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0. Introduction

In this paper we prove some results on local existence of continuously differenti-
able solutions u=(ul,...,u") of quasilinear parabolic systems under general
nonlinear boundary conditions. Such results were announced, without proof (but
with mistakes!) in [1]; here we correct the mistakes, and give some improvements
concerning continuity of solutions with respect to the initial data.

For the sake of simplicity we just consider second order systems; as a model we
take the following problem:

u— Zl Aij(t’xyu’ Du)'DiDjuzf(taxa uaDu)’ (t,x)e[to’ T] X Qa

ij=

uto, X)=$(x), xeQ, (0.1)

S Bit,x,u)- Das=g(t, x, ), (t, x) € [to, T] x 022,
i=1

where T>t,20 and Q is a bounded open set of R" with C2 boundary.
We assume the following hypotheses:

(02) Elipticity. The pair
{izi Aift,,u,p)- DD}, .Zl Byt,-,w)- Di}
= i=

is elliptic in the sense of [4, 7], uniformly in (¢, 4, p) on bounded subsets of [0, T']
X" x €Y. More precisely, the N x N matrices

AG;txup;l0)i= T A% 6 )G+ e%’l,
sj=

B(t’ X, U, 6): =]_§1 Bj(t’ X, u)fj:
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where R, (eR", ¢peR, must satisfy, for each M >0 and provided t&[0, T,
lu|+|pl = M, the following conditions:
(i) there exist 8,,€13, n[, C, >0 such that

Idet A(6; ¢, x, u, p; €, )| = Cpel1€1* + 0"
VxeQ, V0e[—0,,0,] VEecR" YoeR;

(ii) for each xedQ, 9ec[—0,,0,], EcR" geR with |£2+0*>>0 and
& - v(x)=0, the polynomial

Tdet A(0;t,x,u, p; £+ 1v(x), 0)

has precisely N roots 1/ (6;t, x, u, p; £, @) with positive imaginary part. Here v(x)is
the unit outward normal vector at x.

(0.3) Complementarity. For each M>0, if te[0,T], xedQ, |ul+|plEM,
Oe[~ 0y, 041, EeR", g e R with |¢]2 + g2 >0 and ¢ - v(x) =0, the rows of the matrix

B(t,x,u; £ +tv(x)) - [4(O;t,x,u, p; E+1v(x), 0)T*

are linearly independent modulo the polynomial

U 'Hl (T—T;(O; t7x9u9p;€5g))'
j=

We denote here by M* the algebraic adjoint of the matrix M.

(0.4) Regularity. For h,k,m=1,...,N, i,j=1,...,n the functions 4%, f* B¥, ¢'

OB™ 0B og" og" . . L . . )
e —i, % _are ofclass C*in t, continuous in x, locally Lipschitz continuous

ox;’ ou™’ ox; du*
J J

in (u, p); the functions B, g" are also of class C** # in t. Here o is any exponent from

10,1/2[ ’

(0.5) Compatibility. ¢ e C1(Q,C") and

é:, B{to, x, p(x)) - D;p(x) =g(to, X, P(x)) VxedQ.

It is not restrictive to assume that the functions B!* and g" are defined on the whole
Q; this will simplify our notations. Moreover when no confusion can arise we will
just write I?,C, W7, ..., instead of IX(Q,C"), C(Q, "), W:HQ,CY),....

1. Main Result

Fix any p>n and let ¢, be a fixed element of W*?(Q, C"). For toe[0, T[, 1>
Ny>0 we set:

B(¢o, No,To,to): = {p e W P(Q,C"): |¢—ollw.» 7o, (1)
P(to,$)=0,  Olto, )€ B¥(2,C") and | Q(to, H)llgze.» < No}»

where B2*7 is the Besov-Nikolskij space and

Plto,§):= 3. Blto,9)- Dip—glio, ', ), ¥, 1
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Q(to’¢):=j=il Aij(tm'a¢sD¢)'DiDj¢+f(t0='5¢:D¢)ﬂ xef. (13)

We note that B(gg, Ny, 7, to) is a closed subset of W27(Q, V) as an easy check

shows.
Our goal is the following result:

Theorem 1.1. Assume (0.2),...,(0.5). There exists t€]ty, T] such that for each
d€B(¢o, Nos o, to) problem (0.1) has a unique solution u= (', ..., u")in [to, T], which
satisfies .

ue C* (1o, 7], LA, CYNC (o, 7] W0, T); (14)

moreover the map ¢—u is continuous in the following sense: denoting by u,, u,, the
solutions corresponding to the initial data ¢,pe B(¢o, Ng, o, t,), we have:

”“¢_ uwHCI +oLry T ||u¢—- “ch"(Wl,p) SC(p,a, 6, N, $0, 7o) { ¢ —wlwa»
+1Qto, @)~ Qto, W)p2e.»} V3€10,0]. 1.5
If, in addition, ¢ € C*(Q, C¥) and Q(t,, )€ C**(Q, T), then

u, i AL+, ,u,Du)- DD ue CX[t,,7], C(2,C"), for each 5€]0,a[. (1.6)
=1

The proof will be given in the next sections.

Remark 1.2. The compatibility conditions concerning P(ty, @) and Q(t,, ¢) are
necessary for the validity of (1.4), so that this result is optimal. On the other hand,
in (1.5) we are not able to replace § by «: this is due to the “bad” behaviour of the
space C(Q,C") with respect to maximal regularity properties in parabolic
evolution problems (see also [2, Remark 6.4]).

Remark 1.3. We believe that a similar result holds as well for quasilinear parabolic
systems of arbitrary order, with the elliptic part satisfying the assumptions of [4]
and [7].

Remark 1.4. If one is only interested to (1.4), then the dependence of the right
members f and g on x may be slightly relaxed: namely, to prove (1.4) we just need

h a ]
that the functions f*, g", Og” %8 are I in x.

ox; out

Remark 1.5. Theorem 1.1 is a local existence result, but it is clear that the usual
Standard machinery allows to construct the maximal solution starting at time ¢,
from the point ¢; it will be defined in a maximal interval [t,, T(¢)[.

Remark 1.6. Results of local existence for general parabolic systems in variational
form were obtained by [8] in the second order case; the variational case was also
Previously treated in [6] for slightly less general systems (or arbitrary order) with a
completely different technique.

Our proof relies on the usual method of linearization and use of the contraction

gtﬁnCiple, with in addition a suitable regularization technique. It consists of four
eps.
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Step 1. The linear autonomous case: existence, representation and estimates for
solutions in the class
C'"([to, T1, A2, CNNCH[to, T], W22, C")
with pe]ln, o[.
Step 2. The quasilinear case: local existence of solutions in
C'*U[to, T, LAQ, CNNC([to, T], W22, "))

with d€]0,a[ and pE:IT:Z%c——é)’ oo|: ( that is to say p>n and
6e]<oz—%< 1— —Z)) A0, oc|:: the reason of this restriction will be clear in Sect.
below).

Step 3. The linear non-autonomous case: global existence of solutions in
Cl +a([t0’ T]s LP(Q’ CN))nCa([tO’ T]y W2,p(Q, CN)) ’
p>n, by use of a suitable integral equation.

Step 4. The quasilinear case: regularization of the local solution and conclusion of
the proof.

2. The Linear Autonomous Problem

The starting point of our proof is a basic elliptic estimate. Set for ue W'%(£, Y

A(x,Dyu: = i Afx)-DDu, xeQ, @21
ij=1

ij=
B(x,D): = _; B(x)-Du, xedQ, 22

the coefficients {4,;}, {B;} satisfying (0.2)-(0.3)~(0.4). Then the linear problem

Au—A(x,Dyu=fel? 23)
B(x,Dyu=ge wt?

has a unique solution ue W27 which satisfies the spectral estimate

1Al o+ L2 U Dl o+ 1 D20l 1o S C L f oo + A28 o + | D o} > 24
provided 4 belongs to the sector (w,>0, 8,€]n/2, )

So,,0,: ={z€C:larg(z—w,)| <6,}.

This is the classical Agmon’s estimate (see [5,7]). Define now for A€ S, w, the
operators R(4): [P -»W?>?, N(): WP W27 by:

B - Ju—A(x,Du=f in Q, 2.5)
U= R(A)f {B(x, D)u =0 on 0Q s (
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_ Au—A(x,Dyu=0 in Q,
u=N(A)g<> { B(x, D g on 20 (2.6)
As a consequence of (2.4) we get for k=0,1,2 (see [10, (2.2) and (2.8)]):
k -
IRAS e s SCJAZ 110 2.7)

k k
: 5% 51
INDglww.»=C, lnf{HI’ Il +1A2 IDyli-ipe WP p=gon 59}-
2.8)
Consider now the linear autonomous version of (0.1):

u,— A(x, Dyu=f(t,x), (t,x)e[te, T]1x 2,
ulty, x)=(x)eQ, 2.9
B(x, Dyu=g(t,x), (t,x) e[ty T} x 09,

where A(x, D), B(x, D) are defined in (2.1), (2.2) and their coefficients satisfy (0.2),
(0.3), (0.4).
The following result is proved in [10]:

Proposition 2.1. Fix p>n, and assume that ¢ € W*?, fe C*([t,, T1,IP),
g€ C[to, TL WHHNC* 1131, T1, L),
with the compatibility conditions
B(-,D)p=g(te,) on 02, A(-,D)p+f(to, )€ B2>". (2.10)
Then problem (2.9) has a unique global solution
ue C1*([ty, T1, L) C[to, T1, W>P);

it can be represented by

u(t, )=fe "pd)+ f fe*AR(A) f(s, -)dAds

1§ MN(A)gls, dids, 211)

to ?

—i@

1 .
where f means i) § and y is a smooth curve joining +ooe”* and + coe®
i

(95]”/2 0,0), and lying in S, ,. Moreover we have the estimate
(<10,1/2p[ 10, o))

Il cey+ Il carz. oy S Colp, &) { I Dllwz.o+ | f(to, )l o

+(T—to[[f Icewny + [8lcoow:. o+ [8ce+ 120my]} s (212
[t ey + [ cogwz. 2y S Co(p, @) { | A, DY+ f(tos - M p2a.
+[fJexwry+ [8)cxow. oy + [8]car 12y} - (2.13)

Proof. For the case to=0,see [10, Theorems 3.1 and 5.1]; of course the general case
Is quite similar, []
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3. Linearization

We go back to problem (0.1) and assume (0.2),...,(0.5). For fixed t,¢ [0, T[,

6€]0,a[, and pe]l—:—z-(r—;—_—s? oo| , consider the Banach space
E;, plte, 7)1 = C ([0, 7], )N CX([t0, 7], W), (3.1)
with its obvious norm. We also introduce
[ule, S0 D) = [W]cown + [Dzu]ca( Ley- (3.1 bis)
By interpolation it is clear that
E; [(tos ) CPH V3[40, 1], WhP). (32)

For each ¢ e B(¢po, Ng, 70, tp) We define:
BM,&,p.to.r,cﬁ L= {U EEJ,p(th T): “U _¢”Ed, p(to,7) _S_ M’ v(tOs ) ) = ¢} . (33)

Next, we linearize problem (0.1) by considering, for any fixed v€ By 5, p.15.1,4 the
linear autonomous problem

u— 'jél Aij(t01 X, ¢’ D¢) ° DiDju =f(ta X, U, DU)

~ ¥ [Aiftox, ¢, Dd)— A ft,x,0,D0)] - DD
= Fi:;zt, x),(t, x)e[to, 1] x @
u(to, X)=o(x), xeQ, .
3, Bito,x,8)- Dib=glt,x, )+ 3. [Bito,, )
—B{t,x,0)] Dp=:G, 4(t,x), (t,x)€[ty, 1] x 02 ]
Lemma 3.1. We have
Fy s €C'([tor e, I?), G, o€ C¥[t0r 7], WB)NC* 13([14, ], I?)

(34

and
1 Fy, llcwey + 1 Go, sllcomr. vy < Co(p, M, o, 7o) (33

LF,,¢lcowr) +[Gy dcows oy + Gy, plco+ 120r)y
§ C3(p’ a, Ma ¢0: ro)wp,a,J(T - tO) (36)

where @, , §(-) is a continuous, increasing function of te[0, T, vanishing at t=0.

Proof. We just prove the results concerning F, , since the others are analogous
For each te[t,,1] and xe Q2 we have:

[t X)| +1Dvit, XS 10— Bll g, 0,0+ 10— Pollwa.»+ | $ollwz.» < M +7o+ I Polw»
hence if we set

A:={(t,x,u,p):te[0,T], xe @, [ul+|p|SM+ro+|dollwa.s}
we can find a constant K which bounds the sup and Hélder norms, for

n n
(t,x,u,p)ed, of f,g, ¥ |A4;]and Y [Bj]and their derivatives appearing in (04)
if=1 i=1
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Consequently, it is easy to see that
1Fo, ¢t Mo SC(p, K, M, ¢0,70) S Cy(p, M, o, 1)  Vie[to,7].

Next, we remark that if ¢,r e [t,, ]

lot, )= olr, Ve = ke, ) — vl Mlws, o S N0l 5, oo, ot =7 172
S(M+1o+ [ Pollwe. ) (t—VexT—1o),

whereas, choosing OEB, 1[ and using interpolation,

1Dz, ) — Do(r, )l = || Do(t, -) — D(r, -)l| o, »
< |Dolt, -)— Dolr, )l e ° I Dott, ) — Dolt, ). »

s+3-2
< I|UHE6’p(tQ,r)(t——r) 2
S(M +ro+ | bollwa n) =10, (1—tg).

Hence it is just a tedious routine to verify that

”Fv,dt(t: ')_Fv,¢(r’ )”LP C(p,d K M ¢03 rO)(t_r)& p a, 6(T_t0)
SCi(p, o M, o, o) (=10, 4 st —to). O

We now invoke Proposition 2.1 and obtain a unique solution u: =S(v) € E; ,(t,,7)
of problem (3.4). Moreover u—¢ € E; ,(t,,7) and solves:

—¢)— Z Aifto,» ¢, D¢)- DD (u—¢)
-F, ¢+ij;1 Ayfter 6 D) DD in [t7]x &,
(u—¢)(to,)=0 in 3,
T Blto,9)- Diu—)= Gog— 3 Blto,8)- Db in [t0, 7] x 00 ‘

3.7)

Note that the compatibility conditions (2.10) are satisfied in this problem.
Hence, combining (2.12), (2.13) and (3.5), (3.6) we obtain the following estimate:

flu— d’”E,,, Sito S Ca(p, 0) {1Q(to, D) p26.»
=+ CS(pa a, M: ¢O’ rO)wp,a,é(T - tO)} (38)
é C4(p’ 5) {NO + Cs(Pa a, Ma d’o, ro)wp, a,é(T - to)}

Where Q(t,, ¢) is defined in (1.3).
Next ifv, w are fixed elements of By 5, ,.,.., ¢ W€ consider the function z: = S(v)
=S(w). It solves

2:—.2 Aifto,»$,DP)-DDz=F, ,t,-)—F,, 4t,-) in [t;, 7] x 2,
ij=1
Ato, ) =0 in @ (3.9)

n
i=zl Bi(to, ‘e ¢) . DiZ'= Gv,¢(t, ‘)“ Gw’¢(t, ') in [to, T] X aQ;
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as
Foyglto)=F, 4lte,)=0, G, 4lto,")— G, ¢lto,")=0, (3.10)

the compatibility conditions (2.10) obviously hold. Now concernmg F,4—F,,
and G, 4—G,, , we have the following estimate, which is stated with more
generality for further purposes:

Lemma 3.2. Let ¢,p€B(dg, No,7o,t0) and v,w in By 5 50006 and By s -
respectively. The following estimates hold:

"Fv, ¢(t09 ')_Fw,w(th ')”LP + " Gv,¢(t0’ ')—‘Gw, qp(to’ ')”Wl.p

SCop; M, bo. 10} | —Yliw2.», (3.11)
[Fu,¢ - Fw’ ¢]C6(LP) + [Gu’¢ - Gw' w]Cd(Wl'P) + [Gv,¢ - Gw, w]cd +1/(Lp)
é C‘I(p’ &, M’ Yo, rO) [U - w]Eg,p(tg,t)wp,a.b(T - tO) 3 (312)

where @, , §t)}0 as t]0.

Proof. Again we just prove the estimates concerning F, ,—F,, ,, since the other
ones are similar. The proof of (3.11) is very easy, since

Fv,¢(t07 ')—Fw.w(to’ ')=f(t03 s ¢’D¢)“f(t0’ ',W,DIP),

and we can omit it, too. Concerning (3.12), if ¢, r € [to, T] we can write (deleting for
notational simplicity the dependence on x):

Fo o) =Fy, )= Fy o)+ F,, fr)
= j) ;% {f(t, Au(t) + (1 — Aw(t), ADv(t) + (1 — H)Dw(t))
— flr, Av(r) + (1= A)w(r), ADv(r) + (1 — A)DwAr))}dA
+ {530 00) +(1 = i), ADofr) +(1~ DDWE)
— A, ft, A0(0)+ (1 — Aw(e), ADo(8)+ (1 — ADw(e))} - DD w(t)i
+ % [Aylr, W), Dw(r) — Ayft, W), Dw(o)]
x [DD;p{)— DDyw(®)]
+ 3 (}’ 2 {Ayfto i +(1~p, 2Dy + (1~ HDy)

— A fr, Av(r) + (1 — w(r), ADv(r) + (1 — )Dw(r))}
x [D;Dp(t)— D;Dv(r)]dA
+ 3 [Afto: . DY) = Aifr wir) Dwi)]

x [D;Du(t)— D;D xr) — D;D w(t) + D;.D jw(r)].

The desired estimate then follows in a tedious but standard way, by arguing as in
the proof of Lemma 3.1. [
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By the above lemma and by Proposition 2.1 we easily obtain for the solution z
of (3.9) the estimate
| Z"E;,,(to,:) SCylp,a,6, M, o, 1) lv—w “E., 20, 0Pp, o, T —1o). (3.13)
Now the inequalities (3.8) and (3.13) show that the map S satisfies
S(v) € By, 5,5,10,%.6 Y0 E But,5.p,10,0,45
[ S(v)— S(W)“E,,,,,(:o, 1) é%” v— W”E,,_ p(to,0) Yo,we By 5, Dat0, T
provided we fix in advance M 23+ C,N,, and choose 7 so close to t, that
Wp,a,dT—t) S(2Cg) "I ARCLCH) 1. (3.14)

Hence the map S is a contraction on (the complete metric space) By ;. p, 10,2, 4> SO
that we find a unique u€ By ;. ,.1,.1,4 Such that S(u)=u, ie. a unique solution in
[te, 1] of problem (0.1).

Note that the time interval length 7 — ¢, depends on p, a, 3, ¢, N o, 1o but neither
on ¢eB(dg, No,7g,to), nor on to€[0, T[. We have thus shown that under
assumptions (0.2),...,(0.5) there exists a local solution u of problem (0.1), which
belongs to

C '+ 9([to, 7], )N C¥([to, 1], WP) (6 €10,«f, p E}I—_—h, w[) .

The higher regularity of u will be proved in Step 4 below.
Now fix ¢, peB(dg, Ny, ro, to) and let u,, u, be the solutions of the
corresponding quasilinear problems (0.1). Then v:=u,—u, is the solution of:

N

vt_—i}';1 Aifto, > $,D¢)- Dinv=Fu¢s¢—Fuw,w

+ijz=:1 [Aifto, -, b, DP)— Aifto, ", v, Dy)]- DD ju, = :F*% in [t, 1] x Q
v(to»')=¢—-lpin Q { (315)
1 Bft,,-, $)- D= Gu¢,¢_ G“w»w_ ‘21 [Bdto,-» )

=B{to,-,4)]- D, =:G*¥ in [t,,7] x 02

i=

ltis readily seen that, once again, the compatibility conditions (2.10) are satisfied.
Lemma 3.3, We have:
IF*¥(to, ) 2o+ 1G* *(tos w1 o S Cop, M, o, 7o) 16— lly.r,  (3.16)
[F ¢'w]cd(Lp) +[G* ¥Tcowr.ny+[G*¥co+ 1nwr)
SCiop, 0, M, ¢, 7o) {|@ —Wllwz.» + U=y 15, 0, 0Pp,a, 8T — to)} (3.17)
Where , . 5t)10 as t]0.

Proof. 1t is a straightforward consequence of Lemma 3.2 and some standard
¢aleulations, [
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By (2.12), (2.13), (3.16), and (3.17) we easily get:

||u4, “uwHEa,,,(ro,r) SCi(p, 0,0, M, g, 7o)
{16 —wllw2»+ 1Q(to, #)— Lo, W)l pzs. »

+[us— g5, 00.0@p,a.s(T—Lo)} 5
so that if we suppose, besides (3.14), that
Wp,q,T~tg) S(2C;,) 7!
then we get

||u¢_uup“E5,p(to,t)§ C12(P, o, 5’ M: 4’03 TO)

X {16 —wllwz.»+1Qto, §)— Q0. Wszs.n},  (3.19)

which is (1.5). Thus we have shown continuous dependence on ¢ of the solution 4,
of problem (0.1).
Summing up, we have proved:

Proposition 3.4. Assume (0.2), ...,(0.5), and fix
n
toe[0, T[, 0€]0,af, Pe]m, 00[~
There exists t€lty, T] (depending on p,a,d,¢q, No, 7o) such that for each
¢ € B(do, No, 7o, to) problem (0.1) has a unique solution u in [t,, 1], which satisfies
ue C ([ to, 11, LN CX([to, 7], W*P); (3.19)

moreover the map ¢—u is continuous, in the sense that (3.18) holds for any
¢, we B(¢o, No, T to)- [

4. The Linear Non-Autonomous Problem

First we need some notation. Let A(t, x, D) and B(t, x, D) be defined by:

A(t,x, Dyu: = i‘lA,.,(t,x)-D,-Dju, (6, x)e[0, T x &, (41

ij=
B(t, x, Dju: = __il B(t,x) Dy, (tx)e[0,T]x0Q, %)
where
A;eC{([0, T1,[CE@)TY),
B, C([0, T1, [C*(@)T¥)nC** ([0, T], [CE@)T™);

we also assume that (0.2)—(0.3) are satisfied. Then for each fixed te [0, T}, w¢ can
define the operators R(4,#), N(4,t) as in (2.5), (2.6), and the following estimates
[analogous to (2.7), (2.8)] hold for k=0,1,2 and A€§,_,,,:

IR( Of Iy s SCJAH2 =Y 1, (44

ING, Ogllww.p < Cpinf{IA1F2 "2 1]l Ly + 1AM 71| Dyl o p e WP, =g oD ‘33}5‘)

@3
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Consider now the linear non-autonomous problem
u,— A(t,x, Dyu=f1(t,x), (t, x)e[t, T] x Q,
ulto, x)=p(x), xe Q, (4.6)
B(t, x, Dyu=g(t,x), (t,x)e[ty, T] x 3R,

where fe C[to, T1, LP), g € WP, ge C*([to, T1, W P)nC** V/3([t,, T], IF) and the
compatibility condition B(t,, -, D)¢ =g(t, ) (x € 0L2) holds.

Assume that a solution u e C*([¢,, 1], ) C([to, T], W?P) of (4.6) exists, and fix
te[to,7]: for each se[to,t] and A€ S, ,,, we have the identity

N4, )B(s, D)u(s) = u(s) — R(A, s) [A — A(s, D) Ju(s) . 4.7)

[Here and from now on we simply write A(s,D), B(s, D) instead of A(s,-,D),
B(s,-,D).]

Multiply (4.7) by *~9* and integrate over 7, y being a smooth curve joining
+oe”" and + ooe® (0€]n/2,0,[) and lying in S, ,, . The result is

§ e 9AN(4, 5)B(s, D)u(s)dA = — § e~ D*R(A, s) [A— A(s, D)]Ju(s)dA

or
§ eI N(A, 5)— N(A, )] B(s, D)u(s)dA

+§ e*"9[R(4, s)— R(4, t)] [A— A(s, D)Ju(s)dA

= —§ e "PN(, Dgls)dA— £ "I R(4, 1) [Auls) —u/(s) + f(s)1dA,  (4.8)
Y Y

1
where, as usual, § means —|.
y 2ni ¥y

Lemma 4.1. We have for 0<s<t, A€, ,, and he W>?:
[N(, 5)— N(4, £)]B(s, D)h + [R(4, s)— R(L, Y] [ — A(s, D)]h
=R(4, ) [A(s, D)— A(¢, D)]h— N(i, t) [B(s, D) — B(t, D)]h.
Proof. Set v=N(4,1)B(s, D}h+ R(A, ) [1 — A(s, D)]h; as
h=N(4,5)B(s, D)h+ R(4,5) [A— A(s)]h
the function #— v solves

{[,1 — A(t, D)] (h—v)=[A(s, D)— A(t, D)Ih,
B(t, D) (h—v)= —[B(s, D)— B(t, D)}

and the result follows. []
By the above lemma and (4.8) we get:
f eI R(4, ) [A(s, D)— A(t, D)Ju(s)— N(4, 1) [B(s, D) — B(t, D)]u(s)}dA

= —§ e 94LR(, £) [Au(s)— /() + F(5)] + N(4, g(s)}dA. 4.9)
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Define now
K(t,s): =R(4, ) [A(s, D)— A(t, D)1 - N(4, ) [B(s, D)— B(t, D)];  (4.10)
by (4.4) and (4.5) it is easy to check that
IK(t, hllgra.» S Cpo{(t — 5|0l we. o + 1A 12— 2 pllgn} . (410)
Hence we can define
K{t,s): = i et MK (t,5)dA, 412

and (4.11) yields
IK(t, s)hllwz» SCp ot =) Al g2 - 413
We can also rewrite (4.9) as:
K(t, s)u(s)= ~ i et " IR(A, 1) [Au(s) — u'(s)+ £(5)]

+N(4, t)g(s)da. (4.14)

We now integrate between ¢, and ¢; an integration by parts leads to:

jt' K(, s)u(s)ds= [} et MR(4, t)u(s)dAI

- ; e~ R(A, 1) f(s)+ N(4, t)g(s)}dAds,

to v

and by the well-known properties of the semi-group E(r): =§ e’*R(A, r)dA (see e
[10, Proposition 2.1 (i)]) we get the integral equation 7

u(t)— i K(t, syu(s)ds = § " T'9*R(4, t)pdA

+ } §e*TR@A () + N(4, 0)g(s)}dAds = : L($, £, 8) (1) (4.9

oy

Thus if u is a solution of problem (4.6) on [t,, 1], then — at least formally ¥
satisfies the integral equation (4.15). We will prove now that (4.15) is indeed
meaningful in the sense of C([t,, T, W?'?), and that such equation must be fulfilled
by any solution

ue Cl([to, 1]’ Lp)ﬂC([to, T]: W2,p)

of (4.6). ,
It is clear that L(g, f, g)e C([to, T1, I?). In order to show stronger regularnty
properties of L{¢, f,g), we need the following lemma. .

Lemma 4.2. We have:
IER(, &) — R0, DAl 2,0 S C,p olt — 111l (4.10)
IENGy )= NG, DIkl 2o S Cp e — (Bl o + U o). 4T
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Proof. Set v=R(4, )h, w=R(4,r)h; then v—w solves

[A—A(t, D)) (v—w) = —[A(r, D)— A(t, D)]w}

B(t, D)(v—w)=[B(r, D)— B(t, D)]w (4.18)

so that (4.16) follows easily by (4.4), (4.5). Similarly, if we set v=N(4,1)h,
w=N(4,r)h, then again v — w solves (4.18), and (4.4) and (4.5) imply now (4.17). [J

Proposition 4.3. We have L(9, f,g)e C([to, T], W*?); in addition,
L(¢, £, 8)e C{[to, T), W*?)
if and only if A(te, D)+ f(to,-)€ B2-P.
Proof. Using (4.7) and splitting some terms, we can rewrite L(¢, f, g) as:
L(¢, £,8) ()= +§ A~ "e*T'[R(4, )A(t, D)p — N(4, 1) B(t, D)$1dA
+ 3; AT let" ’°"[;((l, 1)f(t)+ N(4, )g(t)]dA

+ j f e“"IR(A, ) Lf()—f®)] + N4 1) [8(s) — g(t)]}dAds . (4.19)

Hence (4.4) and (4.5) easily yield:

1LAP, £, 8) w20 2 CpalllDllwz o+ | f | cory+ 18l cogwt. ync+ aLe) -
(4.20)

Moreover if t, <r<t< T we have:

L(g, £,8)(t)—L(¢, f,8)(r)
= {,c A~ et~ 1AR(), 1) [A(t, D)— A(r, D)]¢dA

+§ A7 1R R(1, £) — R(1, 1] A(r, D)pdA

+ ; A~ 1[et 104 _ e~ 0]R(4, r) [A(r, D) — Ao, D) $d)
+:¢ A 1[et~t0% _ gr=104] [R(1, r)— R(A, t)] Alto, D)dA
+ % A [t~ _ g0 R(), o) A(tqs D)¢d,1}

+ { — 4716t AN(, ) [B(t, D)~ B, D)]¢a2

— A7 'eT"[N(4, t)— N(4,r)] [B(r, D) — B(to, D)]1¢dA

- ; A~ 16~ OR[N(4, 1) — N(4, N]B(to, D)pdA

~; A7 et — e "W IN(A, r) [B(r, D)— Blto, D)1¢dA
- ]:t A7 1[ett =t _ g~ IN(4, r)B(to, D)d;d/l}

+ { § A7 e TOMR(4, ) [f()) —f()]dA
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+§ 47160 TR, )~ R, 71 ()2

#§ A6 e ORIR( ) fito) A
546 O8] [R(1 )~ R, £t
+ % [t e M R4, 1,) f(to)dzl}
47N, O L))}

4§27 1 OAN, )~ Nk ) [gl)— gleo)1d:
4§11 OAN(L )~ N A JeltoMA

4§27 1[6 e OANG, ) [glr)— glto) A

+ ; AT et A TN, r)g(to)]dl}

+ {} fe "R, ) Lf(s)—f()]dAds

+1 Je“ IR, O [f()—f(]dAds

to 7

+§ §e“ILREG, )~ R NI LFE) — f()]dAds

o ¥

+1 57 RGN —f(r)]dadids}

to yr—s

+ {} eC79AN(A, 1) [gls)— g(t)]dAds

+§ e MN(, 1) [g(r)— g(t)1dds

to y

+ ] §e¢ 9N, 0— N3, 7] [g(s)— g()1dAds

to ¥

+ } § r}s Ae**N(4,r) [g(s)—g(r)]dodAds =: .Zi I;.

to yr—s

Now we clearly have

Ig+1,3=0, Io+1,,=0,

whereas a routine calculation shows that

4 7
L Millwa.rt X il + Mollwa.» £ Co, pt =Pl @llwe. 2

14 24
) Z“ ”Iiuwzm‘*'. 2;1 il 2 = Co, gt =11 f | corwry»
i= ¥

@.2)

4.22)
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17 28
ZG “Ii”W2>P+ “119”W2:P+ . Zzs “Il'”ﬂ;rl,pé Ca’p(t"“r)a"guca(wl,p)hcz+1/2(L2)-
i=1 i=
4.23)

We still need to estimate I and I,. But
t
Is+15={ § " R(, to) [Alto, D)+ f(to)1dA (4.24)
ry

so that

(s +115”W2r1’=a)p,a(t_r){Hd’llwzd"" HfHC(LP)}

where w, ,(s)|0 as s]0. This proves that (@, f; g)e C([to, T], W*?), and by (4.20)
we have

L@, £ cowz S Co ol w2 s+l fllcuwny + 18]l cowt pynce+ LRy} -
4.25)

Moreover (4.24) shows that
s+1i5lwzr=0(t~7)) as t—rl0

if and only if A(ty, D) + f(t,) € B2*?; in this case by (4.21), (4.22) and (4.23) we get
L(‘Pa f’ g) € Ca([tt)a ﬂ: W2,p) and

(L&, £ @)]cew2. 0y S C, {1 Alto, D) + f(to)lls2e.
+If “CG(LP) + ”g”C“(W"F)nC““ 1/2(LP)} . (4.26)
The proof is complete. [

Let us now examine the regularity properties of the kernel K(t,s) given by
{4.12),
Lemma 4.4. Let K (t,s) be defined by (4.10). Then
(LKt s)— K, )hllwz » S Cp ot =l llwa.0-
Proof. Writing
[Kl(t’ S) - Kk(r5 S)]h = R(ls t) [A(r’ D) - A(ta D)]h
+[R(4, )~ R(2,1)] [A(s, D)— A(r, D)k
~N(4,8) [ Br, D)— B(t, D)]h
&4
~[N(4 1)~ N(4,r)] [Bls, D)— B, D)Jh= ¥, J;,
=1

e get by Lemma 4.2
W1 lw.o+ 1 3llwa e SC et —r*hllw2.»
I 2lw2.p+ 1 gllw2.p S Cp olt = 1¥lr — s Blla.5,
4nd the result follows. []
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Lemma 4.5. We have for 0<s<r<t<T:

(="

ILK(t, 5)—K(r, S)]hllwz,récp.a(rs)x——z(—,‘_—s)—a

IBllwz,p - (4.21)

Proof. Write
[K(t, s)— K(r, )] = fe 9 [ K (t, s)— K ,(r, 5)] hd .

t—s
+ | §2e*K (r,s)hd)do

r—sy
= :Al +A2,
now by Lemma 4.4

t—r)
41l SCp e =L bl

whereas by (4.11)

t—s r_sa r_sa+l/2
a5 Gon § | T+ L oty

gcp,a(r~s)“[ ! i] Vella.s

r—-8§ t—s

t—r :
—Cp,am_—s—)llh"m.p,

and this implies the result. []
Introduce the linear integral operator
t
[K. ] ()= K({t,s9)h(s)ds, heW>P, (4.28)
1o
Proposition 4.6. Let the operator K, be defined by (4.28). Then:
(i) K,,€ L(C([t,, T], W*?) and 1 ——KrS is invertible;
(i) if he C([to, T, W*¥), then K, he C*([to, T], W>P) V6€10,0[ ;
(iii) if he C*([ty, T), W*?), £€]0,1], then K, he C([to, T], W)

Proof. (i) It is a standard property of Volterra integral operators satisfying @13
and (4.28) (see e.g. [3, Proposition 2.47]). (ii) We can write for t,<r<t=<T:

K, () — K, h(r) =jt' K(¢, s)h(s)ds

+ i [(K(,s)—K(r,s)h(s)ds=:8,+8S,; 29)
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on the other hand (4.13) and (4.28) give:
181 llw=.0 S Cp ot =11 kllcw2. 7y

r {t—ry
ZP-<— T M —are a 2,p
I2lys.r S Cp.a ] oSz Mhlcaraun

SC, o slt—rPlhlcrr.p -
(i) Instead of (4.29), recalling (4.12) we write:
K () — K, h(r)= ; K(t, s)h(s)ds + j[‘ [K(t,s)— K(r, s)] [H(s)— h(r)]ds

§ ALK (1, 5) — K (1, s)Jh{r)dAds

+

} } § Ae**K ;(r, s)h(r)dAdods
: sy

=: LK

As before we have
“Kl ” w2.p é Cp,a(t_r)a”h“C(W2:P) ’
whereas by (4.28)
IIKzllwz.éCp,a(t—r)“tf (r—s)°*~ dsl hll cegw. 5

= Cp.a,e(t - r)an h”CG(le P)>

and, by (4.11),

rt—s o\ _optl/2
IKalwerSCpaf [(f,’_fj)z e

tar—s
SC,(t—r)ihllcowzzy-
Finally, using (4.10) we can evaluate K, exactly:
Ky=§ A7 [e¢ 714 — et N4IR(A, t) [A(r, D)— Alt, D)]h(r)dA
v
+ } § e¢"M[R(4,1)— R(4,r)] [A(s, D)— A(r, D)]h(r)dAds

toy

—§ A7 1[e¢ " —e=PAIN(A, ) [B(r, D) — B(t, D) h(r)dA

— [ §eX[N(&, ©)— N4 r)] [B(s, D) — B(r, D)]h(r)dids

o7

4
= Z Hh'
h=1
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It is easy now, using (4.4), (4.5), (4.16), and (4.17), to show that
4
“K3||W2-p§hz,l HHh“Wz‘Pécp,a(t—-r)a“h”C(Wz-P) .

Summing up, we have shown that
[Kihlcew2. 5 S Cpa,5 Bl cogwa. 5y
which proves the result. [J

We are now ready to state the main result of this section.

Theorem 4.7. Under assumptions (4.1), (4.2), (4.3), (0.2), (0.3) consider problem (4.6)
with pe W22, fe CH[t,, T, ),

g€ CX([to, TT, WHANC** 3([t,, T, IF)
and the compatibility condition B(t,, D)¢=g(t,,-) on 0. Then we have:

@) If ueCl([ty, 1], INC({[to, 7], W>?) is a solution of (4.6) in [to,7], thenu
solves the integral equation (4.15) in the sense of C([t,, ], W*?) and, in particular,

lullcs ey + Nulicr2. 2y
SCi;@ ) {1 @llwao+ | fllcawry + 18l cowr. )+ 8Nl car vi2wmy}

(i) u is a global solution of (4.6), i.e. ue C'([ty, T, IP)NC([ty, T, W*?) and
solves (4.6) in [to, T]:
(iii) ue C***([ty, T1, I)NC[to, T1, W?P) if and only if

Alto, DY+ flto, ) B2,

(4.30)

in this case we have
Nullcr+eqrey + 14l cxgwz. y S C14(p, @) {1l Ato, D)¢ + f(to, )| g2,
+ D lwz.e+ 1S lcewr + 18l cogwr. my + 18l ces 12wm} - (431

Proof. Part (i) has been proved before.

(ii) Inequality (4.30) is an a-priori estimate for local solutions of (4.6): thus for
any such solution we necessarily have T(¢)=T (see Remark 1.5).

(iii) Equation (4.15) holds now in [¢t,, T] and the result follows by (4.15) and
Propositions 4.3, 4.6. [

5. Regularization
Go back once again to problem (0.1). Assume (0.2), ...,(0.5) and fix t,€[C, 10

6€]0,af, pe:li:—zgx—_s)—, o0f .

Lemma 5.1. We have
C¥([to, 0], WP AINC?* ([, 7], WHP) &, CH{[tg, ], CHNC** 13([t6, 71, O)-
Proof. By Sobolev’s Theorem we have
B%?,C if O>n/p,
B%P, Ct if O>n/p+1.
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Hence if £, s € [t, 7] we have (deleting for brevity the dependence on x):

lut) —uS)lc: S C, pllu@®—uS g, ...,

1-2 ¢ L
SC, pllu@)—u(s)llw: % llu(t)—uls)iz,,,
o+4 1-2-¢
=G, lullg, it ( r ) )
u(z)+u(s)—2u<“2r—s> <C., u(t)+u(s)——2u(—t—_—;—s> .
c BE %P
I (Lt t+s\|[F "
<C,, u(t)+u(s)—2u(T) u(t)+u(s)—2u (T)
Ly wt.p

L+o+4 (1 —i—a)
éCe,p”u"Ed’p(tg,l)lt*sl : P .

As 5+%(1 — g) >, for sufficiently small ¢ we get the result. [

Consider the solution u of {0.1), given by Proposition 3.4: by (3.19) and

Lemma 5.1 we have
ue Ca([t()a T]a Cl)n Ca+ 1/2([t07 t]’ C) [}

and consequently it is easy to see that
F(t,-):=f(t,-,u(t,"), Du(t,")) € C*([t0, 7], O),
G(t,): =g(t, -, ult, )& CH([to, 1], C )N C**1*([t, 7], C),
Ai{t, )= At - u(t, ), Du(t, ) e C([1,,7], C),
Byt,-): =B{t,-, u(t, )€ C*([t,, 7], C*)NC** %[ t0, 7], C).

Hence u solves a linear non-autonomous problem of type (4.1), and all
assumptions of Theorem 4.7 are fulfilled: thus we get

ue C ¥ ([ty, 71, LINCH([to, 71, ).

The estimate (1.5) in the case §=a can be obtained by arguing as in the proof of
(3.18), provided possibly that T—t, is chosen smaller.

Suppose finally that ¢ € C*(2, C¥) and Q(t,, ) € C>4(&2, C); then for each p>n
We can apply the above theory, obtaining a local solution u of (0.1) which belongs

0 E, (t,, 7), where t depends on p. If we fix any 8 €]0, «, and choose p>
then we have the continuous inclusion

Cl +a(Lp)an+u(Wl,p)nCa(Wz,p)C_) Cl +é(B§éa—6),p)
nc&+6(Béo+2(u—6),p)c_) ct *"(C)mC*”(C‘). (5.1)
Hence u,€ C%([ty, 1], C) and f(-,-,u, Du)e C¥({t,, 7], C); thus by (0.1) we get

1
Ax—0)

= 3 Ayft e, ) D, ))- DDyt ot 1, ).

y=

This concludes the proof of Theorem 1.1. []
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Remark 5.2. If we increase the smoothness of data, we can obtain Holder
continuity results for the solution of (0.1) which are very close to those given in[9,
Chap. VI, Theorems 4.1-4.2] for quasilinear equations (see also [9, Chap. V]I,
Theorem 7.1] for quasilinear systems of special form). Namely, replace (0.4) by the
following assumption:

. W oh oie x OB OB og" og"
The functions A3}, f*, B*, g", Bx, ™ o) B
t, C?* in x, locally Lipschitz continuous in (4, p); moreover the
functions B*, g" are also of class C**'% in t. (5.2

are of class C*in

Then we can show that the solution u of (0.1) satisfies:
u, D;Djue C([t,, 1], C*¥Q, C") ¥6€]0,af . (53
Indeed, similarly to (5.1), we can write
Cl +a(Lp)ncf +a(W1,p)nca(W2,p) N Cl +¢—-0/2(B0;)p)

ACHHe=2(BL+o.p)c, CI(C%%)(\C”Z(CI ”’“%) ,

provided p> % and @ e]g, Za[. Now, fix 4 €]0, af, select any a €], af, and choose

f=a+ao, p= d , SO that 8 — 1 =20: then we have
o—0 p

ue CY[t,, 1], C*) ,
Fi=f(-,,u,Dw), A =A;f, ,u,Duye C([ty,7],C*),
G:=g(-,-,u),B;: =B{.,-,we C([ty, 1], C1 *2°);
z_en:c, for fixed te[t,, 1], u(t,) solves a linear elliptic problem of the following
ind:

ij=

T B(t)- Dalt, ) =G, on 202
=1

i Aift,) - DDu(t, ) =F(t, )—uft,) inQ,
1

By Schauder’s estimate, we easily get DD ue L (t,, 1, C*°(€2, C")). Now, as
ue L(ty, 7, C2* 2N Cl(t,, 7, C*°)
we readily obtain, by interpolation, u e C([t,, 7], C2*?%). This proves (5.3).
Remark 5.3. Due to the presence of the compatibility conditions
Plto, $)=0,  Q(to, )€ B2, C") ¢4

we are not able to improve our result concerning continuous dependence on the
initial datum in order to get that our solution is a local semiflow in the sens¢ ¢
[5]. One can avoid conditions (5.4) by replacing the space C* **(IP)nCH(W*"") by
a suitable weighted Holder space, introduced in [3], and in this way one caf
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show that solutions of (0.1) in this class indeed generate a local semiflow. This will
be done in a forthcoming paper.

Remark 5.4. If in problem (0.1) the boundary conditions are of Dirichlet type, i.e.
B,=0and g(t x,u)=u, we can apply the same argument, but several changes are
necessary since the situation in the basic linear autonomous case is considerably
different (see [10]). More generally (and with more technicalities) one can consider
the case in which the boundary operators are divided in two sets, the first
containing only first-order boundary operators, the second containing zero-order
operators. See [10] for details relative to the linear autonomous case.

Acknowledgements. We wish to thank Prof. Dr. Herbert Amann for his kind and helpful
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