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Introduction 

Let X be a topological space, M ( X )  the space of non-negative, finite measures on 
the Borel ~r-field of X endowed with the weak or narrow topology (see [12] or 
[11]). Let P(X)  be the subspace of probability measures. The map 

~bx: M(X) 2 ~ (v 1, v2)---,v 1 + v 2 ~ M ( X )  

is obviously continuous. But since the cone M ( X )  fails to be a topological vector 
space, sets of the form # + F, apart from exceptional cases, fail to be open for 
It ~ M ( X )  and open F. So it is a non-trivial question whether the map r is open. 
Eifler has given some partial answers: in [4] he showed for 0 < 2 < 1 the maps Cx 
and 

~Ya x : P(X)  2 9 (v 1, v 2) ~ ;~v, + ( 1 -- 2)v 2 ~ P(X)  

to be open for Polish spaces X and in I5] he extended this result for ~ to Radon 
spaces X, i.e. those spaces where each finite Borel measure is tight. In fact, however, 
the mappings ~x and ~a x are open for completely arbitrarytopological spaces. 

The proof of this result will be carried out in two steps: 
By investigating a suitable neighbourhood base in M(X) ,  in Sect. 2 the original 

problem will be reduced to a non-topological decomposition problem in the set M 
of all finite, non-negative measures on the power set of an auxiliary finite space f2. 

This question, which will be answered affirmatively in Sect. 1, reads as follows: 
Consider the preordering defined in M by 

#>-v o #(B)>v(B)  for each B ~ ' ,  

where ~ is a subset of the power set of fl which is stable with respect to unions and 
intersections. Moreover, let be given measures # e M  and v i ~ M  satisfying 
# ~" vl + v2. Is it then always possible, to decompose # into two measures #~ e M such 
that #~-v i for i=  1,2? 
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Section 3 is devoted to a proof of the closedness of the map ~x, which is based 
again on the decomposition lemma and uses the quasicompactness of the sets 

The results of the present paper play a crucial role in the investigation of 
topological properties of some measure-valued mappings, that are of interest in 
probability theory: 

(1) Given topological spaces X, Y and a Borel measurable map f : X ~ Y  
consider the map )': M(X)-.*M(Y), which assigns to each Borel measure on X its 
image measure under f (see [3, 4]). 

(2) Assign to each measure # e M(X x Y) on the product of two topological 
spaces X and Y the pair of its marginal measures (see [6]). 

(3) Assign to each measure on a space of continuous functions the collection of 
its one-dimensional marginals (see [4]). 

(4) Given topological spaces X, T and a measure 2eM(T) assign to each 
kernel tp: T--,M(X) its integral j qJd). e M(X) (see [1]). 

These mappings will be treated subsequently. 

O. Notations 

For a topological space X, 
(a) f#(X) is the family of all open sets in X, 
(b) ~(X) is the family of all Borel sets in X. 
The set of all Borel measures on X, which are always assumed to be finite and 

non-negative, is denoted by M(X), the subset of probability measures by P(X). 
M(X) is endowed with the weak or narrow topology, i.e. the topology generated by 
the requirements 

#~#(X) is continuous, 

#~#(G) is lower semieontinuous for each G e f#(X). 

Suppressing the index X, we denote by sr the collection of all pairs (f#, ~), where 
0 < 8 < 1  and f#s is finite and closed under the formation of unions and 
intersections (so in particular U 0 = 0  and ~ 0 = X  are elements of f#). For 
0t = (~, 5) e ~/, t > 0 and # e M(X) the abbreviations 

t~ = (~, t~), 

A(~t, #)= {Q e M(X): e(G) >#(G)-  e for G e f# and Q(X) < #(X) + e}, 

are used. The family {A(~t, #): 0t e ~r is obviously a neighbourhood base of ~. By 

(f#,~)-<(#,O.~ f#s  and ~>g 

d becomes a directed set. 
By e,, we denote the Dirae measure in x e X, by 1 B# we abbreviate for B e &(X) 

and p e M(X) the measure defined by 

lap(C) = I~BnC) for each C e ~(X). 
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1. The Decomposition Lemma 

For a natural number n and I2 = {1,..., n} let ~ be a subset of the power set of f2, 
which is dosed under the formation of unions and intersections. Then 

I~>-v "~ I~(B)>v(B) for each B e ~  

defines a preordering on the set M of all non-negative and finite measures on [2 
equipped with its power set as a-field. 

(1.1) Proposition. I f  p, v I and v 2 are measures of  M, then the following statements 
are equivalent: 

(i) ~'V I +V2, 
(ii) there are measures/~1, #2 ~ M such that 

/1=/~1+#2, ~l>-Vl, #2>'v2, and /~2([2)=v2([2). 

Proof. Only (i) ~ (ii) requires proof. It is sufficient to show that for v = v 1 + v 2 and 

~ = { ( # ' , v ' ) e M 2 : v l  <v '<v ,  # '<# ,  #>-v', # - # ' > - v - v '  

and (/~ - #)  (f2) = (v - v') ([2)} 

there exists an element (#', vl)e 9 .  
Assign to each (#', v')e ~ a number 

i(#', v') = @ {x ~ [2: #'({x}) > 0} + @ {B ~ ~ : #'(B) > v'tB)} 

~- =~ (X~ [2: ~'({X})>~I({X})}. 

The following statement (.) clarifies, that the desired element (#', Vl)~ ~ can be 
constructed starting with ~ ,  v ) e ~  in a finite number of steps: 

(*) For  each ( # , v ' ) e ~  with v'~=v~ there exists a pair ( # " , v " ) ~  
such that v" < v', i/' <= #', and i(#", v") < i(#', v'). 

Pro of of (*). Let (#', v') ~ ~ with v' ~= v t be given. We may assume v'({ 1 }) > v l({ 1 }). 
Consider now the following decomposition of ~ :  

(1) It suffices to show the existence of a point xe[2, such that 

.'({x})>o, 
(fl) 1 ~ B <:> x ~ B for each B e ~ 2 ,  

(~) 1 e B => x E B for each B e ~ .  

In this case the definitions 

0 < 6 = min({#({x}), v'({ 1 } ) -  v~({ 1 })} 

u{ i / (B) -v ' tB ) :  B e ~ ,  x e B ,  1 CB}), 

(~", V#)=(IA'--~x, V'--~/~I) 
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yield the desired element of ~ [(fl) guarantees la">.v", (y) secures/z-#">-v-v"].  
(2) If/z'({1})>0 nothing has to be shown. Therefore assume #'({1})=0 and 

abbreviate 
B o = N  { B ~ : I ~ B } .  

The statement (~) is obviously equivalent to "x ~ Bo". 
(3) Given C, D ~ ~2 we get 

v ' (CuD)  + v'(Cc~D) = v'(C) + v'(D) = a'(C) + Iz'(D) = # ' (CUD) + #'(Cc~D). 

Since C u D  and Cc~D are elements of ~ ,  the above equation yields C u D ,  
Cc~D e ~2 .  So if we denote by ~3 the a-field generated by ~2, and by B ~ the atom 
of ~3 containing 1, there exist B2 e~2  and B e ~  such that 

B ~ = B \ B  2 . 

(Choose B ~ ~2 if 1 ~ U~2 and B = f2 else.) The statement (/~) is evidently equiv- 
alent to "x 6 B ~ 

(4) Since B o u B 2  E ~  

It follows 
/~'(Bo uB2) => v ' (BouB2) .  

p'(Bo\B2) >= v'(Bo\B2).  

Combined with 0 = #'({ 1 }) < v'({ 1 }) this means 

u{1})) > v'(Bo\(B2u{1})). 

This yields finally an xel2  such that/ /({x})>0 and 

x ~ Bo\(B2u {1 }) C Boc~(Bo\B2) C B o n B  ~ . [] 

2. Openness of Addition 

(2.1) Theorem. Let  X be a topological space. Then the map 

�9 x : M ( X )  2 ~(v 1, v2)-*v t + v 2 E M ( X )  

is open. 

We consider first the case of finite T0-spaces X, i.e. those finite spaces where 
each pair of distinct points can be separated by an open set containing one of the 
two points. Hence every subset of such a space is a Borel set. 

(2.2) Lemma. I f  X is a f in i t e  To-space, v l, v 2 ~ M(X) ,  v = v l + v 2, and ~ = (~(X),  e), 
then 

A(o~, v) C A(naot, v l) + A(n~a, v2), 

which especially means that r  is open. 

Proof. Consider 

v~= E (vk({x})--e)+ex, k=I,2. 
XEX 
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Denoting by " > "  the preordering of (1.1) associated with f2 = X and ~ = ~(X), we 
show 

A(~, v) C {# e M(X) : #>-vt + ~72 and/z(X) < v(X) + e} 

C {l~, e M(X) :/z 1 >" v, and #, (X) < v(X) + e -  'g2(X)} 
+ {#2 e M(X) : #2 >" v2 and #z(X) = 72(X)} 

C A(n,~, v,) + A(n,ot, v2). 

The first inclusion follows by definition of the measures Vk, the second one by (1.1) 
and the third one by the inequalities 

~k(G) >--_ vk(G ) -  @ X" e for k = 1, 2 and G e ~(X),  

v(X)+~-~2(x)<v , (x )+(  # X + l)e, 

~2(x)<__v~(x), 

and the fact n,__> ~ X + I, which is due to the already mentioned observation that 
~(X) is the power set of X or, equivalently, f~(X) generates a or-field possessing ~ X 
atoms. [] 

Proof of  the Theorem. Again for Vl, V2eM(X), g = ( ~ , e ) E ~ ,  and v=v l  +v 2 the 
inclusion 

(+) A(o~, v) C A(n~, vl) + A(n~t, v2) 

will be shown. 
Denote by B, . . . .  , Bin, m ~ n~, the atoms ofthe a-field generated by ft. Obviously 

the statement (+ )  does not depend on the distributions of the mass inside the 
atoms Bk, but only on the total mass put there by the considered measures. It is 
therefore natural to consider the space 

with the topology 

Y={1 . . . . .  m} 

i.e. Y is the quotient space of X endowed with the topology (r with respect to the 
equivalence relation 

x,,, y ~ x, y e B k for some k. 

Y is a finite To-space and the projection p: X ~  Y, defined by p(x) = k for x e Bk, is 
obviously continuous. 

Now let/z e A(0t, v) and denote the image measures of #, v, vl, and v 2 under the 
mapping p by/~, ~, vl, and ~7 2. Clearly/~ ~ A(fl, ~ holds for fl = (if(Y), e). Lemma (2.2) 
supplies measures/~i e A(n~fl, ~1) and/~2 ~ A(n~fl, v2) such that/~1 +/~2 =/~ (observe 
n~ = n#). We transform the measures back to X by setting 

#z= ~. [h({k})(g(Bk))-llndz, 1=1,2 
k s J  
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(J = {k : ~Bk) > 0}). Since # = ]-/1 31- #2 and #l ~ A(n~, vl) for l = 1, 2, the proof is 
complete. []  

Though restrictions of open mappings need not to be open, this is true in the 
following special case. 

(2.3) Corollary. Let X be a topological space and 0 < 2 < 1. 
(a) The map 

~ : P (X)  2 -0 (v l, v 2 ) ~  ~v I + (1 - 2)v 2 e P(X) 

is open. 
(b) The restrictions of  ~x and ~F~ to the subspaces consisting of all regular, 

~-smooth or tight measures are open (see [12, p. XII], for the definitions). 

The results of [4] and [5] are therefore special cases of Corollary (2.3). 

Proof. Since multiplying by a real d > 0 is a homeomorphism in M(X), to get (a) it is 
sufficient to show that the map 

~x : e ( x )  2 ~ 2 P ( X ) =  {# ~ M(X):gfX) = 2} 

is open. This is a consequence of 

(+ +) A(ot, v)n2P(X) C A(2n,a, vx)c~P(X) + A(2n,a, v2)c~P(X) 

for vieP(X), v=vt+v2 and ~=((r162 
To prove ( + + ) let # E A(a, v)c~2P(X). By the inclusion ( + ) in the proof of (2.1) 

there are measures #~ e A(n,~, vk) such that # = #a + g2. Since 

# t ( X ) - l = l - b t 2 ( X )  and I# t (X) - l l<n ,e  

a slight modification of the measures gk leads to probability measures g~ with 
# = #'l + #~ and #~ r A(2n~ot, Vk): 

t t 
#~=#l-g--~-X-~#~, #~=#2+/q---~-~j#~ if t>__o, 

t t 
#~=#,-#2-~-X-~#2, #~=#2+#2--2-~-~# 2 if t < 0 ,  

where the abbreviation t =  g l ( X ) - 1  is used. 
The statement (b) is due to the fact, that the sum of two measures is regular 

(T-smooth or tight) if and only if each of the measures is regular (z-smooth or 
tigh0. [ ]  

The following easy application of Theorem (2.1)generalizes results of Degens 
and Eifler ([2] and [4]). 

(2,4) Corollary. Let X be a topological space such that M(X) fulfills the first axiom 
of countability and ~ v ~ M(X). Let 0., n ~ N,  be a sequence in M(X) which converges 
to #+v. Then there exist sequences # , , n E N  and ~. ,n~N,  in M(X) such that 
#~+r~=Q.  for each n and #~-,#, v.-,v. 
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Proof. Let F~, i e lq and As, i E N, be descending neighbourhood bases of # and v 
respectively. Since F~+Ai is a neighbourhood of # + v  there is an increasing 
sequence of numbers Ni such that 0n e F~ + A i holds for each n > N,  Choose now 
/~,e~ and v,~A~ with #n+Vn=Q~ for each Ni~n<Ni+l, and #n=Q,, %=0 for 
n< N~ to finish the proof. [] 

Finally it is worth mentioning, that M(X) fulfills the first axiom of countability 
ifX fulfills the second one (see 1-12, p. 491). But there are spaces such that X fulfills 
the first axiom of countability and M(X) does not: Let X be the space of all 
countable ordinals endowed with the order topology. Then the Dieudonn6 
measure on X (see 1-9, p. 2311) has no countable neighbourhood base in M(X) (see 
E1O, 0.8)I). 

3. Closedness of Addition 

The following result will be used to investigate ~x: 
A mapping f :  Y ~ Z  is dosed if and only if for each Gefg(Y) the set 

{z e Z :f-l({z})C G} is open in Z [7, Theorem 1.4.131. At first we inspect the sets 

(3.1) Lemma. Let X be a topological space and ~ e M(X). Then the subspaces 

(a) O(o ) = {# e M(X): # < Q} C M(X) 

and 

(b) E(e ) = {(#, v) e M(X) 2 : # + v = O} C M(X) 2 

are quasicompact. 

Proof. To get (a) we show that D(Q) is the continuous image of a closed subspace of 
the compact space 

Y= l-I [ O , o ( B ) I  �9 
BGt~(X) 

Let Ps, B e ~(X), be the projections of Y The subspaee 

Yo = {Y ~ Y: PB(Y) + Pc(Y) = PBuc(Y) for each pair 

of disjoint Borel sets B, C e~(X)} 

is dosed in Y, the mapping T: Yo~D(Q) with 

= 

is well defined since a-additivity of T(y) follows by 

(n)- (Bk) = 'e(y < e n nk 
k=I k k 1 

for each sequence of pairwise disjoint sets Bk e ~(X)  and B = G Bk. Since ~ is a 
k=l  

continuous surjection, the quasi compactness of D(O) is established. 
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The continuous surjection 

~': ro ~ y-+(~'(y), ~'((Q(B)- PB(Y))~ ~ ~(,o)) ~ E(Q) 

yields finally assertion (b). []  

Similar to Theorem (2.1) the reduction to the finite case is the main idea in the proof 
of the following 

(3.2) Theorem. The mapping ~x  is closed for any topological space X.  

Proof. As already mentioned, it is sufficient to prove the openness of the set 

& = {0 z M(X): E(e)c r,) 

for open sets F~ CM(X) 2. To this end let QcF2 be given. By Lemma (3.1) there are 
al . . . .  , a~zM,  #, . . . .  ,#k, v , , . . . , v~zM(X)  such t h a t / t i + v i = e  for each i and 

E(Q) C U {A(ot,,/z,) x A(a,, v,) : i =< k} 

C U {A[2a~, gi) x A(2ai, v,) : i < k} C r l .  

Choosing an a = (~, e) such that a >  0~ i for each i, we show for K = (4n~)-1 the 
inclusion 

A( Ka, O) C Fz . 

To this end let/t o, v o be measures such that Qo =/to + Vo e A(Kct, r To prove r ~ F2 
we have to establish ~o,  Vo)eFl. This will be done by constructing measures 
It, v e M(X)  such that # + v = 0 and/ t  o e A(~t, #), Vo ~ A(a, v). Indeed, if the index i is 
chosen such that (/t, v) e A(ot i, ~} x A(a,, h) holds, this means 

(/to, vo) e A(2a~, #i) x A(2~i, vi) C/"1. 

In the proof of Theorem (2.1) the complementary problem was solved: The 
measures/to and Vo were constructed for given/t, v. So to apply Lemma (2.2) the 
inequality signs have to be converted or, equivalently, open and closed sets have to 
change roles. Let therefore B 1,-.., B~, p, and Y be as in the proof of (2.1). Y is now 
endowed with the topology 

x u  ~r {,or: 1,,. B~r 
Since p remains Borel measurable the image measures/~o, Vo, Qo and ~ of go, Vo, Qo 
and Q under the mapping p can be considered. ~oeA(Ka,  Q) yields now 

r ~o) for fl=(~(Y), e) since X efr implies 

~(Y) = t~(X) < (~o(X) + r e  = Oo(Y) + Ke,  

~( / )=~r ) -~( r \ l )  
= Q ( x ) - a x \ u  {~: kEX}) 

> (QoiX)- Ke)-- (Oo(X\ U {B,: k e I}) + Ke) 

=~o(/)-2Ke 
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for each I t  f~(Y). By Lemma (2.2) there exist measures 

/2cA(2-1/~,~o), ~cA(2-1/~, ~o) 
such that/~ + ~= ~. After putting them back to X as in the proof of (2.1) measures 
I1, v e M(X) with image measures /2, ~ are obtained. As above /~o e A(~,~u) and 
v0 e A(~t, v) follows and finishes the proof. [] 

Let us conclude with some remarks. 
(1) Theorem (3.2) can easily be carried over to the spaces of regular, z-smooth 

or tight measures as in (2.3). 
(2) The following easy application of (3.2) is sometimes useful. Let X be a 

topological space, ~ ,  j c J, a net in M(X) which converges to Q ~ M(X) and F an 
open set in M(X) with D(Q)C F. Then D(Qd)C F holds eventually. 
Indeed, since E ( ~ ) C F x F  and the set {#eM(X):E(#)CFxF} is open by 
Theorem (3.2), E(QS) C F x F holds eventually and  implies D(Qj) C F. 

(3) Straightforward considerations provide generalizations of the 
Theorems (2.1) and (3.2), which yield that the map 

M(X)"~(gk)k<_,,~ ~ ltkeM(X) 
k = l  

is open and closed for arbitrary natural numbers n > 1. Openness and closedness of 
countable addition are easily obtained by choosing reasonable domains in M(X) ~ 
and ranges in M(X) (see [10, (1.9) and (2.6)]). The result of Groemig [8] is therefore 
a consequence of the results of this paper (see [10, (2.7)]). 
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