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Let P" be the n-dimensional projective space over an algebraically closed field. A 
set of points x~ . . . .  , xa E P" lies in uniform position, if for any positive integers k, ! any 
k of these points impose the same number of conditions on hypersurfac, es of 
degree/. 

J. Harris proves in E8] that the points of a general hyperplane section of a 
reduced irreducible curve C C P" lie in uniform position, if the characteristic of the 
ground field is 0. He then proceeds (see also [9]) to bound the genus of curves not 
lying on surfaces of a certain degree. Although one can expect that Harris's bounds 
hold in arbitrary characteristic, it is not clear how to actually prove them. In view 
of his methods, however, it suffices to establish his uniform position argument in 
characteristic p > 0. 

What can we expect to find? 
First of all, in characteristic p > 0 there are well known examples of space 

curves C such that every secant of C is a multisecant [10, IV Ex. 3.8.], i.e,, every 
secant of C intersects C in at least one more point. For these, uniform position 
certainly fails. Apart from this phenomenon there seem to be no obvious counter- 
examples. Furthermore, these examples yield so-called strange curves. By Samuel's 
theorem [20] they are singular except for the conic in characteristic 2 and px. 
Therefore, since our main interest lies in smooth curves, we can lay those aside. 

Our main result is 

Theorem 0.1. Let C be a smooth irreducible curve in P", n > 4 and assume that C is not 
contained in a hyperplane. Then the points of  a general hyperplane section of  C lie in 
uniform position. 

For curves in Pa we can prove it only under additional assumptions. In general, 
the problem remains open. 

In Sect. 1 we develop the necessary geometric theory for our result. Section 2 
proves the main theorem (2.5) using a classification theorem for multiply transitive 
permutation groups. 

Current address: Sonderforschungsberelch 170, Bunsenstrasse 3-5, D-3400 GSttingen, Federal 
Republic of Germany 
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1. The Geometric Theory 

Let CCP" be a nondegenerate (not lying in a hyperplane) reduced irreducible 
curve. The simplest case where one can check for uniform position arises for 1= 1, 
i.e., hyperplanes. We discuss this case first. Recall from [10, p. 311] that C is 
called strange, if all of its tangent lines (at regular points) pass through one point. 

Lemma 1.1 (General Position Lemma). Let C be as above, H a general hyperpIane. 
I f  C is not strange, then every n points of  Hc~C are linearly independent. 

Proof. The arguments are well known (see e.g. [1, Proposition 8], [2, p. 1101), 
however usually a characteristic 0 hypothesis is used: 

Let C be as in the assumption such that for every hyperplane H one can find n 
linearly dependent points in Hc~C. We have to show that C is strange. 

For 2 < k < n -  1 let Uk : = {(Xl ..... Xk) ~ C k [ xi pairwise distinct} and let V~ be 
the subset of those points (x t , . . . ,  Xk) such that x l .... , x~ are linearly dependent or 
there is one more point of C in their linear span. V k is closed in Uk which is 
irreducible. 

The hyperplanes of pn are parametrised by the dual projective space P"*. If 
(xl , . . . ,  Xk) ~ Vk and xl ..... Xk are linearly independent, then they are responsible for 
rendering an (n-k)-dirnensional (linear) subvariety of P~* undesirable. If those 
points lie in a (k-D-dimensional subvariety of Uk and, furthermore, 
dim(Vk_0=<k-2, then we can conclude that dim(Vk)__<k-l. Now 
dim(V~_0__<n-2 proves the general position lemma for C; therefore (Uk is 
irreducible) there exists a (minimally chosen) k such that for every k points x l, ..., x~ 
of C there is one more point x of C such'that xl  .. . . .  Xk, X are linearly dependent. 
Now either every secant of C is a multisecant (k=2), or C can be projected 
birationally from a point of C into a hyperplane. The image of C now violates the 
general position lemma in pn-1.Continuing, one arrives at a curve Co all of whose 
secants are multisecants. By [10, IV 3.8] Co is strange (all tangent lines pass 
through one point). 

Now C itselfis strange: As in the proof of [10, IV 3.8] it is sufficient to show that 
every two tangent lines meet. So let P, Q e C, choose a p3 containing the embedded 
tangent lines tp, tf! and choose the projections from above into linear spaces 
containing that PL tp, tQ remain fixed under the projections, and, after the last 
projection, they must intersect. 

q-1 
Example 1.2. Let C C P" be defined as the complete intersection of X g -  X I X ,  , 
X ~ - X 2 X ~  -1, ... where chark=p  and q = p l  for some f > 0 .  C is reduced and 
irreducible of degree qn-1. As a configuration of points, the general hyperplane 
section of C looks like an (n-1)-dimensional affine space over a field with q 
elements. 

Proof. Over the affine open subset {Xn 4= 0} C can be described by the equations 
Xo=t, xl = t  q, X2 =~/2 ,  . . . .  

If no,..., a, (r < n) are linearly independent points of C, then the points of C in 
their linear span are given by a = ao + 2t(al - ao) + . . .  + 2 , (a , -  a 0) where the 2~ 
satisfy 27=2~ [They are (q-1)- th roots of unity or 0.] 
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Definition 1.3 [7, I]. Let C be a nondegenerate reduced irreducible curve in P"; let 
M-- {(x, H) e C x P"* r x e H} be defined by the point-hyperplane incidence rela- 
tion. The projection M ~ C  exhibits M as a P"-  1-bundle over C and therefore M 
is irreducible. The projection 7t : M ~ P " *  is a finite separable map of degree d. The 
induced map n * : K ( P " * ) ~ K ( M )  on fields of rational functions (the local rings at 
the generic points) represents K(M) as a finite separable field extension of K(P"*) of 
degree d. By the primitive element theorem there exists an element f ~  K(M) 
generating K(M)  over K(P "*) and satisfying P ( f ) = 0  for an irreducible monic 
polynomial P over K(P"*). 

The monodromy group Gc of C is defined as the Galois group GaI(P, K(P'*)) of a 
splitting field of P over K(P"*). It is independent of the choice of f and it can be 
regarded as a subgroup of the full permutation group Sd of the d roots of P. 

Remark i.4. For  k = C there is a more geometric description available. Let U C P"* 
be an open subset such that the induced map n -  I(U)--* U is 6tale. Fix a point H e U. 
Moving H along a path in U gives a bijection of the fibers over different H. N o w  a 
loop in H induces a certain permutation in the fiber. The group generated by those 
permutations is isomorphic to the monodromy group G c [7, I]. 

Recall that the action of a permutation group G on a set t2 is called k-fold 
transitive, if for every two sequences xx,. . . ,  Xk and x~ . . . .  , x;, of distinct elements off2 
there exists a permutation cre G mapping x~ on x~ for 1 < i < k. 

Proposition 1.5. Let 1 < k < d. The monodromy group acts k-fold transitively (on the 
roots of  P )  if and only if there exists an irreducible open subset U of  

U k = {(Xl, ..., X k, H) ~ C k • P"* I Xl,-.., Xk ~ H, x i pairwise distinct} 

such that the induced map U--*P ~* is ~tale and generically d ! /( d - k )  I-to-one onto its 
image. 

Proof. Recall from [-10,1 4.4] that there is an equivalence of categories between the 
category of varieties and dominant rational maps and the category of finitely 
generated field extensions over k. Given a variety V, the corresponding field is its 
field of rational functions K(V). 

We want to use this in a slightly different context: There is a bijection between 
(i) pairs (X , f ) ,  where f :  X ~ P ' *  is a rational map such that for every irreducible 
component Xi of X the restriction X i ~ P " *  is dominant and generically 6tale, and 
(ii) direct products of finite field extensions of K(P"*). 

We now prove by induction on k that the K(P"*)-algebra corresponding to 
(U~, n), where n: U k ~ P  ~* is the projection, is K(P"*)[fa, ...,fk], where f l  . . . . .  fk are 
k different roots of P that are formally adjoined to K(P"*): 

The assertion is clear for k = I, so let k > 1; write K = K(P"*). Let Vk be defined 
as the pullback 

K ---' U k -  1 

U1 ~ P"*, 

. . . .  . . . . .  
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Vk decomposes into k dominant components, namely those where xk = x s for some 
l < j < k - 1  and x k # x  i for all l < j < k - 1 .  The first k - 1  components are all 
isomorphic to Uk-~, while the last corresponds to Uk. Using the bijection by 
taking rational functions we get a push-out diagram in the category of finite 
K(P"*)-algebras:  

K(K) *-- K(Uk-O 

K(UO (--- K(P"*) = K. 

We have K(UO ~ K[ f ] ,  K(U k_ 1)~ K [ f l  ..... fk - 1] by induction. Therefore 

K(Vk)~- K [ f ] |  K [ f  ~, . . . , f~-,]  

~- K[T]/P( T)| K [ f  l, .. . ,fk- 1] 

~ K[f~, ...,f,_ d [T]/P(T). 

Now P decomposes over K[ f l  ..... fk-1-1 as 

P ( T ) = ( T - f  O ... ( T - A -  ,)P,(T), 
SO 

K(Vk) ~ KCfl, .... fk-  1] [T] / (T -  fO ... (T--fk- OPk(T) 

KCf D . ..,fk- ~ ] [ T]t( T-- f ~)~ . .. @ KCf ~, .. , f k -  ~ ] [ T]I Pk( T) 

-----(K[A,- .-,fk- l]) k- ' @ KEf  , .... , ~ -  1-1 [ T]/ Pk( T) . 

(*): The canonical map 

K[f , , . . . , f k  - 1] IT] ~ K [ f l , . . . , A  - 13 [T] / (T- - f l )~  ... ~K[ f , , . . . , f~  _ ,3 [T]/Pk(T) 

has as its kernel the ideal generated by (T- fO. . .Pk(T)=P(T)  and surjectivity 
follows because we have on both sides of (*) K-vector spaces of the same 
dimension. 

The decompositions of Vk and K(Vk) allow us to identify 
K [ f l  ..... ~ -  l] [T]/Pk(T) as the K(P"*)-algebra corresponding to the last compo- 
nent of Vk. Therefore K [ f  1 .... ,~_ 1][T]/Pk[T] is a field if and only if that 
component is irreducible. 

The proposition readily follows: K [ f  1 ..... fk -  1] [T]/P~(T) is a field if and only 
if K[f l ,  ...,.f,-1] is a field and P,  is irreducible over K[f l , . . . , f k -  1] [T]. The latter 
is equivalent to Gal(L, K[f~ ..... fk- t]) acting transitively on the roots of Pk, where 
L is a splitting field of P over K(P"*). By induction the conclusion follows. 

Corol lary  1.6. Let C be a nondegenerate reduced irreducible curve in P'. I f  every n 
points of a general hyperplane section of C are linearly independent, then the 
monodromy group of C is n-fold transitive. 

Proof. Using (1.5) it suffices to observe that U can be chosen as a P~ over 
C" - A, w h e r e  A is the algebraic subset o f  C ~ consisting ofthose (x 1, . . . ,  x,)  e C" such 
that xl, . . . ,  x, are linearly dependent. The assumption on the general hyperplar~e 
section ensures that A is a proper subset of C". 
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Remark 1.7. Over C there is an easier argument for (1.6) using the description of the 
m0rlodromy group given in (1.4). Choose H, xl,. . . ,  xn and x'~ ..... x', �9 CnH. First 
choose a loop y i in H e U such that x ~ is mapped to x'~, if one moves H along 71. 
Then choose a loop Y2 such that x~ is fixed and yl(x2) is mapped to x~. Inductively 
0he can continue this process n times because the subset of hyperplanes fixing 
xl,..., xk has dimension n -  k. 

Corollary 1.8 [8, Chap. 2]. I f  the monodromy group Gc is the whole symmetric group 
Sd or the alternating group Aa, then the points of a general hyperplane section of C lie 
in uniform position. 

Proof. Gc-~Sa: The dimension of the linear system of hypersurfaces of degree l 
passing through x~ ..... x k is a semi-continuous function on U [U as in (1.5)]. Let a 
be the minimal dimension. Suppose that for every hyperplane H one can find 
x~,..., Xk �9 H n C  such that the linear system has dimension > a + 1. If k > n, then 
x~ .... ,Xk span in general a unique hyperplane, so the closed subset of U that 
renders hyperplanes undesirable, has dimension n=dim(U) and must therefore 
be equal to U contradicting the choice of a. If k < n, then the same procedure as in 
(1.1) gives a contradiction. (Moreover, any k =< n points in general position impose 
independent conditions on hypersurfaces of any degree.) 

Gc~-Ad: For k < d - 2  the same proof as for Sa works; for k = d - 1  one can 
regard the condition as a condition on the remaining point. 

Example L9. Let C be as in (1.2). Then the monodromy group Gc is the affine 
general linear group A G L ( n -  1, q). 

Proof. The description of the general hyperplane section of C given in (1.2) allows 
us to identify the irreducible dominant components of Uk [as in (1.5)] for any 
1 < k < n. In particular, we can conclude that every permutation in G c must respect 
linear incidence; so Gc is a subgroup of AGL(n-1 ,  q). However, the irreducible 
dominant component of Uk corresponding to 

{(x 1 .... , xk, H) �9 C k x P~* I xl, ..., Xk e H, xl, ..., x k linearly independent} 

provides a certain subgroup of Gc. These subgroups together generate 
AGL(n- 1, q). 

Proposition 1.10. 1. Let Co be the projection of C from a point x of P , -  c into a 
hyperplane. Then the monodromy group Gco can be regarded as a subgroup of Gc. 
For general x, Gc and Gco are isomorphic. 

2. Let C1 be the projection of C from a nonsingular point x �9 C into a hyperplane. 
Further assume that not every secant through x is a multisecant of C. Then the 
rnonodromy group of C1 can be regarded as a subgroup of the stabilizer of one root 
Under the action of G c on the d roots of P. 

Proof. 1. Gc is completely described by the irreducible dominant components of 
Ud, d=degC, as in (1.5), where re: U~P"*.  Now Gco is described by 7t- I (P)~P 
Where p is the hyperplane in Pn* corresponding to the center of projection x. The 
first part follows, and for the second apply [14, 6.3.4]. 
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2. First note that degC 1 = degC - 1. Taking n-  l ( p ) ~ p  as above it is clear that 
in every (xt ..... xa, H ) e n - l ( P )  one of the x5 must be equal to x. Then the same 
argument works. 

For special projections the monodromy group can actually become smaller, 
see (2.15). 

Proposition 1.11. I f  there exists a hyperplane H intersecting C in d - k + 1  
nonsingular points of C, where H intersects C transversely at x 1 .... , xa_ k and has 
intersection multiplicity k at xa-k+~, then the monodromy group G c contains a 
subgroup acting transitively on k roots of P while fixing the other roots. 

Proof. We can assume that all coefficients of P lie in the local ring OH of P"* at H. 
Let 0 ,  be the completion of On. Complete the structure sheaf of M [in the 
notation of (1.3)] along xl ..... Xd-k+ 1 to get a finite 0n-algebra B of rank d. B is 
isomorphic to O,[T]/P(T).  B splits as a product of d - k +  1 local 0n-algebras 

d - k + 1  

corresponding to the points xl . . . . .  xa-~+l [18, I 4.2], B ~  I-I B5" 
5=1 

Then necessarily Bi -~ On for 1 < i < d -  k and Ba- k + ~ ~ 0 , [  T]/Q(T) for a poly- 
d - k  

nomial Q e 0 , [ T ]  of degree k. Therefore P(T)=Q(T)  H ( T - a i )  over 6~. 
5=1  

Let /~ be the quotient field of 0 , ,  K(Pn*)~/~ be induced by restriction. 
As shown above, P decomposes over/~ as P = L  t ... La_kQ with L5= T - a  5. Let 
K = K(P"*)[a~,..., aa-k]. If we can show that Q is irreducible over K, then Galois 
theory provides the desired subgroup. But this is clear, because Q corresponds 
to a point of M where M is locally irreducible, even smooth. 

2. Applications 

Proposition 2.1. Let C be a reduced irreducible curve in P". I f  there exists a 
hyperplane H intersecting C in d - 1  smooth points of C, where H intersects C 
transversely at d -  2 points and has intersection multiplicity 2 at the remaining point, 
then the monodromy group G c is the whole symmetric group S d. 

Proof. By (1.11) Gc contains a subgroup acting transitively on 2 elements and 
fixing the complement, so Gc contains a transposition. For k = 2 the variety U~ 
[defined in (1.5)] is a P"- 2-bundle over C and therefore irreducible. By (1.5) Gc acts 
doubly transitively and contains therefore all transpositions. Now it is well known 
that Sd is generated by transpositions. 

At this point we should mention the implications of the theory of duality for 
projective varieties as described e.g., in [16]: 

Let V C P" be a reduced irreducible variety. Let N(V)C P" x P"* be the conormal 
variety of V. It is defined as follows: The fiber over a smooth point x of V consists of 
all those hyperplanes that contain the tangent space at x, and N(V) is the closure. 
The dual variety V* C P"* is defined as the scheme-theoretic image of N(V) under 
the projection P" • p . , ~ p , , .  It is again reduced and irreducible. Now V is called 
reflexive, if the map N ( V ) ~  V* is separable. 

In order to get a correspondence between the points and tangent hyperplanes 
of a variety and its dual, one usually restricts oneself to the subset of reflexive 
varieties. 
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While in characteristic 0 every curve and in characteristic 2 no curve is 
reflexive, reflexive curves in characteristic p > 2 can be characterized as follows: Let 
#(C) be the intersection multiplicity of C with a general hyperplane H at a general 
point x of C whose tangent line is contained in H. Then C is reflexive if and only if 
#(C)= 2; and for nonreflexive curves #(C) is always a power of p [11, 3.5]. 

In view of (2.1) we can therefore state using the fact that for reflexive curves the 
point of contact of a general hyperplane is unique [15, 3.5]: 

Corollary 2.2. Let C be a reduced irreducible curve in P". I f  C is reflexive, then its 
monodromy group is the symmetric group Sa. 

This result has also been obtained in [3]. 

Examples of Nonreflexive Curves 2.3. Let k be an algebraically closed field of 
characteristic p > 0. 

1. Let ql, q2, q3 ~ k[X, Y, Z] be homogeneous polynomials of the same degree 
with no common zero in p2. Then f = X q ~  + Yq~+Zq~ describes a smooth 
nonreflexive plane curve. Moreover, for p > 2 all smooth nonreflexive plane curves 
arise in this way [19, 11-19]. 

2. Let C cP" be a smooth complete intersection curve defined by homo- 

geneous polynomials f l  .... , f , -1 .  Let gi = :~1 xj \dxj,I " Then gl,. . . ,  g,-1 define 

a smooth nonreflexive complete intersection curve in P". 
3. Let Xo, Xl be a basis for H~ q=p:. Then x~ +~, x~x~, XoX~, 

x~+ 1 ~ HoOpl(q + 1) embed P~ as a smooth nonreflexive curve in p3. C lies on the 
quadric X o X 3 - X ~ X 2  and, apart from p=2,  C is the projection of a reflexive 
curve, in particular C is not linearly normal. 

What does our theory imply for nonreflexive curves? (1.5) and (1.6) still hold 
and, by choosing special hyperplane sections, we can try to apply (1.11). Now, 
surprisingly, a faithful doubly transitive action of a group is already a strong 
condition permitting a classification I-4, 5.3]. Since our main interest lies in the 
question of uniform position, we can even restrict ourselves to nonplane curves. 
Groups acting faithfully triply transitively on a set of d elements are described by 

Theorem 2.4. Let G be a subgroup of the symmetric group Sa. I f  G acts triply 
transitively, then G is contained in the following list (k is the maximal degree of 
transitivity in each case)" 

group d k 

AGL(n, 2), n > 3 2" 3 

Gi 16 3 
PSL(2, q) <_ G <_ PFL(2, q) q + 1 3 

Mll  11 4 
M11 12 3 

M12 12 5 
M23 23 4 

M24 24 5 
Aa d d - 2  

d d. 
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AGL(n, 2) is the group of affine transformations on a vector space of dimension 
n over a field with 2 elements. 

Gt is a certain subgroup of AGL(4, 2). 
PSL(2, q) is the subgroup of even projective linear transformations on the 

projective line over a field with q elements. If q is even, then PSL(2, q) = PGL(2, q), 
otherwise it is a subgroup of index 2 in PGL(2, q). 

PFL(2, q) is the automorphism group of PSL(2, q). It can be described as the 
group of all transformations x--*(ax ~ + b)/(cx ~ + d) of the projective line, where ~ is 
a field automorphism of F~. 

Mi are the Mathieu groups in their usual representations. 

Remarks to the Proof. We could not lind a reference for this result, so we proceed to 
outline the main ideas of the proof (see [4]): If G acts doubly transitively on a set f2, 
then choose a minimal nontrivial normal subgroup N. Let Ca(N) be the centralizer 
of N in G. We have to distinguish two cases. If Ca(N) 4= {e}, then N is isomorphic to 
(Z/p)" for some prime p. O can be identified with N and G acts on N by affine linear 
transformations. All triply transitive groups in this class have been determined in 
[5, 8.2]. If Ca(N) = {e}, then N is simple, and, since G acts on N by conjugation, G 
can be embedded into the automorphism group ofN. I fN  is a simple group of Lie 
type, all possible G have been determined in [6], while for the sporadic simple 
groups the results can be found in [4]. (Aut (M~)-~ M~ for i = 11, 23, 24, Mi has index 
2 in Aut(Mi) for i=  12,22 [12, XII 1.15a].) 

Theorem 2.5. Let CCP", n>4,  be a nondegenerate reduced irreducible curve of 
degree d. I f  the points of a general hyperplane section do not lie in uniform position, 
then C is strange. 

Furthermore one of  the following is true: 
(1) every secant of  C is a multisecant; 
(2) every plane spanned by three points of  C contains one more point of C; 
(3) de  {11,12, 23, 24} and the monodromy group of C is one of the Mathieu 

groups in its standard representation. 

Proof. Let C be a curve not satisfying (1) or (2). Then Gc acts quadruply 
transitively, so using (1.6), (2.4) we only have to show that a curve whose 
monodromy group is one of the Mathieu groups is strange. 

First suppose that the general hyperplane containing a tangent line of C has a 
unique point of contact. Then by (1.11) we have #(C)>I(G) where I(G) is the 
minimal cardinality of a nontrivial subset such that there exists a subgroup of G 
acting transitively on this subset and fixing the complement. By [12, XII 1] we have 
l(Ml 1) = l(Ml 2) = 8 and/(M23), I(M2,) -> 16. Choosing a hyperplane containing two 
tangent lines of C we arrive at d = deg C > 2/a(C) > 2I(G), an obvious contradiction 
for each of the Mathieu groups. 

If the general hyperplane containing a tangent line of C is tangent to C only at 
(possibly several) points of this line, then the same argument works. Here we have 
to use a more general statement than (1.11): The subgroup we find acts no longer 
transitively, but at least nontrivially. 

Now assume that the general hyperplane containing a tangent line of C 
contains several distinct tangent lines. Varying the hyperplane one sees that every 
two tangent lines must meet, C is strange. 
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(1.2) gives examples of curves satisfying (1) (p4:2) and (2) (p=2). We do not 
know whether there exist curves satisfying (3). 

Problem 2.6. Is it possible to give a classification of all curves not satisfying the 
conclusion of the general position lemma? The standard examples are 

(1) as in (1.2), 
(2) curves obtained by projecting a curve C as in (1.2) from a point of C into a 

hyperplane, 
(3) projections of curves as in (1), (2). 

Corollary 2.7. Let C be a smooth irreducible curve of  degree d in P", n > 4 not 
contained in a hyperplane. Then the monodromy group of C contains the alternating 
group A~. 

Proof. Suppose that the monodromy group of C does not contain the alternating 
group. 

If the points of a general hyperplane section of C lie in general position, then 
the monodromy group of C is 4-fold transitive by (1.6). Therefore, by (2.4) this 
group must be one of the Mathieu groups, and in the proof of (2.5) it is shown 
that C is strange. All smooth irreducible strange curves are known [203 (p1 and 
the plane conic in characteristic 2) and lie in the plane, so C cannot be 
nondegenerate in p4. Contradiction! 

If the points of a general hyperplane section of C do not lie in general position, 
then C must be strange by (1.1), and we also get a contradiction. 

Proof of (0.1). The result follows immediately from (2.7) and (1.8). 

Corollary 2.8. Let C be a nondegenerate smooth irreducible curve of degree d and 
genus g in pn, n > 4. Then the bounds given in I-9, 3.7, p. 873, [9, 3.15, p. 993, [9, 3.22, 
p. 117] hold regardless of the characteristic of k. 

In particular this establishes 

Castelnuovo's Theorem 2.9. Let C be a smooth irreducible nondegenerate curve in P~ 
of degree d and genus g where pn is the projective n-space over an algebraically closed 
field of any characteristic. Let m be the greatest integer <=(d-1)/(n-1) and 
d=m(n-1)+,L Then the genus of C satisfies 

g< ( 2 ) ( n - - 1 ) +  m2. 

In the literature this result is only stated with a characteristic 0 hypothesis. 

Theorem 2.10 (chark 4: 2). Let C be a nondegenerate reduced irreducible curve of 
degree d in P" with conormal variety N(C) and dual variety C*. Then the following 
conditions are equivalent: 

(1) The monodromy group of C is contained in the alternating group Ad. 
(2) The field extension K(C*)~K(N(C)) has even degree. 

I f  C is not strange, then this is also equivalent with: 
(3) The general tangent line of C is tangent at several points of C, and the number 

of these points is even. 
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Proof. The equivalence of (2) and (3) is clear. For  the equivalence of (1) and (2) we 
want to use the following well known result E13, p. 250]: 

Let f be a separable irreducible polynomial over a field K of characteristic 4:2 
with discriminant D = I-[ (a~ - aj) 2 where al , . . - ,  an are the roots of f in a splitting 

i < j  

field. Since D is a symmetric polynomial of the roots of f ,  it can be expressed as a 
polynomial in the elementary symmetric functions of al . . . . .  %, i.e., the coefficients 
o f f ;  inparticular, D lies in K. Then the Galois group Gal(f ,  K) is contained in the 
alternating group if and only if D is a square in K. 

Let L = KEa] where f(a) = 0. Then D is also the discriminant of 1, a, a 2 ....  , a"- t 
where the discriminant of a basis u a, ..., un of L over K is defined as det (Trace(uiuj)) 
and by [21, II 11] the discriminants of two different bases differ by a square of K. 

Now let R = k[T~ . . . .  , Td] be the coordinate ring of an affine part of Pn*, K its 
quotient field. Let S be the coordinate ring of the corresponding affine part of the 
normalization of M [M as in (1.3)] with quotient field L. Since M is a projective 
bundle over a nonsingular curve, all local rings of S are regular. Since R and S are 
both Cohen-Macaulay,  S is locally free as R-module, and Serre's conjecture 
implies that S is even free. 

Let ut ..... Ud be an R-basis for S. 
The prime ideal of the conormal variety inside S is given by the 0-th Fitting 

ideal of Os/s, the module of relative differentials (see [11 ]) and by [17] it coincides 
with the Dedekind different 6S/R. 

Now by [21, V Theorem 30] the discriminant ofux .... , ua is nothing else but the 
norm of the different 6sir (which is a height 1 prime ideal). We can compute the 
latter ideal locally: IfA = P~... P,  is a decomposition of an ideal in a Dedekind ring, 
then its norm is (P1 nR)  I ' . . .  (P, n R )  ~" where the relative degree f~ is the degree of 
the field extension Quot(R/(PinR))~Quot(S/Pi). The equivalence of (1) and (2) 
follows. 

Note  that a curve is reflexive if and only if the map from the conormal variety to 
its dual variety is birational, and then the field extension K(C*)~K(N(C)) is an 
isomorphism. 

The situation in characteristic 2 is different, as can be seen from the following 
example: 

Example 2.11. Let C be the strange plane curve defined by yza - l=x  a in 
characteristic 2. Define an integer a and an odd integer b by d = 2"b for d even, 
d - 1  = 2~ for d odd. 

Then: 
1. The monodromy group of C is contained in the alternating group Aa for any 

d > 3 .  
2. The field extension K(C*)oK(N(C)) has separable degree b and inseparable 

degree 2 a. 
3. The tangent line at a general point of C is tangent at b different points of C 

and has intersection multiplicity 2 a at each of them. 

Proof. In order to prove i., we want to use the following result [13, p. 252]: Let f 
be a separable irreducible polynomial over a field K and a t . . . . .  ad its roots in a 

,,1,,2 .~a-t Then splitting field. Let D I =  Y~ ,,t ,,2 ,~d- I  0 2  = ~ ~2"a3 . . . .  *a ~a2"a3""t*ad ~ 
~r~Aa ~ S d -  Aa 
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DL-I-D2 and D1D 2 can be expressed as polynomials in the elementary symmetric 
functions of a~ .. . . .  ad, i.e., the coefficients of f .  [-13, p. 252] now asserts that the 
Oalois group of f is contained in the alternating group Ad if and only if 
T2-(D1 +D2)T+D1D 2 has a root in K. 

Choose homogeneous coordinates A, B, C in pn.. M [as in (1.3)] is described by 
the polynomials yz d- 1 = x d and Ax + By + Cz = 0. Dehomogenize by setting z = 1, 
B = 1. Then y = x d, Ax  + y + C = O, y = - Ax  - C, so we have to consider the Galois 
group of f (x )  = x a + Ax  + C. 

Assume first that d is odd, d = 2 s + l .  Denote by ai the i-th elementary 
symmetric function of the roots of f .  In our case most of the at vanish, so D 1 + D2 
and D ~D 2 depend only on tr d_ 1 and tr d. Since deg a i = i and degD 1 + D2 = s(2s + 1), 
degD~D2 = 2s(2s + 1), it follows that 

D1 +D2 = rlt~2s+ 1, 

_ _  2 s  _1._ 2 s + l  
O 1 0 2  - -  r 2 ~  + 1 / r30"2s 

for some constants rl, r2, r3. Since these formulas are reductions of the correspond- 
ing formulas over Z, the constants are either 0 or 1. 

Now 01 + 0 2  = D 1 - D 2  = I] (ai-aj)  (use van der Monde's determinant) 4=0 
(f is separable), so r 1 = 1. i< j 

These formulas must hold for any specialization of A and C. Setting C= 0, every 
root o f f  occurs at least with multiplicity 2, and two double roots (or one root with 
multiplicity 4) force D r = D 2 = 0 .  [If a~=a2, a3=a4, then for the summand 
corresponding to tre Ad the summand corresponding to (1 2)(3 4)a contributes 
the same value.] Therefore r 3 = 0 and the quadratic polynomial above has a root in 
K for any s _>_ 2. 

2. and 3. are discussed in [15]. 
The proof for even d is quite analogous, so we omit it here. 
The preceding example provides some evidence for the following 

Conjecture 2.12. Let chark = 2, let C be a nondegenerate reduced irreducible curve 
of degree d in pn with conormal variety N(C) and dual variety C*. Then the following 
canditions are equivalent: 

(1) The monodromy group of C is contained in the alternating group A d. 
(2) The field extension K(C*)--.K(N(C)) has degree >2.  
I f  C is not strange, then this is also equivalent with: 
(3) The general tangent line of C is tangent at several points of  C (the separable 

degree of the field extension in (2) is > 1) or the general tangent line has intersection 
multiplicity > 2 with C at that point (the inseparable degree of the field extension in 
(2) is >2) .  

Let C be a curve such that every hyperplane containing a tangent line of C 
cOntains the tangent lines of several other points? Then either 

(1) H contains a unique tangent line that is tangent at several points, or 
(2) H contains several distinct tangent lines that might also be tangent at 

~veral points of C. 
If (2) is valid, then C is strange. 
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[16, I-3] gives some plane curves with property (1). Space curves with that 
property are constructed in the following 

Example 2.13. Let chark = p  > 0, Ct be an arbitrary curve with field of rational 
functions K~. Let K2 be a separable extension of K~ of degree a, let K be a purely 
inseparable extension of K2 of degree p, let T~ K be a separating transcendental 
such that Kx[T] = K and set K3 = k[T]. If C2 is a nonsingular curve with function 
field K, then C2 admits a separable map f of degree b = rK: K3] to p1 and a non- 
separable map to C~. These maps together yield a birational map C2--,C~ • Pt, 
and the image of C2 is in general singular. Now any birational image of C~ x p1 in 
some W that is a scroll maps Cz in such a way that the fibers of the scroll are exactly 
the embedded tangent lines of C 2. In particular, the general tangent line at a point 
of C is tangent to C in exactly a points. 

This construction also yields smooth examples by setting C1 -~ C2 ~ P~, b = 1 
and choosing an embedding of Pt  x Pt  as a scroll in some pn. 

It can also be used to show that in characteristic > 0  any curve has a 
nonreflexive birational model in some W and a strange model in p2. 

Propositioa 2.14. Let CCP 3 be a nonplane smooth irreducible curve of degree d. 
Assume that the general hyperplane containing a tangent line of C has a unique point 
of  contact and that C is not strange. I f  the monodromy group of C does not contain 
the alternating group A d, then one of the following must hold 

(1) chark= 2; 
(2) C is smooth and rational; if xo, xt spanH~ l(1), then C is embedded into p3 

by X~o, Xdo - l X l ,  Xo xd- 1, xdl e HOOpl(d) and d = p f  + 1 for some f > O, char k = p. 

Proof. Choose a tangent line I of C, another line 11 not intersecting I and project C 
from I to l~. For a general choice of I the fibres of this map consist of d-#(C) 
points. 

Which values can #(C) assume, if Gc~ Aa, Sa? 
#(63 must be a prime power, and (1.11) then gives us a certain subgroup of Gc. 

The possible cardinalities of a nontrivial subset acting transitively on this subset 
and fixing the complement are given by 

G~AGL(n,2): d - 1  or d/2 for chark=2 ,  

G<=PFL(2,q), qodd :  d - 1  or d - 2  ( i f d - 2 i s a p o w e r o f 2 ) ,  

G<PFL(2,q),  q even: d - 1  (chark=2) or d - 2 .  

The Mathieu groups are contained in the corresponding alternating groups, so 
because of (2.10) we do not need to consider them. 

By Hurwitz's theorem [10, IV 2.4] we have 2g(C)-  2 = ( d -  #(C))(- 2) + degR, 
where R is the ramification divisor of the projection. 

If d - ~ C ) = l ,  then rr is an isomorphism. Let Xo, Xl be a basis for H~ 
Xo, x~ have a zero at p, q. The linear system defining the embedding must contain 
the divisors p+g~C)q, g(C)p+q, (#(C)+l)p, (#(C)+l)q. These are linearly 
independent, and C is as in (2). 

If d -  ~C)  = 2, then 2g(C)-  2 = - 4 + degR, degR = 2g(C) + 2. For ohark ~e 2 
the double covering n is only tamely ramified and we must have at least two points 
of ramification. One of these points can be the point where I is tangent to C, the 
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other point however must correspond to a point whose tangent line meets l. 
Choosing the plane spanned by those two tangent lines we get d =deg  C > 2#(C), a 
contradiction. 

Example 2.15. The monodromy group of the smooth rational curve in (2.3.3) and 
(2.14.2) is the group PGL(2, q) in its standard representation. 

Proof. The embedding of the curve is defined by ~ +  1 : X~Xl : XoX] : x] + 1, so the 
curve lies on the hypersurfaces xu = yz, yq+ l=  zqu. 

Choose homogeneous coordinates A, B, C, D in p3. .  M [as in (1.3)] is then 
described by the ideal of the curve together with Az + By + Cz + Du = 0. Dehomo- 
genize D = I ,  x = l .  Then A + B y + C z + u = O ,  u=yz,  yq+l=u=yz ,  z = y  ~ and 
A+ By + Cyq+ y ~+ 1 =0.  

We have to find the Galois group of f ( T ) = T q + I + C T ~ + B T + A  over 
K=k(A,B,C). 

Choose a root r of f and set Z = T - r .  

f ( T ) = f ( Z  +r )=(Z  +r) q+ l +C(Z +r)a+ B(Z +r)+ A 

=Zq+ I +rZq+r~Z +rq+ I +CZq+ Cr~ + BZ + Br + A 

= Z ( Z  ~ + (r + C)Z ~-1 + (r ~ + B)). 

Let g(Z) = Z ~ + (r + C)Z q- 1 + r a + B and set U = Z -  1. 

g(Z)=g(U- 1)= U-a + (r + C)U 1-~+ r + B =  U-q(1 + ( r +  C)U + (rq+ B)Ua). 

Let h(U)= 1 +(r+C)U+(r~+B)U ~, choose a root s of h and set V= U - s .  

h(U)=h(V + s)= l +(r + C)(V + s)+(rq + B)(V + s) q 

= 1 + (r + C ) V +  (r + C)s + (r q + B)V q + (r ~ + B)s q 

= V((r + C) + (r~ + B ) W -  I). 

Let t be a root of V ~- l(ra + B) + (r + C); all the roots of that polynomial are then 
given by cot, co2t . . . . .  coa- 1 t with a primitive (q - 1)-th root of unity co. Then U = s, 
s+tot . . . . .  s+co a- it are the roots of h(U), Z = s  -1, (s+cot) -1, ...,(s+coq-lt) -1 are 
the roots of g(Z), and T = ,  r + s-  1, r + (s + cot)- 1, ..., r + (s + co*- 1 t)- t are the roots 
of f(T). In particular, we can conclude that Gal(f ,  K) acts sharply triply 
transitively on the roots of f .  

We now want to show that the map G, defined by G(c~) = r, G(0) = r + s -  1, G(x i) 
=- r + (s +coit)- 1 where x = co is a generator of the multiplicative group of the finite 
field with q elements, induces an isomorphism of the representations of PGL(2, q) 
and Gal(f ,  K). 

Let f (z)=(az+b)/(cz+d) be an arbitrary element of PGL(2,q). We have 
f (~)=a/c,  f(O)=b/d, f(1)=(a+b)/(c+d),  and there exists a unique element 
~r Gal(f, K) such that G(f(z))= a(G(z)) for z =  oo, 0,1. We have to show that this 
equation holds for arbitrary z. 

Now the given three equations determine a(r), a(s), and o-(t). Using this, it is 
straightforward, but tedious, to verify the above equation for arbitrary z. 

We do not know whether the points of the general hyperplane section of the 
Curve in this example lie in uniform position. 
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Example  2.16. Let C be the smooth nonreflexive plane curve x~y + y~z + z~x = 0, 
q = it/, p = chark > 0. Then the monodromy group of C is isomorphic to PGL(2, q). 

Proof. M [as in (1.3)] is given in inhomogeneous coordinates by xqy + y~ + x = 0, 
A x  + y + C = O ,  so y =  - A x - C  and x q ( - A x - C ) + ( - A x - C ) q +  x=O,  - A x  ~+~ 
- ( A ~ + C ) x q + x - - O = O .  We have to find the Gatois group of f ( X ) = X  q§ 
+ ( A ~ + C ) A - 1 X ~ - A - 1 X + C q A  -1. From this form we can already conclude, 
using the proof  of (2.15), that Gal (f,  K) C PGL(2, q). Now set D = CA - ~, E ='A-  ~, 
F = D + E 1 -q, then K = k(A, C) = k(A, D) = k(E, D) = k(E, I0 and 

f ( X )  = X q + ' + (A q + C ) A -  ~X ~ -  A -  ~X + C*A-  ' 

= X q + 1 + (A q- l + D ) X  q _  A -  xX + D~A ~- 1 

=Xq+ x + (E t -~ + D ) X ~ _  E X  + DqE 1-4 

= X q + 1 + F X  q _ E X  + (F - E1 - ~)qE t - 

Gal(f ,  K) is doubly transitive, and the last form o f f  shows [by comparing it with 
the corresponding polynomial  in the proof  of (2.15)] that after adjoining two roots 
the remainder is irreducible, so Gal ( f ,  K) is triply transitive and we must have 
Gal( f ,  K)  ~- PGL(2,  q). 

Example  2.17. Let C be the strange nonreflexive plane curve yz ~- ~ = x  q, q = p l  
p = c h a r k > 0 .  Then the monodromy  group of C is isomorphic to AGL(I,q). 
[Compare  (1.9)!] 

Proof. M is given in inhomogeneous coordinates by y = x q, A x  + y + C = 0, so we 
have to find the Galois group of f ( X ) = ' X ~ + A X + C .  But this group has been 
determined in (2.15) as the stabilizer of one element of the standard representation 
of PGL(2, q), so Gal ( f ,  K) _~ AGL( I ,  q). 
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