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1. Introduction 

In this paper we will prove a theorem whose sole assumption is that the Leray- 
Schauder degree of a certain compact vector field is nonzero, and whose 
conclusions imply several-parameter, multidimensional global refinements of the 
implicit function theorem, the Leray-Schauder continuation principle [3, 11], and 
the global bifurcation theorem of Rabinowitz [13]. 

Let X be a Banach space, m be a positive integer and (9 be an open subset of 
IRmx X. We will consider local and global properties of the set of solution of 
equations of the form 

J(,~,x)--x-F(,~,x)=O, (,~,x)~(9, (1.1) 

where F : (9~X is a compact mapping. If one identifies X with {0} x X g lR"  xX,  
one can view j as a map of ( 9 ~ m x X  into ~ , "x X ,  and it is a compact 
perturbation of the identity on IR" xX. However, the range of J is contained in a 
subspace of IR" x X  ofcodimension m, so that its Leray-Schauder degree, when it is 
defined, is zero. In a certain sense, (1.1) is underdetermined by m dimensions. As 
such, it is not unreasonable to expect that under stable conditions under which one 
has existence results for (1.1) one will also have "m-multiplicity" results for the set 
of solutions. Our principle aim is to give a precise realization to this expectation. 

A map 9 : (9 ~ " ,  which maps bounded subsets of (9 into bounded sets, will be 
called a complement for J:(9~X provided that the Leray-Schauder degree, 
deg((g,f) , (9,0), is defined and non-zero: the map (o,f) : (9~IR m x X  is defined by 
(g. f) ((2. x)) = tg(2. xl. ! (2. x)). Since (,0. ! ) is a compact perturbation of the identity 
on ~,r, xX,  the above degree is defined precisely when {(2,x)e(91(O,f)((2, x))=0} is 
compact. We emphasize that, at this point, we are making no assertion about the 
compact extendability of ] to ~, and in the case such an extension exists, no 
assertion about the zeros of (9,]) on 00. In [6] we introduced the notion of a 
complementing mapping under the additional assumptions that 9 a n d ]  were both 
defined on t~ and (g,J)-l(O)nOtP=O. While, as we demonstrated in [6], these 
additional assumptions are crucial in obtaining sharp continuation results for 
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(1.1), in order to obtain a general result which is applicable to both continuation 
and bifurcation problems it is necessary to consider the more general notion of 
complementing mapping which we have defined above. 

When the mapping-/: (9~X has a complement, g : (9~IR m, one can make rather 
precise global m-dimensional assertions concerning the manner in which f -  1(0) 
emanates from (g,f)- ~(0): this is the point of Theorem 2.1. Moreover, and, what is, 
of course, of equal importance, there are a number of interesting situations when 
one can show that a mapping has a complement. 

If one chooses 20~IR', and, letting (9~0 = {x~Xl(20, x)e(9}, defines J~ ~ : (9~o--+X 
by fxo(X)=f(2 o, x), then J :  (9--,X is complemented by g : (9~IR" defined by g(2, x) 
= 2 -  20 if and only if deg(/xo, (9~o, 0) 4:0 [6]. From this observation we are able to 
use Theorem 2.1 to deduce multidimensional global versions of the implicit 
function theorem and the Leray-Schauder continuation principle: these are 
Theorems 2.2 and 2.3, respectively. 

In order to obtain our global bifurcation result, Theorem 2.4, from Theorem 
2.1, we have to use a somewhat different type of complementing map (see 
Proposition 4.1). 

In [6] we have given, under the assumptions that X = IR k, that (9 is open and 
bounded with 00 smooth, and tha t / :  ~ i R k  is smooth with 0 a regular value both 
o f f :  (9~iRk and of J :  t~O~iR k, a necessary and sufficient condition for f to have a 
complement: the condition is thatJ-1(0)n(9 and/-a(0)c~t3(9 be nonempty. 

In [2], Alexander and Yorke proved a global version of the implicit function 
theorem, while in [1] Alexander and Antman proved a multidimensional version 
of the global bifurcation result of Rabinowitz [13]. The conclusions of [1] and [2] 
are stated in the form of existence results for essential mappings, and are not 
directly comparable to the two consequences of Theorem 2.1 to which we have just 
referred. On the other hand, there is a substantial difference between the 
topological methods uses in [1] and [2], and, in our opinion, our present 
techniques are simpler and more elementary. In [1] and [2], (9 is required to be 
homeomorphic of IR" • while no such requirement is needed here. Also, the 
global bifurcation conclusions which we give are more precise (see Remark 2.1). 

The global continuation result we obtain, Theorem 2.3, is a refinement of the 
result obtained by the authors in [6], the results of [6] being an improvement of 
the continuation results of Massab6 and Pejsachowicz [10]. 

After this introduction, the paper has three further sections. In Sect. 2 we state, 
and discuss, our results. Section 3 is devoted to a proof of our main result, 
Theorem 2.1. In the last section we prove some of the consequences of this theorem. 

An announcement of our present results appeared in [5]. 

. 

Let A be a topological space and k be a non-negative integer. Then A is said to 
have (Lebesgue covering) dimension equal to k provided that k is the smallest 
integer with the property that whenever ~- is an open cover of A there exists a 
refinement, oj,, of ~-, which also covers A, and no more than any k +1 members of 
~ '  have non-empty intersection. If A fails to have the above refinement property 



Global Several-Parameter Bifurcation 63 

for each integer k. then A is said to have infinite dimension, l f a  e A. A will be said 
to have dimension at least k at a if each neighborhood, in A, of a has dimension at 
least k. 

We will only use the notion of dimension when A is a separable metric space, 
and consequently, here, the concept of dimension defined above coincides with the 
notion of inductive dimension (see Hurewicz and Wallman [8]). 

In the absence of any manifold structure on f-x(0),  the notion of topological 
dimension is the natural way in which to describe its size. 

When (C, D) is a pair of normal topological spaces with D C C, by H"~(C, D) we 
will denote the m-th t~ech cohomology group with integral coefficients of the pair. 
Moreover, a map h : ( C , D ) ~ ( R " , R " - O )  will be said to be cohomologically 
nontrivial provided that the induced homomorphism 

g ,  :/t"(~,", IR" - 0 )~ /~" (C ,  D) 

is non-trivial. 
Recall that D is said to be cobounded in C if C/D is compact. 
We refer the reader to Dold [4] and Spanier [14] for some of the results in 

homology and cohomology theory which we will use, and to Lloyd [9] for results 
concerning the Leray-Schauder degree which we will need. 

Our basic result is the following. 

Theorem 2.1. Let m, X, (9, and f be as in the introduction, and assume that there 
exists a complement # :d)~RmJor f :  d3-~X. 7hen there exists a closed connected 
subset, C, o~-1(0)  whose dimension at each point is at least m, and 

for each cobounded subset, D, of C with 
Dr~g- 1(0) = 13, # :(C, D)--~ (IR '~, R'~ - 0) (*) 
is cohomologically nontrivial. 

In particular, 

and 

C n g -  1(0)4:0, (2.1) 

either C is unbounded or C n S ~  4:13. (2.2) 

Remark 2.1. Observe that (2.1) and (2.2) follow immediately from (,) by taking 
D = C and D = 13, respectively. 

Remark 2.2. Another easy consequence of (*) is the following: if K C C is compact, 
with g-  1(0)c~ C ~ K, then, for 1 < i -< m, gi must change sign on (C\K)n {(2, x)lg~(2, x) 
=0,  j4: i, l ~ j ~ m } .  This will be crucial in proving our bifurcation results. 

1 0f 
When f is continuously Fr6chet differentiable, ( 2o, Xo)e ~) n. f  - (0)and~x(2O,X o) 

is a bijection, the classical implicit function theorem implies that in a neigh- 
borhood of (2o, Xo), f -  1(0) is an m-manifold. On the other hand, in this situation, if 
one lets V be a small neighborhood of (2 o, Xo) then f :  V ~ X  is complemented by 
9 : V ~ R  m defined by g()., x) = 2 -  20 : this follows from the well-known linearization 
property of the Leray-Schauder degree. Hence the following theorem, which is a 
straight forward consequence of Theorem 2.1, contains, as a special case, a global 
version of the implicit function theorem. 
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Theorem 2.2. Let m, X,  (9, and f be as in the introduction. Assume that g : (9 ~ F," is 
continuous, and maps bounded sets into bounded sets. Suppose V c= C is open and 
, q ' V ~  m complements [ : V ~ X .  Let K=[{g,.f)[v)-l{O). Then there e.vists a 
closed connected subset. C, o[ [ -1(0) whose dimension at each point is at least m. 
C n K  #:0, and at least one Of the ]bllowing properties ho lds  

(a) C is unbounded. 
(b) Cn8(9 4= 0. (2.3) 
(c) 8~{(g,J)-'(O)\K} , o .  

The above theorem is an immediate consequence of Theorem 2.1. Indeed, let 
o//= (9\{(g,f)- I(0)\K} and observe that g : ~ / / ~ m  is a complement for f :  ~ So 
we apply Theorem 2.1, with ~ playing the role of (9. 

~f When one applies Theorem 2.2 in the situation where ~x (2o, Xo) is invertible 

and V is a small neighborhood of (2 o, Xo) the conclusion is that the m-manifold, 
J -  l(0)n V, may be continued globally into a connected set, C, with C = f -  1(0) and 
C has dimension at least m at each point. Moreover, either C is unbounded, 
('~n8(9#0 or C curls back to (940 at some point distinct from x o. 

In the situation where f and g are defined on ~ with (g,J)-1(0)n8(9 = 0 one can 
considerably sharpen the conclusion of Theorem 2.1. 

Recall that if A is a locally compact space and h:A  ~ m  is a proper continuous 
map, then h is called essential among proper maps provided that h : A ~ S  ~ is 
homotopically nontrivial, where/~ is the extension of h to A, A being the one-point 
compactification of A. Clearly, if h is essential among proper maps then h(A) = ~ .  

Our second consequence of Theorem 2.1 is 

Theorem 2.3. Let f and g satisfy the assumptions of Theorem 2.1, in addition to which 
we assume f and g are defined on ~ with (g , f ) - l (0 )n80=0.  Then there exists a 
closed connected subset, C, of f - l ( 0 ) n O  such that C n g - l ( O ) # O  and C has 
dimension at least m at each point. Moreover, C satisfies at least one of  the following 
properties : 

(a) C is unbounded 
(b) d i m ( C n S ( 9 ) > m - 1 ,  when m >  l, while Cn~(9 (2.4) 

contains at least two points when m = 1. 

/Jr, in addition, 
properties: 

(a) 
(b) 

g: C ~ I R  m is proper, then C satisfies at least one of the following two 

dim((~nS(9) > m -  1 
g: C ~  m is essential among proper maps, and in particu- 
lar, g( C) = F, m. 

As a particular case of the above we obtain 

(2.5) 

Corollary 2.1. Let m, X,  (9, and f be as in the introduction, in addition to which we 
assume F is defined on d3. Suppose 2oe(9 is such that deg(fxo , (9ao,0)~0 and 
0~fxo(0(gxo ). Let the following a-priori bound hold: if {(2 n, xn)} ~_ (~nf-1(0) and {2,} 
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is bounded, then {x,} is bounded. Then there exists a closed connected subset, C, of 
J -  1(0), whose dimension at each point is at least m, Cc~ (9 ao 4= 0, and at least one of the 
following two properties holds: 

(a) dim(Cc~a(9)>m-1, when m> 1, while Cc~0(9 contains at 
least two points when m = 1. (2.6) 

(b) for each 2e ~'~ there exists some x~ X with (2, x)e C. 

In the case when m = 1 the above corollary is a slight refinement of the classical 
Leray-Schauder continuation principle (see [3, 11]). When m > 1, if one slices the 
parameter space into one-dimensional subspaces passing through 2 o one could 
apply the one dimensional result to f, with its parameter restricted to this subspace. 
The above corollary gives a description of how these slices of solution mesh 
together. 

An m-dimensional continuation principle similar to the above corollary was 
obtained by Massab6 and Pejsachowicz in [10], and by the authors in [6]. 

The final consequence of Theorem 2.1 which we will discuss is a bifurcation 
result. Here we assume, in addition to our standing assumptions on f, that 

f (2 ,0 )=0  whenever (2,0)~(9, 

and we refer to {N"x {0}}c~(9 as the trivial solutions. We are interested in 
discussing the manner in which the nontrivial solutions of (1.1) branch away from 
the trivial solutions. 

Recall that if 2s IR" is such that 0 is an isolated point offa-x(0) then the Leray- 
Schauder index, ind(f~, 0), is well-defined. For a subset, F, of IR", we will identify F 
with F x { 0 } ~ N " x X ,  and for a subset, D, of IR"xX, denote by D r the set 
{(2, x) J(2, x)e D, 2e F}. Moreover, for our mapping f : (9 ~ x ,  the map Jr will denote 
the restriction o f f  to (9 r. A point 2*eF will be called a F bifurcation point o f f  if 
there exists a sequence {(2k, Xk) } converging to (2",0), with {2k}~F and 
{xk} c=X\{0}, and {(2 k, Xk) } _C_j- 1(0). 

Theorem 2.4. Suppose m, X,  (9, and f are as in the introduction. Let 
F = (9~ {IR" x {0} } be described by F = h-1(0), where h : N m ~ N  " -  x is continuously 
differentiable and has 0 as a regular value. Suppose _2 and ~. lie in the same component 
of F, neither _2 nor 2 are F bifurcation points of f and ind(f~, 0)+ ind(fi, 0). Then 
there exists a closed connected subset, C, of {(2, x) 1(2, x)e (9, x ~ 0, f(2, x) = 0}, whose 
dimension at each point is at least m, and Cc3[_2,2] +0, where [2,,~] denotes any 
seoment of F between 2 and Z One of the followin9 three properties is also satisfied 
by C: 

(a) C is unbounded, 

(b) t~c~0(9 4: ~, (2.7) 

(c) ~c~{r\[2,~]} 40. 

Remark 2.1. The conclusion of Theorem 2.4 does not hold when F =  {y(t)](te~}, 
where y :IR~IR m is an arbitrary continuously differentiable homeomorphism. For 
example, it does not hold if m=  1, ~ = ~  xX and F is a bounded interval. Rather 
then state the most general, necessarily technical, hypotheses on F under which 
one can prove the bifurcation result, we have asserted that F has a trivial normal 
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bundle. There are F, not necessarily included under this hypothesis, for which the 
conclusion also holds. One such situation is when F = {y(t)l(t~lR}, where y : ~ p r ,  
is a continuously differentiable homeomorphism such that Iy( t) l~+oo as 
Itl-* + oo. That  the theorem holds in this situation follows from the proof of 
Theorem 2.4 which we will give, together with the observation that for each r > 0, 
the components of FnB(O, r) have trivial normal bundles. 

Remark 2.2. When one assumes simply that F={7(t)lt~IR}, 7 being a C 1 
homeomorphism, it is possible to obtain a weaker conclusion: namely, if one 
replaces (2.7) (c) by 

(c') ~n{rtm\[_~, ~]} *0,  (2.7) 

the theorem is true. However, this latter conclusion is somewhat unsatisfactory, 
since, for instance, C could be a small m-disc transversal to (Z,7.), and so the 
conclusion, in some sense, is not global. Again, an examination of our proof of 
Theorem 2.4 shows how to prove this latter result. 

Remark 2.3. We observe that the section of C over F, Cr, need not be connected. 
However, it is not difficult to see from our proof of Theorem 2.1 that there is a 
connected component of C r which satisfies one of the alternatives listed in (2.7). 

Remark 2.4. In the case when m = 1, Theorem 2.4 is a slight refinement of the global 
bifurcation theorem of Rabinowitz [13]. An m-dimensional generalization of the 
Rabinowitz theorem has been recently obtained by Alexander and Antman [1]. 
Theorem 2.4 improves the corresponding result of Alexander and Antman [1]:  
our assumptions are somewhat weaker, and we discuss the intersection of the 
component, C, with F\[2, 7.]. 

Remark 2.5. The conclusions of our results are not topological, in the sense that C 
being unbounded is not a property preserved by homeomorphic change of 
variables. For  this reason a certain amount of care has to be taken when making 
simplifying assumptions. 

The notion of a complementing map, obviously, can be defined whenever (g,J) 
falls within a class of mappings for which there is defined a topological degree. 
Moreover, if this degree is sufficiently well developed, the results of this paper will 
carry over. Our results hold for substantially larger classes of mappings then we 
have considered here. We wilt return to this in a future paper in which we will also 
present applications of our present results in the study of nonlinear partial 
differential equations. Examples of nonlinear ordinary and partial differential 
equations which may be formulated naturally as an equation of type (1.1) may be 
found in [6, 7]. 

. 

We will prove Theorem 2.1. To do so, and also because it will be useful in other 
contexts, we will first prove a preliminary proposition. 

We let S = {(2, x)e tPIJ(2, x )=  0}, and observe that S is locally compact since F 
is a compact mapping. 
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Proposition 3.1. Under the assumptions oJ Theorem 2.1, S has the Jollowing 
property: 

if D is a cobounded subset of S such that Dng- l (0 )=0 ,  then g:(S,D) 
_~(~m, ~,~-0) is cohomologically nontrivial. 

ProoJ. We first observe that/4re(S, D) = li__~{/4m(V, W)l(l~, W)~ T}, where Tconsists 
of pairs (F, W) with V a neighborhood, in (9, of S, and W a neighborhood, in r of D, 
such that WE E But those pairs with the additional property that W n g - l ( 0 ) = 0  
are a cofinal subfamily of T 

Consequently, to prove the result it will suffice to show that if (1~, W) is a pair of 
open subsets of (9, SCV, DCW, WCV and g - l ( 0 ) n W = 0 ,  then 
9 :(V, W)--*(IR",IR"- 0) is cohomologically nontrivial. Let (V, W) be such a pair. 

Since S\W is bounded we may choose an r > 0  such that 
S\WC=B= {(2, x ) ~ "  xX[ 1I(2, x)l] <r}. Then we see that 

(g,D- 1(o) c s \ w c  VnB, 

and so, since IR m xX is normal, we may choose an open subset, ~//, of VnB, such 
that 

(9,J)- 1(0)~ ~llc-~llc- VnB. 

But then (9,J)-l(O)nOql=O. Since #q/is bounded and closed, and since F is 
compact, we may select e > 0 such that I] (9,J) (~-, x)ll > e > 0, whenever (2, x)E Oq/. 

Using the basic approximation property for compact mappings we may choose 
a finite-dimensional subspace, H, of X and a continuous mapping F~ : ~ H  such 
that 

IlF(2, x)-F~(2, x)]l <e/2, whenever ( 2 , x ) ~ .  

It follows from the excision and homotopy invariance properties of degree that 

deg((o,J), (9, 0) = deg((o, J), J#, 0) = deg((0,L), ~#, 0), 

where L(2, x) = x -  F~(2, x), for (2, x)e ~.  

Consequently, if we let d//'=q/c~{lRm xH}, and use the assumption that 9 
complements J on (9, together with the reduction property for Leray-Schauder 
degree, it follows that 

deg((0,L)l~,, q/', 0) + 0, 

where now "deg" means Brouwer degree. 
We now identify H with ~,.", for some positive integer n. Let W' = Wnq/'  and let 

Z = {(2, x)e q/'lj~(2, x) 4: 0}. Then we have the following maps of pairs; 

L : (~", z ) ~  (~", ~ " -  0), 

and 

0 : (ou,, w ' ) - - , ( ~ ' ,  ~ ' -  0).  

Since q/', W', and Z are open subsets of euclidean spaces, we can identify the 
(~ech cohomology groups H~(q/', Z) and H~(q/', W'), with the singular cohomology 
groups H~(ql ', Z) and H~(~/Z ', 14') respectively, by means of a natural isomorphism. 
Let e k be the canonical generator of the local cohomology group, Hk(P, k, R k -  0). 
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We shall compute the cup-product 

r 1 =- g*(e,,)wf*(e.)e H" +"(~ W'wZ) 

in terms of the homomorphism induced in cohomology by the following map of 
pairs : 

h =-(9,L)=-(9 xL)oA : (og,, W, uZ)__.(F,,,+., IR,.+,_O), 

where A is the diagonal map. 
Indeed, from the properties of the cup-product and cross-product, we obtain 

tl = A*(g*(e,,) x j*(e,)) = h*(e,, x e.) = h*(em+ n). 

On the other hand, from our assumptions, the set K---0//,\{ W'uZ}  is a compact 
set containing h-l(0), so that if we let OKeHm+.(~ll',~li'-K) be the fundamental 
class around K and Ore+ . denotes the fundamental class around 0 in IR "+", it 
follows that 

h.(OK)=deg(h,~ll',O).O~,+, in Hm+,(IRm+",IRm+'-O), 

(see Proposition 5.5 of [4]). H,,+, denoting the singular homology group, and h. 
being the homeomorphism induced in homology. 

Now we take the Kronecker product of q~Hm+"(~ ', W'uZ)=H"+"(dli ', q/'\K) 
with O K . We obtain 

(it, O K) = (h*(e,,+,), Or) 

= (e,,+,, h.(OK)) = deg(h, ~//', 0), 

since (e,.+., O,,+,) = 1. 
Thus t /+ 0, and so 9*(e,,)E H"(oll ', W') ~ flm(~ll ', W') is nonzero. 
Letting i:(0g,, W')--*(V,W) be the inclusion map, we have the following 

commutative diagram 

j*  ~ v m  m m / H  (~ ,~  -0) 

O"(oU ', W') / "" 

It follows that g : (V, W)~(IR", IR" - 0) is cohomologically nontrivial, and so the 
proposition is proven. []  

Proof oJ Theorem 2.1. Recall that the m-th Cech cohomology group of S, with 
compact s u p p o r t s , / ~  (S), is defined by 

fir(S) = li__~m/qm(S, O), 

where D ranges over all cobounded subsets of S. Let D o = S\9-1(0), so that from 
our basic assumption on (9,J)-  1(0), Do is a cobounded subset of S. 

If we let j r  o :I2Im(S, Do)-~trI~(S) be the natural map into the direct limit, and let 
~=JDo(O*(e,,)), Proposition 3.1 asserts that ~ +0. 

We can now invoke Proposition4.3 of [6] in order to choose a closed 
connected subset, C, of S, which has dimension at each point at least m, and is such 
that the class ~lc ~/-~ (C) is nonzero. 
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Now let D be any cobounded subset of C such that Dng-a (0 )=0 .  From the 
following commutative diagram, 

m ~ m ( S ,  Do) J~~ , ~7(S) 
/~m(]Rm, l~ __ 0) ~ 1inclusion* ~ inclusion* 

~ D) j~, , I217(C ), 

it follows that g:(C, D)--*(IR", IR"-0)  is cohomologically nontrivial. []  

. 

The Proo[ oJ Theorem 2.3. Theorem 2.1 allows us to choose a closed connected 
subset, C, od f = {(2, x) l(2, x)~ (9, J(2, x) = 0}, whose dimension at each point is at 
least m, and which enjoys property (.). 

Let C = CnO(9. We will show that 9" :/-)"(R", F , ' -0)~/Y/~  (t~, ~) is nontrivial. 
To do so, since/1~(C, C) = li__i_~/)m(C, W), where W ranges over neighborhoods, in 
C, of C, which are cobounded in C and such that 9-1(0)n W= 0, it will suffice to 
show that for each such W 

g :(C, w)--,(~", ~m-  0) 

is cohomologically nontrivial. But C n  W is a cobounded subset of C, on which 9 
does not vanish, and so 

g :(C, cc~ w)~(~m, F , ' -  0) 

is cohomologically nontrivial. Consequently, from the commutativity of the 
following diagram, 

i (c, cnw)  ,(c,w) 

(N', IR" - O)/g 
it follows that g* : H"(IR", P,Y-0)~/4~(12, C) is nontrivial. 

To verify the first assertion of the theorem we assume that C is bounded, and 
will prove the claimed properties concerning (~. Note that / t7(C,  C) = ~"(1~', (~). 

First consider the case when m = 1. We claim that g : C ~ I R -  0 is essential; i.e. 
it assumes both positive and negative values. Indeed, if this were not so, then 
9 :(C, 0 )~ (N,  F , - 0 )  could be deformed, as a map of pairs, via a linear homotopy, 
to a constant map, in contradiction to its cohomological nontriviality. Thus 
9 : t ~ l R -  0 is essential, and, in particular, C has at least two points. 

Now consider the case when m> 1. We have the following commutative 
diagram, with the bottom map being an isomorphism: 

/_).,- 1(~) , /_).(& ~) 

T," T." 
~ ' -  ' ( ~ ' -  0) - ,  ~ ' (~" ,  ~r o). 

Consequently,/4"-1(d7) is nontrivial, from which it follows that d im((~)>m-1 .  
(Note also that 9 : ( ~ R m - 0  is essential.) 
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To complete the proof we will assume g : C-~IR" is proper, and that dim(C) 
< m -  1, and conclude that g : t ~ I R "  is essential among proper maps. 

Since g : C ~ N "  is proper it induces a homomorphism g* :H~( ) He(C). 
Thus we have the following commutative diagram, where the rows are exact: 

/~m-,(0) ' ~ ( ~ , 0 )  , /~m(~) ' / ~ ( 0 )  

T.' To. 
0 , B m 0 R " , ~ " - o )  - , BTOR") , 0 .  

On the other hand, since d i m ( C ) < m - 1  we must have/-)~- 1 ( 0 ) = / t ~ ( 0 ) = 0  (see 
[8, p. 152]), so that the top center map in the above diagram is an isomorphism. 

It follows immediately that g* :Hc(~, )~Hc(C ) is nontrivial. As a con- 
sequence, g : ( ~ , "  is essential among proper maps, and, in particular, 
o(C) = IR". [ ]  

The Proof of Theorem 2.4. The heart of the matter lies in the assertion that there 
exists a continuous mapping gl : ~ "  • such that the following hold: 

if g : I R " •  is defined by g(2,x)=(gl(2,x), h1(2 ) . . . . .  
hm_ 1(2)), then g complements J on s# = (9\{IR" x {0}}: (4.1) 

there exist t/, fl in ~ ,  with 0 < t/< fl, and a F-neighborhood, A, of [_2, 7.], for which 

ga(2,x)<0, when both 26[_2,,~] and 0 <  Il xl l --< '7, (4.2) 

01(2,x)>0, when both 2eF\A and x4:0 or when both 2~A (4.3) 
and [Ix][ >fl, 

and 
J(2,x):~0, when both 2 ~ A \ ~ , 2 ]  and 0 <  [Ix[[ _-<ft. (4.4) 

Indeed, suppose, for the moment, that a mapping gl having the above three 
properties exists. Then 0 complements j on oh'. Hence we may apply Theorem 2.1, 
with ~//playing the role of (9, to choose a closed connected subset, C, of J -  a(0)c~q/, 
whose dimension at each point is at least m, and such that property (,) holds. In 
view of Remark 3.1 and the fact that F={(2,0)[g2(2 ) . . . . .  9,,(2)=0} it follows 
that 

whenever E is a compact subset of C, with g-~(O)c~CC=E, (4.5) 
then gx changes sign on (C\E)r. 

Observe that (4.2)-(4.4) imply that Coco- 1(0)z__ {(2, x)[2~ ~ ,  7.], ~/< [I x II < fl}. 
We first prove that Cn[-2,214=0. To do so we suppose the contrary. Let 

E = {(2, x)[(2, x)e C r, 2~ ~ ,  X], 0 < [[ x I[ < fl}. Since C is closed in q /and Cc~ [2, ,~] = 0 
it follows that E is compact. As noted above, Cc~ 0-1(0)__c E. Thus (4.5) implies that 
01 changes sign on (C\E)r. Since from (4.3) and (4.4) it follows that gl is positive on 
(C\E) r, we obtain a contradiction. Thus t ~ c ~ ,  Y.] 4:0. 

It remains to prove the global properties of C. In order to do so, we assume 
that none of the alternatives listed in (2.7) hold. Now let E =  {(2,x)[(2, x)~Cr, 
[[xl[ > q  if 2 ~ , 2 ] } .  Since (2.7) fails to hold, and F is closed, E is compact. Also, 
Cng-x(0)~E. Thus gx changes sign on (C\E)r, in contradiction to (4.2). 
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Thus, at least one of the properties in (2.7) holds and the theorem is proven, 
once we have verified the existence of the above 91- 

We first prove the existence of the above 01 when F has a simple form. 
Specifically, we prove the following. 

Proposition 4.1. Suppose, in addition to the assumptions of Theorem 2.4, that F= {;(12 
=(21,0,.. . ,0), (;(,0)60}, that _2=(-1 ,0 , . . . ,0 )  and 2=(1 ,0  ..... 0). For r>O, let 
q~ : lR~[O,r 2] be continuous, equal r 2 on ( - 1 V T ~ ,  [ , / l+r) ,  and satisfy tp-l(O) 
= IR\[ -  1 - r, 1 + r]. Then, if r is sufficiently small, the map, 9, defined by 

01(2,x)=[[xll2-q~(;(1); 91(;(, x) = 2i, l<_i<_m, 

is a complement for j on O\{IR" x {0}}. 

Proof Since 2 and 2 are not F bifurcation points o f f  we may choose r such that 

f ( ; ( ,x )#0  when 0<Hxl l<2r  and ;(=(;(1,0 ....  ,0) with (4.6) 
121- l l < r  or I;(t+ll  <r ,  

and we may assume 

{ '21'2 "X[]2 <1 / CO. (4.7) 
(;(,x)[;(=(2p0 ..... 0), ~ + r(1 +r)  = . = 

For such an r we let ~o and 9 be as defined in the statement of the proposition. 
Let ~//=O\{IR" x {0}}. 

If we let K-(O,J)-1(0)c~//,  we observe that 

K = {(2, x)lJ(;(, x)=0,  ILxll = r, ;(=(21,0 ..... 0), I;(ii < 1 - r } .  

Thus K is a compact subset of q/, making deg((g,J), og, 0) well-defined. 
Now, (o,J) is a perturbation of the identity on IR" x X  by a compact mapping 

whose range lies in {(2, x)l;(= (21, 0,..., 0)}. Consequently, if we identify the latter 
subspace with IRxX, let og, =q/c~{IRxX}, and define h : O n { ~ x X } - o ~ , x X  by 

h(t, x)= (N xll ~ - tp(t), f(t ,  x)), 

it follows from the reduction property for Leray-Schauder degree that 

deg((g,f), ~/, O) = deg(h, q/', 0). 

It follows from (4.7) that 

W={( t , x )5 IRxX ,  It21 "x'12 } 
+ r(l+r-----~ <1 COc~{IRxX}, 

and one easily checks that 
h-  1 (0) n q/' = h-  1(0)c~ W. 

Hence, from the excision property for degree, 

deg(h, o//,, 0) = deg(h, W, 0). 

Now observe that ]lxllZ-q~(t)= I lx l le - r  z on 17E. It follows that Ilxll2-q~(t) 
= r ( 1 - t  2) on 0W, and since the degree of a mapping is only dependent on its 
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boundary values, 

deg(h, W, 0) = deg(o?, W, 0), 

where ~p(t, x)=(r(1 - t2), J(t, x)), for (t, x)E I~. 
But the only zeros of~p in Ware (+  1,0) and ( -  1,0). Hence if we let D' and D" 

denote two small cubes about  ( + 1, 0) and ( -  1, 0), from the excision and additivity 
properties of degree it follows that 

deg0p, W, 0) = deg0p, D', 0) + deg0p, D", 0). 

One easily sees that ~p is homotopic to (t ,x)~(r(1-t),  J(1,x)), on D', and to 
(t,x)~(r(l+t), J(1,x)), on D", via homotopics which do not vanish on the 
boundaries. 

Finally, from the product formulae for degree, together with the equalities 
established above, it follows that 

deg((g,f), ql, O)= ind(~, O)- ind(J~, O) ~:O. [] 

To complete the proof it remains to translate the function Ilxll 2 -  q~(t), in the 
above proposition, onto the curve F. 

We may choose an ~," neighborhood, W, of [_2, 7.], and an R"  neighborhood, V,, 
of { t e  IR" [ t = (t 1, 0 . . . . .  0), It t l < 1 }, together with a mapping t/: IR" ~ R  such that the 
map h0 : F,"--,R" defined by 

~p(2) = (t/().), hi(). ) ..... h,,_ 1(2)) 

gives a homeomorphism of W onto V. We assume that 

~(_2) = ( -  LO ..... 0), ~G) =(1,0 ..... 0) 

and 

w c  r m • {0}}. 

Choose a a>O such that Pc-{(X,x)12~w, llxIl<a}-cr and let 
f'={it, x)lt~V, [Ixll <a}.  Now define j~: fz -X by 

jTit, x) =Ji~-'it), x). 

It is clear that the assumptions of Proposition 4.1 hold, where .[ and ~" play the 
roles of f and ~, respectively. Thus we may choose an r > 0  such that if 
~p :R~[0 ,  r] is continuous, q ~ - l i 0 ) = ~ , . \ [ - 1 - r , l + r ] ,  and q~(t)=r 2 when 
It[ 2 ~ 1 +r,  then 

O(t, x) = ill x II 2 _ q~(t 1), t2 ..... tm) 

defines a mapping, 0, which is a complement for j7 on ~ { ~ "  x {0}}. We also 
assume that i4.6) holds- 

Now define t~ : W ~  Vby ~()., x) = (~p(2), x). Observe that q~ is a homeomorphism 
of (I/~{F," x {0}} onto f'~{lR" x {0}}, and that q~ is a compact perturbation of the 
identity on 1~" x X. Consequently, from the composition property of degree, it 
follows that 

deg((0,9 ?) ~ 17V~{ Rm x {0} }, 0) 4= 0. (4.8) 
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But [(0, f )~  9]  ()~, x)~= (g(2, x), f(2, x)), where 9(2, x) = (llx II 2 _ ~0(rt(A)), h 1()],), �9 .., 
. . . .  h m_ 1(2)), for (2, x)~ W~{IR m • {0}}. 

Now let q :R'-- ,n~ be a continuous function which agrees with q~~ in a 
W-neighborhood of [2, 7.], also agrees with q~ oq on W n F ,  and which vanishes on 
F \  W. Finally, let 91(2, x )=  II x I I 2_  q(2), for (2, x)e ~m X X. We claim that  91 satisfies 
(4.1)-(4.4). 

But observe that  {(2,x)~(_9\{~" x {0}} 1(9,f)(2, x )=0}  = {(2,x)12e {-2,,T], 
tlxll = r ,  ] ( L x ) = 0 } .  Hence, from (4.8), together with the excision property for 
degree, we see that  (4.1) holds. Moreover, it is clear that  (4.2)-(4.4) hold with 
rl = r/2,  fl = 2r, and A = F n r / -  1(( _ 1 - r, 1 + r)). 

Thus the proof of the theorem is complete. [ ]  

R e m a r k  4.1. In his proof  of the one-parameter Rabinowitz bifurcation theorem, 
J. Ize has employed a map similar to the 9 of Proposit ion 4.1 (see [12]). 
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