
Math. Ann. 259, 385-430 (1982) 
gltilemlisehe 
A m  
�9 Springer-Verlag 1982 

L-Indistinguishability for Real Groups 

D. Shelstad 

Mathematics Department NCAS, Rutgers University, Newark, NJ 07102, USA 

I. Introduction 

The purpose of this paper is to complete our study of L-indistinguishability for the 
tempered spectrum of a real reductive algebraic group. We follow closely 
Langlands' formulations described in [13] for SL 2 ; see (1.1) and (1.2) below for a 
discussion of the topic. Most of the necessary properties of orbital integrals have 
already been established in [14-16]. However, because we find it useful to modify 
some notions associated with L-distinguishability [Sect. 2, (1.2)], we have several 
additional lemmas to prove. There also remains a question from Sect. 11 of [15] 
(Theorem 3.5.4). With the properties of orbital integrals established (Sect. 3), we 
will turn to the lifting of tempered characters (cf. [13, Sect. 7]). Existence of the 
lifting is quite immediate but the formalism of [13] requires explicit information 
about the coefficients in a lift, and about the characters themselves. This is 
included in Theorem 4.1.1. As a consequence, we will obtain a result helpful in 
identifying L-packets (Theorem 4.3.2). In Sect. 5, we invert the lifting (cf. Theorem 
5.4.27), at the same time demonstrating a structure on L-packets of tempered 
representations proposed by Langlands (of. [13, Sect. 13]). 

(1.1) L-Distinguishability and Orbital Integrals 

Throughout this paper G will denote a connected reductive linear algebraic group 
defined over R, and G the group of R-rational points on G. In (1.1) and (1.2) we 
assume that G is semisimple and simply connected. Then G is a connected 
semisimple Lie group and LG~ the connected component of the identity in the 
L-group LG for G, is of adjoint type. Some simplification of definitions will result. 

We use the same notation for a Langlands parameter (equivalence class of 
admissible homomorphisms of the Weil group W o f f  into LG relevant to G) and a 
homomorphism q~: W-~LG representing it. Two irreducible admissible repre- 
sentations of G are L-indistinguishable, or belong to the same L-packet, if they are 
attached to the same parameter or homomorphism. Then they have the same 
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attached L-factors (cf. [2]). The members of H~, the L-packet attached to ~o, are 
(each) tempered if and only if q~ is bounded. Let ~0(G) denote the set of such 
parameters. We set S~ equal to the centralizer of q~(W) in LG~ S~ ~ will be the 
connected component of the identity in S~. 

The group S, has been found useful (cf. [7]). For example, since the 
constituents of a unitary principal series representation ~ belong to the same 
L-packet, we may speak of the parameter q~ attached to re. If ~ belongs to the 
minimal principal series, then ~ is irreducible if and only if S~ is connected; in 
general, ~ is irreducible if and only if SJS~ contains only the "obvious" elements 
(cf. [7,Theorem 3.4], Lemma 5.4.1). Set S ,  = SJS~. Then, in a certain precise sense 
(implicit in [6, 7] ; cf. (5.4)), N, controls the reducibility of g. Since this notion is 
central to the discussion of (5.4), in (5.3) we will give some relevant unpublished 
arguments of Langtands. These describe the stability group of a discrete series 
representation of a Levi component of a parabolic subgroup of G in terms of S~ 
(see [7], for a statement) and identify the root system of the connected reductive 
complex group S~ ~ with a system of Harish-Chandra's [4, Sect. 40] (or the 
indivisible roots in a system of Knapp-Stein (cf. [6])). 

If ~0e~0(G ) then by definition, H~ consists of the constituents of several 
principal series. One consequence of the results just described is that the 
cardinality of //~ is bounded by the order of N~; it is exactly this order if 
HI(Gal(I~/N),G)=I (recall that G is simply-connected). We will add formal 
objects ("ghosts") to / /~ ,  to obtain/1~ in 1 - 1 correspondence with ge. 

We consider now a quite different problem, that of matching combinations of 
orbital integrals of a Schwartz function on G with certain combinations of orbital 
integrals of a Schwartz function on a lower dimensional group H (at first, only 
orbital integrals with respect to regular semisimple elements). There are two 
motivations for this. The first, and that which provides the formalism described in 
(1.2), is the manipulation of a term in the trace formula for SL 2 (cf. [8]). While the 
trace formula in general is not so tractable, the manipulation of Labesse and 
Langlands is based on the "regular elliptic" term, and has a proposed general 
analogue due to Langlands. Our results will support the analogue. A second 
motivation comes from choosing the linear combinations on H as symmetric 
("stable") and thus, in a sense, as smooth as possible (for example, the un- 
normalized stable orbital integrals of a cusp form are smooth). A matching then 
reveals something of the singularities of orbital integrals. Heuristic attempts to 
define the group H lead essentially to that prescribed by the global trace formula 
considerations. 

As examples show, all (allowed) combinations of orbital integrals on G are 
stable, so that there are only trivial matchings, precisely when there is no 
L-indistinguishability for G, by which we mean that each L-packet is a singleton. 
More generally, we will see that matching of orbital integrals plays the following 
role in L-indistinguishability. First we place some conditions on the normalization 
factors for the integrals. Then, dual to a matching, there will be a lifting of stable 
tempered characters on H to tempered virtual characters on G. It is not evident 
from definitions that this lifting follows the principle of functoriality in the 
L-group (that is, preserves L-packets) ; but that will turn out to be the case, due to 
a simple analogue of coherent continuation to the wall for admissible homomor- 
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phisms q~ : W--~LG. It appears difficult to divorce the lifting from orbital integrals, 
although coherent continuation extends it to some untempered distributions. The 
heart of the matter is, however, the inverse of lifting, as it will be seen to identify a 
representation within its L-packet [cf. (1.2)]. We find that there are dual pairings 
between S~ and /7~ which control the inversion. Labesse and Langlands have 
shown this for SL 2, more significantly in the p-adic case, where II9 may have four 
elements. The pairings intervene in the multiplicity formula for certain repre- 
sentations in the space of cusp forms for SL 2, and thence in applications of the 
trace formula (cf. [12]). On restriction to tempered representations, we have then a 
general analogue for the component at infinity of this multiplicity formula. 

(1.2) Summary of  Definitions and Results 

Again G is assumed simply-connected. The groups H have been defined [11] by 
means of pairs (T, ~), where T is a Cartan subgroup of G and r is a quasicharacter 
on X.(T), the lattice generated by the coroots of (G, T), invariant under the Galois 
action. By Tate-Nakayama duality, etc., ~ determines a function on ~(T), and we 
may form the combination 

c o E ~ ( T )  G / T  ~ " dt 

(cf. [15]). Once H has been attached to (T, x), we must take account of other pairs 
(T', ~') determining this same group, as ~r',~'), suitably normalized, is also to be 
matched. With this in mind, and looking ahead to inversion of the lifting on 
characters, we formulate the definition of H differently. Thus we will specify the 
L-group of H and distinguish an element in the center of LH (this is an 
intermediate step in the original construction). If G is not quasi-split, then new 
groups appear, but each is attached in the original manner to some inner form of 
G. From the distinguished central element we recover pairs (T, ~). Details, and a 
number of simple lemmas, are given in Sect. 2. We call the groups H endoscopic 
groups for G. 

Let H be an endoscopic group for G; LH is to be in "standard position" 
[cf. (3.2)]. The means for comparing points on H and G will be pairs (T, ~/), where T 
is a Cartan subgroup of G and q a pseudo-diagonalization of T, or map of T to the 
distinguished maximal torus in the quasi-split form for G [cf. (1.3)]. A natural 
condition on these pairs (2.4.1) provides both (T, ~) attached to H and embeddings 
of T in H. We then described certain elements of H as originating in G via (T, q). 

To an embedding ~ :LH~-+LG [see (3.3) for technical assumptions] we will 
attach a family {A(T,,)}, where dtr,~ ) is a function on TnGreg, with the following 
property : 

for each f a~ (G)  there exists f ne~(H)  such that 

{ A(T.O(7)(lb~/"K)(7, dr, dg) if  ?' 
~ ,  1)(~,, dt', dh) = originates from ),~ Greg via (T, rl), 

0 if  T' does not originate in G. 

Here ~( ) denotes the Schwartz space ; see (2.4) and (3.1) concerning measures, etc. 
The conditions we place on {dtm.~)} allow only for replacement by { -  A(T,O }. The 
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factors AIr,, ) have been defined (essentially) up to a sign in [t5, 16] ; Theorem 3.5.4 
takes care of the signs. 

Dual to the correspondence (f, fn) we have a well-defined lifting of stable 
tempered distributions (cf. [-14]) to invariant tempered distributions on G; Lift O 
(f) = O(fn), fE  Cg(G). If O is an eigendistribution then so is Lift O (Lemma 4.2.1); 
in general, there is a shift in infinitesimal character which cannot be avoided by 

changing ~ :LH~LG. If ~o'e~o(H ) then Ze,= ~ )~ is stable (cf. [14]). Note that 
~E/Ir  o, 

q~=~ocp' : W--*rG need not be relevant to G. Theorem 4.1.1 will show that 

Lift0~o,)=~0 if q) is not relevant to G 
e(n)X~ otherwise, 

where each e(rt)= +_ 1 is given explicitly. 
For the inversion, we state the result and then remark on our solution to a 

problem that was resolved differently in [8]. For each endoscopic group H we fix 
:LH'-~.LG and pick one of the two families {A(T,~)} attached. Let q~Eq~o(G ) and 

t e  S~. Then x points to some groups H and parameters r ~0(H) which lift to q~ 
under ~ [this is illustrated in (5.2), and shown in general in (5.4)]. For a suitably 
chosen sign e, eLo,(fn) is independent of all choices except q~, f,  x and that described 
in the next paragraph. We set ~)~o'(fn)=)~(o,~)(f). Then there is a dual pairing 
( , )  : S~ x / I~  ~ { + 1 } such that 

1 
- -  ~ ( t ,  Tr>2(~,~(f), z~(f)-- [S~] ~s~ 

f ~  ~(G), _~e/I~. 
If n~ H ~ -  H~ then Z~ = 0, by definition ; thus the right hand side is zero also. 
The problem indicated is that of choices. As always, we fix L-group data for G 

[cf. (t.3)], but this does not determine the pairings or, equivalently, the inversion, 
as is easily seen in the case of SL z. Our pairings will be prescribed by the choice of 
a set of representatives for the conjugacy classes of Cartan subgroups of G together 
with a pseudo-diagonalization of each group in this set, and the choice of a certain 
Weyl chamber depending on q~ [cf. (5.4.18)]. 

Finally we remark that when G is not simply-connected, the definition of S~ 
must be modified [cf. (5.1)], the lifting from H to G applies only when LH embeds 
in LG, and the inversion when LH embeds in LG, for all endoscopic groups H. The 
few cases where these conditions fail can be dealt with (in applications) following 
the suggestions of [11]. 

(1.3) Notation 

We fix L-group data as usual : a quasi-split inner form G* of G and inner twist 
~v : G ~ G * ,  a Borel subgroup B* of G* defined over IR and containing maximal 
torus T*, dual complex group LG~ with Borel subgroup LB~ containing maximal 
torus LT~ such that X*(LT ~ =X,(T*). We fix a root vector X~v for each root of 
(LG~ LT~ requiring that [X,v,X_,v] = H,~, where H,~ denotes the coroot of ~v as 
element of the Lie algebra Lt of LT0. Then % denotes both the Galois action on G 
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and the dual automorphism of (EGO, LB~ LT0, {Xav :0~ v LB~ Also 
LG=LG~ ~ W, with the Weil group W acting through (5=Gal(tF/IR), under the 
natural projection. By an abstract L-group we will mean any extension LG~ ~ W, 
with LG~ a connected complex algebraic group, LB~ LT~ {X~v :~v BO.simple} as 
above, and W acting through an action of (5 on (LG~ LB~ LT~ {X~v :~v 
LB~ 

For the L-group of a Levi group (=  Levi component of a parabolic subgroup 
of G defined over Ill), there is a small, but crucial, point to consider. Let T be a 
maximal torus in G* defined over IR, and let S T denote the maximal N-split torus 
in T. We call M r, the centralizer of S r in G*, and T standard if Sr=CT*. Then 
M r ~ T* and LM r is defined in the obvious way (cf. [10, 16]). Consider, however, a 
torus T in G ; then there are several realizations for LM r. We accommodate this as 
follows. A pseudo-diagonalization (p.d.) r/ of T will be a composition of maps 
adxlo~o:T--*T 1 defined over IR, with T 1 standard in G* (xleG*),  and adrn~, 
rn~eMT1 , mapping T~ to T*; thus t /maps T to T*, the distinguished torus, and 
specifies a standard Levi group Mr,  in G*, together with an inner twist (ad x 1 o@ 
from M r to M r .  Given q, we set LM T = LMr .  Also, Pr l  will denote the parabolic 
subgroup of G* with Levi component Mr1 and containing B*, and P r  the 
parabolic subgroup (over IR) of G equal to (ad xl o~0)-l(Prl). 

Let t/be a p.d. ofT.  When transferring data from T to T* or LT~ "via t/" we use 
the induced maps X*(T)~X*(T*)=x, (LT~ X, (T)~X, (T*)=x*(LT~  
X*(T) | ~ | = c T o, etc., as necessary and without additional comment. 

In (5.4) our pairings will be based on the choice of a skeleton for G : that is, a 
fixed set of representatives for the conjugacy classes of Cartan subgroups of G, 
together with a p.d. of each group in this set. Until (5.4), this choice will be ignored. 

Finally, G~o will denote the simply-connected covering of the derived group of 
G, and Tsr the preimage in G~ of the maximal torus T in G; A(G, T) will denote the 
set of roots for (G, T) and O(G, T) the Weyl group of (G, T); a r  will denote the 
Galois action on T and at,  ~ the transfer of a r to LT~ via the p.d.q. 

2. Endoscopic Groups 

(2.1) Data for Endoscopic Groups 

We introduce a set ~, with the purpose of parametrizing the endoscopic groups 
for G. 

Let s be a semi-simple element of LG~ Then LH~ the identity component of the 
centralizer in LG~ of s, is a connected reductive group. We are interested in pairs 
(s, Qs), where Qs is an action of W on LH~ This action is to be "realized in LG", and 
to be such that LEO ~ W is an L-group. In order to make precise definitions we 
introduce sextuples as follows. 

First, in place of a single element s, it is convenient to use a coset of Z w, the 
group of W-invariant elements in the center Z of LG~ Thus s now denotes a coset 
of Z w in LG~ consisting of semi-simple elements. We consider objects 

(s, LHO, LRO~H, L TO'H, { Yav~,Qs), 



390  D .  S h e l s t a d  

where 

(2.1.1) LH~ is the identity component of the centralizer in LG~ of any element of s, 
denoted Cent (s) ~ for convenience, 

(2.1.2) LB~ is a Borel subgroup of LH0, 

(2.1.3) ETCH is the maximal torus in LB~ 

(2.1.4) {Y~v~. is a set of root vectors for the simple roots of tLlt/~ ~H' LT0~'HI' and 

(2.1.5) es is a homomorphism of W into Aut(LH ~ LB~ L T~ { Y~v}) which factors 
through W ~  15 and satisfies es(w)= ad n(w)lLno, for some n(w)~ LG~ • w which fixes 
each element of s. 

We will usually write wn, or a n if w~0. under W~15, for Qs(w). The following 
result is useful in calculations. We omit the (straightforward) proof. 

Lemma 2.1.6. I f  x is a semi-simple element of LG~ then we may build an object 
(xZ w, ...) of the form above, if and only if the conjugacy class of x in LG~ is 
invariant under W. 

A further result, which we will use repeatedly, indicates some possibilities for 0~ 
once (s, Lrt~ LU0 L-r0 {y~}) has been given. Note that to specify Q~ we need only ~ ~ ~ H ~  ~ H '  
give an automorphism a H of LH~ such that O'2H---- 1 and a H is of the form ad g[LHo, 
where ge J'G ~ x (1 • 0") fixes each element of s. For  then we set Q~(w) = 0"n if w maps 
to a under W~15, and O~(w)= 1 otherwise. 

Lemma 2.1.7. Suppose that z is an automorphism of LT0 such that z 2 = 1. Suppose 
also that z fixes each element of s and is of the form ad glLro, g~LGO X (1 X 0.). Then 

L 0 L 0 L there is a unique automorphism T H of ( H , BH, T~H , {Ya }) satisfying " ~ = ( T H I L T o ) ' f D ,  

for some (-Oe~'~(LH0, LTO). Further, z 2= 1 and z n is of  the form adg'[Lno for some 
g'~LG~ X (1  • 0.) fixing s pointwise. 

Again the proof is straightforward, and details are omitted. 
L 0 L 0 L L 0 L 0 L We call (s 1, H 1, Bn,, T~n,,{Y~},Q,,) and (s 2, H 2, Bn2, T~n~, {Za~}, r 

. " �9 " I~ 0 L 0 L 0 - 1  L 0 L 0 - 1  equwalent if there exists g~ G such that H2=Q Hlg , B n =g Bn,g , 
LT~H2 -~-- gLT~Htg- 1, ZAdg(0tv ) = Ad g(Y~O and Q~:(w) = ad g oe~(w) oad g-  {, we W. It is 
not required that s 2 =gs~g-~. A typical equivalence class will be denoted ~; later 
[cf. (2.4)] we will also use ~ to denote a representative. 

Finally, ~ is the set of all equivalence classes of objects (s, LH~ LBO, ETCH, { Y~v}, 
Q~). Clearly ~ depends only on LG, that is, ~ is attached to the family of inner 
forms of G, rather than to G alone. We write ~ = ~(LG). 

(2.2) Endoscopic Groups 

Let s~ ~. The last five entries in a representative for a s define an abstract L-group. 
Clearly then, ~ determines a unique isomorphism class of L-groups. Any L-group 
in this class is said to be attached to ~. 

Definition 2.2.1. Let H be a quasi-split group over IR. Then H is an endoscopic group 
for G if LH iS attached to some ~c ~(LG). 
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Let H be an endoscopic group for G. We fix B n, a Borel subgroup of H defined 
over ~,, and let T n denote the maximal torus in B n. Let ~n be the element of ~(LG) 
defined by H. We fix a representative (sn, LH) for ~n, denoted also by ~n. The group 
LH will serve as fixed L-group for H. Later [cf. (3.3)] we will place restrictions on 
the choice of pair (sn, LH) but for the present we require only that 

(2.2.2) L TO n = L T O " 

Then sH C L T ~ and 

(2.2.3) X,(Tn) =X*( L T ~ =X, (T*) .  

(2.3) (T, ~c)-Pairs 

Let J~f~(G) be the set of all pairs (T, K), where T is a maximal torus in G defined over 
IR and ~: is a quasicharacter on 

X,(Tsc)/{ar#V _ #v : #v~X,(T) } c-tX,(Tsc)" 

The construction of "H(T, tc, )" in [11] provides a map JC(G)---,~(LG) as follows. 
Fix a pseudo-diagonalization r /of  T. Then r/transfers tc to a quasicharacter on 

X,(T*c); this new quasicharacter lifts, in several ways, to a quasicharacter on 
X , ( T * ) = x * ( L T  ~ invariant under the action of ~i obtained by transferring the 
Galois action on T to T* via t/. These various extension may be viewed as elements 
of L T O ; as such, they form a coset of Z w (cir. [ 16, Sect. 2.1 ]), say s. We now form (s, 
LH~ Ln~176 LT~ {Y~v), e,), where LH~ ~ [cf. (2.1.1)3, Y~v is the root 
vector for ~v already chosen [cf. (1.3)], and Qs remains to be defined. Let at ,  . 
denote the automorphism of LT~ obtained by transferring the Galois action on T 
by ~/. Then o-r, . fixes each element ofs  and is of the form adglLro, g~LG~ x (1 x a). 
Since a 2 = 1, we may now apply Lemma 2.1.7 to define a n and hence Qs. T,r/ 

Thus to each (T, x)~ X'(G) and p.d. t / o f T  there is attached a representative for 
a class in 6 .  If ~/is replaced by another p.d. then this representative is replaced by 
an equivalent one (cf. [11]). Therefore to each (T, x ) ~ ( G )  we have attached a 
well-defined element ~ = ~(T, x) of ~(LG). 

Proposition 2.3.1. ~(T,~:)=~(T',x') if and only if there exists g6G such that 
ad g : T---,T' and 

(i) x(~v)= 1 if and only if x'(g~V)= 1, ~V~AV(G,T), 
(ii) tT~( 9-  I)g~f2t~)(G,T), the subgroup of f2(G, T) generated by the reflections 

with respect to those roots ct for which tc(~ v) = 1. 

Proof. This is an easy application of the definitions. 

Proposition 2.3.2. I f  G is quasi-split over IR then the map ( T, r.)~ @( T, x) of ~f'( G) to 
~(LG) is surjective. 

Proof. This follows from Theorem 1.7 of [18]. 

Lemma 2.3.3. ~(LG) is a finite set. 

Proof. We write ~ ( L G )  as ~(T,~c), for some (T,x)~Jd(G*). Proposition 2.3.1 
shows that there are only a finite number of possibilities for ~(T, x). 

For any group G, we define (T, x) and (T', ~:') to be stably equivalent if there 
exists ~o~9.I(T) such that co:T--.T' and K '=x  '~ (cf. [15, Sect. 3]). We denote by 
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.~r~t(G ) the set of  equivalence classes under this relation, and by (T,  rc) the 
equivalence class of (T, x). By Proposi t ion 2.3.1, we may  set ~((T, x))=~((T,  x)) to 
obtain a well-defined map  of Jf~t(G) into ~(LG). 

On the other hand, the twist lp : G - * G *  provides embeddings over IR into G* of 
the maximal  tori over 1R in G (cf. [10]). Thus ~p induces a map  of ~Cst(G) into 
X~t(G* ). Clearly this map  is injective. 

As supplement  to Proposi t ion 2.3.2, we observe that  

~ , ( G )  ~ :(~,(G*) 

\ /  
~(LG) 

is commutat ive.  
Finally, if, as usual, Gs~ is the simply-connected covering group of the derived 

group of G, then there are natural  inclusions YI(G)~) f f (G~)  and 
~(cG) ~ ( L ( G ~ ) ) .  Moreover,  the d iagram 

~ ( G )  ~ ~f(G~c) 

 (LL, 1 
is commutative.  

(2.4) Elements of H Originating in G 

Let H be an endoscopic group for G, with o H = (s n, LH) fixed as in (2.2). Let Xu(G) 
be the set of  all pairs (T, ~c) which m a p  to (the equivalence class of) o H under 
N"(G)--,~(LG). We recover some elements of  9f'n(G) as follows. Let 3--H(G) be the 
set of pairs (T, r/), where T is a Car tan  subgroup of G and r/is a p.d. of T with the 
proper ty  that  the transfer at, ~ of the Galois action on T to LT~ via r/ satisfies 

(2.4.1) ar..=ogan, some r~E ~(LH0, LTO). 

Then for (T, tl)e~'-H(G), the transfer of s~ to T via t/defines a quasicharacter ~c on 

X , ( T j / { a r / l v - g  v : /~veX,(T)}cvg,(Tsc),  and (T,g)e~rH(G). 

In this manner,  we obtain sufficiently many  elements of  ~'~H(G) for our purposes, as 
the next lemma will show. In the statemefit of  the lemma we allow "p.d. t /o f  T"  to 
mean any map t / :T -~T*  of the form adxouA xeG*.  [In a final version of the 
matching theorem for orbital  integrals (cf. Sect. 3) we may omit  further assump- 
tions on t/.] 

Lemma 2.4.2. Suppose that (T, r ) e  9fH(G ). Then there exists a p.d. t 1 of T such that 
(T, tl)e ~-H(G ) and the attached quasicharacter agrees with ~c on 

g~(T) = { )LveX, (TJ  : 2 v + at2 v = 0 } / X , ( T J n  {/z v -  ~rr/~V :/~veX,(T)}. 

Proof. We may  choose t 1 so that  (T, rl)e J-n(G) and the representative at tached to 
T, r /and x is (s', LH). Then both  s' and sn are fixed by a n and at, .. Let ev be a root  
of  (LG~ LT~ such that  ar.,C~ v = -- C~ v. Then : 

(*) ~V(s')=aV(sH)= +_ 1. 



L-Indistinguishability for Real Groups 393 

By construction ~c is the quasicharacter attached to T, r/ and s'. Let ~c H be the 
quasicharacter attached to T, r/and s H. Then ( , )  implies that x and K H coincide on 
the span of the coroots c~ v of (G, T) for which a re  v = - e v .  The lemma then follows. 

Notation. If (T,~l)e~-'n(G) then ~: denotes the attached quasicharacter, unless 
otherwise stated. 

Suppose that (T, tl)eJ-n(G ). Then by [11] (cf. [15, Sect. 6]), there exists h e l l  
such that 

(2.4.3) T ' = h - a T n h  is defined over 1R, 

and 

(2.4.4) X,(T') a d h  ,X , (TH ) = X , ( T , )  " ' , X , ( T )  

commutes with Galois action and so lifts to an isomorphism i(h, t/) : T ' ~ T  defined 
over IP,. 

Let G~g be the set of regular elements in G. Then 7'e H originates from y~ G~g 
via (T, tl)~J-n(G) if 7' is the preimage of 7 under some such map i(h,q). 

Proposition 2.4.5. Suppose that 7'e H originates from 7e Greg via (T, n,). Then: 
(i) 7'~ Hreg, 

(ii) 7" e H  also originates from y via (T, tl) if and only if ?"=(7') ~~ co'~ ~lu(T'), 
and 

(iii) 7' originates from ~ via (T, tl) if and only if ~=7 ~ with 
co~ ~2o(G , T)~Ot~)(G, T). As usual, Oo(G, T) = {toe [2(G, T) : cod = aco} ; f2t~)(G, T) was 
defined in Proposition 2.3.1. 

Again the proof is straightforward (cf. [15, Sect. 6]). 
Finally, we will say that a Caftan subgroup T' of H originates from a Cartan 

subgroup T of G if T' is the preimage of T under some i(h, tl). Note that then to 
each Haar measure dt on T there is then attached a unique Haar measure dt' 
on T'. 

3. Orbital Integrals 

(3.1) (G, H)-Orbital-Integral-Transfer Factors 

We continue with G and endoscopic group H ; ~n = (sn, LH) is fixed as in (2.2). The 
Schwartz spaces of G, H will be denoted C~(G), CO(H) respectively. We continue also 
with 3"~(G). 

Suppose that for each (T, tl)e in (G)  we are given a function /leT,~ ~ on Tc~Gre ~. 
Then we call the family {A~r.~)} of these functions a set of (G,H)-orbital-integral 
transfer factors (or, more briefly, "transfer factors") if for each f e  Cr there exists 
f '  ~ ~f(H) such that 

1 , , l originates from 7eG~g via (T, tl) 
(3.1.1) ~tyr'. ' (7 ,dt ,dh)=~ , . 

{ 0 if T does not originate in o .  
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The measures dh, dg on H, G respectively are subject only to the conditions of [15, 
Sect. 9] ; dt is arbitrary and dr' as in (2.4); ~)r, K)(,, ) and q~)r,,, 1)(,, ) are as in [15], 
although T, T' are now inserted in the notation. 

Because of our proposed application (cf. Sect. 4), we place some restrictions on 
our candidates for transfer factors. First, for each (T, ~/) we define a function 21(r,~ ) 
on T by 

21(r,n)(Y)= I~ (1-~(7-1))  ]-[ 1~(~)1/2-~(~)-1/21 
�9 > 0  ~ > 0  

K(~ v) # I K(oc v) # 1 

where c~ > 0 means that ~ A(G, T) is positive with respect to the order determined 
by q and the Borel subgroup B* of G* ; Icr - 1/21 is to be interpreted as 
[i - 0r 1 /211  - c x ( T -  1)11/~. 
Proposition 3.1.2. Let co~f2o(G, T)~O~ T). Then 

(i) ,~}~.(;,'~ at, ,Ig) = ,r ~)(~,, at, da), a .d  
(ii) " o, z - -  (J) -- 1 A(r,,)(? )=X(~0)( . t.)(?)~l(T,,)(?), where 

z,=1/2 ~ ~. 
~ > 0  

x(c(v) * 1 

Proof. Note that ~.-og-11.~X*(T),  so that 0 . - c o - l l . ) ( y )  is well-defined. The 
proof of (i) is immediate (cf. 1-15, Sect. 4]). The proof of (ii) is similar to that of 
Lemma 8.2 of [15], and we omit the details. 

We will call a family {A(T,,)} of (G,H)-orbital-integral transfer factors ad- 
missible if each A(r., ) is of the form 

(3.1.3) ( -  1)~(~ ~l)A(r,~ ) "A(r,~ ) 

where q(G, H) is a constant [defined in (3.7) and inserted only for convenience], 
e(T, t/)= _ 1, and A(r,,) is a character on T satisfying 

(3.1.4) A(r" ~)(~,~') = (o9- ~ t ,  - t.)(y)A(r ' ~)(y), 

oe f2o(G, T)c~ f~)(G, T). 
If {A(r.~)} is any family of characters satisfying (3.1.4) and {e(T, q)} any choice 

of signs, then the family {A(T,,)} defined by (3.1.3) has the property that 

~)t -"~ A (T, tt)(~) (~(T '  K)(~), dt, do), 

for  T' originatin9 f rom 

?~ Gregvia ( T, q) , 

is welt-defined and invariant under 91(7~,), where 7r is the Cartan subgroup of H 
containing y' (cf. Propositions 2.4.5 and 3.1.2). This function depends, however, on 
the choice of (T, rl). Suppose that y' originates from Y~GregVia (T,q) and from 
~Gv~g via ('~,F/). Then clearly there is ~o~93(T) mapping T to T and ? to ~, and 
satisfying F/=~onoqo~o -~ for some con~I2(H, Tn)_Cf2(G*,T*). Thus T =  T~ ~, the 
quasicharacter attached to (T,,F/), is x ~ and c~(f'~)(~,d'{,dg)=x(co)~(7'~)(%dt, dg), 
where dr" is the measure (dt) '~ Note that if dr' is attached to dt on T, then dr' is 
attached to (dr) '~ on 
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On the other hand, 

"A<~. ~)(~ = "A (r+. ~,~o~oo~-,)(Y+) 

= "A<r . . . .  ~)(~) 

=(--1)ER(~'m1(~R~(~) Ct)(Y)'A(r.~)(7), 

where R(ogn) = { ~  A(G, T) :ara = -- ~, X(~ v) # 1, ~ = r / ~  A(B*, T*), 
COnfie- A(B*, T*)}. Hence for {d(r.,)} to be a family of transfer factors we must 
have 

e(T, c~ n or/~ x) -- tc(og)( - 1)tRt~~ 1/) 

(3.1.5) and 

Atr.,ono,o~o-l)= (( 2 ~]-lAtr.,)]o 
\\ctER(to~) / / 

for all c~uE~(H, Tn) and co~9.I(T). 
Conversely, we may use these conditions to calculate within a fixed "frame- 

work of Cartan subgroups" (cf. [15, 16]). This is the only motivation for all but the 
first paragraph of (3.2). 

(3.2) Standard Position, Framework of Cartan Subgroups, etc. 

Let H be an endoscopic group for G. Fix a standard Cartan subgroup of G*, say 
Tu, among those from which T n originates. Let MN= Mr ,  ̀  and a N denote the 
(canonical) transfer of a t ,  , to LT~ by an element of ad M N. We now insist that 
~I-I = (SfI ,  LH) have the following properties: 

(3.2.1) Lr~ =Lr0 

and 

(3.2.2) a n acts on LT~ as ~u' 

Then LH is "in standard position with respect to Tu" (cf. [16, Sect. 2]). That such a 
representative ~n exists is shown in [16]. 

Next we build "a framework of Cartan subgroups around Tu" (of. [16]). Thus 
we select standard Caftan subgroups T~,..., Tk = T n of H representing all con- 
jugacy classes, and standard Cartan subgroups To,..., T u of G* such that 
originates from T,, n=0,  1, ..., N (in definitions concerning G* we take the inner 
twist ~p to be the identity). We assume that S(T,)g S(Tu) for all n and that T. = Tp if 
T, is conjugate to Tp. Set M',=Mr; ' and M . = M T .  Then we choose m',~M',, 
m, e M ,  such that adm ' , :T ' ,~Tn=T*  (over ~), a d m . : T . ~ T *  (over ~) and 
i ,=  adm~-1 oadm', :T ' ,~T.  over ~-~ Let a, be the transfer to LT~ via adm,, of the 
Galois action on T, (equivalently, the transfer of the Galois action on T', via 
adm'.). If T" originates in G we select 7~. in G and a map ~p. = adx,  o~p :T,~-*T. over 
IlL Set M,a = M T ~  ' q,a = adm, o~o, :T.~-~T * and t,'G = ~p, ot, :T' ,-~T~. '  We refer to [-16, 
Sect. 2] for a proof that all these choices are possible. Note that (2.3.3, d) of [16] is 
omitted; this is because we now have the element ~n. 
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Since a .e  ~'2(LH ~ L T0)o'/./, we have (7"., adm.)e~'-n(G*);let ~:. be the attached 
will be the attached quasicharacter. quasicharacter. Also (7~.,r/.~)eJ-n(G); ~c. 

Proposition 3.2.3. Suppose that y 'eH oriyinates from 7eGr~g via (T,q). Then 
T=(7~. ) ~ and q=ooHoq~.oco - 1, for some n, coHet2(H, Tn) and ~oEg.I(T~"). 

Proof This is immediate. 

If {A(r.,)} is a family of functions satisfying (3.1.3) and (3.1.5) (that is, {A(r,,)} is 
a proposed admissible family of transfer factors) set 

G G ~. =~(~,~.),  
G 

A n - -  A t T f f , n ~  ) , 

�9 G 
A n = "A(rff,nff ) . 

Proposition 3.2.4. {d(r,,)}, satisfyin9 (3.1.3) and (3.1.5), is an admissible family of 
(G,H)-orbital-integral-transfer factors if and only if for each f ~C~(G) there exists 
f '  eCg(H) such that 

q)tyr.,, ~)(y,, dt', dh) = ( -  1) q(G' u)e.~A~(y)'A nG(7)~ (T~' rff)(]), dt, do) 

if y~G,~, and y'=(i~)-~(y), and ~r, ,  ' ) ( , , )-0 if T' does not originate in G. 

Proof This follows from Proposition 2.3.3 and the discussion in (3.1). 
Our next step is to recall some candidates for {A. ~} (cf. [16]). 

(3.3) Correction Characters 

We assume now that ~t~ = (sn, LH), with LH in standard position with respect to 
some standard Cartan subgroup T N of G*; we also fix a framework of Cartan 
subgroups around T s. By an admissible embedding of L H  in L G  we mean a 
homomorphism ~ :LH-~LG such that 

(3.3.1) ~[Lno• 1 is the inclusion mapping and 

(3.3.2) ~(1 x w)=~o(W ) x w, we W, where ~o(w)eLG ~ 

These maps have been studied in [16]. 
Let ~ be an admissible embedding of LH in LG. Then ~o(1 x o-)e LM ~ since LH is 

in standard position with respect to T N (cf. [16]), and ~o(11~ • x 1)QLT ~ As in [16], 
we attach to r the pair (#*, 2"), where 

2V(~o(Z x 1)) = z<U*,zv>~< ~Hu*,av> , 2vex*(LT ~ 

and 
2V(~o(1 • a))=e 2"i<'~*'~v>, 2vex*(LMO). 

We write ~=~(#*,2"). If t, denotes one-half the sum of the coroots for 
(LBOc~LMO ' LTO) and z'~ one-half the sum of the coroots for (LB~176 LT~ then 

1/2(/~* - ~r.#*) + ~. - t'. = (2* + a.2*)(modX,( L TO)) 

and/~*-a,/~*e X,(LT~ n = 0, 1,..., N (Theorem 3.4.1 of [ 16]). Thus, after transfer 
by m., we have a well-defined quasicharacter )C(#* + z . -  (., ).*) on T~ (cf. [16, 
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Sect. 4.1]). If T~ originates in G we have further a quasicharacter g~(#* + 1 , -  l'., 2*) 
on ~n '  

We say that ~ is of unitary type if each X(#* + z , -  t',, 2*) is a character (that is, is 
unitary). If ~ = ~(#*, 2*) is arbitrary then 1/2(#* - trnp*), 2* are also parameters for 
an admissible embedding; clearly this embedding is of unitary type. 

We assume now that LH embeds admissibly in LG and fix an embedding 
= ~(~*, ,~*) : LH ~--~LG of unitary type. We set 

t , (3.3.3) A G = ZG(~. + t,-- z,, 2 ). 

Then {A, G} is a "set of correction characters" in the sense of [16] (this is the main 
result of [16]). Hence if we set 

AGn = ( -- l ~q(~,tt)ea At~'A G 
/ n --n --n 

and define {A(r,~)} by setting 

A (T ~ ,~  ) = A~n 

and requiring that (3.1.5) be satisfied then {Air,,)} will be a set of (G,H)-orbital- 
integral-transfer factors if and only if {e. ~} satisfies the conditions of (10.1) in [15] 

replacing e,). Before discussing these conditions, and showing that they (with e, 
can be satisfied, we introduce the set-up for some reduction arguments. 

(3.4) Endoscopic Groups for the Levi Components of a Parabolic Subgroup 

Suppose that H is an endoscopic group for G, with ~n = (sH, LH) chosen so that LH 
is in standard position with respect to a (standard) Cartan subgroup T of G*. 

It will be sufficient for our purpose to consider cuspidal Levi groups. Thus we 
take M = M r, where T is a Cartan subgroup of G. We fix a p.d. q of T [cf. (1.3)]. 
Then M* will denote the attached Levi group in G*, and P* in G*, P in G the 
attached parabolic subgroups; ~'M=LM *, by definition. Our basic assumption 
will be: 

(3.4.1) ffH=O)~T, rt, s o m e  O.)E~"~(LMO ~LHO, LTO). 

We may then construct a subgroup M' of H as follows. Let L(M')0----LHONLM0. 
Then (3.4.1) implies that L(M')0 is invariant under a H. Set LM'----L(M')O ~ W. Then 
LM'  is the L-group of a subgroup M' of H defined over R;  M' contains T x and is a 
Levi component of some parabolic subgroup P' of H defined over R and 
containing B X. A simple argument shows that there exists m'eM'  such that 
T '=(m')-aTnm' and i(m', q ) : T ' ~ T  are defined over 1R, Thus M ' = M r , .  

If, in the notation of the last section, we have 7"= T N then we may take T = 7~. 
and t/= r/. ~ so that M = M. ~ and M * =  M.. Then M'= M'.. 

Let sn M be the coset of s n with respect to the group of W-invariants in the center 
of LMO. Then M M ~rt = (sn, LM') is a representative for some element of *(LM). Thus M' 
is an endoscopic group for M. Further, (3.4.1) and a simple argument show that 
"FCM*; LM' is in standard position with respect to T.. Note that if 

= r 2*):LH ~LG is an admissible embedding of unitary type then ~M= ClaM, is 
an admissible embedding of LM' in LM, again of unitary type and with parameters 
(~t*, 2"). 

Next, let (U, ttv)~ Y-n(G), with attached quasicharacter x. We say that (U, fly) is 
subordinate to M if U C M  and t/v is of the form admot/, m~M*. Then dearly 
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(U, rlv!e Y-M,(M) [relative to the twist from M to M* provided by q, cf. (1.3)]. If ~M 
denotes the restriction of I< to {#veX,(Ts~ ) :Nm/~ v = ~v + aT/~v = 0}, then ~M is the 
quasicharacter attached to (U,~tv) as an element of J-M,(M). Conversely, if 
(U, qv)~'M,(M ) then as an element of J-x(G), (U,~/v) is subordinate to M. 

If feC~(G) then we define fM~Cg(M) by 

fM(m) =(6P(m)) '/2 1 f(mn)dn and f (x)= I f ( k x k -  X)dk, 
N K 

xe G. Here K is a suitably chosen maximal compact subgroup of G (cf. [3, Sect. 3]), 
N is the unipotent radical of P and 6p is the modular function of P.. .  note that fM 
is the function ,,fW)- of [3]. The measures dk and dn are fixed (arbitrarily). Let dm 
be the measure on M for which dg = dkdndm. Then 

~Y'~)(T, du, dg)= [-I I~(Y) 1/2 - ~(Y)- '/El- a~-v~M)(Y, du, dm) 
a>0 

for y e U('~Mreg and (U, t/v) subordinate to M. Similarly we may define f~r e Cg(M'), 
given f '  e Cg(H). Then 

q~v'. ,)(~,, du', dh)= I ]  1~'(?') ~/2- ~'(Y')- 1/21- '~(%',l)(~)t  du ' ,  d/T/') 
a'>O 

for U' C M' and y' e U' ~Hreg. 
If (U,r/v) is subordinate to M and {A(,)} satisfies (3.1.3) we set 

eM(U, qV) = ( - -  1) qt6"H) -qtM'M')e( U, I~U) 

and 
M _ eM(U, qv)Aw,~u)'A(v,,~) 

a>O 
~(~V) ~ 1 

Then the following result is immediate. 

Proposition 3.4.2. I f  {A(,)} is a set of (G,H)-orbital-integral-transfer factors then 
A ~ { w,~):(U, qv) is subordinate to M} defines a set of (M,M')-orbital-integral- 

transfer factors. Moreover, if f'eC~(H) corresponds to f~Cg(G) relative to {A(,)} then 
M f~,eCg(M') corresponds to f~C4(M) relative to {A(,)}. 

(3.5) Choice of Signs 

We continue the discussion of (3.3). We wish to choose {e. G} so that the set {A(r,~)} 
defined in (3.3) is a family of (G, H)-orbital-integral-transfer factors. Our first step 
will be to review the conditions this places on {e, G} (cf. [15]). 

Let T~ and T~ be adjacent Cartan subgroups of H, within our framework (cf. 
[15]). Let I~ + and I, + denote the (chosen) systems of positive imaginary roots for 

�9 G r ' G  , ~ r T~ = l,,(Tm) and 7~ = z, (T~). Then in [15] there is attached to (T~, T~, Ira, "~ ~,,'G im ,+ I,+) a 
sign e(m,n)=e+(m,n)e~(m,n) (cf. proof of Proposition 3.5.3 below). In order that 
{A(r,,)} be a family of (G,H)-orbital-integral-transfer factors it is necessary and 
sufficient that 
(3.5.1) G G ~.,~. = ~(m, n) 
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for each adjacent pair (7~,, T') (cf. Theorem 10.2 of [15]). If {e. a} satisfies these 
conditions then so does { -  ~a}, but there are no further possibilities. 

Suppose that both T~, T~ succeed T~, in H, and that T~ succeeds both T~l and 
T_" (in the sense of [15]). Then in order to construct {e, ~} satisfying (3.5.1) we need: 

(3.5.2) e(m, na)e(nl, p) = e(m, n2)e(n2, p). 

Of more interest is the sufficiency of these conditions ; that is, it is sufficient that we 
verify (3.5.2) for all "diamonds" (Tin, T~,, T,~, T~) (cf. [15, Sect. 11]). 

Let ct' i be a noncompact root of T,~ for which there is a Cayley transform 
s'i; T~,--rT' (i = 1, 2), and fl'i be a noncompact root ofT',, for which there is a Cayley 
transform t'g :T', ~T'p Let cq, ill, si, t /be the corresponding "images in G" [15]. We 
may change our choices for T,,, T,,, Tp (within respective conjugacy classes), ~'i, s;, fl~ 
and t~ without changing e(m, n), e(ni, p) [15, Sect. 10]. It will also be convenient to 
change t m,'G i ~.,, i G.~ and tp'~', that is, to adjust the various images in G. 

Proposition 3.5.3. e(m, n0s(n 1, p)e(m, n2)e(n2, p) does not depend on the choices .for 
iGm, .6 :~ i a lnl~ tn 2, p" 

"~ only by ad co,, .6 co,,~gA(T~), i G by ad co o-'~ etc. By Proof  We may replace tr~ ot . . . . . .  %, 
definition, e(m, n) = e jm,  n)e+(m, n), and ejm, n) = e~(sl), the x~-signature of s r The 
change in i~, i, a replaces s 1 by co, sxo)2, 1. A simple calculation shows that is 
replaced by ~:~(co,,)e~(sl)K~(co,, ). Arguing similarly for Sa, q,  and t 2 we e~(Sx) find that 
e jm,  n l ) s jn  1, p)ejm, n2)sjnz, p) is multiplied by 

~:~co 1, ~  ~:~co ~ ~ ~ ~ G , ( . )  .~( .~)  .~(.)~:m(co..)%(co,)~:.~(co.~)~.Jco.~)~..(co.) 

which equals one. It is immediate from the definition of s+(,) (cf. [15, Sect. 10]) that 
the above change in i,, and i,, multiplies s+(m, nl) by sgn(com) sgn(og.), where sgn 
denotes the signature with respect to (the appropriate system of) imaginary roots. 
Hence the proposition follows. 

Theorem 3.5.4. For all (T',  ~ ,  ~ ,  T~) we have 

(3.5.5) e(m, nOe(nl, p) = e(m, n2)e(n2, p). 

Proof. We observe first that it is sufficient to prove this in the case that G is simply- 
connected and simple and T~ is anisotopic over IlL Indeed, given any diamond 
(T~,, T.' ' a ,,, T~2, Tfl we may assume that (T~,~, r/,,),~ (7~p, t/~) are subordinate to Mr,. We 
may also assume that T.'.,, T~ lie in M~,. We see that the terms we have to compute 
are then the same, whether we compute in (G, H) or in 6 , (Mm, Mm). Thus it is 
sufficient to verify (3.5.5) in the case that T~ is compact modulo the center of G. 
Now we argue as in [15, Sect. 11] to reduce to the case that G is simply-connected 
and simple. 

From now on, G is simply-connected and simple, and T~ is compact. We will 
omit the superscript "G" in notation. 

We consider first the case that T., = T.2. Then a 2 =o9~1, toe f2(G,T~). Hence s 
~ have the same length. Because ~l  is not conjugate to T~, ~'1 and ~ lie in 
different components of A(H,T~,). Thus ((s the set of roots in A(H,T~,) 
belonging to the II~-span of ~'a and ~ ,  is of type A 1 x A x. On the other hand, 
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((a x, a 2)), the set of roots of A(G, T,,) belonging to the Q -span of ~ 1 and 0%, is either 
of  type C 2 or of  type A 1 • A r 

Suppose that  ((~1, ~a)) is of type C 2. If  a 1 and ~2 are long, then ~ and ~ are 
short  and a~ + a~e AV(G, Tin). Since ~c,,(a~ + ~v) = Xm(aVl)Xm(~) = 1, we have that  
(ct~ +at~)VEA(G, Tm)"comes  from H "  (cf. [16, Sect. 2.4]), so that  1/2(a' 1 + ~ )  is a 
root  of (H, T~), a contradiction. We conclude then that  ~1, a2 are short. In H we 

t r i p ! t ! p t may arrange that  sl, s 2 are standard, f12 =s2~1, f l l  = S 1 0 ~ 2 '  tPl and t 2 a re  standard, 
and t'ls' 1 =t'ES' 2. Then we adjust i,. so that ~t 1 is noncompact .  Suppose that ~z is 
compact .  Then adjust in1 so that s 1 is s tandard and in: so that s 2 = s l c o ~  ~ .  
Finally, adjust i v so that t~ is standard. Then t z = c o t l ,  co~f2o(G, Te). Since 
t l S  1 = t 2 S 2 ,  w e  have that  c o = t l s l ~ _ ~ 2 ( t l s t ) - 1 .  Thus 

e~(m, n 1)e~(nl, p)e~(m, n2)e~(n2, p) = ~C p(CO)~:m(CO ~ _ ~ )  . 

Since tlSl(0~l--tX2) is a real root  we have ~cp(co)=l, and since ~ 1 - ~ 2  is a 
noncompact  root  of  (G,T~) "not from H",  we have 1%(co~_~:)=~,,((cq-~2) v) 
= - 1. On the other hand. 

e+(m, n l ) e+(n l ,  p)e +(m, nE)e +(n2, p) = sgnco sgn co~l-~2' 

Since co is the reflection with respect to a real root, co fixes the imaginary roots of  
Tp and sgnco = 1 ; s g n c % _ ~  = - 1. Thus (3.5.5) holds if a2 is compact .  Suppose 
now that  72 is noncompact .  Perform a s tandard Cayley transform with respect to 
a r Then the image ~: o f a  2 is compact ,  since the subgroup of G generated by T,~ 
and the roots al,  a2 must  be of  type Sp(2,2). There is & in the imaginary Weyl 
group of the image of T such that  &~ is noncompact ,  because there exist Cayley 
transforms with respect to ~1 (cf. [14, Lemma  4.11]). Let co be the preimage of c5 in 
12(G,T,,). Then coa~ =a~ and coa 2 is compact .  Thus for the case a z noncompact  
(after we have adjusted i~ to obtain cq noncompact )  we may  further adjust i m to 
obtain a I noncompac t  and a 2 compact ,  Then our previous argument  applies, and 
the case ((al,  a2)) of type C2 is disposed of. 

Suppose now that  ((cq, c~2) ) is of type A 1 x A r An argument  similar to that  of  
the last paragraph  shows that we may  adjust i., so that  both  a~ and a2 are 
noncompact .  Then we may  adjust i , , , i ~ , i p  SO that s l , s2 ,  t I and t 2 =  t l S lS2  I are 
each standard. The product  of  all terms e~(,) is one. To  compute  the product  of 
all terms e+(,) we observe that  if cocO(G, T,~) permutes  a 1 and a 2 then the product  
coincides with sgnco s g n ~  where ~ is the au tomorph i sm of 
{ae A(G, T,,): (a,  a~) = (ct, a~) = 0} obtained by restricting co to this system (cf. [15, 
paragraph  following L e m m a  11.3]). If  we inspect the various irreducible reduced 
root  systems we find that  such an co exists and that  sgncosgn&, which does not 
depend on the choice of co, is one. Thus (3.5.5) follows. This completes the proof  for 
the case T.~ = T,~. 

Suppose now that  T,~ and T,~ are not conjugate. Recall that  Tr, is compact  and 
G simple. Thus al ,  a 2 must  be of different length. We may therefore assume that  G 
is of  type B,, C,, F4 or G2. The case of  type Gz has been dealt with in [15, Sect. 11]. 
Thus we will assume that  G is of type B., C, or F 4. Also, ct~ will be the long root. 

t ! Suppose that  c h ,  a 2 are not perpendicular. We m a y  assume that  
l ! ! - - I  r ! t ! ! ! 

~ = e l  +(s l )  ill, fl~ = s 2 ( a ~ -  (s't)-lfl 't) and that  t'~s'~ = t2s 2. Then adjust i~ so that  
a~ is noncompac t ;  i fa  1 is then compact  we may further adjust i,. to obtain both a 1, 
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~2 noncompact. Then we adjust in, so that s t is standard. This implies that fit is 
noncompact (arguing in SP4 ). Next we adjust ip SO that t~ is standard, and i,~ so 
that s 2 is standard. Then f12 is noncompact (arguing again in Sp4) and t 2 = t,sxs~ 1 
is of the form ~0r where t~ is standard and e) belongs to the subgroup of f2(G, Tp) 
generated by the Weyl reflections with respect to the (real) roots a~,a2. Hence 

e~(m, nl)e~(nl, p)e~(m, n2)eK(n2, p) = 1. 

On the other hand, we compute the product of all terms e+(,) as in the paragraph 
following Lemma 11.3 of [15]. Explicit calculation shows that the product is one. 

Finally, suppose that ct'l, ~2 are perpendicular. Then both ((e'l,e~)) and 
((el, c~2)) are of type A 1 x A 1. We can argue as earlier (case e'l, e2 of same length) 
to show that the product of all terms e~(,) is one. Explicit calculation shows that 
the product of all terms e+(,) is one also. 

This completes the proof of the theorem. 

(3.6) Conclusions 

We have now attached to each admissible embedding ~ :LH "-->LG of unitary type, 
two admissible families of (G, H)-orbital-integral-transfer factors. If {A~r,,)} is one 
family, then {-A(r,,)} is the other. 

Note that, by [16], i fG is quasi-split then ~, q :LH ~LG have attached the same 
two families of transfer factors if and only if ~ and r/are 4~-equivalent, that is, if and 
only if 4, q induce the same map ~(H)~q~(G) on L-packet parameters (cf. Sect. 4). 

We remark that the condition that ~ be of unitary type is only for convenience. 
An arbitrary admissible embedding ~ :LH~LG provides quasicharacters A, a [cf. 
(3.3.3)], in place of characters. However, by [16, Sect.9], we may find a 

G , quasicharacter on H, say Ar so that A . - A e A ,  for each n, where we have 
transferred Ae to Z~ without change in notation and {A*} is a set of unitary 
correction characters. Thus the families attached to {A~} as in (3.3) will match the 
x-orbital integrals of f ~  Cg(G) with the stable orbital integrals of a function f '  on H 
such that A~-lf 'e Cg(H) (clearly such a function has well-defined orbital integrals). 

(3.7) Definition of q(G, H) 

We begin with the assumption that the fundamental Cartan subgroups of H 
originate in G; then the set of Cartan subgroups "shared by G and H" is 
nonempty. Suppose that the fundamental Cartan subgroup T' of H originates 
from T in G. Let z' be the dimension of the maximal compact subgroups of Mr,, 
and z be the dimension of the maximal compact subgroups of M r. Then we set 

q(G, H) = 1/2(z- z'). 

Clearly q(G, H) does not depend on the choice of T' and T. 

Proposition 3.7.1. (i) q(G, H) is an integer. 
(ii) I f  H = G* then q(G, H)= 1/2(z~-zn)= q~-qn, where z~ is the dimension of 

the maximal compact subgroups of G and 2qG is the dimension of the symmetric space 
attached to Gs~. 

Note that (ii) reconciles q(G, H) with the choice in [14]. 
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Proof For  (i), let a be the dimension of the derived group of M r, b be the number  
of positive roots of (M r, T) and c be the dimension of the center of M ;  define a', b', 
and c' similarly, with respect to (Mr,,T') .  Then a = 2 b - c + d i m T  and 
a' = 2 b ' -  c' + dimT. Hence b - b' = 1/2((a + c) - (a' + c')) and so ( b -  b') - 1/2(~ - ~') 
= qMT-- qM~, in the notat ion of (ii), since the split components  of the centers of  M r 
and M r, are isomorphic over 1P,. But qM~- and qMT, are integers since M r and M r, 

�9 are cuspidal. Hence (i) follows. Also, (ii) follows from this discussion and 
Lemma2,8  of [14]. 

Corollary 3.7.2. q( G, H) = q( G, G*) + q( G*, H) . 

If the fundamental  Car tan  subgroups of H do not originate in G we set 

q(G, H) = q(G, G*) + q(G*, H), 

both numbers  on the right-hand side of this equation being well-defined. 

4. Lifting Characters 

Throughout  this section H will be an endoscopic group for G, with ~n =(Sn, LH) 
fixed so that LH is in s tandard position (with respect to some standard Car tan 
subgroup of G*). We assume that  LH embeds admissibly in LG and fix 
~=~(IZ*,2*):LH~LG of unitary type. Then {A(T.,)} will be one of the two 
admissible families of  (G, H)-orbital-integral-transfer factors at tached to ~. As in 
Sect. 3, we write A(r,~ ) as 

( -  1)q(~ q)A(r,~)'A~r,~ ) 

where ~(T,q)= +1 ,  A~T,, ) is a character  on T and "A(T,~ ) is the "discriminant" 
function of (3.1). 

The family {A(r,~} determines a correspondence (f, f ' )  between the Schwartz 
spaces H(G) and H(H). Let O'  be a stable tempered distribution (cf. [,-14, Sect. 5]) on 
H and set 

O(f)  = O'(f'), f ~ H(G). 

Lemma 4.0,1. O is a well-defined invariant tempered distribution on G. 

The proof  is straightforward (el. Proposition_6.1 of [,,14]); we omit  the details. 
We call O the lift of  O' to G. 

(4.1) The Lift of a Stable Tempered Character 

Let 4~o(H ) be the set of parameters  for the L-packets  of infinitesimal equivalence 
classes of tempered irreducible admissible representations of  H ;  if ~p's ~0(H) then 
/-/~, will denote the attached L-packet.  In [-14] we have established that  the 
tempered distribution 

Z~ ,=  ~ X~ 

is stable. Our  main purpose now is to compute  the lift of X~,, to G. 
Let ~p be the image of r under the map  ~ :  ~ o ( H ) ~ 0 ( G )  induced by our fixed 

embedding ~ : LH ~ t 'G  (of. [16]). We will say that  q~ is relevant to G if ~p lies in the 
subset ~0(G) of  ~o(G*). 
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Theorem 4.1.1. (i) I f  q~ is relevant to G then the lift of  Z~' is ~ e(n);(~, where each 

e(n) is a number, either +_ 1 or - 1, as defined below [cf (4.4.3), (4.4.10), and (4.5.1)]. 
(ii) I f  tp is not relevant to G then the lift of  Z~,, is zero. 

Corollary 4.1.2. In the notation of the theorem, ~ e(n)Z, vanishes on the Caftan 
h e n  

subgroups of  G not originating in H. 

The proof of the theorem will occupy the next several subsections. 

(4.2) The Lift of a Stable Tempered Eigendistribution 

It will be useful to know that the lift of an eigendistribution is an eigendistribution. 
More precisely, let ~e, be the center of the universal enveloping algebra of [~, and .~ 
be that for ft. Then we define a homomorphism 5 ( - ~ '  as follows. Identify the 
symmetric algebra on the Lie algebra t of a torus T with the universal enveloping 
algebra ll(f) of t. Let U(t) a denote the set of invariants in lI(t) of the (appropriate) 
Weyl group O. There is a canonical isomorphism U(t*)~ U(fn) inducing a map 
~[([*)~(G*'T*)--+~I([n)~(H'Tn) , and  canonical isomorphisms ~([)O(G,T)_.+~[(I*)O(G*,T*), 
U(I')a(H'T')--+H(In) ~m'Tm, for any maximal tori T in G, T' in H. Let 
F:~--+ll(t*) a(G*'r*) and F ' : ~ ' ~ U ( f n )  a(n'T~') be the Harish-Chandra isomor- 
phisms. The element #*~X,(LT~174 provided by r is naturally an 
element of Hom(t*,(U) and so induces an isomorphism 1,, of U(t*); 
Iu,(X)=X+I~*(X)I, X~t*. Since (#* ,~v)=0,  ~V~A(LH~176 1,, preserves 

.Q(H T H )  " ~ ; " r '  - l o  o U(tn) ' . We will use z z to denote the homomorphlsm ( ) Iu. F of.~f 
into ~e,. If Z' is a character on ~(' then we may define a character X on by 

Z(z) = Z'(z'), z~ ~e. 

If Z' is attached to the ~2(H, Tn)-orbit of the linear functional #' on t n then ~ is 
attached to the (2(G*, T*)-orbit of # = #' + #*, on our identifying t n with f*. 

Lemma 4.2.1. I f  z'O'=z'(z')O',  z ' ~ ' ,  then zO =Z(z)O, z ~ .  

Proof Let f ~ g ( G )  and suppose that f'~Cg(H) corresponds to f under our fixed 
(G, H)-orbital-integral transfer. Then it is sufficient to prove that (z')*f' cor- 
responds to z*f  Here * denotes the adjoint; note that z~z '  does not respect this 
operation. The correspondence is verified by a simple modification of the 
argument in the proof of Lemma 6.2 in [14]. We omit the details. 

There is then an analytic class function F s on Greg such that 

1 ~ Fo(?)~s dg)jT(7)dt (4.2.2) O(f)  Y 
-~ [a(G, T)] T~G,o. 

for f ~  ~(G), where T Ja(?) = 1-] I1 - ~(~- 1)1 and the summation extends over a set 
~eA(G,T)  

of representatives for the conjugacy classes of Caftan subgroups of G (cf. [3, 
Sect. 13]). The integrals on the right-hand side of (4.2.2) are absolutely convergent. 
To describe F o in terms of F o, it is sufficient to give a formula for F o on Tc~G,,g. 

Proposition 4.2.3. I f  no Cartan subgroup of H originates from T then the restriction 
of F o to TnG**g is zero. 



404 D. Shelstad 

The proof will be included with that of the next lemma. 
Suppose now that U)T', ..., tR)T' represent the conjugacy classes of Caftan 

subgroups of H originating from T. Fix (T,~lv)~-H(G) with attached Kv, and 
iv= i(hv, qv) : tv)T'~T defined over IR, v= 1 . . . .  , R. We set 

F~(?) =(Fo,oi7 i)(y), 7~ TC~Greg ' 
and 

d~/o(~)=Z(#._ t,) ;~, 1 ~., )(Y) I-I (1-~t(7-1)) - H ]cZ(Y)l/2--~(Y)-l/21-x 
~ t > 0  a > 0  

~ ( ~ t v ) *  1 ~ ( : t v ) : ~  i 

where at > 0 means that ~ belongs to the positive system for A(G, T) determined by 

(~tv, B*), CY~ - , - 1/2 ~' ~ and t~*, 2* denote the transfer to X*(T)| by ~/~ of the 
~ t > 0  

6~t= --gg 
K~(~V) =~ 1 

data #*, 2* provided by our fixed embedding ~ : LH ~LG. Finally, we fix v and set 

n(T)= ~ {~e A(G,T): ~ >0, ~ = - ~, xv(~v)* 1} ; 

n(T) does not depend on the choice of v among 1 ... . .  R. 

Lemma 4.2.4. For 7~ TnG~eg we have 
R 

Fo(7)=( - 1) ~{~'m+"tr) E e(T,q,) ~ ~(m)AH/~(7~)F~!(7~ 
v = 1 w e f l o ( G , T ) / ~ ( ' , , } ( G , T )  

Recall that ~o(G, T) -- {(o~ ~(G, T) :(o(v = a(o} and that tJ(o~(G, T) 
=flo(G,T)c~tJ(~)(G,T), where ~Jt~)(G,T) is the subgroup of tJ(G,T) generated 
by the reflections with respect to the roots ~ of (G,T) for which ~(aV)=l.  

Proof Let f~  C~((T~G~g)~). We may calculate O'(f') as 

t ~ Fo,(r 
~ [t~0(H,T')] r'~n,o, 

where the summation extends over a set of representatives for the conjugacy 
classes of Caftan subgroups of H. If T' does not originate in G then the integral 
over T'c~H~,g vanishes by our definition of (G,H)-orbital integral transfer. If T' 
does originate in G, but from a Cartan subgroup not conjugate to T, then the 
integral over T'c~H,,g again is zero, by definition of f Thus Proposition 4,2.3 is 
proved. For Lemma 4.2.4, we may replace ~ by ~ ; we then use {i~} to obtain an 

T" (v )~ ,  

integral over Tc~G,~g. Our (G,H)-orbital-integral transfer and some elementary 
manipulations give the formula asserted. We omit the details, except to note that 

(_ 1)q(a.n).+.tr)e(T,n ~An/~_ A ~(~)T,ttT~- 1 
" t w - - v  - - ~ ( T , q v ) ~ '  H ~.aG! , 

[cf. (3.1.3), (3.3.3), and (3.1.5)]. 

(4.3) Some Parameters for Tempered L-Packets 

We recall some definitions concerning L-packets, and state a theorem 
(Theorem4.3.2), a special case of which we will need for the proof of 
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Theorem4.1.1. We will then prove that special case. In (4.6) we will use 
Theorem 4.1.1 to complete the proof of Theorem 4.3.2. 

A homomorphism q~ : W--.LG is admissible if, for each we W, q~(w) is of the form 
q)o(W) x w, where q)o(W) is a semisimple element of EG~ Two such homomorphisms 
are equivalent if they are conjugate under EG~ the set of equivalence classes is 
denoted ~(G*). The subset of classes of homomorphisms q~ for which ~o(W) lies 
only in parabolic subgroups of LG relevant to G is denoted ~(G); then ~0, or its 
class, is relevant to G. We write {(p} for the equivalence class of ~o when there is 
need to distinguish between a homomorphism and its class; at other times, both 
will be denoted by tp, as in (4.1). 

A homomorphism ~o: W~LG is tempered if tp(W) is bounded; ~o(G*) will 
denote the classes of tempered homomorphisms and ~o(G)= ~b(G)c~cbo(G*). 

For the rest of (4.3) we will assume that there exist irreducible unitary 
representations of G square-integrable modulo the center of G (that is, discrete 
series representations of G). This is equivalent to the assumption that there exists 
an element g of LGO SUCh that g x (1 x a) normalizes LT0 and acts as - 1  on the 
roots of (LG~ LTO). TWO such elements g x (1 x a), g' x (1 x a) have the same action 
on LT~ this action will be denoted by ~. 

Let �9 = {(g, 2) : # e x , ( L T ~ 1 7 4  2_ex ,(L T~ ,(L TO) + {v-- fly : veX,  
�9 (LT~174 and Z+I/2(#--~#)+(2+82)ex,(LTO), 2~2_}. Here t denotes one- 
half the sum of the roots of (LB~176 If G is semisimple then ff acts as - 1 on 
X,(LT~174 SO that X may be identified as l +X,(LT~ The group O(LG ~ LT~ acts 
on �9 by the natural action on each coordinate; the action on the second 
coordinate is trivial. By an orbit in �9 we will mean an orbit of t2(LG ~ LT~ ; an orbit 
is regular if it has no fixed points, and singular otherwise. 

For  #, 2eX,(LT~174 satisfying z + 1 /2 (# -  ~/~) + (2 + ~2)~x,(LTO), we define 
admissible homomorphisms q~: W --~ LG as follows. First, set 
tp(z x 1) = z(#, 2) x (z x 1), zE �9 • where z(#, 2)e L T O and 2V(z(p, 2)) = z <u'x v >~<~,,~ v >, 
2vex*(eT~ Then choose n in the normalizer of LT~ in EGO such that n x (1 x a) 
acts on LT O as 8 and 2V(n)=e2~i<a.av>, 2 v~X,(LG ~ LT ~ set 
~o(1 x o-)=n x (1 x a). That q~ is a homomorphism follows from Lemma 3.2 of [ i0]  
(cf. [16, Appendix]). We write q~= ~0(kt, 2). 

Lemma 4.3.1. I f  q~ = q~(/~, 2) and qY = q~(#', 2') then qr is equivalent to q9 if and only if 
(p,_2), (#',2') belong to the same orbit. 

Proof Let qr gELG ~ By modifying g by a suitable element of the 
centralizer of r215 x 1) in (LG0)d,r we may assume that g normalizes eT~ The rest 
is immediate. 

Since we are interested only in homomorphisms with bounded image we set 
3s R e # = 0 } ;  3~ o is invariant under D(LGO, LTO). Clearly we have 
established a 1 - 1 correspondence between orbits of X o and a subset of ~o(G*). If 
(9 is an orbit we denote by {q~}e the corresponding parameter. The parameters 
{(p}~, 0 regular, are precisely the classes of those homomorphisms q): W~LG for 
which r is (bounded and) contained in no proper parabolic subgroup of G... 
the discrete parameters. 

Let d? be regular. Then to {tp}~ there is attached an L-packet of discrete series 
representations of G, as follows (cf. [10]). Choose (/z, 2) such that (p.,_2)e d~ and let ~' 
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denote the (unique) system of positive roots for (LG~ LT~ with respect to which/2 
is dominant. Fix a Cartan subgroup T of G, compact modulo the center of G, and 
a p.d. t /o f  T. Via t/, transfer/2, 2, ~ to X*(T)|162 and ~ to a positive system for 
A(G, T), without change in notation. Then ~ acts as the Galois automorphism of T. 
Also if l~, = 1/2 ~ a then the characters ~(09/2- z~,, 2), 09~O(G, T), are well-defined. 

To c9~ Y2(G, T) we attach the discrete series representation rc(09, ~) with character 
0(09/2, 2, 09 ~v), where 

( -  1) q~ det09 ~ det 09oX(09o09/2- z~,, 2) 

and q6 is as defined in (3.7). The set {~(09, ~): co~2(G, T)} does not depend on the 
choice of/2, 2, T or ~/, and forms the L-packet attached to {~a}r 

Suppose now that d~ is singular. Again choose (#, 2) such that (/2,_2)~ (9, and 
some positive system ~ for A(LG ~ LT ~ with respect to which/2 is dominant. Fix T, 
r/and transfer/2, ~, ~ as before. Then distributions 0(09/2, 2, 09~), 09ef2(G, T), are 
again defined, by coherent continuation of the characters O ( , ,  ) attached to 
regular orbits (cf. [5], also [17] since G may be disconnected; our notation is 
easily reconciled with that of [5, 1 7]). The collection { 0(09/2, )~, co ~): 09e O(G, T)} is 
independent of the choice of/2, 2, ~, T, and t/. 

On the other hand, q~ = r 2) may factor through parabolic subgroups of LG 
not relevant to G. Then (p is not relevant to G; that is, {q~} = {q~}~ r 

Theorem 4.3.2. (4.3.3) I f  ~p is not relevant to G then each o f  the distributions 
O(09#, )~, 09~), 09cO(G, T), is zero. 

(4.3.4) I f  ~o is relevant to G then the non-zero distributions in {O(09#,2,09~): 
coe f2(G,T)} are exactly the characters o f  the representations in the L-packet 
attached to {q~}. 

Regarding (4.3.4), the non-zero distributions among the O(09#, 2, 09~v) are well 
known to be tempered irreducible characters; it is only the assignment of (the 
underlying representations of) these characters to L-packets that we have to check. 

A simple argument with K-types shows that if O(09/2,).,09~)4:0 then 
O(09'#,2,09'~r0=O(09/2,).,09~) if and only if 09'eY2(G,T)09 (cf. [19, Sect. 7] for 
similar arguments). 

As indicated earlier, we postpone the proof of Theorem 4.3.2 until (4.6), apart 
from a special case. 

Set A v = {o~ve A(LG ~ L To): (#, o~v> = 0}. 

Lemma 4.3.5. Suppose that AV~ is o f  type A 1 • ... x A 1. Then (4.3.3) is true. 

v belongs to ~. Clearly the coroots Proof. Let A~ = { +__ ~ ..... _ ~v}, where each ~ 
~1, c~2 . . . .  are ~-simple. In the next paragraph we will fix (T, t/), transfer/2, 2, ~, a 1 
etc. to T and define 0(09/2, 2, 09~r0 accordingly. If ~oe 12(G, T) then 09cq, 090c 2 . . . .  ,09~, 
are ~-simple. Therefore to show that O(09#, 2, o ~ )  is zero we have only to show 
that there is a compact root among coal, o9a2, ..., co~, (cf. [5, Proposition 3.6], also 
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[19, Lemma 7.3]). Returning now to the L-group, set 

~expn/4(X~v-X_~ ] /f qo(1 x a)X~ = X _ ~  
s j=  [expin/4(X,j + X _ , j )  if q~(1 x rr)X,] = - X _ ~  

and s=s~...sr. Recall that the root vectors X,] were fixed in (1.3). Define r by 
r w~W, i.e. rpl=adsoq~. Then (pa (zx l )= (p (zx l ) ,  z ~  ~, and 
(pl(1 x a) normalizes eT~ acting on LT~ as co,] ...o,~ �9 qffl x a)l~r0. By replacing 
(#,2) by some suitable (cop,),), co~f2(LG~176 we may assume that 
co~ ...co~q~(1 x a)lLro=af,, for some standard maximal torus "['* in G*;  here we 
have used rrf, to denote the canonical transfer of the Galois action on "r* to LT~ by 
an element of adMt , .  Let I ( ' I *=Mt ,  and L/~ be the L-group of If'I*. Then 
A(L37/~ ~ consists of the roots of (LG~176 perpendicular to A v. Clearly 
r and r is a discrete parameter for lffl*. By the assumption of (4.3.3), 
L/~ is not relevant to G. Hence T* does not originate in G. 

The pair (T, t/), used to define O(co#, ),, co~), will be chosen as follows. In G* we 
have fixed "F*; fix ff~E 191" such that adffz- T*--*T*. The roots a~ .. . . .  a v of (LG~ LT~ 
are transferred to coroots of (G*,T*) by adff~. Taking coroots, we obtain roots 
a l , - - . ,G  of (G*,T*). These roots are real. We let s* be a standard inverse Cayley 
transform with respect to a~, and set Ta*=(T*) ~' '~r, y=adm(s~..- - * .s,*)-l. Clearly 
T ~ is compact modulo the center of G* and y: T a * ~ T  *. We then fix adao~p-1: 
T ~* "-*G over IK a t  G, and let T be the image of T ~ ; for t/we take the now obvious 
p.d. 

We use i / to transfer a~ .... .  ~v to coroots for T, and again denote the dual roots 
by a 1 . . . .  , a,. We claim that after some sequence of Cayley transform with respect 
to roots among ~1,..-, a,, at least one aj becomes totally compact in the following 
sense. 

Definition 4.3.6. Let T be a Cartan subgroup of G and ~ be an imaginary root of 
(G, T). Then ~ is totally compact if and only if each co~ is compact, for co in the 
imaginary Weft group of (G, T) or, equivalently, for co~9.1(T). 

A necessary and sufficient condition that there exist a Cayley transform with 
respect to ct (in the sense of [16]) is that ct not be totally compact (cf. [14]). 

If our claim were false, then a sequence of Cayley transforms, using all roots 
among ct 1 ... . .  ctr, would produce a Cartan subgroup of G from which T* originates, 
a contradiction. 

We claim next that each set {o~ 1 ... . .  co~,}, o~f2(G,T),  contains a compact  
root. If not, then some {co0cq .. . . .  Oo~,} contains only noncompact  roots. Because 
the roots are superorthogonal (that is, {___ o0~ 1 ... . .  ___Oo~r} exhausts the roots in 
the Q-span of co0cq .... .  o0~,), no root in this set can become totally compact  after 
a sequence of Cayley transforms, a contradiction. Hence Lemma 4.3.5 is proved. 

Lemma 4.3.7. Suppose that A v is of  type A I • ... • A r Then (4.3.4) is true. 

Proof. The Levi group L/~ of the last proof is relevant to G. Thus T* originates in 
G. Let adbo~:  T-*T* be defined over IR. We transfer ~1 .. . . .  G from "r* to T via 
adbo~p and without change in notation; ~1 . . . .  ,a ,  remain real. We let s v be a 
standard inverse Cayley transform with respect to ~v, v = l  .... r. We choose 
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T=(T)  ......... and set q m ~ ( S  1 . , .  S,) - 1 ,  where ~/is the p.d. of T implicit above; 
e,, ...,e, are noncompact on T. 

The L-packet attached to {q~} is described in terms of data attached to the 
homomorphism q~l : w~L34 defined in the last proof. Let q~l = q~ (Pl, 2x) relative 
to L~. Then #1=# and 2i-2mod(X,(LT~ vEX,(LT~ L e t  

= TnA(LM ~ LT~ and P be the parabolic subgroup of G with Levi component 
A] r = M f  defined in (1.3). Then the L-packet in question consists of the constituents 
of Ind ( @ n((o, ~)  | 1 ~,/5, G). To decompose the the representations 

Ind(n(to, T) |  1~, P, G) we appeal directly to the Hecht-Schmid character identities 
(el. [6, 17]). Note that the representation n(09, ~) of 3]t has character 

Let Tl=slTs~' and ~h_=~/oads~-'. Set M I = M ~  and ~ =  ~C~A(L~t0, LT~ 
a t is ~t-simple. Then on M, we have 

(4.3.8) ~9((o#, 21, o~ ~1) + 19(09/1, 21, co~ o ~ ' 0  

= Ind(O(co#, 21, e0~)| I$~M~, M(N~Ma), M~), 

o9~I2(M, T), if 09,~ is not realized in M~, and 

(4.3.9) ~9(09#, 21, co~x) = Ind (~9(09/~, 21, 09 ~')| l ~ l ,  M(Nc~MO, i911), 

~oel2(M,T), if 09~ is realized in M,.  On the left-hand side, f2(M,T) has been 
embedded in f2(Mi,T~) via si ; %,, #, 2,, ~ ,  and ~, have been transferred also, 
without change in notation. To justify (4.3.8) and (4.3.9) we must check a property 
of 2~. Calculation shows that r • tr)X~ = -X,~ ,  but, on the other hand, a 
lemma of Langlands (cf. [1, Lemma 2.3]) implies that q~l(l• 
= - - ( - -  1)<2at+et '~t>X v where 0i denotes one half the sum of the coroots for ~tl~ 
the roots in ~'l. Thus (221, ~ ) =  <~l, ct~> (mod2Z). This ensures that (4.3.8) and 
(4.3.9) are well-defined Hecht-Schmid character identities (cf. [6], also [17]). 

To continue our argument, we set T2=s iT , s  ~ ' ;  etc. After r such steps we 

conclude, by induction in stages, that Ind \~,~t~(~, ( (~\~(~t,~) O(09p, 2 i, ~o ~) |  1~,/3, G) 

is a sum of characters O(~o#, 2, coT), where 09 lies in the subgroup f2(u)(G,T ) 
generated by the reflections with respect to ctt, ..., ~t,, together with the reflections 
with respect to the roots perpendicular to each of ~ ..... ~,. For each toe O(~)(G, T), 
~9(09p, )~, coT) appears in the decomposition of the induced representation. On the 
other hand, the irreducible constituents of this induced representation appear with 
multiplicity one (Multiplicity One Theorem for unitary principal series and 
Lemma 3.2 of [14]). Thus we obtain 

Ind [ @ O(09#, 2 t, o ~ ) @  1) = ~, 0(o9#, 2, 09~). 
\(oen(h?/, T)\O(l~l,'l') e)6I~(G, T)\J2(G, T)~(m(G,T ) 

To complete the proof of Lemma4.3.7 we have only to show that if 
~or T) f2(u)(G, T) then ~9((o#, 2, 09 T) = 0. 

We have arranged that ~a ..... ~t, are all noncompact on Z Suppose that also all 
of 09ct~ ..... 09~ are noncompact. Then we have just to show that 
coeI2(G,T)f2(~)(G,T). There is 091et2(G,T)(1,09~,> such that co~=~o,~t~ [14, 
Lemma 4.2]. Then both ~2, 09i- ~09~z are noncompact and superorthogonal to ~,. 



L-Indistinguishability for Real Groups 409 

Now apply a standard Cayley transform with respect to aa to T. Then both ~2, 
~o~-~coa2 are noncompact on T (~), the image of T, and co~-zco belongs to the 
imaginary Weyl group of T (1). Choose co 2 in the real imaginary Weyl group of 7 x~) 
so that (~o2)-~o~-ama2=a 2 and let ~Oz be the preimage of ~o~ in O(G,T). Then 
~02GO(G , T)(1, c%~) [14], and co~- ~o~- ~ o ~  = ~o~- ~ o ~  =~x so that a ~  =~oxo~z~x ; 
(D216'.)ll(D~2=~2, SO that (.0~2=(Dlf.t)2~ 2. Also, co~co2~(G,T) ( l ,~ ,69~  ). 
Proceeding by induction, we thus find COs .... .  co~ such that ~ o ~ = ~ O a . . . % ~ ,  
i=  1 ... . .  r, and ~o~o~2...%~O(G, T)~(,)(G, T). Lemma 4.3.7 now follows. 

(4.4) Proof of Theorem 4.l.1 (Two Cases) 

Suppose that qr W--*LH is a tempered admissible homomorphism. Then the 
image of {qr under ~ :  ~ o ( H ) ~ o ( G * )  is simply the class of q~=~o~o'. 

We assume first that both {~o'} and {q~} are discrete. We may take ~o' = q~(p', 2'), 
where (~', e ')  > 0 for all roots ev of (LH~176 LT~ Then q~ has parameters (#, 2), 
where # = # '+  #* and 2 = 2 '+  2*. Since we have assumed q~ discrete we must have: 

(4.4.1) the action of ~p'(1 x a) on LT~ which coincides with that of ~o(1 x a), is by 
- 1 on all roots of (LG~ LT~ and 

(4.4.2) (#, ev) 4:0 for all roots of (LG~ LT~ 

Our first task is to define the numbers e(n), n~Ht~o}. First, there exists a unique 
element co, of f2(LG ~ LT~ such that (co,#, ev) >0  for all roots ev of (LB~ LT~ Let 
T be a Cartan subgroup of G, compact modulo the center of G. Since q~ is discrete 
such a Cartan subgroup can be found. We pick q such that (T, r/)e ~--,(G); this is 
possible, by (4.4.1) and Lemma2.4.2. Set hU=A(LB~176 For coeC2(G,T) we 
define n(~o, 7 ~) as in (4.3), and set 

(4.4.3) e(n(~o, 7~)) = detco,~(T, ~/)x(coco,). 

Here we have transferred (% to T via q, without change in notation. 

Proposition 4.4.4. e(n) is well-defined, n~ Ht~,~. 

Proof Each n~Hto~ is of the form n(og,~), some ~oet2(G,T). Further 
n(og,~)=n(~o',70 if and only if co'=COoCO, some ogoe~2(G,T). Since 
~:(COomCO.) = x'~'~*(Ogo)X(com.)= x(o~o.), the assertion is immediate. 

The next result can be deduced from our proof of Theorem 4.1.1, for we will 
show that ife(n) is defined as in (4.4.3) then the lift ofx~,, is Y'. e(n)Z~. Nevertheless 
a direct proof is of some interest. ~o~ 

Lemma 4.4.5. e(n) is independent of the choice of (T, 17). 

Proof. Suppose that 7" is a Cartan subgroup of G, compact modulo the center of G, 
and (T,, ?/)~ Y-n(G), with attached character ~. Then q = F/0090 where ~o o ~ 9.I(T) maps 
T to T. Hence ~=x~o and e(T,~)=x(C~o)e(T,q). Now replace T by 7" in the 
definition of e(n). It is sufficient to consider two cases: COo~t2(G,T ) and Ogo~G. In 
the former, n=n(co, ~) becomes n(~otn o 1, ~) and co. is replaced by ~OotO.~o o 1. 
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Hence e(n) is replaced by 

~(~Oo)~~ lo~o~O,% ~) ~(~)= ~(o~O~o 10~o~O,COo ~COo) ~(~)= ~(~). 
~c(o~,) ~ ( ~ , )  

In the latter case, n = n(og, 7 s) becomes n(OgotnO9 o ~, 70 and e(n) is replaced by 

~(O~o)~,'~~ ~ O~o~O,~Oo ~) ~(~) = ~(~) 

again, and the lemma is proved. 
It remains now to verify that the lift O of X~, to G is ~ e(rc)Z,. 

Lemma 4.4.6. (i) 19 is a tempered invariant eioendistribution with infinitesimal 
character p. Reoard 19 as a function on G~eg. Then : 

(ii) on TnG~eg, 19 coincides with ~ e(rOZ ~ and 

(iii) 19 vanishes off Gr~gnZ(G)G ~ where G o is the identity component of G, and 
Z(G) the center of G. 

Proof (i) follows from Lemma 4.2.1. For (ii), fix i(h,r/): T ' ~ T  over IR; this data 
includes a d h ' T ' ~ T  n, which serves as p.d. for T' in H. By definition, 
Z~,= ~ O(~o//, 2', co~'), where ~ ' = ~ n A ( L H  ~ LT~176 ~ 

tt~f~tH, T') \~(H,T')  

LT~ Lemma 4.2.4 then implies that 

O(T) = (-- 1) q(G'H) + n(T)e(T, r/) Z ~:(r AH/~(7 '~) 
coE~(G,T)/O('c)(G,T) 

o(~'~', ~', ~' ~") (~) 
co'~.O(H, T')\.Q(H,T') 

for )'ETnGreg, where A n/G is as in (4.2). Explicit calculation shows that this 
expression coincides with 

det og,e(T, q) ~ x(~co,) O(~o~o,#, 2, ~o ~) (7), 
r T)\f~(G,T) 

and (ii) follows. 
For (iii), it is sufficient to show that if U is a Cartan subgroup of G from which 

Cartan subgroups of H originate then 191w~ro, vanishes off UnZ(G)G~ 
Suppose that U' is a Cartan subgroup of H originating from U. Then since X~,lu, 
vanishes off U'nZ(H)H~ it is enough to show that each of our maps i(, ): 
U ' ~ U  defined over IR sends U'nZ(H)H ~ into UnZ(G)G ~ 

First, (U'nH~ ~ is mapped into UnG~ Representatives for the cosets of 
(U'nH~ ~ in ' o U n Hde , are given by {expirc2v : av,2V = 2 v, 2v~ 7~[AV(H, U')]}, since 

t 0 " U nHde , lS the image of the lR-rational points in the preimage of U' in Hsc (cf. [-16, 
Sect. 4.1]). Under i(, ) these elements are mapped into UnZ(G)G ~ Recall that T 
is compact modulo the center of G. We have that T=Z(G)(TnG~ If zeZ(H)  
maps into Z(G) under i(h,t/): T ' ~ T  then clearly z maps into Z(G) under i(,  ): 
U ' ~ U .  Thus suppose that z maps into TriG~ under i(h, rl). Suppose also that U' is 
obtained from T' by a Cayley transform s' with respect to the root ~' of (H, T'). 
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Then U is obtained from T by the Cayley transform s = i ( ,  )os'oi(h, tl) -1 with 
respect to a, the transfer of a' to T via i(h,~l). Also a(i(h, t l )(z))=l.  A simple 
argument, using passage to G~r shows that if a(~)= 1, 7~ Tc~G,~ then V*~ Uc~G~ . 
Since (i(h, t/)(z)) ~ is the image of z under i(, ) we are done. For a general Cartan 
subgroup U' in H originating in G, we may pick a suitable sequence of Cayley 
transforms starting from 7", and argue similarly. This completes the proof of 
Lemma 4.4.6. 

We conclude now that O coincides with ~ e(n)~(~, by lifting the eigendistri- 
lt~H~ 

bution O-~e(~z)Z~ on Z(G)G ~ to G~, and applying Harish-Chandra's uniqueness 
theorem. Hence Theorem 4.1.1 is proved for the case that both ~p' and tp are 
discrete. 

Next we retain the assumptions on tp', so that tp'= tp(ff, 2') is discrete and 
~p'(1 x a) acts on all ro.ots o f  (LG0, LT0) by - 1 [cf. (4.4.1)], but no longer assume 
that 9=~o~p' is discrete. Recall that ~p=tp(/z,2), where # = # ' + # * ,  2 = 2 ' + 2 * .  

Proposition 4.4.7. A~ = {ave A(LG~ LT~ (/2, ~x v) =0} is of type A l x A I x ... x A r 

Proo f  It is sufficient to show that if ~v, flVeA ~ then ~v+flV~A(LG~176 Recall 
that ~n=(SH, LH), and s H is a coset of Z w in LT~ We argue in LG~ Clearly 
s~r = 1, ave A(LH ~ LT~ if and only if ~V(sH)= 1. Because ~p' is discrete, ~VeA~ 
implies that ~V6A(LH~ LT~ Then ~V(Sn)=- 1, and the proposition follows. 

We will compute O, the lift of Z~,, to G, in terms of the distributions 
O(03~, 2, 03U), and then apply Lemmas 4.3.5 and 4.3.8. 

Because of (4.4.1) there is a Cartan subgroup T of G compact modulo the 
center of G; also we may choose ~/so that (T, q)e ~-H(G). Let U = A(LB ~ LT~ As in 
the case ~p discrete, we choose 03, such that 03,/z is U-dominant; 03,# is uniquely 
determined but 03, is not. Again we transfer co,, p, 2, U to T without change in 
notation. 

Lemma 4.4.8. O = det 03,~(T, ~/) ~ ~(0303,) 0(0303,#, 2, 03U). 
r162 T)\~(G,T) 

Proof  We have already proved this in the case that 03,p is strictly U-dominant 
(that is, ~p discrete). If 03,# is singular, but still U-dominant, then the right hand 
side of (4.4.8) is obtained by coherent continuation to the wall (cf. [5, 17]). Thus it 
is sufficient to prove coherency of the lifts to G of the characters 

~. O(03'p',2',dU'), where U'=UNA(LH~176 fl' is (strictly) 
r T')\~(ll, T') 
U'-dominant, T' is some Cartan subgroup of H originating from T, and if, 2', U' 
have been transferred to T' by some suitable p.d. Certainly the characters to be 
lifted form a coherent family. Coherency of the lifts then follows from Lemma 4.2.4 
(cf. [15, 163) concerning roots etc. "from H"). 

Corollary 4.4.9. I f  O(0303,#, 2, 03U)4=0 then det03,~(0303,) does not depend on the 
choice o f  03,. 

A simple direct argument using the explicit form of 03 [cf. (4.3)] also shows this. 
If cp is not relevant to G then Lemma 4.3.5 shows that the lift of X~,, to G is zero 

and Theorem 4.1.1 is proved in that case. 
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If ~0 is relevant to G we choose (T, t/) so that if c~ v ~ A~ then e is noncompact on T 
(cf. our earlier discussion). If neH~ has character O(o)co.~,;t, co~g) (cf. 
Lemma 4.3.7), we set 

(4.4.10) e0z) = det co,e(T, ~/) x(coco,). 

Then e(u) is well-defined and does not depend on the choices for (T, q) and co,. 

Finally, the lift of Zr to G is, clearly, ~ e(u)Z,. 
~e / / , a  

(4.5) Proof of Theorem 4.1.1 (Conclusion) 

Recall that LH is in standard position with respect to some standard Cartan 
subgroup of G*. It is convenient to fix a framework of Caftan subgroups around 
this group, and argue with the Levi groups so provided [cf. (3.2) and (3.4)]. 

Suppose that q)':W-"~LH is any tempered admissible homomorphism. 
Replacing ~a' by an equivalent homomorphism, we may assume that for some n, 
~a'(W)CLM', and qr lies in no proper parabolic subgroup of LM~, Then 
q9(I40 C LM n since LH is in standard position. The L-packet//~, for H consists of the 
irreducible constituents of the principal series representations defined by the 
discrete series representations of M', attached to ~p'. Hence Z~, vanishes on any 
Cartan subgroup of H not conjugate to a Cartan subgroup of M',. Then the lift of 
X~, to G vanishes on each Cartan subgroup of G from which no Cartan subgroup 
of M', originates (cf. Lemma 4.2.3), 

Suppose that cp is not relevant to G. Then T~ (in G*) does not originate in G. 
Hence no Caftan subgroup of M' n originates in G. We conclude then that the lift of 
X~, to G is zero. 

It remains now to consider the case that ~p is relevant to G. Then M, is relevant 
to G and M, a is defined. To our fixed family {A(T,,)} of (G,H)-orbital- 
integral-transfer factors we have attached a family ~At,) _AM~ ~ for (My, t ~ ( T , n )  - -  ~(r ,~ t ) )  
M'.)-transfer [cf. (3.4)]. The factor A(,) is defined only for (T, t/) subordinate to ~ ( T , ~ / )  

M~, and is chosen so that if f ' 6  rg(H) corresponds to f e  rg(G) under (G, H)-transfer 
then f l , )=f~, ,  as defined in (3.4), corresponds to f~,)=fM~ under 
(M~, M',)-transfer. 

Let / /~)  be the L-packet attached to ~0' as element of ~P(M',), and ~,v(") = ~ Z~. 

Then ' -  (") ' Z~,(f ) - Xe, (f(,)), by a standard argument for induced (tempered) characters. 
From (4.4) we have that 

g~)(fl,)) = ~,, et.)(n)L~(f(,)). 
rceFI~ n) 

Here/7(") is the L-packet attached to ~ as element of ~(M. G) and 

~r = ( - ' l  )~r G, m - qc ~ v ,  M~)~(T, ~) det ~ ,  ~ ( ~ ,  ), 

where (T, r/) is subordinate to M. ~, with T fundamental in M. ~, and ~ = O(~co.#, 2, 
co~(.)), with ~(,,)=A(LM~ ~ kT~ co.# ~(.)-dominant; implicit is the 

~ ~ r L t O  L 0 L assumption that ~o --~o(#, 2), with/~ strictly A((M.)  c~ B ,  T~ 
On the other hand, 
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where P,~ is the parabolic subgroup used to define f(,) [cf. (3.4), also (1.3)]. Thus the 
lift of :~, to G is 

~nbm 

In (4.3) we expressed G@ G O(~o/~,2,~o7J(,)) explicitly as a sum of 
r T)\-Q(Mn ,T) 

principal series characters on M, ~ (cf. proof of Lemma 4.3.7). We may now argue 
by induction in stages to conclude that the irreducible constituents of ~ 11=Ind O(ooIJ,2,ooT~(,)| form the L-packet attached to q~ as 

element of ~(G) and, moreover, that these constituents appear in 11 with 
multiplicity one (cf. Lemma 3.2 of [14], and the Multiplicity One Theorem for 
unitary principal series). Hence we have that the lift of)G, to G is ~ e(n))~, where 

rceI I ,  o 

(4.5.1) ~(~) = ~(,)(~(")), 

if r~ is a constituent of Ind(~(")| P,,~ G), rc(")e tT(")__~. 
This completes the proof of Theorem 4.1.1. 

(4.6) Proof of Theorem 4.3.2 

Recall that we have defined admissible homomorphisms (p(/~, 2): W--*LG, with # 
singular. Suppose that # is 7~-dominant. Then Theorem 4.3.2 states that 

(4.6.1) /f ~0 is not relevant to G then all distributions O(~o#,2,~o70, co~D(G,T), are 
zero and 
(4.6.2) /f q~ is relevant to G then the non-zero distributions amon9 0(co#, 2, e)~), 
toe D(G, T), are exactly the characters of the representations in the L-packet 1I,. 

The notation has been explained in (4.3). We may as well assume that 
= A(LB ~ LT0). 

Our proof will be by induction on dim G. Both (4.6.1) and (4.6.2) are immediate 
if dim G < 3. Given now G arbitrary, we choose (H, ~, qr where H is an endoscopic 
group for G such that dimH < dim G, ~: LH ~LG is an admissible embedding, and 
(p=~o~o'. Such a choice is possible (cf. [16, Sect. 9]). If ~=~(/~*,2") then 
~0'= q~(#', 2'), where # ' = # - # * ,  2 '=2-)~* ; V' is 7J'= A(LH~176 ~U-dominant. In 
lifting characters from H to G we assume (G, H)-orbital-integral transfer via one of 
the two admissible families of factors attached to ~. 

By the inductive hypothesis, (4.6.2) is true for 11. Thus 

zr Y~ o(d~',,v, d~v). 
o~'~g?(H, T')\g?(H,T') 

Suppose that ~0 is relevant to G. Then Theorem 4.1.1 implies that the lift of )G' to 
G is ~ e(~))~, with each e(r0 = + 1. On the other hand, the coherent continuation 

neH~ o 

argument of the proof of Lemma 4.4.8 shows that the lift of )~0, is 

r TIX.Q(G, T) 

Hence (4.6.2) follows for G. Similarly (4.6.1) is true, and Theorem 4.3.2 is proved. 
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(4.7) Theorem 4.1.1 as a Set of Character Identities 

If we combine Theorem 4.1.1 with Lemmas 4.2.3 and 4.2.4 we obtain the following 
identities. 

Let tp' be a tempered parameter for H and r be its lift to G*. Then: 

(4.7.1) /f ~p is not relevant to G then 

~(~) z ~  - 0 

on all Cartan subgroups of G, and 

(4.7.2) /f q~ is relevant to G then 

(a) for 7e TnGrog 
v=l  

Y~ ~(~)z~(~):(-1) q~'~+"~T~ Y~ ~(Z~) 
n~H~ R 

H/G w (v) 09 

~(G,T)/DIS~)(G,T) 

/f  (~)T', v= 1 . . . .  ,R, represent the conjugacy classes of Caftan subgroups of H 
originating from T, and 

(b) ~ e(x)Z,~-O on those Cartan subgroups of G from which no Cartan 
xeH,~ 

subgroup of H originates. 

Here we have, of course, regarded characters as (analytic) functions on Grog. In 
Sect. 5 we will return to the stronger distribution-theoretic version of these 
identities. 

5. Inversion of Character Identities and the Structure 
of Tempered L-Packets 

Our last task is to invert the identities of Theorem 4.1.1, following the procedure 
outlined in the introduction to this paper. We will assume that for each endoscopic 
group H for G, LH embeds admissibly in LG (cf. [11, 16] and comments in (1.3)). 
Our fixed data will be that of Sect. 1 : the usual W, G* . . . . .  EGO .. . .  etc., together with 
a skeleton for G. To formulate our results further choices are needed, but we will 
show that all but one of these choices are of no consequence. Thus, we fix a 
complete set of representatives for ~(LG). If H is an endoscopic group for G we 
denote by ~H=(StI, LH) the attached representative. We assume that LH is in 
standard position with respect to some subgroup in our skeleton. We choose an 
admissible embedding ~ : LH '-~LG of unitary type and let 

{A(T.,~ =(- -  1)q(G'me(Z ~l)A(r.,) ~J(r.,)} 

be one of the two attached admissible families of (G, H)-orbital-integral-transfer 
factors. If f ~ ( G )  then fn will denote some function in CO(H) corresponding to f 
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under the transfer so prescribed. Recall that Theorem 4.1.1 states that 

I ;~e (n ) z~ ( f ) i f~o=~~  

otherwise. 

For most of this section we will find it convenient to distinguish in notation 
between a tempered admissible homomorphism ~o:W~LG and its class in ~o(G); 
as earlier, {q~} will then denote the class of q~. 

DefinitionS.0.1. Let {q~}E4~o(G). Then {~o} factors through {q~n}~@o(H) or, 
equivalently, {~0n} lifts to {rp}, if q)'=~~ for some q~'~{cp}, q~n~{q~n}. 

(5.1) The Group S~r 

Let ~0: W~LG be a tempered admissible homomorphism. Denote by S~o the 
centralizer of (p(W) in LG~ by S o the connected component of the identity in Se, 
and by Z w the set of W-invariants in the center of LG~ [recall the role of Z w in 
(2.1)]. We define 

(5.1.1) s o = s j z ~ s  ~ 

If G is simply-connected then eG~ is adjoint, so that N o = S~o/S ~ In general, let 
p:LG-~(eG~ ~ W denote the natural projection (cf. [2]) and q~. = p~,q~. Then N o 

__ 0 is naturally a subgroup of S~o . -  So./So, 
Suppose that (r W~LG is equivalent to q~. If ~o'=adg%o, gELG ~ then adg 

induces an isomorphism SonS,o,. Langlands has shown that ge is abelian and, in 
fact, a sum of groups of order two [by arguments similar to those reported in (5.3); 
see also Corollary 5.4.10]. Hence the isomorphism S~S~o,  is canonical. We 
will often write ~ in place of ~ .  

(5.2) An Example: The L-Packets of Discrete Series Representations 

We include this discussion only as motivation for the more general arguments of 
(5.4). 

Suppose that {rp} e ~o(G) is discrete and choose a representative ~o = ~o(~, 2) for 
{q~}, with # strictly A(LB ~ LT~ 

On the other hand, let T be a Cartan subgroup of G compact modulo the 
center of G, and t/ be a p.d. of T. The group g(T) has been defined in [11] 
(cf. [15]). By Tate-Nakayama duality, it may be identified with 

X , ( T J / X , ( T ~ ) ~  {v v -- arv v : v v eX,(T)}. 

Proposition 5.2.1. q induces an isomorphism between S ~ and g(T) v, the dual of d'(T). 

Proof By [10] (cf. [2 (10.5)]), S~o is contained in LTO. Thus S~ is simply the set of 
~-invariants in LTO [~ was defined in (4.3)]. The isomorphism between S~ and 
r v is then produced as in [16]. In particular, St~ I is a sum of groups of order 
two. 

To each t t  N o we now attach a representative ~(~) for an element of ~(LG). By { /  
definition, x is a coset of Z w in LT~ Thus we may form (t, Cent(t) ~ LB~ ~ 
Lr~ { Y,v}) as usual [cf. (2.3)]. To define the action of W on Cent(I) ~ we have that 
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~o(1 x a) fixes ~, normalizes LT~ and acts o n  LT0 as ~, an automorphism of order 
two. We thus extract the action by the method of Lemma 2.1.7. 

There is exactly one of our fixed representatives for ~(LG), say ~n =(s m ~H), 
equivalent to ~(~). Suppose that 9ELG ~ and g maps s(~) to sn in the sense of (2.1). 

Proposition 5.2.2. 9e ~(LG0, LT0) and t g = s n. 

P r o o f  That tJe ~"~(LG 0, LT0) follows from definitions. Next, we argue in LG~ It 
is clear that ~V(sn)= 1 if and only if ~v(~g)= 1, 0tVeA(LG~176 TO complete the 
proof we have only to observe that either s~ and t ~ are of order two or both are 
trivial. 

It now follows that g may be replaced only by z 9, where re  Cent(sH) induces an 
automorphism of (LH~ LH~176 LT~ { Y~v}, {wit)) .  

We use g to construct a homomorphism ~p': w-+LH such that {~p'} lifts to {~o}. 
Indeed, for each we W, ~p(w) acts on Cent(~) ~ as an element of LH~, the L-group 
defined by ~(x). Hence g~o(w)9- ~ acts on LH0 as an element of LH. We conclude 
then that 9r -~  lies in the image of ~:L/-/'-+LG. Thus adgo~p, which has 
parameters (g#, 2)[or (g/Z, g2)], is the lift of some tp':W--~LH with parameters 
(9/Z-#*, 2-2*) .  If g is replaced by zg, z as above, then ~0' is replaced by ~p'~ with 
parameters ( W # -  #*, 2 -  2*). 

In conclusion, to each teS~} we have attached ~(t) equivalent to some 
5If:(SIt, LH) among our chosen representatives for ~(LG), and a parameter {~p'} 
for H which lifts to {tp} (or more precisely, a family {~p'~} of parameters which lift to 
{~o}). 

We have X{,.}(fn) = ~, e(~r)x~(f). Recall the definition of e(~r). We choose any 

(T,~/)eG-~(G) with T compact modulo the center of G. Note that 0/Z-/z* is 
A(LH~176 LT~ and let T=A(LB ~ LT~ Then 

e(~(co, 7~)) = e(T, r/) det0 ~(cog- ~), co~ f2(G, T), 

where, as usual, O has been transferred to T via r/without change in notation. 
Our fixed skeleton provides a (unique) suitable pair (T, r/) for computing ~.(n). 

We use this pair, and then extract from e(n) a term which would otherwise fail to be 
well defined. Thus, we write 

e(~(co, ~)) =e(T, q) det 9 ~c(9-1)~c~ 1(co), coeO(G,T). 

Note that if {~o'} is replaced by {~p'~}, so that 9 is replaced by zg, then K g- '(co) is 
g - I  

replaced by (K ~-')~ (co), since s ~ = s n ;  that is, ~g-'(co) is unchanged. 
Hence we may set 

{t, g(co, 7s)) = •o- '(co), co~ O(G, T). 

We emphasize that ( t ,  lr(co,~)) is well-defined only because (T,~/) has been 
prescribed. 

Clearly e(T,q)detg~c(9-1)X(~,}(fn) must also be independent of the choice for 
{~o'} in the family attached to t. We set 

2{r = e(T, q) detg x(g- x)Zle,i(fn ) . 
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Our identity then becomes: 

(5.2.3) ~, <t, n> x~(f) = ~(~')(fn). 

A more natural way to compute <t, n)  is the following. Regard x as a character 
onX,(T*r162 v - ~v v : vVeX,(T*)|162 (cf. [16, Sect. 2.1]) and let &~ be the 
element of this quotient determined by co and ~/(cf. [15, Sect. 2]). 

Proposition 5.2.4. <•, re(co, ~)> = t(&,). 

The proof is immediate. 

Corollary 5.2.5. (i) (x, ~z> is independent of the choice for ~H = (Sn, LH), r : LH ~LG 
and the family {A(T,~)}. 

(ii) 2w)(fn) depends only on {cp}, ~ and f 

We write Z(t~ol,~)(f) in place of ~0,)(fn). 
As an immediate consequence of Propositions 5.2.1 and 5.2.4, we have: 

Lemma 5.2.6. (i) (xt),Tr) = (x,~>(t),Tz> for x,t)~5~), 7t~Ht, ). 
(ii) (~ ,~>=( t ,~ '>  for all t ew  if and only if rc=n'. 
We now omit { } in notation. We have identif ied// ,  as a subset of 5 v, the dual 

of S,.  This subset may be proper. L e t / I ,  be some fixed set conta in ing/ / ,  and in 
1 - 1 correspondence with S,~. If ~ / 1 , - / / , ,  let x--* (x, ~) denote the character on 
S ,  corresponding to ~ and define the character Z~ of ~ to be the zero distribution 
on G. We will call ~ a 9host. The identity (5.2.3) is then replaced by: 

Theorem 5.2.7. ~_ ( t ,  ~ )  z~(S) = ~(~0,~(f), f ~  Of(G). 
~//,~ 

We are now prepared for inversion. Let rCo~ 0~o. Then 

~ (~,~t><~,=o>Z,~(f)= ~ <a;,=o>~(z,~)(f). 

We therefore conclude: 

1 
Theorem 5.2.8. Z,o(f)= rL. 

Corollary 5.2.9. I f  7z o is a 9host then 

~, < t, n o > ~(~,,~)(f) = O, f e  Cg(G). 

(5.3) Preliminaries 

In this subsection we recall Langlands' (unpublished) L-group description of the 
stability group of a discrete series representation of a Levi group in G (cf. [7], for 
a summary). With his permission we have included his arguments along with the 
statements we need. One proof (cf. Lemma 5.3.13) is a transcription of arguments 
of Knapp and Zuckerman for Theorem 2.3 of [7]. 

Our main conclusion will be that a lemma of Harish-Chandra shows that the 
order of the group R ,  introduced by Langlands is an upper bound for the number 
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of irreducible constituents of an attached principal series representation. We do 
not make explicit the connection with the results of [6], since in (5.4) it will be clear 
from Harish-Chandra's lemma and a necessary and sufficient condition for the 
existence of a Hecht-Schmid character identity (cf. [6], also [17]), how to 
decompose unitary principal series representations directly in terms of L-group 
data. 

Let M be a cuspidal Levi group in G, and consider a tempered homomorphism 
~o : W~LG which factors through LM, but through no proper parabolic subgroup 
of LM. We assume that ~o = ~o(#, 2), the parameters being defined relative to LM 
[of. (4.3)]; # is A(LM ~ LT~ 

As before, S~, is the centralizer of ~0(HO in LG~ We say that co~f2(LG ~ LT~ is 
realized in Sr if there is s t  S o such that co = adsh.ro; Q~o(LG 0, L T~ will denote the 
subgroup of O(LG ~ LT~ consisting of elements realized in S~. 

Proposition 5.3.1. CoEQ(LG~ ~ is realized in S,  if and only if co com- 
mutes with the action of q~(lxa) on LT~ and cokt=#,co2=-2mod(X,(LT ~ 
+ {v -  cp(1 x a)v :v~.x,(LT~162 

Proof If co is realized in Sr then only the congruence requires an argument. By 
definition, cp(1 • a )=  q0o(a) x (1 • a), where Cpo(a)6 LM~ and 2V(9o(a))= e 2~/<z'~v>, 
J .vEx*(LM~ If w~Sr realizes co then w normalizes LM0. Thus e 2xi(c~ 
= e 2"I<~'~>, 2 v eX*(LM~ An argument as in [10] (cf. proof of Proposition 3.4.2 of 
[16]) the yields the congruence. 

For the converse we note first that we may write any C060(LG~ ~ which 
commutes with the action of 9 ( l x  ~) on LT~ as a product co~co2, where 
co, e O(LM ~ LT~ and co2 commutes with the action of aa (... we argue in G, using 
[14,Theorem 2.1] and [3, Corollary 3.5]). Then if co# = # and co2-  2 mod(X,(LT ~ 
+ {v-cp(1 x a)v:vex,(LT~174 also, we have that cox commutes with aG too 
(argument in G, using Lemma 3.2 of [14]). We conclude then that coaa = aGco. By 
[10], (of. also [9]) there is an element w of LG~ which realizes co and is fixed 
by a G. Let ~p(1 xa)=zlrn  1 x(1 xa), zlEZ(LM~ mt~(LMO)der. Then 
wcp(1 • a)w- l~p(1 x a)- 1 = wzlw-  lz- ( it, where t~ LT~176162 Because of the 
congruence and the fact that cp ( l xa ) t (p ( l xa ) - l= t  -1, wz~w-az; l t  may be 
written as u-~cp(1 x a)u(p(1 x a)-~, for s o m e  uatT ~ Then uw realizes co and lies in 
S~. This completes the proof. 

We will identify Y~,o(LG ~ LT~ with Norm(LG~176176 when con- 
venient (cf. Proposition 5.2.3). It is easier now to work with Lie algebras : Lg, Lb, Lt, 
% will denote the Lie algebras of LG0, LB0, LT~ Sr respectively. Note that ~<0 is 
reductive. Let 

Lt,.t, ----- {X~ Lt :q~(1 x a)X =X} .  

Proposition 5.3.2. Lir is a Cartan subalgebra of  ~,. 

Proof See [7, Lemma 3.2]. 

Let As,(%, Lt..) denote the group of automorphisms of ~.. which preserve Lt~ 
,e L 0 L w 0 0 and are of the form Ads, seS~,, modulo Ad( T c~S~)= Ad( T c~Sr 
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Proposition 5.3.3. ~o(LG O, L T o) = As.(%, Lt~). 

Proof We have only to show that i fseS~ fixes Lt~o then seLT ~ But ifs fixes Lt, then 
se LM~ Since ~p is discrete relative to LM, S~,c~LM ~ = s , n L T  ~ and the proposition 
is proved. 

We will need detailed information about the root spaces for (S~,,Lt,). If 
~xVeA(Lg, Lt) we set 3s Lt):fiVlLt =C~tVlLt~, some e>O} and 
S~v = s~  ~, ~Xav. Clearly each weight space for the adjoint action of Lt, on Lg is 

contained in some ~ II?Xr Thus each root space for (g~, Lt~o ) is contained in 
flvet~,v 

s o m e  $~v. 

Proposition 5.3.4. Suppose that (p(1 x a)ct v = a  v. Then 

(5.3.5) [(EX=v if r 
/ 

(5.3.6) s~v =~r +~p(1 x tr)X0v ) if ~v=fiV+~p( 1 xtr)fl v, where Qz, f iv>=o 

(5.3.7) [0  otherwise. 

In case of (5.3.5) and (5.3.7), <#,vV>=l:O for all 7ve3E~v distinct from ~v ; in case of 
(5.3.6), ~p(1 x a)X~v = -X~v, fir is uniquely determined and (#, vv> ~O for all Vve~v 
distinct from ~v, fir, tp(1 x a)fi v. Suppose that r x a)fiv~fi v for all five3E~v. 7hen 
there exists at most one root five3E~v such that </~,fiv> =0, and 

(5.3.8) ~lE(Xpv+~p(lxtr)Xpv) /f five3E~v and <#,fiv>=o 
(5.3.9) s ~ =  [0 /f <#, fiv>~o, f i v e ~ .  

Proof. Note that in the definition of e~ we may replace "fiveX~v" by 
"five 3C~v, </z, fir> = O", by arguing with (Lb, Lt), where Lt) is ~ the centralizer of ~p(~?• 
in Lg. In either case we obtain a set of roots preserved by ~p(1 x tr). 

Suppose that tp(1 x a)~v= ~v, tp(1 x tr)X~v =X~v and </z, ~v> = O. Then to prove 
(5.3.5) it is sufficient to show that if five3E~v, f l v . ~ v  then </~,fiv> :t=0. Suppose on 
the contrary that </~, fir> = O. Clearly (p(1 x a)fi v :I: fir ; ~v, fir, ~p(1 x a)fi v generate a 
root system invariant under ~p(l x a). Also <#, ?v> = 0  for each root V in this system. 
If <~, ?v> = 0  then ~p(1 x a)Vv= - v v  so that <p, vv> :~ O. Thus the system is of type 
A~ and ~v =fir +tp(1 x a)fl v. This implies that X~  =c[X,v,  tp(1 x a)Xa~], some c~O, 
so that ~p(1 x a)X~v-- -X~v, a contradiction. Hence (5.3.5) follows. 

Suppose next that ~v=fiv+tp(1 x a)fi v, where </4fir>=0. Then five3E~v and 
<#, f i v -cp( lxa) f i v )=o ,  so that f iV-~p(ixa)f lv is not a root. Hence ~v, flv, 
(p(1 x a)fi v generate a root system of type Az; clearly ~p(1 x tr)X~v = - X ~ v .  To 
prove (5.3.6) and that fly is the only root with the property that <#,flY)=0 and 
~v =fir  + ~p(1 x tr)fi v, we have only to show that if ~ve3~,  7v ~:~tv, fir, r x tr)fi v 
then <#,?v) :t:0. Suppose that ?YeS,v, 7 v , ~  v, fir, tp(1 x a)fi v and that <#,~v>=0. 
Then ~v_ aTv is not a root. A check of two-dimensional diagrams shows that 7v 
cannot lie in the Q-span of ~t v and fly. Thus the root system R generated by ~v, fir, 
~v is three dimensional. Since </4fir>=0, fiVeR, we have that ~p(1 x tr)fiv~ _fir, 
6re R. Thus fir+ ~p(1 x a)fiv = c~t v, some c ~ 0, and {five R :<~t, f i r )>  0} is a positive 
system for R invariant under ~p(1 x a). There are three simple roots for this system ; 
one is ~v and the other two are fir and tp(1 x a)fi v, for some fiVeR. Since 
fir + ~p(1 x a)fiV=act v, a:l:O, we have a contradiction. 



420 D. Shelstad 

To complete the arguments for the case r v, assume that 
~o(1 • a)X,~=X,~.  We have proved the assertions if (/~,av)=0. If ( # , a v ) # 0  then 
we claim that (#,f lY)#0 for all flve3~,v. Indeed, suppose that (#,flY)=0. Then 
fly+ ~0(1 • a)fl v =ca  v, some c # 0  and (/~,av)=0, a contradiction. On the other 
hand, if q ~ ( l x a ) X ~ = - X , ~  we have proved the assertions when 
av =f ly+  q~(1 • a)fl v, where (#, f ly)=0.  If ~v is not of this form then arguments as 
in the second paragraph show that (# , f lY)#0 for any f i v e ~  different from av, 
and we are done. 

The arguments for (5.3.8) and (5.3.9) follow the same lines. We omit the details. 

Corollary 5.3.10. The non-zero spaces among the ~,~'s are precisely the root spaces 
for  (%, Ltc). 

Clearly the positive system A(LB ~ tT~ determines a (unique) Borel subalgebra 
~ of % containing Et c. We may write 

(5.3.11) Asr  Lfc) = Rr Ltc) , 

where R c = As~(% , ~+,Ltr the group of elements in As,(% , Lie) preserving s +. 
There is an exact sequence: 

(5.3.12) I ~ S c~ L TO /,qO t% L TO --~ ,q / S~ --~ R --~1 
- - C  - -  ~ - - C  - -  - - C ~ - - C  - - 0  - "  

The next result is a transcription of Theorem 2.3 in [7], (although we leave 
implicit the connection between A~ and the superorthogonal set of [7]). We regard 

L~'L L 0 L Re now as a subgroup of g2( g, t)=O( G , TO). Let Q be the operator on 
1 

r2,/~e Hom(Lt, r The analogue of Q on G Hom(Lt, C) defined by Q).= [Rc] ,~R~ 

was introduced by Knapp and Zuckerman, and indeed the following argument is 
essentially theirs; we include details only for the sake of completeness. 

Lemma 5.3.13. Let  A~--- {c~ve A(Lg, Lf) (#, 0cv) _____ 0, QCX v -= 0}. Then 
(i) /f~VeA~ then q~(1 x a)~v=c~ v and cp(1 x a)X~v =-X~v,  
(ii) A v is o f  type A 1 xA~ • . . . x A i ,  

(iii) R c is contained in f2(A~), the Weyl group generated by A~, and 
V V (iv) each ~ e A  c appears in the expression o f  some re  R c as a product q f  distinct 

reflections in Q(AV). 

V V Proof. For (i) assume that ~ eA c. Then (/l,g v) =0  implies that qJ(1 • cr)gv # _~v. 
Suppose that cp(1 x(r)~v#~ v also. Then X~v+cp(1 x a)X~v is a root vector for 
(%,Ltr The corresponding root is ~=gv[Lt . We claim that Q(c~v)=0 is im- 
possible. To prove this we may assume that ave A(Lb, Lt). Then v + % e A(%, Lt~,). Then 
also v + r%eA(%,Lt~), reRc . ,  But r~=r~Vlx.t,. Thus r~VeA(gb, Lt), rERc,  and 
Q(c~v)#0. We conclude that q~(1 x cr)gv =c~v. If ~o(1 x a)X~ = X ~  then areA(%, Ltr 
and again QeV =0  is contradicted. Thus q~(1 x a)X~ = -X,~. 

To prove (ii) we have only to show that if c~ v, five A v then gv + fly is not a root. 
But ev, fie A~o and ev + fly a root together imply that X~  +p~ = c [X~ ,Xp~  ], some 
c#0 ,  and q~(1 x a)X,~+a~=X~+~; at the same time Q(eV+f lV)=QeV+Qf lv=O,  a 
contradiction as before. Hence (ii) follows. 
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For (iii), R~ is contained in ~(t),Lt), I) again denoting the centralizer of 
q~(ll~ • in L9. Further, each element of R fixes the image of Q, and so may be 
written as a product of reflections in ~2( b, It), each fixing the image of Q. These are 
exactly the reflections with respect to the roots in A~ v. 

v v o~v If ~ e A~ and does not appear in the expansion of some element of R e as a 
product of distinct reflections in 12(A~), then clearly QeV = e v, a contradiction. Thus 
(iv) and the lemma are proved. 

Suppose that q~(#, 2) is replaced by ~o'= ad wo ~o(#, 2), we Norm(LM ~ LT~ Then 
~o' has parameters (wp, 2). Clearly Lt e, = Lt~ ; examination of 5.3.4 shows that ~ , = % 
and hence S ~ = S ~ While S e, = wSe w-1  and (2e.(LG~ LT~ = Woe(EG 0, LT~ 1, 
which may be distinct from Se, ~e(LG ~ LT~ respectively, we have A~, = A,~ and R e, 
= R  e, by Lemma 5.3.13 or a direct argument with the definitions. 

We turn now to representations. Suppose that LM is the L-group of a cuspidal 
Levi group M = M T in G, attached in the manner of (1.3); implicit is the choice of 
p.d. t /of  T; t/will be used to transfer data from T to LT~ and vise-versa, without 
indication in notation. We continue with q~= tp(#, 2). Let ~M be that positive 
system for A(LM ~176 with respect to which # is dominant. The L-packet U~ ~ 
consists of discrete series representations n(co, TJM), COeQ(LM~ of M as 
described in (4.3); z~(co, 7~M) has character O(~o#,2, c~TtM). In (1.3) a parabolic 
subgroup P = M N  was defined. We set ~z(co)= Ind(n(~o, 7~M)| 
me f2(LM ~ LT~ 

The restricted Weyl group ~r of T acts on (infinitesimal equivalence classes of) 
irreducible admissible representations of M. Let ~z~/-/ft. We set 

Then ~ is independent of the choice for ~z (cf. [14, Lemma3.2]). I.cl 
~o(G, T) = {oge f2(G, T) :m~r r = trTco }. There is a natural projection t2o(G, T )~  ~/], (cf. 
[ 16, Sect. 5.1]). If &e ~ there is a unique element co in the preimage of & satisfying 
co# = # and cox = 2 mod (X*(T) + { v - ~rv : v eX*(T)  | C}. We thus have ~ ~f2o(G, T). 
On the other hand, ~/allows us to identify I2o(G, T) with the subgroup of f2(LG ~ LT~ 
consisting of the elements which commute with the action of ~o(1 x tr) on LT~ We 
conclude the following from Proposition 5.3.1. 

Lema 5.3.14. t/induces an isomorphism between ~ and Oe(LG 0, LT~ 

By means of tt we regard the coroot ~ of a root ev of (Lg, Lt) as a root of (g, t). Let a 
be the split part of t. If a is a root of (9, a) we denote by #~ the Plancherel factor 
attached to & and (any one of) the representations in H~ (cf. [4, Sect. 13, 24, 36]). 

Lemma 5.3.15. ctv[Lt~ is a root o f (%,  Lte) i f  and only/ f#~l~ and ct[, is indivisible. 

Proof. Let ave A(Lg, Lt). Proposition 5.3.4 describes whether or not ~v],.,, belongs to 
A(%, Lte). We need a further result. Suppose that (p(1 x g)~v =~v, and set O~ equal 
to one-half the sum of the roots fl of (9, t) such that fl[~ ca[o, some c > 0 (that is, 
such that flve3E~v). Then 

(5.3.16) q~(1 X o')X~v = - ( -  1)(2z+a"~V)X~v. 
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We used this result in Sect. 4. The proof has been given in [1]. We conclude then 
that if ~p(1 x ~r)eV =ct v then eVeA(%, Lt~,) if and only if either 

(5.3.17) ( - 1 )  <2;~+~ ... .  > = - 1  and ( y , ~ v ) = 0  

o r  

(5.3.18) 

and (u, flv)=O 

(-- 1)(2'~+g~'~v> = 1, (~,~tv) = 0  

for some flv~3E~v different from ~v. Moreover, if 
(--1) <2z+e''~v>- --1 and <p,~v>#0 then <p, flv> Je0 for all f lv~t~ .  

We have now only to examine the explicit formulas for/~ in Sect. 24 and 36 of 
[4] to complete the proof of the lemma. 

Corollary 5.3.16. Each representation ~z(og) has at most [-R~] constituents. 

In view of (5.3.3), (5.3.11), (5.3.14) and (5.3.15) this is a restatement of the corollary 
to Lemma 3 in Sect. 40 of [4]. That n(~o) has exactly [R~,] constituents is, of course, 
known (cf. [6]). 

(5.4) L-packets of Tempered Representations 

Suppose now that {~p)~ ~(G) is any tempered parameter. We will prove analogues 
of the results of (5.2). 

As usual, let q~ be a representative for {~0} such that ~0(W)cLM, for some 
cuspidal Levi group M in G. We assume that ~0 -- ~o(p, 2) relative to LM, where # is 
A(LM~176176 Let Z(LM~ w denote the set of W-invariants in the 
center of LM~ The following result, due essentially to Langlands, shows that our 
present definition of Sr coincides with the more cumbersome one suggested by 
(5.3.12) which may be reinterpreted as 

1 -~ g(T) v -~ S~,/Z(LM~176 --~ R~-~ 1 

(see Proposition 5.4.11). 

Lemma 5.4.1. Z(LM~ zW(S~ O) 

Proof. Because ~p is discrete relative to LM, o--L,-r0 S~ ~ I is the connected component of 
the identity in Z(LM~ w. Thus to prove the lemma we have just to show that if EGO 
is of adjoint type then Z(LM~ w is connected, for each cuspidal Levi group M in G. 
Let Y be the submodule of X*(LT ~ generated by A(LM ~ LT0) and the elements 
Xv-aG2v, ,lv~x*(LT~ Then X*(Z(LM~176 so that we have just to 
show that X*(LT~ is torsion-free; that is, that if ,~vEx*(LT~ and n),VEY for 
some n _  > _ 1 then 2rE Y Our system of simple roots for (LB~ LT~ has the property 
that if av is simple and not a root of (LM0, LT0) then (0(1 x a)a v is positive. Recall 
that A(LM~176176176215 We may write 2 v as 

n(~V)~ v, where n(ct v) is an integer and the summation is over simple roots ~v. It is 
then a straightforward calculation to show that if n).Ve Y then 2v~ Y, so that the 
temma is proved. 

To obtain information about St, ~ and produce parameters which lift to {r we 
introduce another representative (0 for {r essentially by inversion of the process 

, V in the proof of Lemmas 4.3.5 and 4.3.7. Recall the root system A v attached to ~p. h~, 
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= {eVe A(LG 0, L T~ :<#, e v> = 0 and Qe v = 0}, where Q is as in Lemma 5.2.13. Note  
that  since q~ is discrete relative to LM we have 

Z(LM~ w ----- Z~,(S: c~ L T o) 

where Z~ = {ze Z(LM~ w :eV(z) = 1, ave AV}. It is convenient  to write S~ as S,,/Z~S ~ 
as Lemma 5.4.t allows. 

I fe  v e A v we set s~v = expizr/4(X~v +X_  ~v ). Then s~ (0(1 x cr)s51 = s2  = (1 x iT), s2v 
realizing the Weyl reflection with respect to e v in I2(LG ~ LT~ If five A~ then s~ s~v 
= s ~  s~ since ~v, fly are either superor thogonal  or  equal. Let 

s=I-Is~ and o=l-I~o~, 

the products  to be taken over positive roots  e v in A~. 
We denote by L/~/o that subgroup of LG~ containing LT~ which has 

{eVeA(LG~176 x ~ ) e v = - - P c  v} as root  system relative to LT~ A simple 
argument  shows that  L/17/0 is invariant under  ~r G and L ~  = L~0  ~ W is the L-group 
of a cuspidal Levi group M in G. 

Proposition 5.4.2. (i) A(LAT/~ LT~ contains A v. 
(ii) IfeVeA(L]~l~176 and ( # , e v > = 0  then eVeA v. 

Proof. (i) is immediate.  For  (ii) take e v as in the statement. If (0(1 x a )eV=e  v then 
e v lies in the ~-span of A,J and hence by 5.3.13 (ii) in A v itself. Clearly 
(0(1 x a ) e v = - e  v is impossible. Suppose that  ( 0 ( l x a ) e v # _ + a  v. Then by the 
argument  of 5.3.13 (i) Q(e v) is a linear combination,  with positive coefficients, of 
simple roots : 

Q((0(1 x cr)e v) = (o(1 x a)(Q(av)) 

is also a positive combinat ion of simple roots. But the condit ion that  e v be a root  
of L~7/O implies that  Q((0(I x a)e v) = - Q(ev), a contradiction.  Hence (ii) follows. 

Proposition 5.4.3. ~ = adso(0 has the following properties: 
(i) ,F(w) c L~, 
(ii) ~ ( ~ X ) c L T 0  • (l~ • and ~(1 x a) normalizes LT0, acting as - 1 on the roots of  

(EAT/~ LT~ and 
(iii) /f 0 = (0(#, '~) relative to f.l then ~t = # and 

~ - 2 m o d  {x,(LT~ + {v-- ~(1 x cr)v : v e x , ( L T ~ 1 7 4  

Proof. This is immediate. 

Theorem 5.4.4. 5~ = S~pK3LT~ 

Proof. It is clear that  s centralizes Z~. Thus ads:S~o-,S~ induces an isomorphism 
5coS~/Z~S  ~ We claim that 

(5.4.5) ScJS ~ has a complete set of  representatives in LT~ implying 

o _  L o o O = S ~ n L r O / z ~ ( s O n L T O ) ,  SjZ~,Sg,--(Sc~n T )Z,SrJZ~S~ 
and that  

(5.4.6) L O_ L,,0 S,~r~ ~ ~ Z , .  
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An i somorphism So~SconLT~ has then been produced.  
Note  also that  L e m m a  5.4.1 implies that  Z o____ zW(S~176 so that  (5.4.6) will 

0 L W show that  Z~ = ( S , n  T~ . 
To  prove  (5.4.5), we first describe a complete  set of  representatives for 

0 L  So~So(T~ Recall the exact sequence I~SonLT~176176176 
(cf. 5.3.12). Thus  we have just  to describe a representat ive in S o for each element of  
R o. If re  R o then r = ~o~ . . . o ~  for some ev e AV. Let w~ = exp rc/2(X_ ~ -  X,~). Then  
sw~s-l=expin/2e~eCT~ ~ denotes (ev)v. However ,  r x a)w,~q~(1 x or) -1 
=expirce,)w,~, so that  w,y.., w~ ,  a representat ive for r, need not  lie in S o. By 
definition, there is some representat ive w~.. .w~t for r in S o. Write t as 

1 rn . 
exp(xl  el + - . - +  x , e , ) expX,  where x~e II~, ~v e A~ and X E et is such that  (X,  e v ) =  0, 

V V EA o. Since exp(x~oq+...+x,ct,)sS ~ we may  replace the representat ive 
w~...w~t by w ~ . . . w ~  expX. Note  that  

s (w~ . . .w~  expX)s -  1 = exp izr/2(cq + . . .  + cz,,) e x p X e  LT~ 

Thus  turning to ?p = ads~ ~o, we have found in L T~ a complete  set of  representatives 
for S~o/S~ nCT~ Next, we have s (SonLT~ o L 0 = S , ( S ~ n  T ) since, if 
teS, nLT ~ and we write t as e x p ( x t ~  t +  ... + x , e , ) e x p X  as above,  
then t~S~ and sts-~eS~ But sts-~eSr and so we obtain  

0 L 0 sts-XeSc~(Scon T ). (5.4.5) now follows. 

For  (5.4.6), let t e S ~  ~ We write t as exp (x~cq + . . .  + x , e , ) expX,  with x~ e 112, 
~tV~A v and  (X, c~v) =0 ,  ~V~AV. Then t~S~ implies that  
t = e x p ( -  x~a~ - . . . -  x~a,) exp(O(1 • a)X). Thus  exp(2x~cq + ... + 2x,ct,) 
=exp(~p(1 x a ~ - X ) .  A stra ightforward a rgument  shows that  2x~, ..., 2x,  belong 
to r~iE. If  x~ . . . . .  x,eniTl then we are done. Suppose that  nota t ion  is a r ranged so 
that  exactly x~ . . . . .  x~q~ni~. Thus  s-Xts is a representat ive for co~ ... ~o~ in S o. In 
the next pa rag raph  we will show that :  

(5.4.7) f2(AV)nOo(LG ~ LT~  R o . 

We conclude then that  o9~ ...~o~ ~ R~,. Thus  s -  t tsq~S o so that  t~S ~ a contradiction.  
V V Hence if t~S~ ~ then all x~ belong to ni7Z and so ~v(t)= 1, a ~A o. Recall 

t = exp(xx a ~ + . . .  + x,~,) expX. Clearly expX e S ~  L T  0 .  Since ~o is a discrete pa- 
rameter  for M, S~ ~ lies in the center of LM~ We conclude that  t lies in the 
center of  LM~ also, and thus t~ Z o. 

The p roof  of  (5.4.7) is ano the r  a rgumen t  with the ope ra to r  Q. We have to show 
that  if og~f2(A,~) can be realized in S_ by, say, s then Ads  preserves ~+ Let  

v ~ A  + L V '~, L V V O "  or+ (%,  t~o ). We choose ~ cA( b, t) such that  0~+=ct I~t. Then 
Ads(~V)=coctVlL, . Clearly [Ro]Q(0tv ) is a sum of roots  f rom (Lb, f~t). Since 
Q(og~ v) = Q(0t v) we must  have tha t  coctv e A(Lb, Lt), and so Ad s(~ v )e  A(~ + , LIo). Thus  
(5.4.7) follows, and the theorem is proved.  

C o r o l l a r y  5 . 4 . 8 .  R o ~ SconLT~ { t6  L T O : 0~v(t) = 1, 0~ v E A t } .  

Proof We use the a rgument  for (5.4.6) to establish a m a p  S~onLT~ o. This m a p  
is surjective by the a rgument  for (5.4.5). A simple compu ta t ion  verifies tha t  the 

V V kernel is S,~n {tE LT~ ; ~v(t) = 1, ~ E Ao}. 
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We return now to the setting of the last part of (5.3). Thus M = M T and tl is a 
p.d. of T. When regarded as a root of T, the coroot ~ of a root av in A~ is real. We 
perform, in turn, a standard inverse Cayley transform with respect to each root 

v L 0 . This determines a Cartan subgroup 7" of G and a such that ~V~A~c~A( B ,LT~ 
p.d. ~ of T such that L/~ = LMr Recall that ~ induces an isomorphism 

8(~r)v ~ S(oc~ t To/Z(L f ,  lO)W 

(cf. Proposition 5.2.1). The following is then a immediate consequence of Theorem 
5.4.4. 

Proposition 5.4.9. ~ induces a surjective homomorphism g(T)V~S~ r 

Corollary 5.4.10. S(~ is a sum of groups of order two. 

On the other hand, t/induces a isomorphism g(T)v~S~c~LT~176 w. 

Proposition 5.4.11. t 1 induces an exact sequence 

I~g(T)V~S~}~R~ --+ 1. 

Proof This follows immediately from (5.3.12) and Lemma 5.4.1. 

Corollary 5.4.8 also has an interpretation in terms of G-data. Via ~/we regard 
each av in A~ as a coroot for ~'. We define a submodule (A~) o f g ( ~  as follows. By 
Tate-Nakayama duality, F(T) may be identified as 

(2~ +x,(~+o):2~ + o+2 ~ = 0)/(~ ~ -  a+~ ~ : ~  ~x,(~)} c~x,(~+o); 

(A~) is then the submodule generated by the cosets of the coroots av in A~. We 
will realize R~o as the quotient in Corollary 5.4.8. 

Proposition 5.4.12. ~ induces a surjective homomorphism g(T)V~R~. The kernel of 
this homomorphism is the annihilator of (A v) in g(T) v. 

We identify ~2(A~), the subgroup of O(LG~ LT~ generated by reflections with 
respect to the roots in A,~, as a subgroup of Q(M, T), again via ~. 

Corollary 5.4.13. The dual of the homomorphism d~(2r)V~R~ embeds R v in g(rl'). 
Under Tate-Nakayama duality the image of R v is identified with 

T)c~O(A~)\O(A~). 

Proof We have just to check that the image of Q(M, T)c~O(AV)\O(A v) under T - N  
(el. [15, Sect. 2]) is (AV). This is immediate from Proposition 2.1 of [15] since A v is 
a set of superorthogonal noncompact roots. 

Turning to L-packets, we consider first the packet H~  of representations of 2~/ 
attached to q~ or ~. Let ~ be a positive system for A(L]~/~ LT~ with respect to 
which/~ is dominant. Then it is easily seen that the roots in 7*~c~A,~ are ~ta-simple 
and that 7J~3 ~u=A(LM~ LB~176 In view of Proposition 5.4.2 (ii) we can 
now argue as in the proof of Lemmas 4.3.5 and 4.3.7 to show that for each 
co o ~ Y2(M, T), 

Ind(n(COo, 71~)| l N~1~, M(N ~)Q), l(r 
(o~gt(A,~) c~F/(,,,,, , T ) \ ~ ( A , ~ )  
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each distribution in this sum being non-zero. Thus 

{ o(o~, ,~, co ~%), coe a(~ ,  73~(.~(M, T)} 

is exactly the set of (characters of) representations in H~. Recall that f2(~)(571, ]') is 
the subgroup of g2(M,T) generated by f~(A~ v) and f2(LM~176 with the usual 
identifications. Let Oa(r 2, coYJ~) = Ind(O(~o#, 2, r174 1~, )~)Q, G). Then by 
induction in stages we have 

Ind (n(c%, T M)| 1 m P, G) = ~ Oa(o9~Oo#, 2, ~ o  o ~P u) . 
t o e~ (A~)~ (M,  T)\(A~) 

By Corollary 5.4.13 there are [Re] (non-zero) distributions in this sum. 
Hence, by Corollary 5.3.16, therepresentations (characters) O~ are 
irreducible, ~ef2(M, T)f2~u)(M,T). We conclude then that / / t~=/- /~ consists 
exactly of the representations O~(c~g, 2, coPY,), coef2(M, ~f2(~)(1~1, "i'), and that 
OG(c-p,L o ~ ) =  Oz(co'#, 2,c, 'T~) if and only if co'cO(M, T)c, (cf. Lemma 3.2 of 
[14] ; note that it is not really necessary to use the Multiplicity One Theorem for 
unitary principal series). 

Suppose now that: 
(5.4.14) (7", 7/) belongs to the fixed skeleton, ~/I=M~, P = M N ,  as in (1.3), and 
gp=tp(~,2):W--*LM belongs to {q~}. 

Then ~ consists of the irreducible constituents of the representations 
Oa(&~, 2, COT) = Ind(O(&~, 2, &T)|  P, G), where 7' is some positive system for 
A(LMr, L2r) with respect to which ~ is dominant, and COsO(I~I, ]') is such that 
O(&~, 2, &T) is nonzero (cf. Theorem 4.3.2 and induction in stages). 

Suppose also that each non-zero Oa(&~, 2, &~) is irreducible and: 
(5.4.15) ~ is nondegenerate in the sense that, for each root �9 of (l('l, T), @ , e v ) = 0  
implies that ct is noncompact and e v r (1 - a r ) X . ( ~  (cf. [-6, 7], [ 15, 2.1 ]). 

Then, accordinfi to_[7, Theorem 4.1(b)], there exists gs  G such that ad g: T-~ 7" and 
g~=c@, 92=2,  g ~ = c o ~ 7 ,  for some co~(2~,)(G, ]'). 

The following is then immediate: 

(5.4.16) A~= {~veA(L)~0, L~r'O); (p,c~v>=0} is of type A~ x A~ x ... x A~, 

andifA~ = {five A(L/~ ~ L ~r'0) : <3, ~v> = 0, ~ve h~} and f2(z)(lq'l, T) is the subgroup of 
v v O(M, T) generated by the reflections with respect to roots in A~ wh2, then 

(5.4.17) O(CO~,2,&q')#0 if and only if COeO(/~,T)f2,u)(ff, I ,T); for such CO, 
if O~(co'ft, 2, Co' ~)= O~(Co[t, 2, Co ~P) then Co' e ~( G, ~CO. 

Suppose that ($,~.) also satisfies (5.4.14) and (5.4.15), and that ~ is some 
positive system with respect to which ~ is dominant. Then by [7, Theorem 4.1(b)] 
again, there exists 9 e G normalizing 7" and COe f2(,)(lql, T) such that 9~ = 6~p, g ~ = 
and g ~  =COgL 

We will fix: 

(5.4.18) a positive system ~ for A(L/~r ~ L~-r with respect to which some ~ satisfying 
(5.4.14) and (5.4.15) is dominant. 
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Then (~, 7,) is determined up to conjugationby an element of G normalizing T, for 
the element & above lies in P(M, T) when ~ = k~ (cf. proof of Lemma 3.2 in [14]). 
We write n(&) in place of O~ The group Sl~o~ may be realized as 
S~nUT~176176 w (cf. proof of Theorem 5.4.4). Note that if te(S~176 TM 

then ~v(t)= 1 for ctV~A~wA~. 
Let ~6 5{~0}. Choose x6  ScpNLT~ vr mapping to �9 under the natural projection. 

By means of V/and natural identifications, we may regard �9 as a character on 

x , (~o) /x , (~o)n{v  v -  ~,,~ : ~v~x , (L}  

(of. [16, Sect. 2.1]). On the other hand, if &~ P(G, 7")f2{~)(G, "i') then ch determines an 
element of H~@) and hence, by the Tate-Nakayama isomorphism, an element &~ 
of the above quotient (cf. [15, Sect. 2]). 

Lemma 5.4.19. x(cS~) is independent of the choice for x. 

Proof. Suppose that x is replaced by xt, t e (S~176  w. Then we have only to 
show that t-(&~)=l, where t is the coset of t in SonLT~ w. Since 
&ef2(G, T)f2{~)(M,T) we have that &~ belongs to the g-span of AywA~ v (cf. [15, 
Sect. 2]). The lemma then follows. 

Let x~S{,}, nell{,}. Choose  xES(onLTO/z  w mapping to x under the natural 
projection and &~ t2(~l, "F) such that 7r = z~(&) with respect to some choice of ~ as 
above. Then we set 

<t, ~> = x (~ ) .  

For given ~, ( t ,  re) is independent of the choice of x and the choice of ~ since 
=(~) = re(&') if and only if &'= f2(G, ~&.  Secondly, fi may be replaced only by 9# 
where 9e G normalizes 7" and the chosen ~. Then x ~ is a replacement for x, and 
gcog- x a replacement for co. It is easily shown that xO((9~9 - ~)~)= x(&,). Hence the 
following is immediate. 

Lemma 5.4.20. ( , )" Sty} x H / , ~ {  + 1 } depends only on {q~} and the data of (1.3) 
and (5.4.18). 

Lemma 5.4.21. (i) (xtg, n} = (x, ~r} (tg, ~r) for x, OeSt,~, rC~Hl,~, and 
(ii) (~,~r}=(x,~z') for all xe~l ,  ~ if and only if rc=n'. 

Proof (i) is immediate. For (ii) we have only to note tha t  Sr176 v. 

Therefore, as in the discrete case, we have identified H ,  as a subset of 5; v, the 
dual of ~,.  Again this subset may be proper, and so we adjoin some "ghost" 
representations with zero character and form /1, in full duality with 5 v (cf. 
paragraph following Lemma5.1.6). Note that [H , ]=[~) (T) ] [R , ] ,  where 
~)(T) = f2(M, T)\f2(M, T) (cf. [15, Sect. 2]) and [g~] = [g(T)] JR,]  by 
Lemma 5.4.11. On the other hand, the number of ghosts in the discrete packet / I~  
is [g (T) ] -  [~3(T)]. We have therefore added exactly [R,]  ghosts t o / / ,  for each 

-M ghost i n / / , .  
It is convenient now to divide the discussion into two parts. In the first, we 

assume that LM=LG. Let ~eNt,~, and choose x as above. To x we attach the 
representative ~(x) for an element of ~(LG) given by 

~(x) = (x, Cent(x) ~ LBx0 , LTO, { Y=~ }, {W~}), 
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L O _ L T 0  where Bx _ and A(LB ~ LT o) C_ ~', and the action of W on Cent(x) ~ is extracted 
from that of gp(1 x a) in the usual way. Clearly, different choices of x may give 
inequivalent elements of ~(LG). 

We proceed now as in the discrete case : ~(x) is equivalent to exactly one of our 
fixed representatives for ~(LG), say ~----(sn, EH). If g~LGO is such that 
adg : ~(x)~s n then gxg-  a = s n (cf. Proposition 5.2.2). If also g' maps ~(x) to ~n 
then g '=  zg, where z~Cent(sn) induces an automorphism of (EH0, LH0~LB0, LT0, 
{Y,~}). As before, g(o(W)g -~ lies in the image of EH under ~:EH~-~LG. Thus 
adgo~p = ~ oq~' for some admissible homomorphism ~0' : w-+LH. We have then that 
{tp '}~(H) lifts to {~o}. Recall that ~ has parameters (fi, ,~), ~ is ~-dominant, and 

=~(~*,2"). Thus q~' has parameters (gfi-#*,  2 -2" ) ,  gfi-/~* being 
A(EB o ~ EHO ' L TO)_dominant. 

The character identity of Theorem 4.1.1 states that ~ e(n)z~(f)= ?(t~'~(fn). 

We need a description of e(n(Co)) in terms of &; that was not provided in Sect. 4. 

Lemma 5.4.22. e(n(Co)) = e(qJ)e(T, ~/) detg K(g - 1) ( t ,  n(co)), where e(~) is the signature 
of ~ with respect to A(LB ~ LT~ g: ~ ( x ) ~  n, qo'= q~(gfi-- #*, 2--2*), K is obtained 
from s n via (T, F/), e(T, 7/) is from our chosen family of (G, H)-orbital-integral-transfer 
factors, and in the terms detg and ~(g-1), g has been transferred to T via 4. 

Proof First we observe that ( t ,  n(&)) = ~ -  l(&), so that E(g- 1)(t, n(&)) = ~(&g- 1). 
Thus the assertion is true if fi is EGg-regular (cf. Sect. 4; the term e(~) is now 
inserted because fi is ~-dominant, rather than A(EB ~ ET~ as in Sect. 4). 
In general, we argue by coherent continuation as in the proof of Theorem 4.3.2. 

Corollary 5.4.23. e(Tt)e(T, Y/)detg ~(g-l)Xt,p,~(fn) depends only on {~p}, ~ and jr. 

We set 
)~(~o~,~)(f) = e(gt)e( T, 7/)det g ~.(g - 1)Z~,~(fn ) . 

Then the analogues of Theorems 5.2.7 and 5.2.8 and Corollary 5.2.9 are true. We 
defer the statements until the end of our discussion for the general case. 

We will no longer assume that L)~=LG. Let tESt,j and xeSc/aLTOIz(L.~IO) w 
map to t under the natural projection. Then s(x), a representative for an element of 
~(L/~), has been defined. Suppose that geG, T=gTg -a, and that ~ is a p.d. of ~r. 
Let M = M ~ .  Then a representative s(x) ~ for an element of ~(L~)  is defined in the 
obvious manner. 

Proposition 5.4.24. There exist ~u among the fixed representatives for ~(LG) and 
Cartan subgroup rl'=g~I'g-1, g~ G, together with a p.d. fl of 4s such that 

(i) a x satisfies (3.4.1) relative to (T,O), and 
(ii) ~(2)g is equivalent to ~Mn relative to l~l. 

The element s~ was defined in (3.4). 

Proof We exhibit a choice for ~H, g and 4, as follows. First, we may choose 
0 L 0 W x~Scor~ T / Z  mapping to 2 under the natural projection, such that 

Cent(x)~176 this is immediate if x is realized as a quasicharacter on 
(AV)/(AV)r~{vv-t~(1 x a)v v, vv~x*(LT~ where (A v) denotes the Z-span of 
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A(LG 0, LT~ and 2 as a character on 

{2v+ (AV> : ~(1 • o')2 v = - 2v}/<AV)c~ {v v -  ~(1 • a)v v : vv~X*(LT~ 

We form +(x) in the usual way ; +(x) is equivalent to some chosen representative ~H. 
There exists ~ such that (T,, ~)~ ~ (G)  and ~(x) is the 6-tuple attached to (T,, ~, ~/) as 
in (2.3). On the other hand, by arguing first with the quasisplit group dual to ~(x), 
we see that the conjugacy class of Cartan subgroups of G from which the 
fundamental Cartan subgroups of H originate is that of T; moreover, the 
fundamental Cartan subgroups of H are compact modulo the center of H. There 
exist a Cartan subgroup 7 ~ conjugate to 7", say 7"=g7"9 -1, gEG, and p.d. 0 of "r 
such that (T,, 0)~ ~--t~(G) [for example, T may be chosen from a fixed framework for 
H (cf. (3.3))]. In particular, LH0(L/v/O and a n satisfies (3.4.1) relative to (T,,0). 
Because s(x) and ~Hare equivalent we may conclude that on g(T), the quasicharac- 
ter g~ attached to (T, 0) coincides with (~o)o, for some g~ G mapping T to 7" and 
co~ f2(1VI,]') (cf. Proposition 2.3.1). Then ~(2)9 is equivalent to ~ ,  and the proof is 
completed. 

We choose ~H and g as in the statement of the proposition. Let 5~/u denote the 
endoscopic group for M determined by ~ [cf. (3.4)]. If f ~ ( / ~ )  then ]H will 
denote a function in ~(217/H) corresponding to f under the (M, MQ-orbital- 
integral transfer determined by the fixed data for H [cf. (3.4)]. 

Let ~ a d g o ~ :  W~L57/. Then ~b has parameters (g~,g2). The corresponding 
L-packet H of representations of/V/is {/c = adg o~, ff~/I}. If ~ -- O ( ~ ,  2, ~T )  then 
~= O(gCog-~(g~t), g~, g~g-~(gT)).  Suppose that ad&: ~ ( 2 ) ~  th~L/~/~ Then 
adrh%b is the lift to LS~/ of some 0 :  W--*LMH with parameters (rh/i-/~*, 
2 -  2*) = (rhgp- #*, g 2 -  2*). From the arguments for Lemma 5.4.22 we conclude 
that 

(5.4.25) ~ <~,/~>)~(f) = c)~,.(]'~), f e  cg(s 
:~eH 

for some c =  + 1. Here we have used (~,Oa(eSp, 2,&T))=~((h~)=~O((gcSg - ~)~) 
= ~"- '(g&g- ~). Now regard ~b' as a parameter for H, and write )~, for the attached 
character. Let f e  (g(G). Then fn corresponds to f under (G, H)-transfer and (fn)~i,~ 
corresponds to f; t  under (/~/, 29/n)-transfer. Thus we set 

^ H 
Z(~,,)(f) = cz(o,(ftt) = cz~,((fu)~,), 

with c as in (5.4.25), to obtain the following result, 

Theorem 5.4.26. Let q)e Cbo(G ). Then 

ncH~ 
feq~(G). 

The inversion is immediate. 

Theorem 5.4.27. Let q~  Co(G). Then 

1 

fe~(6). 
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Corollary 5.4.28. I f  7r~ ffl ~ -  FI ~ then 

(x, 7r)~,~)(f)=0, f~Cg(G). 

Some further analysis of these identities will be carried out in another paper. 
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