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Sobolev Estimates for the Lewy Operator
on Weakly Pseudo-Convex Boundaries

Harold P. Boas and Mei-Chi Shaw *
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Let © be a bounded domain in C* with smooth boundary b2, n>2. The Cauchy-
Riemann operators ¢ on C" induce in a natural way a complex of differential
operators on b2, the tangential Cauchy-Riemann complex or d, complex. The 7,
complex has played an essential role in the study of boundary values of
holomorphic functions and holomorphic extension problems, Kohn and Rossi
[16] and Andreotti and Hill {3]. In this paper we shall study the global solvability
of the d, operator in top degree on weakly pseudo-convex boundaries in L? and
Sobolev spaces. The ¢, operator in top degree has been of considerable interest
since it led Lewy [17] to his famous example of an unsolvable differential equation.
When bQ is strongly pseudo-convex, using kernel methods Henkin [10] showed
that despite the Lewy phenomenon, one can solve the J, operator in top degree
globally under a suitable compatibility condition. He also obtained the regularity
of the solutions in the IP spaces where 1<p<oo. Recently Kohn [15] has
established Sobolev solvability on boundaries of domains of finite type using
microlocal analysis and subelliptic estimates. On general weakly pseudo-convex
boundaries Rosay [197 has proved C® solvability using results of Kohn [14] and
Kohn and Rossi [16]. A simplified proof was given by Shaw [22]. However, the
arguments in {197 or [22] do not have good control over the regularity of the
solutions (both have a loss of one derivative). In this paper we obtain a solution of
the d, equation in top degree with sharp Sobolev estimates on weakly pseudo-
convex boundaries. Qur main result is the following:

Main Theorem. Let Q be a bounded domain in C" with a smooth weakly pseudo-
convex boundary bQ, n22. For every (p,n—1) form o on bQ, 0<p<n, with W*
coefficients where s is a nonnegative integer, if o satisfies the compatibility condition

fang=0 0.1)
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for every d-closed (n— p, 0) form ¢ on Q such that ¢ is continuous up to b2, then there
exists a (p,n—2) form u with W* coefficients such that

Opu=0. 0.2)
Furthermore, there exists a constant c, independent of « such that

||u”s(bn)§cs”“||s(bn),
where || || w0y denotes the norm in the Sobolev space W*(bQ).

Corollary. Under the same assumption as in the theorem, the 0, operator in top
degree has closed range in the I* as well as W* sense.

Note that by Lewy’s example, the d, operator in top degree does not have
closed range locally. Moreover, it does not always have closed range for abstract
CR structures. Burns has observed [6] that for Rossi’s example [20] of a non-
embeddable strongly pseudo-convex CR structure of real dimension three,
the 0, operator does not have closed range in either the I? sense or the C®
sense.

There has also been a great deal of work on the d, complex in lower degrees (i.c.,
g<n—1) when bQ is strongly pseudo-convex (see e.g. Kohn [13], Folland and
Stein [8], and Folland and Kohn [7]). When bQ is weakly pseudo-convex, the 12
and Sobolev regularity of d, for the lower degrees was proved recently in Shaw
[21]. (The case g=n—2, not included in the statement of the theorem in [21],
follows easily from the same method.) The technique used in this paper could also
be used to establish the lower degree case.

The proof of the main theorem consists of two parts: first a priori estimates
assuming « is smooth, and then an approximation argument to construct the
solution. In Sect. 2 we introduce the jump formula derived from the Bochner-
Martinelli-K oppelman kernel. In Sect. 3 we prove the a priori estimates using this
jump formula. In order to pass from a priori estimates to actual construction of
solutions with estimates, it is necessary to know the regularity of the (weighted)
Szegb projection, since condition (0.1) is closely related to the Szegd projection.
Section 4 is devoted to proving that the weighted Szego projection is regular on
weakly pseudo-convex boundaries. The method used here is very similar to the one
used in Boas [4]. We finish the proof of the theorem in Sect. 5.

With suitable modification our main theorem can be extended to the case of a
relatively compact pseudo-convex domain in a Stein manifold. One has to replace
the Bochner-Martinelli-Koppelman kernel with its generalization to Stein
manifolds (see Theorem 4.5.2 in [25]). The proof then goes through essentially
unchanged.

Professor Kohn has kindly informed us that he has obtained a proof of the
theorem by using microlocal analysis [24].

1. Notation

We assume that Q is a bounded pseudo-convex domain in C" with defining
function r normalized so that the gradient of r has length one on the boundary bQ.
Let B be a fixed large ball containing the closure of Q in its interior.



Sobolev Estimates for the Lewy Operator 223

Consider the space of (p, n— 1) forms (0 < p< n) whose coefficients are smooth
functions on bQ. As usual we identify two such forms f and g when (f —g) A or=0.
When we wish to be explicit about this identification we use the projection 7 onto
the subspace of forms that are pointwise orthogonal to the ideal generated by or.
Thus 3, f = (5f) where f'is any smooth extension of f to . We extend 0, to forms
with L2 coefficients by taking its Hilbert space closure. For details see [16].

Thenorm || |4q) in the Sobolev space W*(bQ) is defined in the usual way via a
partition of unity and tangential Fourier transforms. When s> 0 the norm || ||,
of a function in W?*(€2) is the infimum of W*(C”) norms of extensions of the function.
When s<0 we use || [lyq for the norm in the dual space to WI(Q).

For technical reasons we need special tangential norms in a fixed tubular
neighborhood Q, of b€2. For & close to zero let I;={z € C": r(z) = §} be the smooth
surface boundmg a perturbation of Q and set

o= § 1712 dr-

We also define

D" flsien = o D% S Wls-+ m— ki (1.
DT flllson = OS%M DY D fllls+m - a2 » (1.2)

where D,=0/dr. Norms of forms are computed componeniwise. We also write
QF=0.nQ, 2, =Q.\Q.

Kohn’s theory of the 6-Neumann problem with weights [14] plays a key role in
our argument. We use the subscript ¢ (N,, S,, etc.) to denote an object (Neumann
operator, Szegd projection, etc.) relative to Lebesgue measure weighted by the
factor y(z) =exp(—tlz[*).

2. The Jump Formula

Let a bea smooth (p, n— 1) form on the boundary bQ such that « = t«. Let K denote
the Bochner-Martinelli-Koppelman form:

(n—1)! -

K, 2)= 3" Gy Z(— )’+1 IZ"A dzk/\(dC, dz).

Define

«*(z) when zeQ,

b‘L #)AK(E 2)= {zx “(z) when zeC"Q. @D

Then o and o~ are d-closed forms which extend smoothly to Q. The difference
between their tangential parts on the boundary recovers a:

Wt [pp—o )= (= 1Pa. (2.2)

Indeed the boundary values of a* and o~ equal the singular integral on bQ
corresponding to (2.1) plus and minus one-half of (— 1)’ a. For details see [9] or [2].
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We need the following estimates for «* in Sobolev norms. Recall that , is a
tubular neighborhood of b2 and Q, =Q\Q.

Lemma. For each non-negative real number s there are constants C and C,,
(independent of o) such that

||a+ s+ 1/2(9)§C“°‘"s(m), 2.3)

|“Dma_”ls—m+1/2(Qg)§cm“a"s(bﬂ)' 24)

Proof. We may assume that o has small support contained in a boundary chart
with coordinates ¢, ...,t,,_,r. Except for a smooth perturbation caused by
flattening the boundary locally, the coefficients of the forms o+ and o~ are sums of
the Poisson integral of « and the Poisson integrals of the Riesz transforms of « (cf.
[23, p. 236]). The Riesz transforms are classical singular integrals that are bounded
in W5(bQ) for all 5. By elliptic theory the W** /() norm of a Poisson integral is
bounded by the W*(b£2) norm of its boundary value, so (2.3) holds. Estimate (2.4) is
a simple calculation using that the Fourier transform of the Poisson kernel is
exp(—r|z]), up to constants. Indeed such an estimate holds for any operator whose
Fourier multiplier has the form wu(rjz]) for a smooth function : see [11,
Theorem 2.5.7] and Lemma 1 below.

To solve J,u=u« it suffices to find forms u™ and u~ such that du* =a* and
Oy~ =a~. We solve the first of these problems with estimates in W*(bQ2) by
applying Kohn’s global regularity theorem for the weighted 0-Neumann problem
[14]. Putu® =D,N,a*. Then du* =™ in Q, and for sufficiently large ¢ (depending
on s)

||‘D“+|”s— 1202 = C”a+ s+ 1/2(0) = Cl“““s(m) .

Restricting to the boundary gives J,u* =a*, and by the trace theorem

llu* ”s(bQ) = C”a”s(mr 25)

It remains to solve J,u” =o~. Note that o~ inherits the compatibility
condition (0.1) from o by the jump formula (2.2) and the J,-exactness of a™.

3. Construction of -Closed Extension with Estimates

We shall construct a d-closed extension of «~ on B with estimates. Our method is
similar to the one used in [21]. Thus we will only show the necessary modification
and refer the readers to Shaw (Lemma 3 to Lemma 6 in [217]) for details.

Lemma 1. For arbitrary smooth functions u; on bQ, j=0,1, ..., k,, there exists a
Sunction Eue C3(R,) such that DJEu=u; on bQ, j=0,1, ..., k,. Furthermore, for
every real number s and positive integer m, there exists a positive constant c,,

depending on s but independent of the u;s such that
ko

WID™Eullls - jmi+ 1/200 = Cm Zo llea;ls - jeomy (3.1)

ko
IDT™Eul|l, - 1/2(2,) SCm 'Zo I “j”s - j(b) - (3.2)
j=
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Proof. It suffices to prove the lemma assuming u; is supported in a special
boundary coordinate chart with coordinates t,, ..., t,,_,,7. Let p be a function in
CZ(R) which is equal to 1 in a neighborhood of 0 and let the partial Fourier
transform of Eu be

ko r
(Eu)™(z,r)=w(4r) ,:‘:o 1) i

where d(7) is the usual Fourier transform of u; and A=(1+17|*)"/. It follows from
Theorem 2.5.7 in Hormander [11] that D/Eu=u; on bQ and that Eu satisfies (3.1).

To prove (3.2), we note that for every nonnegative integer i, by a change of
variable, we have

§ D)) dr=22CD71 [ Di(p(r)ri)f> dr.
Thus, from the definition (1.2), we have
IDT™Eu()?- 1/2(2.)

s T ] ARl | Olpnydr

j=00<i<m+1 R2n
ko 5
ECp .ZO ““j”s—j(bm-
i=

Lemma 2. Let o be a smooth (p,n—1) form on bQ2 that satisfies condition (0.1) and
let o~ be defined by (2.1). Then for any nonnegative integers k, s, there exists a
(p.n—1) form f e CXB) such that f=a~ on B\Q and 0f =0 on B. Furthermore,
there exists a constant C depending only on s, k but independent of o such that

|||Dﬁ|“s2~3/2(95)§C”a”f(bg)- (3.3)

Proof. By the trace theorem for Sobolev spaces (see e.g. Theorem 2.5.6 in
Hormander [11]) and inequality (2.4), we have

“Diah ”s—-j(bQ) < CIHDH la_Hls-j— 1/2(92:) = C"“Hs(bm . (3.4)

Let k, be a large positive integer [say ko> 2(k+n)]. Applying Lemma 1, we can
extend &~ componentwise and obtain e C*°(B) such that =~ on B\Q. Then we
have for any integer m

D™ Bllls - i + 17202 S Clltll 5o » (3.5)
2T Blls- 1/2(25) = C““”s(bg)- (3.6)
Set B* = fl,. The desired § will have the form
j- {ﬁ on B\Q
- Bt —Fi " on Q,

where F,, 8" vanishes to order k+ 1 on bQ2 and 0F, ;8" =3 on Q. Then f is
O-closed on B and fe C¥(B).

To construct F,,,B* we use the weighted J-Neumann operator N7 on (p, 0)
forms, which is defined in terms of the operator N; on (p, 1) forms by

NO=D(N}?3.
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We first define

FB*=—+3N?+ 0",
where * is the Hodge star operator with respect to the weighted metric on Q. For
sufficiently large ¢, it follows from the regularity theorem for N; (the Main
Theorem in [14]) and the Sobolev embedding theorem that FB+ € C*** 1(Q). Since
B* satisfies condition (0.1) by the remark at the end of Sect. 2, it follows from the
arguments in [22] that

oFB*=0B* on Q
and

FR* Adr=0 on bQ.

In order to modify FB* to make it vanish to high order on bQ, we note that 9p*
vanishes to order k, on b2, so we can repeat the arguments of Lemma 3in [21] to
construct (p,n—2) forms B, B, ..., B and a (p,n—1) form 7, such that Fg~*
=0(rBo)+0(r*B)+ ... +0(r* * 1 B) +r** (1, — 0B,). Each B; is obtained from the
ith derivatives of the components of FB*. Set

k .
Fyo 1" =FB* ~ 'Zo ort1p) .
Then
EFk+1ﬂ+=3_ﬁ+ on Q
and
Fk+1ﬁ+=0(rk+1) on bQ.
Since FB* € C**(Q), we have F,, " € CX(Q). This completes the construction
of f.
To show that § also satisfies (3.3), note that by (2.4), it suffices to estimate § on

Q.. We claim that for any cut-off function n e C¥(Q,) there exists a constant ¢ such
that

NDHF B lls- 37200 S OB s 1/2602) + 0BT I~ 10) » (3.7
|||DT’”nFﬁ+|||s_ 3200 = c(||lDT"'ﬂ+ {1 i2@ent |[5—ﬂ+ lls- 1(9;)) . (3.8)

Since IN?=N}!J on sufficiently smooth (p,0) forms, we have FB*
=—«N!J+Jp". By using estimates for NI, inequalities (3.7) and (3.8) can be
essentially proved as in Lemmas 4 and 5 in [21]. Combining (3.7), (3.8) and (3.5),
(3.6), we have proved that § satisfies (3.3) with a slightly smaller &.

Lemma 3. Let 2 be a smooth bounded pseudo-convex domain in C", n=2, and let o
be a smooth (p,n—1) form on bQ satisfying condition (0.1). Then for every
nonnegative integer s =0, one can find a (p, n—2) formuge W*(bQ2) such that 0yu,=o
on bQ2. Furthermore, there exists a constant cg independent of « such that

f “s”s(bn) Scila “s(bn) .
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Proof. From the remark in Sect. 2, we only need to show that one can solve

du~ =~ on bQ. By Lemma 2, we can extend o~ to be a f-closed form fon B. We
solve the following equations on B:

da=p
Di=0.
Then for any cut-off function & e CF(Q,) such that £=1 on bQ, we have
D& 12000 Z DBl - 312000+ 181 i1+ 1B —kcvm)  (3.10)

by the interior regularity for the elliptic system (3.9). By the global regularity of (3.9)
and estimate (3.3), the right-hand side of (3.10) is bounded by a constant times
lllssy Denote the restriction of 4 to b2 by u~. Then the trace theorem for
Sobolev spaces gives

(3.9)

flu™ ”s(bQ) < C”d“s(bn) :

In view of (2.5), the form u,=(—1)? (u™ —u ") satisfies the requirements of the
lemma.

Remark. Clearly Lemma 3 holds if « is sufficiently smooth (not necessarily C*).

4. The Weighted Szegi Projection

To pass from the a priori estimate of Lemma 3 to the final result we need estimates
for a boundary projection onto holomorphic functions. In [4] regularity of the
Szegd projection was derived from regularity of the J-Neumann operator, but here
we have only regularity of the weighted Neumann operator. We modify the proof
in [4] to obtain regularity of the weighted Szegd projection, which suffices for the
approximation argument in the next section.

The operator of interest is the orthogonal projection S, from [*(bQ, da,) onto
the subspace of boundary values of holomorphic functions, where do, is the usual
surface measure weighted by the factor y,(z) =exp(—t|z|?). It has the following
regularity property.

Theorem. Let Q be a smooth bounded pseudo-convex domain in C", n=2. Fix a
positive real number s. There exists t, such that for all t>t, the weighted Szegd
projection S, is a bounded operator from W(bQ) into itself [and hence from W'(b£2)
into itself when 0<r<s].

Proof. Tt suffices to consider positive integral s. By Kohn’s theory of the
0-Neumann problem with weights [14] there is for each positive e some (s, &) such
that when > (s, £) the weighted Neumann operator N, admits the estimate

IDN flsw=Self s+ COL o (4.1)

for all -closed (0, 1) forms f. We will choose ¢ momentarily, and the corresponding
t(s,&) will be the t, in the theorem. Note that since the weighted Bergman
projection B, equals I —D,N,0 the estimate

IBatlls, i < C@ Nuls, ¢ 4.2)
holds on functions u.
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If f and h are holomorphic, Green’s theorem implies
.‘. fhdaz = IthLh, (4.3)
bs2 Q

where, if g is a smooth defining function for 2 and v is a smooth function equal to

|Vo|~! near bQ,
h o _, 0 {0
Lh= 42[a 6? S <a‘_’wx,)]

By elliptic theory one can show (see [4]) that
IBlls+ 1,0 ClILAls, 0+ C@®) Ao -
Invoking estimate (4.1) gives

I1Blls+ 1,0 = CIBLA| o+ Cell b5 1,0+ C(2, ) | Al

since oh=0. We now fix ¢ equal to (2C) ~ . If his sufficiently smooth we can absorb
the error terms to obtain

1Blls+ 1,60 = CIBLAl, i+ C@) 1Al - 44

We next replace k by S,u, where u is any smooth harmonic function. Since S,u is
not a priori smooth, this step needs justification, which we postpone temporarily.
By (4.3) and the definition of the weighted Szegd projection

B.LSu= | BJ(-,2)u(z)do,
b0

=B.[x, ' A(uoypy)],

the second step being another use of Green’s theorem. By estimate (4.4) and the
bound (4.2) on the weighted Bergman projection

IS+ Lo= C(®) (llulls+ 1,7+ Seell) -
This reduces to

ISulls+ 1200 = CO) 1ulls+ 1202 4.5

if we restrict to the boundary, observe that the weight y, and its reciprocal are
bounded on @, and recall that S, is continuous on I*(bQ, do,) by definition. By
interpolation it follows that S, is continuous on W"(b2) when 0<r=<s-+1/2.
We have derived (4.5) as an a priori estimate, that is, assuming that S, preserves
the space C*(Q). To complete the proof we consider the interior approximating
domains Q°={zeQ:9(z)< —6}. The weighted Szegd projections for the Q°
converge to the weighted Szegd projection for Q2 [4], so it is enough to prove (4.5)
for the Q° with the constant independent of §. Since Kohn’s global regularity
estimates hold uniformly on the Q%, the above argument gives (4.5) as a uniform a
priori estimate. Now we choose the defining function ¢ so that the Q° are strictly
pseudo-convex. We will be done as soon as we know that the weighted Szegd
projection for a strictly pseudo-convex domain D preserves the space of functions
smooth up to the boundary. To see this one can take any regularity proof for the
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Szegb projection in a strictly pseundo-convex domain [1, 5, 8, 18] and check that it
works with weights. Or one can use the trick of Kerzman and Stein [12] to write

S,=S(I+S-—-S"7"',

where S* is the adjoint of S in the weighted space [*(bD,ds,). Since S—S* is
represented on I?(bD) by the kernel S(w,z)[1—exp(tlw|® —t|z|*)], which is a
kernel of type 1, it follows that S, preserves C*(D) since S does. This completes the
proof.

5. Proof of the Main Theorem

We shall finish the proof of the main theorem using an approximation argument.
Since the holomorphic degree p plays no role in solving the 8, operators, for
simplicity we shall assume o is an (n,n— 1) form. We first derive the relation of the
condition (0.1) with the weighted Szegd projection S,.

Any (n,n—1) form « such that a =ta can be expressed as o= f,(*0r) for some
function £, on b{2, where * is the Hodge star operator with respect to the weighted
metric on £.

Lemma. The (n,n—1) forma with L? coefficients satisfies condition (0.1) if and only

if S,f;=0.

Proof. Let 8=*(dr A Or). Since dr=(0+ 0)r vanishes when restricted to bQ, we
have

*Or=0A0r
=0Adr—0n0r
=0Adr+*0r
=*0r

on bQ. If ¢ is a holomorphic function on  that is in C(Q), we have
Jang= | fp(*or)
b2 b0
= [ fg(van— | fp(+an)
= | figdo,— | fig(*or).
b2 b0

Therefore {ang=1{ fodo,
b2

and the lemma is proved since the holomorphic functions that are continuous up
to the boundary are dense in the holomorphic functions with L? boundary values
in pseudo-convex domains.

To prove the main theorem, we approximate « in W*(bQ) by smooth (n,n—1)
forms «; where o;= f/(*dr). Define

gg: (I - St)fz:j ’
o= gl(*or).
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Then 8,4/ =0, and from the lemma above we see that o satisfies condition (0.1). By
the regularity theorem for S, proved in Sect. 4, we can make g/ as smooth as desired
by choosing ¢ large enough. Moreover, «;—a in W*(bQ2). We apply Lemma 3 in
Sect. 3 to find an (n,n—2) form uje W*(bQ2) such that

Opttj=01]

and ”u}”s(bﬂ) = Cs”a;'”s(b!))' . o
It is easy to see that u; converges in W¥(bQ2) to an element u € W*(bQ2) satisfying
Jpu=0 and ||ullypa) < C4llllspq- The theorem is proved.
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