Math. Ann. 282, 23-31 (1988)

Topological Properties of the Addition Map in Spaces of Borel Measures

Andreas Schief

Mathematisches Institut der Universität, Theresienstrasse 39, D-8000 München 2, Federal Republic of Germany

Introduction

Let X be a topological space, $M(X)$ the space of non-negative, finite measures on the Borel σ -field of X endowed with the weak or narrow topology (see [12] or [11]). Let $P(X)$ be the subspace of probability measures. The map

$$
\Phi_X : M(X)^2 \ni (\nu_1, \nu_2) \to \nu_1 + \nu_2 \in M(X)
$$

is obviously continuous. But since the cone $M(X)$ fails to be a topological vector space, sets of the form $\mu + \Gamma$, apart from exceptional cases, fail to be open for $\mu \in M(X)$ and open Γ . So it is a non-trivial question whether the map Φ_X is open. Eifler has given some partial answers: in [4] he showed for $0 < \lambda < 1$ the maps Φ_x and

$$
\Psi_X^{\lambda}: P(X)^2 \ni (v_1, v_2) \to \lambda v_1 + (1 - \lambda)v_2 \in P(X)
$$

to be open for Polish spaces X and in [5] he extended this result for Ψ^{λ}_{X} to Radon spaces X , i.e. those spaces where each finite Borel measure is tight. In fact, however, the mappings Φ_x and Ψ_x^{λ} are open for completely arbitrary topological spaces.

The proof of this result will be carried out in two steps:

By investigating a suitable neighbourhood base in *M(X),* in Sect. 2 the original problem will be reduced to a non-topological decomposition problem in the set M of all finite, non-negative measures on the power set of an auxiliary finite space Ω .

This question, which will be answered affirmatively in Sect. 1, reads as follows: Consider the preordering defined in M by

$$
\mu \succ \nu \Leftrightarrow \mu(B) \geq \nu(B) \text{ for each } B \in \mathscr{B},
$$

where $\mathscr B$ is a subset of the power set of Ω which is stable with respect to unions and intersections. Moreover, let be given measures $\mu \in M$ and $v_i \in M$ satisfying $\mu > v_1 + v_2$. Is it then always possible, to decompose μ into two measures $\mu_i \in M$ such that $\mu_i > \nu_i$ for $i = 1, 2$?

Section 3 is devoted to a proof of the closedness of the map Φ_x , which is based again on the decomposition lemma and uses the quasicompactness of the sets $\Phi_{\mathbf{r}}^{-1}(\{\mu\})$.

The results of the present paper play a crucial role in the investigation of topological properties of some measure-valued mappings, that are of interest in probability theory:

(1) Given topological spaces X, Y and a Borel measurable map $f: X \rightarrow Y$ consider the map \overline{f} : $M(X) \rightarrow M(Y)$, which assigns to each Borel measure on X its image measure under f (see [3, 4]).

(2) Assign to each measure $\mu \in M(X \times Y)$ on the product of two topological spaces X and Y the pair of its marginal measures (see [6]).

(3) Assign to each measure on a space of continuous functions the collection of its one-dimensional marginals (see [4]).

(4) Given topological spaces X, T and a measure $\lambda \in M(T)$ assign to each kernel $\varphi: T \rightarrow M(X)$ its integral $\varphi \in M(X)$ (see [1]).

These mappings will be treated subsequently.

O. Notations

For a topological space X ,

(a) $\mathcal{G}(X)$ is the family of all open sets in X,

(b) $\mathcal{B}(X)$ is the family of all Borel sets in X.

The set of all Borel measures on X , which are always assumed to be finite and non-negative, is denoted by $M(X)$, the subset of probability measures by $P(X)$. $M(X)$ is endowed with the weak or narrow topology, i.e. the topology generated by the requirements

 $u \rightarrow u(X)$ is continuous,

 $\mu \rightarrow \mu(G)$ is lower semicontinuous for each $G \in \mathcal{G}(X)$.

Suppressing the index X, we denote by $\mathscr A$ the collection of all pairs ($\mathscr G, \varepsilon$), where $0 < \varepsilon < 1$ and $\mathscr{G}(\mathscr{G}(X))$ is finite and closed under the formation of unions and intersections (so in particular $\bigcup \emptyset = \emptyset$ and $\bigcap \emptyset = X$ are elements of \mathscr{G}). For $\alpha = (\mathcal{G}, \varepsilon) \in \mathcal{A}, t > 0$ and $\mu \in M(X)$ the abbreviations

$$
t\alpha = (\mathcal{G}, t\varepsilon),
$$

$$
A(\alpha, \mu) = \{ \varrho \in M(X) : \varrho(G) > \mu(G) - \varepsilon \text{ for } G \in \mathcal{G} \text{ and } \varrho(X) < \mu(X) + \varepsilon \},
$$

$$
n_{\alpha} = 2^{*\pi}
$$

are used. The family $\{A(\alpha,\mu): \alpha \in \mathcal{A}\}\$ is obviously a neighbourhood base of μ . By

 $(\mathscr{G},\varepsilon) \leq (\widetilde{\mathscr{G}},\widetilde{\varepsilon}) \Leftrightarrow \mathscr{G} \subset \widetilde{\mathscr{G}}$ and $\varepsilon \geq \widetilde{\varepsilon}$

d becomes a directed set.

By ε , we denote the Dirac measure in $x \in X$, by $1_B \mu$ we abbreviate for $B \in \mathcal{B}(X)$ and $\mu \in M(X)$ the measure defined by

$$
1_B\mu(C) = \mu(B \cap C) \text{ for each } C \in \mathscr{B}(X).
$$

1. The Decomposition Lemma

For a natural number n and $\Omega = \{1, ..., n\}$ let \mathcal{B} be a subset of the power set of Ω , which is closed under the formation of unions and intersections. Then

 $u > v \Leftrightarrow u(B) \ge v(B)$ for each $B \in \mathscr{B}$

defines a preordering on the set M of all non-negative and finite measures on Ω equipped with its power set as σ -field.

(1.1) Proposition. *If* μ , v_1 and v_2 are measures of M, then the following statements *are equivalent:*

- (i) $\mu > \nu_1 + \nu_2$,
- (ii) *there are measures* $\mu_1, \mu_2 \in M$ *such that*

$$
\mu = \mu_1 + \mu_2, \ \mu_1 > \nu_1, \ \mu_2 > \nu_2, \quad \text{and} \quad \mu_2(\Omega) = \nu_2(\Omega).
$$

Proof. Only (i) \Rightarrow (ii) requires proof. It is sufficient to show that for $v = v_1 + v_2$ and

$$
\mathscr{D} = \{ (\mu', \nu') \in M^2 : \nu_1 \leq \nu' \leq \nu, \ \mu' \leq \mu, \ \mu' > \nu', \ \mu - \mu' > \nu - \nu' \}
$$

and $(\mu - \mu')(\Omega) = (\nu - \nu')(\Omega) \}$

there exists an element $(\mu', \nu_1) \in \mathcal{D}$.

Assign to each $(\mu', \nu') \in \mathcal{D}$ a number

$$
i(\mu', \nu') = # \{x \in \Omega : \mu'(\{x\}) > 0\} + # \{B \in \mathscr{B} : \mu'(B) > \nu'(B)\} + # \{x \in \Omega : \nu'(\{x\}) > \nu_1(\{x\})\}.
$$

The following statement (*) clarifies, that the desired element $(\mu', \nu_i) \in \mathcal{D}$ can be constructed starting with $(\mu, \nu) \in \mathcal{D}$ in a finite number of steps:

(*) For each $(\mu', \nu') \in \mathcal{D}$ with $\nu' + \nu_1$ there exists a pair $(\mu'', \nu'') \in \mathcal{D}$ such that $v'' \le v'$, $\mu'' \le \mu'$, and $i(\mu'', \nu'') < i(\mu', \nu')$.

Proof of (*). Let $(\mu', \nu') \in \mathcal{D}$ with $\nu' + \nu_1$ be given. We may assume $\nu'({1}) > \nu_1({1})$. Consider now the following decomposition of \mathcal{B} :

$$
\mathscr{B}_1 = \{ B \in \mathscr{B} : v'(B) < \mu'(B) \},
$$
\n
$$
\mathscr{B}_2 = \{ B \in \mathscr{B} : v'(B) = \mu'(B) \}.
$$

(1) It suffices to show the existence of a point $x \in \Omega$, such that

- (α) $\mu'({x})>0$,
- (β) $1 \in B \Leftrightarrow x \in B$ for each $B \in \mathscr{B}_2$,
- (*y*) $1 \in B \Rightarrow x \in B$ for each $B \in \mathscr{B}$.

In this case the definitions

$$
0 < \delta = \min(\{\mu'(\{x\}), v'(\{1\}) - v_1(\{1\})\})
$$

$$
\cup \{\mu'(B) - v'(B) : B \in \mathcal{B}_1, x \in B, 1 \notin B\}),
$$

$$
(\mu'', v'') = (\mu' - \delta \varepsilon_x, v' - \delta \varepsilon_1)
$$

yield the desired element of \mathscr{D} [(β) guarantees $\mu'' > \nu''$, (γ) secures $\mu - \mu'' > \nu - \nu''$]. (2) If $\mu'({1})>0$ nothing has to be shown. Therefore assume $\mu'({1})=0$ and

abbreviate

$$
B_0 = \{ \mid \{ B \in \mathscr{B} : 1 \in B \}.
$$

The statement (y) is obviously equivalent to " $x \in B_0$ ".

(3) Given $C, D \in \mathcal{B}_2$ we get

$$
\nu'(C \cup D) + \nu'(C \cap D) = \nu'(C) + \nu'(D) = \mu'(C) + \mu'(D) = \mu'(C \cup D) + \mu'(C \cap D).
$$

Since $C \cup D$ and $C \cap D$ are elements of \mathcal{R} , the above equation yields $C \cup D$, $C \cap D \in \mathscr{B}_2$. So if we denote by \mathscr{B}_3 the σ -field generated by \mathscr{B}_2 , and by B^0 the atom of \mathscr{B}_3 containing 1, there exist $B_2 \in \mathscr{B}_2$ and $B \in \mathscr{B}$ such that

$$
B^0\!=\!B\backslash B_2\,.
$$

(Choose $B \in \mathcal{B}_2$ if $1 \in \bigcup \mathcal{B}_2$ and $B = \Omega$ else.) The statement (β) is evidently equivalent to " $x \in B^{\overline{0}n}$ ".

(4) Since $B_0 \cup B_2 \in \mathscr{B}$

$$
\mu'(B_0 \cup B_2) \geq \nu'(B_0 \cup B_2).
$$

It follows

$$
\mu'(B_0 \backslash B_2) \geqq \nu'(B_0 \backslash B_2).
$$

Combined with $0 = \mu'(\{1\}) < v'(\{1\})$ this means

 $\mu'(B_0\setminus (B_2\cup\{1\})) > \nu'(B_0\setminus (B_2\cup\{1\})).$

This yields finally an $x \in \Omega$ such that $\mu'(x) > 0$ and

 $x \in B_0 \setminus (B_2 \cup \{1\}) \subset B_0 \cap (B_0 \setminus B_2) \subset B_0 \cap B^0$. \Box

2. Openness of **Addition**

(2.1) Theorem. *Let X be a topological space. Then the map*

$$
\Phi_X : M(X)^2 \ni (\nu_1, \nu_2) \to \nu_1 + \nu_2 \in M(X)
$$

is open.

We consider first the case of finite T_0 -spaces X, i.e. those finite spaces where each pair of distinct points can be separated by an open set containing one of the two points. Hence every subset of such a space is a Borel set.

(2.2) Lemma. *If* X is a finite T_0 -space, $v_1, v_2 \in M(X)$, $v = v_1 + v_2$, and $\alpha = (\mathscr{G}(X), \varepsilon)$, *then*

 $A(\alpha, \nu) \subset A(n_a\alpha, \nu_1) + A(n_a\alpha, \nu_2),$

which especially means that Φ_x *is open.*

Proof. Consider

$$
\tilde{v}_k = \sum_{x \in X} (v_k({x}) - \varepsilon)^+ \varepsilon_x, \quad k = 1, 2.
$$

Denoting by ">" the preordering of (1.1) associated with $\Omega = X$ and $\mathscr{B} = \mathscr{G}(X)$, we show

$$
A(\alpha, \nu) \subset \{\mu \in M(X) : \mu > \tilde{v}_1 + \tilde{v}_2 \text{ and } \mu(X) < \nu(X) + \varepsilon\}
$$

$$
\subset \{\mu_1 \in M(X) : \mu_1 > \tilde{v}_1 \text{ and } \mu_1(X) < \nu(X) + \varepsilon - \tilde{v}_2(X)\}
$$

$$
+ \{\mu_2 \in M(X) : \mu_2 > \tilde{v}_2 \text{ and } \mu_2(X) = \tilde{v}_2(X)\}
$$

$$
\subset A(n_{\alpha}\alpha, v_1) + A(n_{\alpha}\alpha, v_2).
$$

The first inclusion follows by definition of the measures \tilde{v}_k , the second one by (1.1) and the third one by the inequalities

$$
\tilde{v}_k(G) \ge v_k(G) - \# X \cdot \varepsilon \quad \text{for } k = 1, 2 \text{ and } G \in \mathcal{G}(X),
$$

$$
v(X) + \varepsilon - \tilde{v}_2(X) \le v_1(X) + (\# X + 1)\varepsilon,
$$

$$
\tilde{v}_2(X) \le v_2(X),
$$

and the fact $n_n \geq \frac{1}{2} + X + 1$, which is due to the already mentioned observation that $\mathscr{B}(X)$ is the power set of X or, equivalently, $\mathscr{B}(X)$ generates a σ -field possessing $\# X$ atoms. \Box

Proof of the Theorem. Again for $v_1, v_2 \in M(X)$, $\alpha = (\mathscr{G}, \varepsilon) \in \mathscr{A}$, and $v = v_1 + v_2$ the inclusion

$$
(+) \qquad A(\alpha, \nu) \subset A(n_a \alpha, \nu_1) + A(n_a \alpha, \nu_2)
$$

will be shown.

Denote by $B_1, ..., B_m, m \leq n_{\alpha}$, the atoms of the σ -field generated by \mathscr{G} . Obviously the statement $(+)$ does not depend on the distributions of the mass inside the atoms B_k , but only on the total mass put there by the considered measures. It is therefore natural to consider the space

 $Y=\{1, ..., m\}$

with the topology

$$
\mathscr{G}(Y) = \left\{ I \subset Y : \bigcup_{k \in I} B_k \in \mathscr{G} \right\},\
$$

i.e. Y is the quotient space of X endowed with the topology \mathscr{G} , with respect to the equivalence relation

$$
x \sim y \Leftrightarrow x, y \in B_k \text{ for some } k.
$$

Y is a finite T_0 -space and the projection $p: X \to Y$, defined by $p(x) = k$ for $x \in B_k$, is obviously continuous.

Now let $\mu \in A(\alpha, v)$ and denote the image measures of μ , v, v_1 , and v_2 under the mapping p by $\tilde{\mu}$, \tilde{v} , \tilde{v}_1 , and \tilde{v}_2 . Clearly $\tilde{\mu} \in A(\beta, \tilde{v})$ holds for $\beta = (\mathcal{G}(Y), \varepsilon)$. Lemma (2.2) supplies measures $\tilde{\mu}_1 \in A(n_a \beta, \tilde{v}_1)$ and $\tilde{\mu}_2 \in A(n_a \beta, \tilde{v}_2)$ such that $\tilde{\mu}_1 + \tilde{\mu}_2 = \tilde{\mu}$ (observe $n_a = n_b$). We transform the measures back to X by setting

$$
\mu_l = \sum_{k \in J} \tilde{\mu}_l({k}) (\mu(B_k))^{-1} 1_{B_k} \mu, \qquad l = 1, 2
$$

 $(J = \{k : \mu(B_k) > 0\})$. Since $\mu = \mu_1 + \mu_2$ and $\mu_i \in A(n, \alpha, v_i)$ for $l = 1, 2$, the proof is complete. \square

Though restrictions of open mappings need not to be open, this is true in the following special case.

(2.3) Corollary. Let X be a topological space and $0 < \lambda < 1$.

(a) *The map*

$$
\Psi_X^{\lambda}: P(X)^2 \ni (v_1, v_2) \to \lambda v_1 + (1 - \lambda)v_2 \in P(X)
$$

is open.

(b) The restrictions of $\Phi_{\bf{r}}$ and $\Psi_{\bf{r}}^{\lambda}$ to the subspaces consisting of all regular, *~-smooth or tight measures are open (see* [12, p. XII], *for the definitions).*

The results of [4] and [5] are therefore special cases of Corollary (2.3).

Proof. Since multiplying by a real $d > 0$ is a homeomorphism in $M(X)$, to get (a) it is sufficient to show that the map

$$
\Phi_X: P(X)^2 \rightarrow 2P(X) = {\mu \in M(X) : \mu(X) = 2}
$$

is open. This is a consequence of

$$
(++) \qquad A(\alpha,\nu)\cap 2P(X)\subset A(2n_{\alpha}\alpha,\nu_1)\cap P(X)+A(2n_{\alpha}\alpha,\nu_2)\cap P(X)
$$

for $v_i \in P(X)$, $v = v_1 + v_2$ and $\alpha = (\mathscr{G}, \varepsilon) \in \mathscr{A}$.

To prove $(+ +)$ let $\mu \in A(\alpha, \nu) \cap 2P(X)$. By the inclusion $(+)$ in the proof of (2.1) there are measures $\mu_k \in A(n_a \alpha, v_k)$ such that $\mu = \mu_1 + \mu_2$. Since

$$
\mu_1(X) - 1 = 1 - \mu_2(X)
$$
 and $|\mu_1(X) - 1| < n_a \varepsilon$

a slight modification of the measures μ_k leads to probability measures μ'_k with $\mu = \mu'_1 + \mu'_2$ and $\mu'_k \in A(2n_{\alpha}\alpha, \nu_k)$:

$$
\mu'_1 = \mu_1 - \frac{t}{\mu_1(X)} \mu_1, \quad \mu'_2 = \mu_2 + \frac{t}{\mu_1(X)} \mu_1 \quad \text{if} \quad t \ge 0,
$$

$$
\mu'_1 = \mu_1 - \frac{t}{\mu_2(X)} \mu_2, \quad \mu'_2 = \mu_2 + \frac{t}{\mu_2(X)} \mu_2 \quad \text{if} \quad t < 0,
$$

where the abbreviation $t = \mu_1(X) - 1$ is used.

The statement (b) is due to the fact, that the sum of two measures is regular (T-smooth or tight) if and only if each of the measures is regular (z-smooth or tight). \Box

The following easy application of Theorem (2.1) generalizes results of Degens and Eifler ([2] and [4]).

(2,4) Corollary. *Let X be a topological space such that M(X) fulfills the first axiom of countability and* μ *, v* $\in M(X)$. Let ϱ_m $n \in \mathbb{N}$, be a sequence in $M(X)$ which converges *to* $\mu + \nu$. Then there exist sequences μ_n , $n \in \mathbb{N}$ and ν_n , $n \in \mathbb{N}$, in $M(X)$ such that $\mu_n + \nu_n = \rho_n$ for each n and $\mu_n \rightarrow \mu, \nu_n \rightarrow \nu$.

Proof. Let Γ_i , i $\in \mathbb{N}$ and Λ_i , i $\in \mathbb{N}$, be descending neighbourhood bases of μ and ν respectively. Since $\Gamma_i + A_i$ is a neighbourhood of $\mu + \nu$ there is an increasing sequence of numbers N_i such that $\varrho_n \in \Gamma_i + \Delta_i$ holds for each $n \ge N_i$. Choose now $\mu_n \in \Gamma_i$ and $\nu_n \in \Lambda_i$ with $\mu_n + \nu_n = \rho_n$ for each $N_i \leq n \lt N_{i+1}$, and $\mu_n = \rho_n$, $\nu_n = 0$ for $n < N₁$ to finish the proof. \Box

Finally it is worth mentioning, that $M(X)$ fulfills the first axiom of countability if X fulfills the second one (see [12, p. 49]). But there are spaces such that X fulfills the first axiom of countability and $M(X)$ does not: Let X be the space of all countable ordinals endowed with the order topology. Then the Dieudonné measure on X (see [9, p. 231]) has no countable neighbourhood base in $M(X)$ (see $[10. (1.8)]$.

3. Closedness of Addition

The following result will be used to investigate $\Phi_{\mathbf{v}}$:

A mapping $f: Y \rightarrow Z$ is closed if and only if for each $G \in \mathcal{G}(Y)$ the set ${z \in Z : f^{-1}(\{z\}) \subset G}$ is open in Z [7, Theorem 1.4.13]. At first we inspect the sets $\Phi_{\mathbf{x}}^{-1}({\{\varrho\}})$.

(3.1) Lemma. Let X be a topological space and $\rho \in M(X)$. Then the subspaces

(a)
$$
D(\varrho) = {\mu \in M(X) : \mu \leq \varrho} \subset M(X)
$$

and

(b)
$$
E(\rho) = \{ (\mu, \nu) \in M(X)^2 : \mu + \nu = \rho \} \subset M(X)^2
$$

are quasicompact.

Proof. To get (a) we show that $D(\rho)$ is the continuous image of a closed subspace of the compact space

$$
Y=\prod_{B\in\mathscr{B}(X)}\left[0,\varrho(B)\right].
$$

Let p_B , $B \in \mathscr{B}(X)$, be the projections of Y. The subspace

$$
Y_0 = \{ y \in Y : p_B(y) + p_C(y) = p_{B \cup C}(y) \text{ for each pair} \}
$$

of disjoint Borel sets B, $C \in \mathcal{B}(X) \}$

is closed in Y, the mapping $\Psi: Y_0 \rightarrow D(\varrho)$ with

$$
\Psi(y)(B) = p_{\mathbf{R}}(y)
$$

is well defined since σ -additivity of $\Psi(y)$ follows by

$$
\Psi(y)(B) - \sum_{k=1}^n \Psi(y)(B_k) = \Psi(y)\left(B\Big| \bigcup_{k=1}^n B_k\right) \leq \varrho\left(B\Big| \bigcup_{k=1}^n B_k\right)
$$

for each sequence of pairwise disjoint sets $B_k \in \mathcal{B}(X)$ and $B = \bigcup_{k=1}^{\infty} B_k$. Since Ψ is a continuous surjection, the quasi compactness of $D(\rho)$ is established.

The continuous surjection

$$
\Psi': Y_0 \ni y \to (\Psi(y), \Psi((\varrho(B) - p_B(y))_{B \in \mathcal{B}(X)})) \in E(\varrho)
$$

yields finally assertion (b). \Box

Similar to Theorem (2.1) the reduction to the finite case is the main idea in the proof of the following

(3.2) **Theorem.** *The mapping* Φ_x *is closed for any topological space* X.

Proof. As already mentioned, it is sufficient to prove the openness of the set

$$
\Gamma_2 = \{ \varrho \in M(X) : E(\varrho) \subset \Gamma_1 \}
$$

for open sets $\Gamma_1 \subset M(X)^2$. To this end let $\varrho \in \Gamma_2$ be given. By Lemma (3.1) there are $\alpha_1, \ldots, \alpha_k \in \mathcal{A}, \mu_1, \ldots, \mu_k, \nu_1, \ldots, \nu_k \in M(X)$ such that $\mu_i + \nu_i = \varrho$ for each i and

$$
E(\varrho) \subset \bigcup \{ A(\alpha_i, \mu_i) \times A(\alpha_i, \nu_i) : i \leq k \}
$$

$$
\subset \bigcup \{ A(2\alpha_i, \mu_i) \times A(2\alpha_i, \nu_i) : i \leq k \} \subset \Gamma_1.
$$

Choosing an $\alpha = (\mathscr{G}, \varepsilon)$ such that $\alpha \geq \alpha$, for each i, we show for $K = (4n_{\alpha})^{-1}$ the inclusion

$$
A(K\alpha,\varrho)\subset \varGamma_2.
$$

To this end let μ_0 , v_0 be measures such that $\varrho_0 = \mu_0 + v_0 \in A(K\alpha, \varrho)$. To prove $\varrho_0 \in \Gamma_2$ we have to establish $(\mu_0, \nu_0) \in \Gamma_1$. This will be done by constructing measures μ , $\nu \in M(X)$ such that $\mu + \nu = \rho$ and $\mu_0 \in A(\alpha, \mu)$, $\nu_0 \in A(\alpha, \nu)$. Indeed, if the index *i* is chosen such that $(\mu, v) \in A(\alpha_i, \mu_i) \times A(\alpha_i, v_i)$ holds, this means

$$
(\mu_0, v_0) \in A(2\alpha_i, \mu_i) \times A(2\alpha_i, v_i) \subset \Gamma_1.
$$

In the proof of Theorem (2.1) the complementary problem was solved: The measures μ_0 and v_0 were constructed for given μ , v. So to apply Lemma (2.2) the inequality signs have to be converted or, equivalently, open and closed sets have to change roles. Let therefore $B_1, ..., B_m, p$, and Y be as in the proof of (2.1). Y is now endowed with the topology

$$
\mathscr{G}(Y) = \left\{ I \subset Y : X \Big| \bigcup_{k \in I} B_k \in \mathscr{G} \right\}.
$$

Since p remains Borel measurable the image measures $\tilde{\mu}_0$, \tilde{v}_0 , $\tilde{\varrho}_0$ and $\tilde{\varrho}$ of μ_0 , v_0 , ϱ_0 and *Q* under the mapping *p* can be considered. $Q_0 \in A(K\alpha, Q)$ yields now $\tilde{\varrho} \in A(2K\beta, \tilde{\varrho}_0)$ for $\beta = (\mathscr{G}(Y), \varepsilon)$ since $X \in \mathscr{G}$ implies

$$
\tilde{\varrho}(Y) = \varrho(X) < \varrho_0(X) + K\varepsilon = \tilde{\varrho}_0(Y) + K\varepsilon \,,
$$
\n
$$
\tilde{\varrho}(I) = \tilde{\varrho}(Y) - \tilde{\varrho}(Y \setminus I)
$$
\n
$$
= \varrho(X) - \varrho(X \setminus \bigcup \{B_k : k \in I\})
$$
\n
$$
> (\varrho_0(X) - K\varepsilon) - (\varrho_0(X \setminus \bigcup \{B_k : k \in I\}) + K\varepsilon)
$$
\n
$$
= \tilde{\varrho}_0(I) - 2K\varepsilon
$$

for each $I \in \mathcal{G}(Y)$. By Lemma (2.2) there exist measures

$$
\tilde{\mu} \in A(2^{-1}\beta, \tilde{\mu}_0), \qquad \tilde{v} \in A(2^{-1}\beta, \tilde{v}_0)
$$

such that $\tilde{\mu} + \tilde{v} = \tilde{\rho}$. After putting them back to X as in the proof of (2.1) measures $\mu, \nu \in M(X)$ with image measures $\tilde{\mu}, \tilde{\nu}$ are obtained. As above $\mu_0 \in A(\alpha, \mu)$ and $v_0 \in A(\alpha, v)$ follows and finishes the proof. \Box

Let us conclude with some remarks.

(1) Theorem (3.2) can easily be carried over to the spaces of regular, τ -smooth or tight measures as in (2.3).

(2) The following easy application of (3.2) is sometimes useful. Let X be a topological space, Q_i , $j \in J$, a net in $M(X)$ which converges to $Q \in M(X)$ and Γ an open set in $\hat{M}(X)$ with $D(\varrho) \subset \Gamma$. Then $D(\varrho_i) \subset \Gamma$ holds eventually.

Indeed, since $E(Q) \subset \Gamma \times \Gamma$ and the set $\{\mu \in M(X): E(\mu) \subset \Gamma \times \Gamma\}$ is open by Theorem (3.2), $E(\rho_i) \subset \Gamma \times \Gamma$ holds eventually and implies $D(\rho_i) \subset \Gamma$.

(3) Straightforward considerations provide generalizations of the Theorems (2.1) and (3.2), which yield that the map

$$
M(X)^n \ni (\mu_k)_{k \leq n} \to \sum_{k=1}^n \mu_k \in M(X)
$$

is open and closed for arbitrary natural numbers $n \geq 1$. Openness and closedness of countable addition are easily obtained by choosing reasonable domains in $M(X)^N$ and ranges in $M(X)$ (see [10, (1.9) and (2.6)]). The result of Groemig [8] is therefore a consequence of the results of this paper (see $[10, (2.7)]$).

References

- 1. Chang, S.M.: On continuous image averaging of probability measures. Pac. J. Math. 65,13-17 (1976)
- 2. Degens, P.O.: Clusteranalyse auf topologiseh-maBtheoretischer Grundlage. Dissertation, LMU Munich, 1978
- 3. Ditor, S., Eifler, L.Q.: Some open mapping theorems for measures. Trans. Am. Math. Soc. 164, 287-293 (1972)
- 4. Eifler, L.Q.: Open mapping theorems for probability measures on metric spaces. Pac. J. Math. 66, 89-97 (1976)
- 5. Eifler, L.Q.: Convex averaging of Radon probability measures. Glasnik Mat., III. Ser. 12(32), 21-24 (1977)
- 6. Eifler, L.Q.: Some open mapping theorems for marginals. Trans. Am. Math. Soc. 211, 311-319 (1975)
- 7. Engelking, R.: General topology. Warsaw: Polish Scientific Publ. 1977
- 8. Groemig, W.: On a weakly closed subset of the space of τ -smooth measures. Proc. Am. Math. Soc. 43, 397-401 (1974)
- 9. Halmos, P.R.: Measure theory. New York: Van Nostrand 1950
- 10. Schief, A.: Topologische Eigenschaften maBwertiger Abbildungen und stochastische Anwendungen. Dissertation, LMU Munich, 1986
- 11. Schwartz, L.: Radon measures. London: Oxford University Press 1973
- 12. Topsøe, F.: Topology and measure. Lecture Notes in Mathematics, Vol. 133. Berlin, Heidelberg, New York: Springer 1970

Received May 26, 1987