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Sobolev Estimates for the Lewy Operator 
on Weakly Pseudo-Convex Boundaries 

Harold P. Boas and Mei-Chi Shaw* 

Department of Mathematics, Texas A& M University, College Station, TX 77843, USA 

Let f2 be a bounded domain in C" with smooth boundary bO, n > 2. The Cauchy- 
Riemann operators ~-on C" induce in a natural way a complex of differential 
operators on bf2, the tangential Cauchy-Riemann complex or ~-b complex. The ~-b 
complex has played an essential role in the study of boundary values of 
holomorphic functions and holomorphic extension problems, Kohn and Rossi 
[16] and Andreotti and Hill [3]. In this paper we shall study the global solvability 
of the ~-b operator in top degree on weakly pseudo-convex boundaries in L 2 and 
Sobolev spaces. The/7 b operator in top degree has been of considerable interest 
since it led Lewy [17] to his famous example of an unsolvable differential equation. 
When bf2 is strongly pseudo-convex, using kernel methods Henkin [10] showed 
that despite the Lewy phenomenon, one can solve the ~-b operator in top degree 
globally under a suitable compatibility condition. He also obtained the regularity 
of the solutions in the L v spaces where l < p < ~ .  Recently Kohn [15] has 
established Sobolev solvability on boundaries of domains of finite type using 
microlocal analysis and subelliptic estimates. On general weakly pseudo-convex 
boundaries Rosay [19] has proved C ~ solvability using results of Kohn [14] and 
Kohn and Rossi [16]. A simplified proof was given by Shaw [22]. However, the 
arguments in [19] or [22] do not have good control over the regularity of the 
solutions (both have a loss of one derivative). In this paper we obtain a solution of 
the ~-b equation in top degree with sharp Sobolev estimates on weakly pseudo- 
convex boundaries. Our main result is the following: 

Main Theorem. Let ~2 be a bounded domain in C" with a smooth weakly pseudo- 
convex boundary bf2, n >= 2. For every (p, n -  1) form ~ on bf2, 0 < p < n, with W ~ 
coefficients where s is a nonnegative integer, i f  ~ satisfies the compatibility condition 

J" ~ ^ ~ = 0  (0.1) 
bf~ 
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for every ~-closed ( n -  p, O) form r on s such that r is continuous up to bf2, then there 
exists a (p, n - 2 )  form u with W s coefficients such that 

Obu=a. (0.2) 

Furthermore, there exists a constant cs independent of ~ such that 

II u II ~b~) --- Cs II ~ l l .b . ) ,  

where II II~r denotes the norm in the Sobolev space W~(bf2). 

Corollary. Under the same assumption as in the theorem, the Jb operator in top 
degree has closed range in the L 2 as well as W s sense. 

Note that by Lewy's example, the Jb operator in top degree does not have 
closed range locally. Moreover, it does not always have closed range for abstract 
CR structures. Burns has observed [6] that for Rossi's example [20] of a non- 
embeddable strongly pseudo-convex CR structure of real dimension three, 
the Ob operator does not have closed range in either the L 2 sense or the C ~ 
sense. 

There has also been a great deal of work on the Jb complex in lower degrees (i.e., 
q < n - 1 )  when bf2 is strongly pseudo-convex (see e.g. Kohn [13], Folland and 
Stein [8], and Folland and Kohn [7]). When bf2 is weakly pseudo-convex, the L 2 
and Sobolev regularity of ~-b for the lower degrees was proved recently in Shaw 
[21]. (The case q = n - 2 ,  not included in the statement of the theorem in [21], 
follows easily from the same method.) The technique used in this paper could also 
be used to establish the lower degree case. 

The proof of the main theorem consists of two parts: first a priori estimates 
assuming ~ is smooth, and then an approximation argument to construct the 
solution. In Sect. 2 we introduce the jump formula derived from the Bochner- 
Martinelli-Koppelman kernel. In Sect. 3 we prove the a priori estimates using this 
jump formula. In order to pass from a priori estimates to actual construction of 
solutions with estimates, it is necessary to know the regularity of the (weighted) 
Szeg6 projection, since condition (0.1) is closely related to the Szeg5 projection. 
Section 4 is devoted to proving that the weighted Szeg5 projection is regular on 
weakly pseudo-convex boundaries. The method used here is very similar to the one 
used in Boas [4]. We finish the proof of the theorem in Sect. 5. 

With suitable modification our main theorem can be extended to the case of a 
relatively compact pseudo-convex domain in a Stein manifold. One has to replace 
the Bochner-Martinelli-Koppelman kernel with its generalization to Stein 
manifolds (see Theorem 4.5.2 in [25]). The proof then goes through essentially 
unchanged. 

Professor Kohn has kindlyinformed us that he has obtained a proof of the 
theorem by using microlocal analysis [24]. 

1. Notation 

We assume that f2 is a bounded pseudo-convex domain in C" with defining 
function r normalized so that the gradient ofr has length one on the boundary b~2. 
Let B be a fixed large ball containing the closure of [2 in its interior. 
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Consider the space of (p, n -  1) forms (0 < p < n) whose coefficients are smooth 
functions on hi2. As usual we identify two such forms f and 9 when ( f -  9) A 0-r = 0. 
When we wish to be explicit about this identification we use the projection z onto 
the subspace of forms that are pointwise orthogonal to the ideal generated by Jr. 
Thus Jbf  = z(~-f) where f i s  any smooth extension o f f  to ~. We extend ~b to forms 
with L 2 coefficients by taking its Hilbert space closure. For details see [16]. 

The norm 11 II~(bO) in the Sobolev space W~(bf2) is defined in the usual way via a 
partition of unity and tangential Fourier transforms. When s>  0 the norm II I[,(~) 
of a function in W~(f2) is the infimum of W~(C ") norms of extensions of the function. 
When s < 0  we use II I1~(~) for the norm in the dual space to WlSl(f2). 

For technical reasons we need special tangential norms in a fixed tubular 
neighborhood f2, of bt2. For 3 close to zero let F~ = {z e C" : r(z) = ~i} be the smooth 
surface bounding a perturbation of f2 and set 

Illflll~(~o) = i I[fll2(r~)dr. 
--8 

We also define 
IlIDmf]ll~(~) = Z k HID, fll[s+m-k(~), (1.1) 

O<_k~_m 

[[[DT'~fl)l~(z~) = E [[[DrmDk f[[[s+m-k(a~), (1.2) 
O<k<_m 

where D, = ~/Or. Norms of forms are computed componentwise. We also write 

Kohn's theory of the g-Neumann problem with weights [14] plays a key role in 
our argument. We use the subscript t (N,, S,, etc.) to denote an object (Neumann 
operator, Szeg6 projection, etc.) relative to Lebesgue measure weighted by the 
factor Zt(z) = e x p ( -  tlz[2). 

2. The Jump Formula 

Let at be a smooth (p, n -  1) form on the boundary bfl such that a = z~. Let K denote 
the Bochner-Martinelli-Koppelman form: 

1 ~ j - - Z j  ( n - I ) !  ~ ( _ l ) j + ) ~ _ ~ , j d Z k / ~ ( d ( _ d z , ) "  K(~,z) = (2~i)~j= 1 

Define 

~+(z) when z e Q ,  
~ ( O A K ( ~ ' Z ) = [ ~ - ( Z )  when z ~ C" \ ~ .  (2.1) 

b~ 

Then e+ and ~- are 0--closed forms which extend smoothly to bg2. The difference 
between their tangential parts on the boundary recovers ~: 

z(e + I ra -  e-  [m) = ( -  1) pc. (2.2) 

Indeed the boundary values of e+ and e-  equal the singular integral on bO 
corresponding to (2.1) plus and minus one-half o f ( -  1)Pc. For details see [9] or [2]. 
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We need the following estimates for ~ + in Sobolev norms. Recall that f2~ is a 
tubular neighborhood of bf2 and f2~- = f2~\f2. 

Lemma. For each non-negative real number s there are constants C and C,, 
(independent of  ~) such that 

II ~ § 112 + 1/2(~> < C II ~ l l ,b . ) ,  (2.3) 

I11 om~- III , - .+  x/2{~)---  C.l[~ll2~b~). (2.4) 

Proof. We may assume that ~ has small support contained in a boundary chart 
with coordinates t~ . . . . .  tz,_~,r. Except for a smooth perturbation caused by 
flattening the boundary locally, the coefficients of the forms g § and g-  are sums of 
the Poisson integral of ~ and the Poisson integrals of the Riesz transforms of g (cf. 
[23, p. 236]). The Riesz transforms are classical singular integrals that are bounded 
in W2(bO) for all s. By elliptic theory the W ~+ ~/2(f2) norm of a Poisson integral is 
bounded by the W'(bf2) norm of its boundary value, so (2.3) holds. Estimate (2.4) is 
a simple calculation using that the Fourier transform of the Poisson kernel is 
e x p ( -  ri l l) ,  u p  to  constants. Indeed such an estimate holds for any operator whose 
Fourier multiplier has the form w(rlz[) for a smooth function ~v: see [11, 
Theorem 2.5.7] and Lemma 1 below. 

To solve ~-bu=~ it suffices to find forms u + and u-  such that 5bu + =~+ and 
~-bu-= g-.  We solve the first of these problems with estimates in W2(bO) by 
applying Kohn's global regularity theorem for the weighted ~--Neumann problem 
[14]. Put u + = ~3tNtg +. Then ~-u + = g + in f2, and for sufficiently large t (depending 
on  S) 

Ill Du+ 1112- ~/2(~+) < CI[ ~+ [Is+ ~/2(~) < C'l[~[I.~). 

Restricting to the boundary gives ~-bu + = �9 +, and by the trace theorem 

Ilu + ll,b,) < CIl~ll2(b~). (2.5) 

It remains to solve ~-bu---g-. Note that ~-  inherits the compatibility 
condition (0.1) from g by the jump formula (2.2) and the ~-b-exactness of ~+. 

3. Construction of d-Closed Extension with Estimates 

We shall construct a ~--closed extension of ~ -  on B with estimates. Our method is 
similar to the one used in [21]. Thus we will only show the necessary modification 
and refer the readers to Shaw (Lemma 3 to Lemma 6 in [21]) for details. 

Lemma 1. For arbitrary smooth functions uj on bs j = 0, 1, ..., k0, there exists a 
function Eu ~ C~(f2~) such that D~Eu = u i on bf2, j = O, 1 . . . .  , k o. Furthermore, for 
every real number s and positive integer m, there exists a positive constant cm 
depending on s but independent of the uf  s such that 

ko 
[l[DmEu[[[2_lml+ 1/2(~e)~<_~Crn )-~ [[Uj[[s_j(bl~) (3.1) 

j=o 

ko 
IIIDTmEulII2-1/2~o) <cm Z Ilu~ll2-j(b~). (3.2) 

j=0  
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Proof. It suffices to prove the lemma assuming uj is supported in a special 
boundary coordinate chart with coordinates tl, ..., tan- 1, r. Let ~v be a function in 
C~~ which is equal to 1 in a neighborhood of 0 and let the partial Fourier 
transform of Eu be ko r a 

(Eu)'(z, r) = ~p( 2r) j~o ~j(z)fi, 

where fij(T) is the usual Fourier transform of u~ and 2 = (1 + Izlz) 1/2. It follows from 
Theorem 2.5.7 in H6rmander [11] that D~Eu = u~ on bQ and that Eu satisfies (3.1). 

To prove (3.2), we note that for every nonnegative integer i, by a change of 
variable, we have 

ID~Op(2r)rJ)l 2 dr = 2 2(i-i)-' ~ iD~Op(r)r~)12 dr. 
- c o  - c o  

Thus, from the definition (1.2), we have 

fllD Tmgulll~- , / 2 .~  
ko 

~ c  Y'. ~ ~ (l +]T[z)s-Jl(tJ(QlZ dz o~ (D~(~P(r)rJ)) 2 dr 
1 = 0 0 < i = < m + l  R 2n 1 - - c o  

ko 
< C m , ~  2 = l l u j L - m ~ .  

j=O 

Lemma 2. Let a be a smooth (p, n -  1) form on hi2 that satisfies condition (0.1) and 
let ~- be defined by (2.1). Then for any nonnegative integers k, s, there exists a 
(p, n - 1 )  form f iz  Ck(B) such that l~=a- on B\(2 and ~-/~=0 on B. Furthermore, 
there exists a constant C depending only on s, k but independent of a such that 

2 2 
II ID/~I I1~ - 3/2~oo) < C II ~ II ~bo~ �9 ( 3 . 3 )  

Proof. By the trace theorem for Sobolev spaces (see e.g. Theorem 2.5.6 in 
HSrmander [1 l l)  and inequality (2.4), we have 

[[D[cC I[~-j(bo) < CI[[ D~+ 1~-IIl~-i- 1/z(oz) < C II C~[l~(ba) �9 (3.4) 

Let ko be a large positive integer [say ko > 2(k + n)]. Applying Lemma 1, we can 
extend ~ - componentwise and obtain/ /~ Ck~ such that fl = ~- on B\O. Then we 
have for any integer m 

IIIOmfllll~-Iml + 1/z(o:) < C[la[l~ba), (3 ,5 )  

IIIOZmfllll,- 1/2(o:)  < CIl~ll~r �9 (3 .6 )  

Set/3 + =ilia. The desired/~ will have the form 

{~ on B\~2 
/if= +--Fk+lfl  + on f2, 

where Fk+lfl + vanishes to order k +  1 on bl2 and ~-Fk+ lfl + =0-fl on f2. Then flis 
g-closed on B and/~r  Ck(B). 

To construct Fk+ aft+ we use the weighted g-Neumann operator N o on (p, 0) 
forms, which is defined in terms of the operator N~ on (p, 1) forms by 

N~ 
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We first define 

Ffl + = - �9 ~N ~ �9 Jfl +, 

where * is the Hodge star operator with respect to the weighted metric on f2. For  
sufficiently large t, it follows from the regularity theorem for N~ (the Main 
Theorem in [14]) and the Sobolev embedding theorem that Ffl + e C zk+ 1(~). Since 
fl+ satisfies condition (0.1) by the remark at the end of Sect. 2, it follows from the 
arguments in [22] that 

and 

~-Ffl+=~-fl + on ~2 

Ffl + ^ S t = 0  on bf2. 

In order to modify Ffl + to make it vanish to high order on bf2, we note that ~Yfl+ 
vanishes to order ko on bf2, so we can repeat the arguments of Lemma 3 in [21] to 
construct ( p , n -2 )  forms flo, fl~ . . . . .  flk and a ( p , n - 1 )  form ~/k such that Ffl + 
= J(rflo) + ~(r2fl  1) q - . . .  q- ~( rk + 1 ilk) -J- rk + 1 ( t l k _  ~flk)' Each fli is obtained from the 
i th derivatives of the components of Ffl +. Set 

k 

Fk+ lfl+ =Ff l  + - E ~(ri+ l fli). 
i = 0  

Then 

and 

~-Fk+,fl+ = Jfl + on 

Fk+lfl+=O(r k+l) on bY2. 

Since Ffl + e C zk+ l(f]), we have Fk+ ~fl+ ~ ck(O). This completes the construction 
of #. 

To show that fl also satisfies (3.3), note that by (2.4), it suffices to estimate fl on 
f2~ +. We claim that for any cut-offfunction q e C~~ there exists a constant c such 
that 

]llOtlFfl+llls_3/2<~+) _-< c(lllJfl+ II1~_ a/2~+)+ II~-fl + IIs_ 1~:)),  (3.7) 

[llOT'tlFfl+lll~-3n~o~+~ <c(lllOT'fl+lll~-l/=~:) + It~-fl + IIs- uo:)). (3.8) 

Since J N ~  on sufficiently smooth (p,0) forms, we have Ffl + 

= - *  N 1~* ~-fl+. By using estimates for N~, inequalities (3.7) and (3.8) can be 
essentially proved as in Lemmas 4 and 5 in [21]. Combining (3.7), (3.8) and (3.5), 
(3.6), we have proved tha t / t  satisfies (3.3) with a slightly smaller e. 

Lemma 3. Let  f2 be a smooth bounded pseudo-convex domain in C", n > 2, and let 
be a smooth ( p , n - 1 )  form on bY2 satisfying condition (0.1). Then for every 
nonnegative integer s >= O, one can find a (p, n -  2) form us e WS(bf2) such that Jbus = o~ 
on bf2. Furthermore, there exists a constant cs independent of  ~ such that 
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Proof. From the remark in Sect. 2, we only need to show that one can solve 
~bu- = ~ -  on b(2. By Lemma 2, we can extend ~- to be a P-closed form/~on B. We 
solve the following equations on B: 

O-a=/7 (3.9) 
~tT=O. 

Then for any cut-off function ~ e C~(O~) such that ~ = 1 on bO, we have 

IIID~allls_tncm><c(lllDl~llls_3/2r IItT[I-k-~(m + 11/~[I-~-,r (3.10) 

by the interior regularity for the elliptic system (3.9). By the global regularity of(3.9) 
and estimate (3.3), the right-hand side of (3.10) is bounded by a constant times 
]l~]ls~ba)- Denote the restriction of 6 to b(~ by u- .  Then the trace theorem for 
Sobolev spaces gives ]lu- Ilstba) < Cll~]lstb~). 

In view of (2.5), the form us = ( -  1F (u + - u - )  satisfies the requirements of the 
lemma. 

Remark. Clearly Lemma 3 holds if ~ is sufficiently smooth (not necessarily C~). 

4. The Weighted Szegii Projection 

To pass from the a priori estimate of Lemma 3 to the final result we need estimates 
for a boundary projection onto holomorphic functions. In [4] regularity of the 
Szeg6 projection was derived from regularity of the J-Neumann operator, but here 
we have only regularity of the weighted Neumann operator. We modify the proof 
in [4] to obtain regularity of the weighted Szeg6 projection, which suffices for the 
approximation argument in the next section. 

The operator of interest is the orthogonal projection St from L2(bf2, dat) onto 
the subspace of boundary values of holomorphic functions, where do t is the usual 
surface measure weighted by the factor x,(z)=exp(-tlzl2). It has the following 
regularity property. 

Theorem. Let f2 be a smooth bounded pseudo-convex domain in C", n>= 2. Fix a 
positive real number s. There exists to such that for all t > to the weiffhted Szeg6 
projection St is a bounded operator from WS(bO) into itself [and hence from W'(bf2) 
into itself when 0 <- r <- s]. 

Proof. It suffices to consider positive integral s. By Kohn's theory of the 
~-Neumann problem with weights [14] there is for each positive e some t(s, ~) such 
that when t > t(s, ~) the weighted Neumann operator Nt admits the estimate 

ll~tNtftls,(t)<=elIflls,~,)+ C(t) IIf I{o (4.1) 

for all ~--closed (0, 1) forms f .  We will choose e momentarily, and the corresponding 
t(s,e) will be the t o in the theorem. Note that since the weighted Bergman 
projection B z equals I -  ~tNt~-the estimate 

I[nt u [1 s, it) < C(t) II u II s, tt) (4.2) 
holds on functions u. 
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If f and h are holomorphic, Green's theorem implies 

S fhdat = ~ fz ,Lh,  (4.3) 
bO 0 

where, ifQ is a smooth defining function for f2 and ~0 is a smooth function equal to 
IV~1-1 near bO, 

[ O h ~ t? f O 0 "~ ] 

By elliptic theory one can show (see [4]) that 

Ilhlls+ 1..)---- Cllghlls.(o + C(t) Ilhllo �9 

Invoking estimate (4.1) gives 

[Ihlls+ 1,~,)< CIIB,LhlIs,,,)+ C~[Ihlls+ 1,{,~ + C(t, ~) Ilhlls 

since 0-h = 0. We now fix ~ equal to (2C)- 1. Ifh is sufficiently smooth we can absorb 
the error terms to obtain 

II h 11, + 1, (o < C I1BtZh 11 s, ~,) + C(t) II h 11 o. (4.4) 

We next replace h by Stu, where u is any smooth harmonic function. Since Stu is 
not a priori smooth, this step needs justification, which we postpone temporarily. 
By (4.3) and the definition of the weighted Szeg6 projection 

BtLStu = ~ Bt(., z) u(z) da t 

= B , [ Z ?  1 A ( u e ~ z , ) ] ,  

the second step being another use of Green's theorem. By estimate (4.4) and the 
bound (4.2) on the weighted Bergman projection 

II Stu I1~ + 1, ~o ---- C(t) (11 u II, + ,, ~,) + II Stu II o)-  

This reduces to 

II S,u Lls + 1/Z{ba) < C(O II u IIs + 1/z(bo) (4.5) 

if we restrict to the boundary, observe that the weight Zt and its reciprocal are 
bounded on ~, and recall that St is continuous on LZ(bf2, drrt) by definition. By 
interpolation it follows that St is continuous on W"(bf2) when 0<  r <  s + 1/2. 

We have derived (4.5) as an a priori estimate, that is, assuming that St preserves 
the space C~~ To complete the proof we consider the interior approximating 
domains f2~= {z e f2: O(z) < -6} .  The weighted Szeg6 projections for the I2 ~ 
converge to the weighted Szeg6 projection for O [4], so it is enough to prove (4.5) 
for the f2 ~ with the constant independent of 6. Since Kohn's global regularity 
estimates hold uniformly on the f2 ~, the above argument gives (4.5) as a uniform a 
priori estimate. Now we choose the defining function 0 so that the f2 a are strictly 
pseudo-convex. We will be done as soon as we know that the weighted Szeg6 
projection for a strictly pseudo-convex domain D preserves the space of functions 
smooth up to the boundary. To see this one can take any regularity proof for the 
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Szeg6 projection in a strictly pseudo-convex domain [1, 5, 8, 18] and check that it 
works with weights. Or one can use the trick of Kerzman and Stein [12] to write 

St=S(I  + S - S * ) -  1, 

where S* is the adjoint of S in the weighted space L2(bD, da,). Since S - S *  is 
represented on U(bO) by the kernel S(w,z)[1-exp(t]w]Z-tlzl2)], which is a 
kernel of type 1, it follows that St preserves C~ since S does. This completes the 
proof. 

5. Proof of  the Main Theorem 

We shall finish the proof of the main theorem using an approximation argument. 
Since the holomorphic degree p plays no role in solving the Ob operators, for 
simplicity we shall assume ~ is an (n, n -  1) form. We first derive the relation of the 
condition (0.1) with the weighted Szeg5 projection St. 

Any (n, n -  1) form ~ such that ~=z~ can be expressed as ~ =f,(*Or) for some 
function f~ on b~, where * is the Hodge star operator with respect to the weighted 
metric on ~. 

Lemma. The (n, n -  1) form ~ with L 2 coefficients satisfies condition (0.1)/f and only 
/f S,f=0. 
Proof. Let O=*(~rA-Or). Since dr=(~+~)r vanishes when restricted to bQ, we 
have 

�9 & = 0 ^ ~r 

=O ̂  dr--O A ~r 

=O A dr + *Jr 

=*~-r 

on bf2. If r is a holomorphic function on ~ that is in C(~), we have 

I ^ r = 
bg2 b~ 

= f f , r  I f ,r  
b~Q b.Q 

= ~ fd~da,- I ftr 
bl'~ bD 

Therefore ~ a ^ r = �89 I f r  da, 
b~Q b~Q 

and the lemma is proved since the holomorphic functions that are continuous up 
to the boundary are dense in the holomorphic functions with L 2 boundary values 
in pseudo-convex domains. 

To prove the main theorem, we approximate ~ in WS(bf2) by smooth (n, n -  l) 
forms a i where ~i=fj(*0r).  Define 

01= ( I - S , ) f f ,  
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Then  Stj~ = 0, and  f rom the l emma above  we see that  ~j satisfies cond i t ion  (0.1). By 
the regular i ty  t heo rem for St p roved  in Sect. 4, we can m a k e  g~ as smoo th  as desired 
by  choos ing  t large enough.  Moreover ,  ~ in WS(bf2). We app ly  L e m m a  3 in 
Sect. 3 to find an (n, n -  2) form u~ ~ WS(bf2) such that  

and  II u~ll~b~ < c~ll~ll~b~). 
I t  is easy to see tha t  u~ converges  in WS(bf2) to an e lement  u E W'(bf2) satisfying 

~-bu = ~ and  II u II,r < cs II ~ II ~<bO). The theorem is proved.  
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