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1. Introduction 

This paper studies asymptotic behavior in L 2 of weak solutions of the Navier- 
Stokes equations in halfspaces: 

u , - A u + u .  Vu+17p=O in D " x ( 0 , ~ )  

V.u=O in D " x ( 0 , ~ )  

u = 0  on 0D"x(0, oo); ult=o=a in D". 

(NS) 

Here n>2, D"={xeR"; x=(x',x,), x,>0} is the upper halfspace of R" with 
boundary OD"; u - t #  ~" and p denote, respectively, unknown velocity and - - ~  J~= 1 

pressure, while a-~-ta i~"j~=, is a given initial velocity. In the previous work [7] the 
second author studied the Cauchy problem for the same equation and proved that 
for each a e L2(R ") with V. a = 0 there is a weak solution u which decays in L z like 
the solution of the linear heat equation having the same initial value; see also [14, 
15, 23]. In this paper we shall establish the same type of results in the case of 
halfspaces. More specifically, we show that for each a e L2(D ") such that V. a = 0 
and a"= 0 on OD" there is a weak solution u of problem (NS) which tends to zero as 
t~ao, and moreover, if aeL~c~U for some 1 __<r<2, then u decays in L z like the 
solution v of the Stokes system: 

vt--Av+Vp=O in D"•  

V.v=O in D " x ( 0 , ~ )  (S) 

v=O on 0D"x(0 ,~) ;  vlt=o=a. 

The problem of L 2 decay for weak solutions of the Navier-Stokes equations 
was first raised by Leray [8] in the case of the Cauchy problem in R 3. Schonbek 
[14, 15] attacked this problem and succeeded for the first time in showing the 
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existence of weak solutions with explicit decay rate. Kajikiya and Miyakawa E7] 
considered the case of R n, n>2,  and generalized the result in 1,14] with 
improvement. Wiegner 1-23] discussed the same case and obtained the most 
general results in this direction. However, all of the above-mentioned works rely 
on the theory of Fourier transform in treating the nonlinear term u .  IZu and 
therefore the arguments developed there cannot be directly applied to the case of 
unbounded domains with boundaries. 

In this paper we shall give an approach to the L 2 decay problem in the case of 
halfspaces which does not use Fourier transform directly. Our main tool is the 
fractional powers of the Stokes operator in general L r spaces. The fractional 
powers of the Stokes operator is studied in detail in I-5] in the case where the Stokes 
operator is boundedly invertible. In our case, however, the Stokes operator is not 
boundedly invertible, and in such a case it is in general not easy to establish 
calculus inequalities involving the fractional powers. We can avoid this difficulty in 
the case of halfspaces by appealing to the fact that the halfspaces D n are invafiant 
under the action of scaling transformations: x--*2x, 2 > 0, and obtain the desired 
inequalities. Those calculus inequalities will then be applied to prove the so-called 
(L p, La)-estimates for the solutions of problem (S) as well as to give a good estimate 
for the nonlinear term of (NS), both of which are needed in establishing our main 
results. 

The existence of fractional powers of the Stokes operator is guaranteed by the 
fact that the Stokes operator on D ~ generates a bounded analytic semigroup in 
each L" space, 1 < r < ~ .  This is shown for n = 3 by McCracken 19] with the aid of 
the theory of hydrodynamic potentials. In this paper we extend the result of 
McCracken to all dimensions n>2,  using the formula of Ukai !21] for the 
solutions of the Stokes system (S). 

After showing the boundedness and analyticity of the semigroup, we study the 
fractional powers of the Stokes operator. Here we again apply Ukai's formula in 
order to identify the domains of the fractional powers with some complex 
interpolation spaces. The desired calculus inequalities involving the fractional 
powers are then easily deduced from the complex interpolation theory and the 
invariance of D" under scaling transformations. 

Our main results (stated in Sect. 2) are nothing but the restatement of those of 
[7]. It is also possible to prove the decay results of the form stated in Wiegner E23]. 
However, we adopt our present version of main results since it is directly connected 
with the (L p, L~)-estimates for the solutions of problem (S) and since the (L p, LO- 
estimates would be interesting in themselves. 

The proof of our main results is carried out for n-> 3 with the help of a special 
kind of approximate solutions to problem (NS). We employ the idea of Sohr, v0n 
Wahl, and Wiegner 1-16] to construct the approximate solutions. In Sect. 5 we shall 
show that for any initial data in L 2 the approximate solutions constructed along 
the idea of [16] contain a subsequence which converges to a weak solution of (NS). 

2. Main Results 

We use the following notations: U = L'(Dn), 1 < r < oo, denotes the usual Lebesgue 
space of scalar, as well as vector, functions defined on the halfspace D n. The norm of 
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L' is denoted by II �9 Jl,- Co~o(Dn) is the set of smooth divergence-free vector fields 
with compact support in D n, and X, = X,(D") denotes the L'-closure of C~,o(D~). As 
will be shown in Sect. 3, the Helmholtz decomposition: 

L ' = X ~ G ,  (direct sum), G,= { f~  L'; f =  Vp} 

holds for 1 < r < c~. We write P = P, the projection onto Xr associated to the above 
decomposition. W"'(D ") denotes the usual L" Sobolev space with norm II �9 II .... and 
W6.'(D n) is the closure in Ws"(D ~) of the set C~(D ~) of smooth functions with 
compact support in D". 

Let a be in X2. A function u defined on (0, 00) with values in X2r~WI'2(D ~) is 
called a weak solution of (NS) if 

(a) u~L~ T; X2)nL2(O, T; Wol'Z(Dn)) for each 0 < T < o o ;  and 

(b) - ~ (u,v)gtdt+ S (Vu, Vv)gdt+ (u" Vu, v)gdt=(a,v)g(O) 
0 0 0 

for all v e Xzc~ Wo L 2(D~)nL" and all g = g(t) e C 1([0, oo); R 1) vanishing near t = oo. 
Here and in the following, ( . , . )  denotes the duality pairing between L ' and L", 
1/r'= 1 - 1/r. Note that the third integral on the left of (b)  is finite, due to the 
requirement v ~ L*. It is well known that for each a e X2 problem (NS) possesses a 
weak solution. The uniqueness of weak solutions still remains an open problem 
when n > 3. Our main results are now stated as follows. 

Theorem 1. For each a ~ X 2 there is a weak solution u of (NS) such that 
(i) IJu(t)ll2~0 as t ~ ;  

(ii) I f  a ~ X 2 n L  ~ for some 1 ~ r < 2, then 11 u(t)II 2 < Ct-  (~/'-"/2)/2 for t > O, with 
C>0 depending only on n, r, and a. 

Theorem 2. Let a ~ X 2 and let Uo(t) be the solution of (S) with Uo(0 ) = a. Then the 
weak solution u given in Theorem i satisfies 

(iii) II u( t )  - Uo(t)112 = o ( t  ~/2 - . /4)  a s  t - - }  oo ; 

(iv) I f  a~X2nL"  for some 1 < r < 2 ,  then 

Ilu(t)-Uo(t)ll2=o(t-("/r as t--,oo. 

As will be shown in Sect. 4, the function Uo(t) satisfies the estimates: 

Iluo(t)llq<Ct-{'/'-"/~)/2llall,, a ~ X 2 n L  ~ 

provided either 1 < r < q < oo or 1 ~ r < q < oo. Thus Theorem 2 means that the 
decay rate given in Theorem 1 is in general determined by the linear part of the 
weak solution. 

We shall prove Theorems 1 and 2 in Sect. 4. In Sect. 3 we define the Stokes 
operator on halfspaces and prepare some basic properties of fractional powers, 
which are needed in Sect. 4. Section 5 is devoted to constructing a special kind of 
approximate solutions to (NS), which we need in showing our main results for 
n~3. The construction and convergence of the approximate solutions are 
discussed along the idea of 1-16]. 

Throughout this paper C denotes constants which may vary from line to line, 
while C j, j = 1, 2 . . . . .  and M denote fixed constants in each context. 
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3. The Stokes Operator over the Halfspaces 

( I )  The Helmholtz Decomposition 

We begin by establishing the decomposition of U-vector fietds on D" into 
solenoidal and potential parts, as given in [4] for bounded domains and in [ 10,17] 
for three-dimensional exterior domains. Although the result below is conceptually 
well known (see [9, Appendix] for an outline of the proof in case n = 3), no complete 
proof seems to be available; so we give here a complete proof for the reader's 
convenience. First recall that Xr is the U-closure of C~. ~(D") and that G, = {fe  L'; 
f =  Vp, p e L~o~(/)")}, where/~n is the closure of D ~. 

Theorem 3.1. ( i ) U = X , ~ G , ,  l < r < ~  (direct sum). 
(ii) X* = X,, and X ,  x = G,, for 1 < r < ~ ,  where r' = r/(r - 1), X* is the dual space 

of  X,,  and X ,  x denotes the annihilator of  X,. 
(iii) I f  P, denotes the bounded projection from L" onto X ,  associated to the 

decomposition (i),  then the dual P* equals P,,, r '= r / (r-1) .  

Proof. We follow the argument in [10]. Consider the space 

Y,= {u e Lr; V.u=O,u"loD,=O}, 1 < r < o o .  

Since u"loo, is well-defined in W- 1/"r(0D") so that the divergence theorem holds, 
the space Y, is closed in L'; see [10] for the details. For v e C~(D") the argument in 
[9, Appendix] gives a unique decomposition v = u + Vp with u e IT,, Vp ~ U, and 
p e L]oc(/)" ) so that 

Ilull,+ [I V e i l ,  <- _ cIIvll, with C independent of v. (3.1) 

Actually, McCracken [9] shows (3.1) for n = 3; but her argument applies to all 
dimensions n__> 2. Let P~ be the linear operator sending v to u. Since C~(D") is dense 
in L', P, extends uniquely to a bounded linear operator from L" to Y,. 

Here we let G,-- X,,,• r ' = r / ( r - l ) , f o r l < r < o o .  SinceCo.n(D " 
theorem of De Rham I13, Th. 17'] implies that 

G, = { fe  L'; f =  17p, p e L~o~(/)")}. (3.2) 

We next show that 

Y,c~G,=0 for 1 < r < o o .  (3.3) 

Indeed, if f =  17p is in Y,c~G,, the function p"= Op/dx, is harmonic in D ~, lies in L', 
and vanishes on 0D". By the reflection principle for harmonic functions, p" extends 
to a harmonic function on R" which belongs to L'(R"). Hence p"= O, i.e., the 
function p is independent of x,. It follows that f =  gp=(Op/dx~ .. . .  , Op/ax,-O is 
independent of x, and belongs to L'(D"). Thus f =  gp = O, which shows (3.3). 

Consider now the operator P,. By definition, 1 -  P, maps L' into G,. This, 
together with (3.3), implies that 

Lr=Y~)G~ (direct sum), l < r < ~ ;  
(3.4) 

and P, is the associated projection onto Y,. 

We can now prove 

Y, = Xr, X*~=X,, ,  r ' = r / ( r - 1 ) ,  1 < r < ~ z .  (3.5) 
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Obviously X, C Yr. To show the reverse inclusion, we observe that Y,, = If'/G,, by 
(3.4), and therefore Y~* = G~ = X, by the definition of G,,. Now let u 1, u2 ~ Y, satisfy 
(ul-u2, Y~,)=0. This implies in particular that (ul-u2, C~,(D"))=O and so 
ut -uz  ~X~= G,. Hence u~ - u 2  = 0  by (3.3). This shows that Y, can be regarded as 
a subset of * -  •  Y,, - G,, - X,, and hence we obtain (3.5). We have now proved 
assertions (i) and (ii). Assertion (iii) is easily verified by direct calculation. The proof 
is complete. 

(II) The Stokes Operator 

In this subsection we define the Stokes operator over the halfspaces D" and discuss 
its basic properties. The main assertion is that the Stokes operator generates in 
each Xr, 1 < r < 0% a bounded analytic semigroup giving the solution to problem 
(S) and therefore the fractional powers are defined in the standard manner [19]. 
This is shown by McCracken I-9] for n = 3 with the aid of hydrodynamic potentials. 
We give here a different approach based on the formula of Ukai [-21] for solutions 
to problem (S). As seen below, this approach is simpler than that of [-9] and, 
moreover, enables us to determine the domains of fractional powers by means of 
interpolation theory of Banach spaces. 

To state Ukai's formula we prepare some notations. By R=(R',R.) with 
R'=(Rt .... ,R._I) we denote the Riesz transforms over R" (see [18]). 
S=(SI .... ,S,-1) denotes the Riesz transform over R "-1. Each Rj (resp. S~) is a 
bounded linear operator on If(R") [resp. If(R"-x)], 1 < r <  oo. For a function 
f=f(x', x,) we understand that Sj acts as a convolution with respect to the 
variables x', so Sj is regarded as a bounded operator on both If(R") and If(D"), 
1 < r < o0. Let B = B~ = - A  be the Laplacian on D" with domain D(B,)= W2"(D ") 
c~Wd'~(D"). As is well known, - B  generates on each L r, 1 < r <  0% a bounded 
analytic semigroup {e-'B; t>0}.  Moreover, one easily sees that 

e-'Bf=hE,.~, f e i f ,  1 < r <  ~ ,  (3.6) 

where h is the restriction to D"; Et denotes the convolution by the heat kernel; and 

~(x',x.)=f(x',x.) (x .>0) ;  =--f (x ' , - -x . )  (x ,<0) .  

Finally, we define 
(ef)(x',x.)=f(x',x.) (x.>0);  =0  (x .<0) .  

The formula of Ukai [21] is now stated as follows. 

Theorem 3.2 [21]. For aeXr, l < r < o %  the solution u=(u',u") with 
u'=-(u 1 .... , u"-1) of problem (S) is expressed as 

u"(t) = Ue-'BVla; u'(t)=e-tBV2a-SUe-t~Vla, 

where Vla=a,_ S. a', Vza=a' + Sa", and U=hS. R'(S. R' + R.)e. Moreover, the 
corresponding pressure is expressed, up to addition of functions of t, as the Poisson 
integral of --O.e-'BVlaleo. ( O. = O / Ox.). 

See [21] for the proof. Here we note that the Fourier transform 0 )  of Uf with 
respect to the variables x' is expressed as 

A xn 

Uf(~',x,)=l~'l I e-le'l~x"-Y)f(~',y)dy , ~ ' eR ' -~  (3.7) 
0 
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so that for a~ = fl/dx~, j = 1 ..... n, and the Laplacian A' on R"-1 we have 

djU=UOj,  j = l  .....  n - l ;  d n U = ( 1 - U ) ( - A ' )  t/2 . (3.7') 

NOW set T,a = u(t), where u solves (S). Direct calculation using Theorem 3.2 then 
gives Tt+s=TtT ~ for t,s>O, and Tta~a in X,  as t~0 .  Together with the 
boundedness and analyticity of {e-tn; t>0},  this yields 

Corollary 33. { Tt; t > 0} defines on each X, ,  1 < r < ~ ,  a bounded analytic semigroup 
of  class C O . 

Let - A ,  be the generator of (T~}, and consider the resolvent 

(;t + Ar) - la=Lr(2)a= f e-~tTtadt, 2 > 0 ,  a ~ X r .  
o 

In view of Theorem 3.2, we have 

(L,(2)a)" = U(2 +/3,)-  1 V, a; 
(3.8) 

(L,(2)a)' = (2 + B,) - 1 V2 a _  SU(2 + Br)- I Via. 

Using (3.7) and (3.7'), one finds that D(A,) = Range (L,(2)) C X, nD(B,), 2 > 0. On the 
other hand, if aeX ,nD(B , ) ,  then Via and V2a are in D(Br); and so Tta is 
differentiable at t = 0. We thus have a �9 D(A,). Hence we obtain 

D(A,) = X,nD(B, )  = Xrn  W 2" '(D")n Wol"(D"). (3.9) 

We call A, the Stokes operator. A, is expressed directly as follows: 

A r u = - P ,  Au for ueD(A,) .  (3.10) 

Indeed, using (3.7) and the relation u"= UVIu, we have 

(a.u)" + au"= ~ UV~u- V a Vlu=(O~. UV, - V~. VOu. 

Since Ir = deg'ly/dy, (3.7) and integration by parts applied to the first term on 
the right-hand side yield 

(A,u)" + Au" = O.p, 

where p is the Poisson integral of -8,Vluleo, .  A similar argument using 
u'= V~u-SUVlu gives 

(Aru) '+Au'= [7'p, V' = (01, .-., 0 , -  0 .  

Hence we get (3.10). From now on, we write T~a=e-taa=e-ta'a.  By analytic 
continuation, we see that (3.8) holds for every 2 in the resolvent set of - B,. We thus 
obtain 

Corollary 3.4. For each 1 < r <  ~ and each n/2 < O < ~, any complex number 2+0 
with larg21~0 belongs to the resolvent set of  - A ,  and the estimate 

11(2+a,)-Xll<-M/[,~l, ;t+O, larg2l=<0, (3.11) 

holds with M depending only on r, n, and O. Here I1" It denotes the operator norm. 
Moreover, A, is defined by (3.10). 
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By Corollary 3.4, the fractional powers A, ~, 0 < �9 < 1, are defined as 

A~v= lim(e+ Ar)%, veD(A~)=D((e+ Ar)~); see [19]. 
e ,o  

Corollary 3.5. (i) The estimate 

Ilull2.r<=fll(ar+ l)uilr, neD(at) 

holds with C independent of u. 
(ii) A* = At,, r'= r/(r-- 1); in particular, A 2 is nonnegative and self-adjoint in the 

Hilbert space X 2. Here Ar* is the dual operator of At. 

Proof. (i) follows from the boundedness of(1 + A~)- 1 from X, to the Banach space 
D(A,) with norm [l" ]lz.r- The boundedness is an immediate consequence of the 
closed graph theorem. To show (ii), consider the bilinear form 

D[u, v] = (Vu, ev) + (u, v). 

The operator Lr=(1 + At)-1 satisfies, by (3.10), 

C ~ tD na r' = r /(r-  1). D[Lru, v]=D[u, Lr.v ]=(u,v), for u, ve  o.a~ J, 

Since C ~ ~nn~ is dense in both of X~ and X,,, we see that O,a l ,  x "  I 

(L,u, v) =(u, L,,v) for u e X, and v e X , , .  

This implies A* = A,, and the nonnegativity of A2. The proof  is complete. 

( l l l )  Calculus Inequalities Involving Fractional Powers 

This subsection is devoted to the proof of 

Theorem 3.6. (i) The estimate 

t[OZull,<Clla,ull~, ueO(A,), 1 < r <  oo, 

holds with C independent of u. 
(ii) D(A~/z)=x/a Wol'r(D~), 1 < r <  o% and we have in particular 

IlDull,<Cl]Z~,/2ult,, ueO(A~ t2) 
with C independent of u. 

(iii) I f  ueD(A~), l < r < o o ,  0 < g < l ,  and if O < l / q = l / r - 2 g / n < l ,  then 
u e Lq(D ") and we have the estimate 

Ilutl~<__cIIa~utl,, ueO(A~) 

with C independent of u. 
Here Du and D2u represent the first and second derivatives of u, respectively. 

Notice that the estimates in Theorem 3.6 are by no means obvious, since A, is 
not boundedly invertible. We first prove a simpler version. 

Lemma 3.7. Assertions in Theorem 3.6 are valid with A r replaced by A r + 1. 

Proof. It suffices to show that the Banach space D(A~), 0 < ~ <  1, with norm 
[l(Ar + 1)~Ullr is equal to the complex interpolation space [Xr, D(A,)]~ (see [12] for 
the definition). Indeed, Lemma 3.7 is then immediately derived from the 
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interpolation theory. For  the details we refer to [5] and references therein. To 
identify D(A~) with complex interpolation spaces, it is enough (see [5]) to show that 
the complex power (A, + 1)- ~, 0 < Re z < 1, is well-defined with the property that for 
each e > 0 there is a constant C~ > 0 satisfying 

II(hr+ l)-~vll,<C~exp(zlImzl)llv[],, v e X , .  (3.12) 

To show (3.12) we recall the formula 
cO 

(A+ I)-~ =F(z) -1 ~ t~-le-t(A+l)dt, R e z > 0 ,  
o 

where F(z) is the gamma function. Applying Theorem 3.2 to the right-hand side 
yields 

((A, + 1)- Zu)" = U(B, + 1)-z Vt u, 

((A,+ 1)-:u) '  = (B, + 1)-zV2u-SU(B,+ 1)-~Vlu. 

Our problem is thus reduced to showing an estimate of the form (3.12) for the 
operator (B,+ 1) - ' .  But (3.6) gives 

(B,+ l)-~f=h(1 -A)-Zj  7, 

where A is the Laplacian on R" with domain D(A) = Wz"(R"). So we have only to 
show an estimate of the form (3.12) for (1 - A)- '. The operator (1 - A) -~ is defined 
[18] as the convolution on R" by the function G~ with Fourier transform (on R") 

d~(~) = (1 + I~l 2)-~, r ~ g" .  

Straightforward calculation yields the following estimates for derivatives D'd~: 

IDmd~(r < C,,,,exp(~lImzl)lr -m, m = 0 , 1 ,  2 . . . . .  

where C, . ,  depends on e > 0 and the order m of differentiation. We can therefore 
apply the multiplier theorem [6, Th. 2.5] to get the desired estimates for (1 - A) -". 
This proves Lemma 3.7. 

Proof of Theorem 3.6. First observe that D" is invariant under the transformation: 
x ~ . x ,  2>0.  For a function f defined on D" we set 

(TJ)(x)=f(x/2),  2 > 0 .  

Obviously, Ta defines an automorphism of X,  and of D(A,), and so an 
automorphism of each D(A~,), 0 < ~ < 1 ,  as seen from interpolation theory. 
Moreover, direct calculation using (3.10) gives 

so tha t  (#+A,)T~=T~(#+)C2A,) for 2 > 0  and # > 0 ,  (3.13) 

Ta(g + 2-  2A,) - '  =(# + A, ) - '  T a . 

This implies that, for 0 < a < 1, 

sinn~ ~ 

(1 + A, ) - 'T  a = ~ $ t -'(t + 1 + A,)- '  Tadt 
/~ o 

sinn~ ~ ,. 
= Ta I t -  (t+ 1 +,l-2A,)-~dt= Ta(1 +2-2A,)  - ' .  

o 
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We thus have 

(I+A,)~Ta=Tx(I+,~-ZA,)" for ).>0. (3.14) 

We now prove Theorem 3.6, using (3.13) and (3.14). First, Corollary 3.5 gives 

IID2ull,<Clll(Z,+ l)ull,, ueO(A,). 

We set u = T~v, v e D(Ar), use (3.13), and then evaluate both sides of the resulting 
inequality via the change of variables: y=x/,t, to get 

IIO%ll,<f~ll(A,+;~2)vd[, for all 2>0 .  

Since C1 is independent of 2, letting 2]0 yields assertion (i). Secondly, Lemma 3.7 
gives the estimates 

IIDul],<f211(ar+ 1)l/~ullr; and 

Ilull~ <C311(A,+ 1)~ullr provided that 0< 1/q= 1/r -2~/n< 1. 

This time, we use (3.14) and proceed as above to get 

IlOvll,<C211(h,+A2)I/%ll,; ]lvl}q<C3]l(h~+,t2)%ll,. 

Letting 2~0 yields assertions (ii) and (iii). The proof is complete. 

Remarks. (i) The use of the transformations T~ is suggested by McCracken [9]. She 
used the invariance property of D 3 under Ta to show the resolvent estimate (3.11). 
Theorem 3.6 plays a basic role in proving our main results in the next section. 

(ii) After the present work was completed, our attention was called to the 
preprint [24] by Simader and Sohr concerning the Helmholtz decomposition. 
They give a complete and more elementary proof of Theorem 3.1 without using the 
theorem of De Rham [13, Th. 17']. However, we have given our version of proof 
for the reader's convenience. 

4. Proof of Main Results 

In this section we prove Theorems 1 and 2 stated in Sect. 2. As in [7] we consider 
separately the cases n > 3 and n = 2. In case n > 3, we employ a special kind of 
approximate solutions to (NS) and obtain estimates which are uniform in 
approximation; the desired results are then obtained through passage to the limit. 
In case n = 2, we directly treat the (unique) weak solution itself and proceed in the 
same way as in [7]. In both cases, the basic role is played by the following (L *, L')- 
estimates for the semigroup {e-ta; t>0}. In what follows we write A=Ar  for 
simplicity in notation. 

Proposition 4.1. Let aE X2nL" for some 1 <r < ~ .  Then the estimate 

Ile-'aa II ~ < Ct- ~"/'-"r~t2 II all, 

holds with C independent of a and t > O, provided either 

(i) l < r < q < ~ ;  or (ii) l < r < q < o o .  

Proof. Under assumption (i) the conclusion follows immediately from Theorem 
3.2, (3.6), and the well-known (L ~,/.,')-estimates for the heat kernel. It suffices 
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therefore to prove the assertion, assuming l < r < q = o o ,  l = r < q < o o ,  or 
1 = r < q = o o .  

Case 1 (1 < r < q = oo). First observe that the Gagliardo-Nirenberg inequality [3, 
Part I, Chap. 9]: 

Ilf l loo<CIIfll~-"/SllDfll  n/s, n < s <  oo (4.1) 

still remains valid for functions f on the halfspaces D n. Indeed, to see this one has 
only to extend f to R" by an appropriate reflection and then apply the R"-version 
of (4.1) to the extended function. 

Applying (4.1) with s =  n+  r and Theorem 3.6(ii), we have 

Ile-'Aal[ ~ ~ Clle-'Aall~ -"/sllOe-'Aall~/" 
< - t A  t - h i S  1/2 - t A  n/s = C e  a s A e a s  �9 

Since 11 e - 'aa II, _-< Ct - r H a II, and since the boundedness and analyticity of 
e - t A  gives 

II A1/2e- 'aal ls= II A1/2e-ta/2e-tA/2a[Is <Ct-1/2l[e-tA/zal[s 

<__ c t -  a/2 -r II all , ,  

we get 
I le- 'aa  II ~ -<_ Ct-"/2qlall , .  

This proves the assertion for 1 < r < q = ~ .  

Case 2 (1 = r < q < oo). Let q '= q/(q - 1) and v e Xq,. Since X* = Xq, by Theorem 3.1, 
we have 

I le - ' aa l la= sup ](e-~Aa, v)l = sup l (a ,e- '%)l .  
Ilvllr 1 Ilvllq,= 1 

Note that here we have used A* = A,,, so that (e-ta~)* = e-iX,,, r' = r/(r - 1). By the 
foregoing result, 

[(a, e -'%)1 =< II a 1[ l [I e-~av [I oo < C t  -"/2q' [I a I11 I1 v 11 q,. 

Hence 

I te-%l la  <- C t - ' "  - ~/~)/2 Ilall~ 

which shows the result. 

Case 3 (1 = r < q =  oo). By (4.1) with s = 2 n  and Theorem 3.6(ii), we get 

- t A  < - t A  1/2 1/2 - t A  1/2 lie a[[~=Cl[e all2, [[A e all2, �9 

Applying the foregoing results to the right-hand side yields the assertion. This 
completes the proof of Proposition 4.1. 

Corol lary 4.2. For any a e X , ,  1 < r  < oo, 

I le- 'aall ,-- ,0 as t-- ,oo.  

Proof, The assertion follows from Proposition 4.1 when aeC~,r Since 
Co~,r ") is dense in X,, the result follows for an arbitrary a from the boundedness 
of the semigroup {e-Ut}. The proof is complete. 
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We now turn to the proof  of Theorems 1 and 2. As approximate solutions of 
(NS) with a e X2 and n > 3, we take the solution Uk, k = 1,2 . . . . .  of 

d 
~ U k  + A2Uk + P2(w k " F ) u k = O  , t > 0 ;  Uk(O)=a k . (AP) 

Here ak = Jka with Jk = (1 + k -  IA2) - ~, and Wk = J~Uk with N = 1 + [n/4]. (['a] is the 
largest integer in the real number a.) Problem (AP) will be solved in the next 
section; here we collect a few properties of functions UR, Wk which are needed in this 
section. 

(a) uk exist uniquely in L2(0, T; D(A2))c~WI'2(O, T; X2) for all T > 0 .  
(b) wk are bounded functions on each D" x [0, T], T > 0 ,  and satisfy V. Wk=O 

and 

i llwk(s)ll~ds< i lluk(S)ll2ds for all t > 0 .  
o o 

(c) There is a subsequence ofuk which converges in L12oc(/5" x [0, oo)) to a weak 
solution of (NS). 

From (a) we have (d/dt)Hukll2=2(Uk, U'k) for a.e. t, where U'k=dUk/dt. Thus, 
multiplying Uk to (AP) and using (P2(Wk" V)Uk, Uk)= 0, we get 

[luk(t)ll2+2i IlVuk(s)l12ds=llakl122<llall 2 for all t > 0 .  (4.2) 
o 

In the following, we write w = Wk and u = Uk for simplicity in notation; for the case 
n = 2, we understand that w = u represents the unique weak solution to (NS). 

In case n > 3, our estimates derived below are uniform in k, and so the desired 
results are obtained through passage to the limit k-ooo. Let 

A 2 = ~ 2dE(2) 
o 

be the spectral decomposition of the nonnegative self-adjoint operator  A2 in X2. 
We first prove the following, which is our  key lemma. 

Lemma 4.3. 

IIE(,~)P(w" Dull 2 ~ CIIwll 2 Ilul122 ~"+ 2)/4 

for all ,~>0, where C is independent of w, u, and 2. 

Proof. We have 

IIE(2)P(w" V)ulI2 = sup I(E(2)e(w" 17)u, o)l, (4.3) 
I lv l l2= 1 

where v e X 2. Since I 7. w = 0, the right-hand side is written as 

I(E(2)P(w. 17)u, v)l = I(w" 17u, PEO.)v)I = I(u,(w" V)E(2)v)l. (4.4) 

Applying (4.1) with s=2n and Theorem 3.6, we get 

I(u, (w. 17)E(&)v)I_-< IIw" ultlllOEO.)vlloo 
< CII wll 2 Ilul1211DE(,~)v II ~/2 dl O2E(,~)oll ~/2 

<CIIwll211ull21lal/2E(2)vll~,2llhE(2)vlla,/, 2 . (4.5) 



150 W. Borchers and T. Miyakawa 

Here we have used that E(,~)ve N D(A~)C N D(AT) for any 2 > 0  and r>2, 
m = l  m = l  

which follows from the regularity theory for the stationary Stokes system [1]. 
Since 1/2n= 1 /2 - (n -1 ) / 2n ,  a repeated application of Theorem 3.6(iii) yields 

II A 1/2E(A)v II 2. --< C II a x:z + ~.- ~;:~E(,~)v ]1 z < CAt" + ~)/4 ]1 v II 2 ; 
(4.6) 

I}AE(A)v]Ia,<__CI[AI +t"-I)/4E(L)v[I2 <C2{"+ 3)/41[vI] 2 . 

Combining (4.3)-(4.6) implies the assertion. The proof is complete. 

Remark. Lemma 4.3 is proved in [7] for the case of R" by directly applying the 
Fourier transform; see also [14], [15], and [23]. However, our proof given above 
applies also to the case of R"; indeed, the theory of Riesz potentials as given in [18] 
provides necessary estimates for fractional powers of the Laplacian in R". 

Using Proposition 4.1 and Lemma 4.3, we can prove Theorems 1 and 2 in the 
same way as in [7]. Here we give only an outline of the proof. For  the details we 
refer the reader to [7, pp. 138-145]. We start with 

d 
dt Ilull~ + 211A~J~ull~ = 0 .  

For  any fixed Q > 0, the second term is estimated as 

II a l/2u [122 >_- ~ hall E(~,)u II ~ > e(l[ nil 22 - 1[ E(~)u II 22)_-__ (o/2)([lull 2 _ I[ E(e)u I12). 
0 

This gives 
d 
d--/Ilu1122 + ellull~<elJE(o)ul]~" (4.7) 

To estimate the fight-hand side we use the integral equation 

t 

u(t) = e -'aak + $ e - c, - S)aF(w, u)(s)ds ; F(w, u) = - P(w.  V)u, 
0 

and obtain, after an integration by parts, 

t 

= E(o)e-taak + I e-eC'-~)E(e)F(w, u)(s)ds 
0 

+ I (t -- s) , I  e -  ~t'-'gE(,~)F(w, u)(s)d2 ds. 
o I_.O 

By Lemma 4.3 [and property (b) for n => 3-1 the last two terms are estimated in X: as 

l 

_~ d "+ 2)/'C ~ ]lu(s) ll ~ds. 
o 

Since II E(#)e- taa~ [[ 2 ~ II e - ' a a  k [I 2 -~ I[ e - ' a a  II 2, this gives 
t 

II E(a)u(t)11 z < II e -  taa II 2 + ~" + 2)/4C I II u(s)II ~ds. (4.8) 
0 
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We substitute (4.8) into (4.7), use the estimate II u(s)ll 2 < Ilakll 2 ~ tl all 2 [see (4.2)], to 
get 

d 
dS Ilull2~ + ollull~ <=oC[lle-'Aall~ + t 2 ~ +  2~/2] (4.9) 

for all ~ > 0. Now take ~ = a t -  ~ with ~ -  n/2 > - 1 and multiply both sides above by 
t ~, and proceed in exactly the same way (using Corollary 4.2 with r = 2) as in [7] to 
get Assertion (i).  The proof of Assertion (i i)  for n > 3 is carried out in the same way 
as in [7] if we apply Proposition 4.1 to estimate the term Ile-taa II = in (4.9). To treat 
the case n = 2 as in [7], we need the following 

Lemma 4.4. 

[le-tap(w �9 17)ull,< Cllwll2lllTu]12t-~r t > 0 ,  1 < r < ~ .  

We use Lemma 4.4 with n = 2 and 1 < r < 2 and proceed in exactly the same way 
as in [7, pp. 142-143] to conclude Assertion (i i)  for n --2. As for Theorem 2, the 
argument given in E7, pp. 143-145] works with no change, and so the details are 
omitted here. 

Proof of  Lemma 4.4. By duality we have 

Ile-'AP(w �9 V)ull,= sup I(e- 'ae(w " V)u,v)l= sup I(w" Vu, e-t%)[, 
Ilvll.,= 1 Ilvllr,= 1 

where v6 X,,  and r' =r / ( r -1 ) .  By Proposition 4.1, we have 

I(w" IZu, e -*%)1 _-__ [I w. Vu II~tt e - ' %  II ~o --< C II w II 211Vu II 2t-"/2" II v I1,, 

which gives the result. 

5. Construction of Approximate Solutions 

We now prove that for each k = 1, 2 . . . . .  and each a e X2 the problem 

d 
~ u k + A 2 u k + P 2 ( w  k �9 I7)Uk = 0, t > 0 ;  Uk(0) = ak (AP) 

admits a unique solution uk and that a subsequence of Uk converges to a weak 
solution of problem (hiS). Here ak=Jka, Wk=J~uk, N =  1 + In/4], n_=3, and 
Jk = (1 + k-~A2)-2. By the regularity theory for the stationary Stokes system [1] 
we have the estimate 

[Iwkll~o ~Cllukll2. (5.1) 

Also, since Z 2 is nonnegative and selfadjoint, we have [[Jkll ~1  as a bounded 
operator on X2. Thus property (b )  stated in Sect. 4 follows immediately. As in 
[16] we consider problem (AP) in the form of the integral equation 

t 

uk(t) = e- 'Aa k + J e -  t,- ~)aF(wk ' u~) (s)ds ; 
0 

F(w, u) = -- P 2(w . V)u (IE) 

and solve (IE) applying the contraction mapping principle. 
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Proposit ion 5.1. For any f ixed T > 0  and k> 1, Eq. (IE) has a unique solution in 
C([0, T] ;  D(A~/2)). The solution belongs to L2(0, T; D(A2))~WI"2(O, T; X2) and 
satisfies (AP) for a.e. t. 

Proof. W e  write w = Wk, U = Uk, and a = a k for simplicity in notat ion.  No te  that 
a ~ O(A2) by this convention.  Also, the norm of  the Banach space C([0, T] ;  D(A~/2)) 
is denoted  by 

[]lvlljr= sup (Hv(t)l]2+ IIA1/Zv(t)]12). 
0__<t_<T 

N o w  define the closed set S(M, T, a) of C([0, T] ;  D(A~/2)) by  

SfM, T, a)={v ;  v(0)= a, Iltvlllr__<M}, 

and consider on  S(M, T, a) the nonlinear  opera tor  

t 
Gv(t) = e- 'aa + S e-  " -  S)aF(w, v)(s)ds, w = J fv .  

o 

By Theorem 3.6 and (5.1), 

liE(w, v)l[2 < C1 IIwl[ | II Vvll 2 < C2 II vii 2 IIh l:2vll 2. 

This, together with the bound  IlA1/2e-ta I[ < Ct-1/z on X2, gives 

Ill Gv Itl r < Ila II 2 + II al /2a II 2 + CAM2( T +  Tl:Z) (5.2) 

for v e S(M, T, a). Similarly, using 

II F(wl, vl) - E(w2, v2)II 2 < C2(tl vl - v2 N 2 II a 1/%11~2 + l[ v2 II 2 II a 1/2(vl - v2)I12) 

with wy = J~vs, j = 1, 2, we get 

Ill Go1 - Gv2 Ill r =< CaM(T + T x/2) Ill Vl - v: Ill r (5.3) 

for vje S(M, T, a), j = 1, 2. Here  we fix M so that Ilall 2 + IIA1/Za[I 2 < M/2 and then 
choose T so that  CaM(T+T~/2)<=I/2 and C4M(T+T1/Z)< 1/2. The estimates 
(5.2) and (5.3) then show that  G is a strict contract ion from S(M, T, a) into itself with 
respect to the metric lilY1 - v2 I[1T. By the contrac t ion mapping  principle, there is a 
unique u in S(M, T, a) which solves (IE) on the interval [0, T].  Further ,  since 
F(w, u)eL~(O, T; X2)CL2(0, T; X2), we easily see that u is in L2(0, T; D(A:)) 
n W 1, 2(0, T; X2) and solves (AP) a.e. on [0, T]. To  show the existence for arbitrary 
T, as well as the uniqueness in C([0, T] ;  D(A~/2)), it suffices therefore to derive a 
priori bounds  for IlluUlr. Since u, Au, and du/dt are all in LZ(0, T; X2), we get 

d [lull~ +2}lAl:2ull~ = 0  (5.4) 
dt 

and by (5.1) 

d llhl/2ul[~ + 2l}Aull z z = 2(F(w, u), hu) 
dt 

<CllulIzllal/2ull21laullz<Cllull~,llhl:=ull~+ IIaull~ �9 (5.5) 

F r o m  (5.4) we get 

Ilu(t) ll 2 <- Ilall 5. (5.6) 
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Using this in the right-hand side of (5.5) we have 

d 
d-t [[Zl/2ul[22 <= CIla]122 I[al/2u[122, 

wifich gives 

I1 al/2u(t)II 2 2 ~ I1 a ~/2a 112 exp(C II a [[ g t). (5.7) 

By (5.6) and (5.7) the proof is complete. 

Proposition 5.2. Let uk be the solution of (AP) given in Proposition 5.1. Then there 
exists a subsequence of u k which converges in L~or x [0, oo)) to a weak solution 
of (NS). 

Proof. First we observe that (5.4) with u=uk and the estimate tlakll2<ltall2 
together imply the boundedness of u k in L~~ T; X2)nL2(0, T; D(A~/2)). Consider 
next the functions u~ e-taak; since akoa in X 2, we get by direct calculation, 

t 

]l u~ -- u~ t ) It 2 + 2 S II A I/2(u~ - u~ 
0 

= l [ a k - a  11122--+0 as k , l~oo .  (5.8) 

This implies in particular that 

vk = uk-e- 'aak  are bounded in L~~ T; X2)~L2(O, T; D(A~/2)). (5.9) 

NOW let q =(n + 2)/(n + 1). Since JJJklJ < Mr as a bounded operator on X r with M r 
independent of k, we have 

I]F(wk, uk)llq<Cllw~" Vukllq<CIIwk]12~,+ z~/,llVukll2 

< Clluklt2r 2)/,[lhl/2ukll2 
~ / ' 1 1 ~ ,  1 1 2 / ( n + 2 )  *, n / l n + 2 )  A 1 / 2 , ,  
.~. ",-," II t4k II 2 I I ~ k l l 2 n / ( n - 2 ) l [  .rx H'k[I 2 

< Cliat122/("+ 2)lla */2uklt22/q. 

Here we have used (5.6) for u=u~, the estimate Ilakllu<llall2 and Theorem 
3.600, (iii). This implies that 

T T 

s IIF(wk, ukll~dt < C ~ Ilat/Uu~llZ2dt< Cllal122 �9 (5.10) 
0 0 

Since v k satisfies 

d 
-~ Vk + Ark = F(Wk, Uk), t > 0 ; vk(o)=o ,  

we can apply Solonnikov's estimate ([17] for n = 3 and [22] for n >4)  to conclude 
that, with v~ = dvddt, 

T T T 

IIv'kll~dt + $ Ilavkll~dt<C I IIF(wk, uk)t[~dt. (5.11) 
0 0 0 

Combining (5.10) and (5.11) gives 

vk are bounded in La(O, T; D(A~))c~Wa'q(O, T; X~). (5.12) 
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By (5.9) and (5.12), we can apply Theorem 2.1 in [20, Chap. III] to conclude that a 
subsequence of Vk converges in Ll2o~(/) ~ x [0, oo)) to a function v belonging to 

L~176 T; X2)nL2(0, T; D(A~/Z))c~Lq(O, T; O(Aq))c~ wl 'q (0 ,  T; X~) 

for each T > 0 .  

This and (5.8) together imply the existence of a subsequence of Uk=Vk+e-tAa~ 
which converges in L2oc(/)"x [0, oo)) to the function u=v+e-taa. It is easily 
verified that the function u is a weak solution of (NS). This completes the proof of 
Proposition 5.2. 

Remarks. Problem (AP) is obtained from the original problem (NS) by replacing 
the coefficient of the convective term u. Vu by a regularization w = J~u. The idea of 
using equations with regularized convective term to construct weak solutions goes 
back to Leray [8]. A modified version of Leray's construction is applied by 
Caffarelli, Kohn, and Nirenberg [2] to the analysis of singularities of weak 
solutions. The idea of using the operator Jk is due to Sohr, yon Wahl, and 
Wiegner [16]. 

In [2] and [16] the weak solutions are constructed in the case of bounded 
domains [2] and exterior domains [16] in R 3 for the initial data satisfying more 
stringent conditions than ours. This is because both works aim at constructing 
weak solutions with an additional regularity property of the corresponding 
pressure. In the forthcoming paper [11] it will be shown that our proof of 
Proposition 5.2 can be modified in case n = 3, 4, so as to provide weak solutions as 
treated in [2] and [16] under no other conditions than aeXz.  It turns out 
therefore that when n = 3, 4, our weak solutions obtained in this section are the 
same kind of solutions as treated in [2] and [16]. 
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