then 
(adei)-A"eje C "+ ~L~'+(A) in 5~ but  C "+ t ~ + ( A )  is spanned as a vector  space 
by the [%...ei,]'s such that  r>-_n+l ,  thus - A i j + l > n + l  (since (adei)-a',ej 
=[ei...e~efl with - A  o+1 terms);  this contradicts  IIAtl<n;  therefore 
(aden)- a ' ,ej  4= 0, it follows by 2.1 l(b) that  A(D) = A ; so L is of type A and D e  ~ ( A ) .  

2.9. Lemma.  The Lie algebra L,(A) is an object of Nilp,(A). 

Proof It  follows f rom 2.6 and 2.8. 

2.10. Theorem. The Lie algebra L,(A) is an universal element for the category 
Nilp,(A) i.e. any object of Nilp,,(A) is a quotient of L,(A). 

More precisely" for any object g of Nilp,(A), for any T ~ ( A )  and any 
x = (xl...xt)emsg(T), the map {et...ez}--,g e~ ~+x i extends uniquely to an homomor- 
phism ~z = ~z(T, x) : L,(A)--,g which is onto ; and one has g ~- L,(A)/KerTc. 

Proof In g one has at least the relat ions:  (adxi)-a',+txi=O (1.10) and 
[xi...xi,+~]=O; whereas in L the defining relations are (adel)-a'J+tej=O and 
[%"'%.+ 1] = 0 (2.5); whence the existence of  an h o m o m o r p h i s m  ~ : L ~ g  such that  
~e~ = x~; ~ is onto  because (xl...xt)emsg(g); rc is unique because (e~...ez)ems0(L). 

2.11. Particular cases. (a) Assume 

I a = l  Va=l,. . . ,s,  

t h e n s = l ( s i n c e l  l + . . . + l ~ = l ) , f = I d , ~ ' = o v ~  ..... , a n d f o r i 4 : j :  

- A ij(T) = Min { - n e N ; (ad v)-"  + 1 w = 0 Vv e gt~, Vw e gPJ }. 

(b) Assume that  

d , =  1 V a =  1 . . . . .  s,  
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(since l, ~ d,, it is a subcase  o f  the  p r eceed ing  one). Then ,  w i th  the n o t a t i o n s  o f  1.4, 

we h a v e  q = l ,  Pl  = I ,  sl  = l ,  ~ ..... q = ~ .  F u r t h e r m o r e  for  all  i =  1. . . l  there  exists  

x i~  gP'\(0) such  tha t  9 a ' =  Kx i, the re fo re  

Vi+j, -Aij(T)=Min{-n~N;(adxl)-"+lxj=O}, 

t hus  -A~.(T) is the  u n i q u e  in teger  such  tha t  (adxg)-mJ<rlx~4:0 and  

(adxi)-A'J~+lxi=O which  is the  def in i t ion  g iven  in [12 -14 ] .  This  subcase  is 
s tud i ed  in deta i l  in [14] .  
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