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1. Introduction

The purpose of this paper is to complete our study of L-indistinguishability for the
tempered spectrum of a real reductive algebraic group. We follow closely
Langlands’ formulations described in [13] for SL, ; see (1.1) and (1.2) below for a
discussion of the topic. Most of the necessary properties of orbital integrals have
already been established in {14-16]. However, because we find it useful to modify
some notions associated with L-distinguishability [Sect. 2, (1.2)], we have several
additional lemmas to prove. There also remains a question from Sect. 11 of [15]
(Theorem 3.5.4). With the properties of orbital integrals established (Sect. 3), we
will turn to the lifting of tempered characters (cf. [13, Sect. 7]). Existence of the
lifting is quite immediate but the formalism of [13] requires explicit information
about the coefficients in a lift, and about the characters themselves. This is
included in Theorem 4.1.1. As a consequence, we will obtain a result helpful in
identifying L-packets (Theorem 4.3.2). In Sect. 5, we invert the lifting (cf. Theorem
5.4.27), at the same time demonstrating a structure on L-packets of tempered
representations proposed by Langlands (cf. [13, Sect. 13]).

(1.1) L-Distinguishability and Orbital Integrals

Throughout this paper G will denote a connected reductive linear algebraic group
defined over R, and G the group of R-rational points on G. In (1.1) and (1.2) we
assume that G is semisimple and simply connected. Then G is a connected
semisimple Lie group and XG°, the connected component of the identity in the
L-group G for G, is of adjoint type. Some simplification of definitions will result.

We use the same notation for a Langlands parameter (equivalence class of
admissible homomorphisms of the Weil group W of R into G relevant to G) and a
homomorphism ¢:W-LG representing it. Two irreducible admissible repre-
sentations of G are L-indistinguishable, or belong to the same L-packet, if they are
attached to the same parameter or homomorphism. Then they have the same
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attached L-factors (cf. [2]). The members of 17, the L-packet attached to ¢, are
(each) tempered if and only if ¢ is bounded. Let &,(G) denote the set of such
parameters. We set S, equal to the centralizer of (W) in “G°; S will be the
connected component of the identity in S,

The group S, has been found useful (cf. [7]). For example, since the
constituents of a unitary principal series representation 7 belong to the same
L-packet, we may speak of the parameter ¢ attached to m. If n belongs to the
minimal principal series, then 7 is irreducible if and only if S, is connected; in
general, 7 is irreducible if and only if S,,,/Sfj contains only the “obvious” elements
(cf. [7, Theorem 3.4], Lemma 5.4.1). Set S, =S¢/Sg. Then, in a certain precise sense
(implicit in [6, 71; cf. (5.4)), S, controls the reducibility of 7. Since this notion is
central to the discussion of (5.4), in (5.3) we will give some relevant unpublished
arguments of Langlands. These describe the stability group of a discrete series
representation of a Levi component of a parabolic subgroup of G in terms of S,
(see [7], for a statement) and identify the root system of the connected reductive
complex group S,‘,’, with a system of Harish-Chandra’s [4, Sect.40] (or the
indivisible roots in a system of Knapp-Stein (cf. [6])).

If pe®y(G) then by definition, II, consists of the constituents of several
principal series. One consequence of the results just described is that the
cardinality of I1, is bounded by the order of S,; it is exactly this order if
HYGal(C/R),G)=1 (recall that G is simply-connected). We will add formal
objects (“ghosts”) to 11, to obtain bij o In 1—1 correspondence with S,

We consider now a quite different problem, that of matching combinations of
orbital integrals of a Schwartz function on G with certain combinations of orbital
integrals of a Schwartz function on a lower dimensional group H (at first, only
orbital integrals with respect to regular semisimple elements). There are two
motivations for this. The first, and that which provides the formalism described in
(1.2), is the manipulation of a term in the trace formula for SL, (cf. [8]). While the
trace formula in general is not so tractable, the manipulation of Labesse and
Langlands is based on the “regular elliptic” term, and has a proposed general
analogue due to Langlands. Our results will support the analogue. A second
motivation comes from choosing the linear combinations on H as symmetric
(“stable”) and thus, in a sense, as smooth as possible (for example, the un-
normalized stable orbital integrals of a cusp form are smooth). A matching then
reveals something of the singularities of orbital integrals. Heuristic attempts to
define the group H lead essentially to that prescribed by the global trace formula
considerations.

As examples show, all (allowed) combinations of orbital integrals on G are
stable, so that there are only trivial matchings, precisely when there is no
L-indistinguishability for G, by which we mean that each L-packet is a singleton.
More generally, we will see that matching of orbital integrals plays the following
role in L-indistinguishability. First we place some conditions on the normalization
factors for the integrals. Then, dual to a matching, there will be a lifting of stable
tempered characters on H to tempered virtual characters on G. It is not evident
from definitions that this lifting follows the principle of functoriality in the
L-group (that is, preserves L-packets); but that will turn out to be the case, due to
a simple analogue of coherent continuation to the wall for admissible homomor-
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phisms ¢ : W—G. It appears difficult to divorce the lifting from orbital integrals,
although coherent continuation extends it to some untempered distributions. The
heart of the matter is, however, the inverse of lifting, as it will be seen to identify a
representation within its L-packet [cf. (1.2)]. We find that there are dual pairings
between S, and I » Which control the inversion. Labesse and Langlands have
shown this for SL,, more significantly in the p-adic case, where I1, may have four
elements. The pairings intervene in the multiplicity formuia for certain repre-
sentations in the space of cusp forms for SL,, and thence in applications of the
trace formula (cf. [12]). On restriction to tempered representations, we have then a
general analogue for the component at infinity of this multiplicity formula.

(1.2) Summary of Definitions and Results

Again G is assumed simply-connected. The groups H have been defined [11] by
means of pairs (T, k), where T is a Cartan subgroup of G and k is a quasicharacter
on X (T), the lattice generated by the coroots of (G, T), invariant under the Galois
action. By Tate-Nakayama duality, etc., k determines a function on D(T), and we
may form the combination

OF . ddg)= ¥ ro) [ flgya)

weD(T) G/T® 4
(cf. [15]). Once H has been attached to (T, k), we must take account of other pairs
(T, ') determining this same group, as ®7"*), suitably normalized, is also to be
matched. With this in mind, and looking ahead to inversion of the lifting on
characters, we formulate the definition of H differently. Thus we will specify the
L-group of H and distinguish an element in the center of LH (this is an
intermediate step in the original construction). If G is not quasi-split, then new
groups appear, but each is attached in the original manner to some inner form of
G. From the distinguished central element we recover pairs (T, k). Details, and a
number of simple lemmas, are given in Sect. 2. We call the groups H endoscopic
groups for G.

Let H be an endoscopic group for G; “H is to be in “standard position”
{cf. (3.2)]. The means for comparing points on H and G will be pairs (T, #), where T
is a Cartan subgroup of G and 5 a pseudo-diagonalization of T, or map of T to the
distinguished maximal torus in the quasi-split form for G {[cf (1.3)]. A natural
condition on these pairs (2.4.1) provides both (7, x) attached to H and embeddings
of T in H. We then described certain elements of H as originating in G via (T, #).

To an embedding &:YH -G [see (3.3) for technical assumptions] we will
attach a family {4, !, where 4, , is a function on TNG,,,, with the following
property:

for each fe%(G) there exists f,e%(H) such that

A(T,n)()’)¢(fT’x)(Ya dt,dg) if ¥’
O 1(y, dt',dh) =3 originates from ye G, via (T,n),
0 if T' does not originate in G.

Here 4( ) denotes the Schwartz space; see (2.4) and (3.1) concerning measures, etc.
The conditions we place on {4, ,} allow only for replacement by {— 4 ,,}. The



388 D. Shelstad

factors 4, ,, have been defined (essentially) up to a sign in {15, 16]; Theorem 3.5.4
takes care of the signs.

Dual to the correspondence (f, fy) we have a well-defined lifting of stable
tempered distributions (cf. [ 14]) to invariant tempered distributions on G; Lift @
(N=0(fy), fe¥(G). If @ is an eigendistribution then so is Lift @ (Lemma 4.2.1);
in general, there is a shift in infinitesimal character which cannot be avoided by

changing &:"H -LG. If ¢'e ®(H) then x,, = Z %, is stable (cf. [14]). Note that
@=£E0¢ : W-LG need not be relevant to G. Theorem 4.1.1 will show that

Lift (X(P/):{O if @is .not relevant to G
Y emy, otherwise,

nell,

where each e(n)= +1 is given explicitly.

For the inversion, we state the result and then remark on our solution to a
problem that was resolved differently in {8]. For each endoscopic group H we fix
¢:“H -'G and pick one of the two families {41 ,} attached. Let pedy(G) and
xe€S,,. Then x points to some groups H and parameters ¢'e ®,(H) which lift to ¢
under ¢ [this is illustrated in (5.2}, and shown in general in (5.4)]. For a suitably
chosen sign ¢, ey, fy) is independent of all choices except @, f, x and that described
in the next paragraph. We set ey, (fy) =1, (f). Then there is a dual pairing
GorS, x IT »—{ £ 1} such that

1A= Z EX YR

[S 1.
fe€(G), ne i,

I nell,— 11, then y, =0, by definition; thus the right hand side is zero also.

The problem indicated is that of choices. As always, we fix L-group data for G
[cf. (1.3)], but this does not determine the pairings or, equivalently, the inversion,
as is easily seen in the case of SL,. Our pairings will be prescribed by the choice of
a set of representatives for the conjugacy classes of Cartan subgroups of G together
with a pseudo-diagonalization of each group in this set, and the choice of a certain
Weyl chamber depending on ¢ [cf. (5.4.18)].

Finally we remark that when G is not simply-connected, the definition of S,
must be modified [cf. (5.1)], the lifting from H to G applies only when “H embeds
in G, and the inversion when “H embeds in “G, for all endoscopic groups H. The
few cases where these conditions fail can be dealt with (in applications) following
the suggestions of [11].

(1.3) Notation

We fix L-group data as usual: a quasi-split inner form G* of G and inner twist
p:G—G*, a Borel subgroup B* of G* defined over IR and containing maximal
torus T*, dual complex group “G° with Borel subgroup “B° containing maximal
torus Lo such that X*(*T°) =X (T*). We fix a root vector X,. for each root of
(*G°,*T°), requiring that [X,..X _,.]1=H,., where H,, denotes the coroot of " as
element of the Lie algebra “t of YT, Then o denotes both the Galois action on G
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and the dual automorphism of (*G° “B°, 'T° {X,.:o¥ “Bl-simple}). Also
LG="G® x W, with the Weil group W acting through 6 =Gal(C/R), under the
natural projection. By an abstract L-group we will mean any extension “G®x W,
with *G° a connected complex algebraic group, “B®, L'T°, {X,. :a¥ B®-simple} as
above, and W acting through an action of & on (*G° 'B°, 'T° {X, :a
LBO_simple}).

For the L-group of a Levi group (=Levi component of a parabolic subgroup
of G defined over R), there is a small, but crucial, point to consider. Let T be a
maximal torus in G* defined over R, and let S; denote the maximal R-split torus
in T. We call My, the centralizer of S; in G*, and T standard if S;CT*. Then
M, 2T* and “M is defined in the obvious way (cf. [10, 16]). Consider, however, a
torus T in G; then there are several realizations for “M ;. We accommodate this as
follows. A pseudo-diagonalization (p.d.) n of T will be a composition of maps
adx, oy :T-T, defined over R, with T, standard in G* (x,e€G*), and adm,,
m,; €My, mapping T, to T*; thus # maps T to T*, the distinguished torus, and
specifies a standard Levi group My, in G*, together with an inner twist (ad x, o)
from My to My . Given 5, we set "M ="M . Also, P, will denote the parabolic
subgroup of G* with Levi component M; and containing B*, and P, the
parabolic subgroup (over R) of G equal to (ad x, y)” (P ).

Let 77 be a p.d. of T. When transferring data from T to T* or *T° “via ” we use
the induced maps X*¥T)-X*T*)=X,'T°%, X, (T)-X (T*=X*"T°,
X*DRC-X ,(*T)QC ="T?, etc, as necessary and without additional comment.

In (5.4) our pairings will be based on the choice of a skeleton for G: that is, a
fixed set of representatives for the conjugacy classes of Cartan subgroups of G,
together with a p.d. of each group in this set. Until (5.4), this choice will be ignored.

Finally, G, will denote the simply-connected covering of the derived group of
G, and T, the preimage in G, of the maximal torus T in G ; A(G, T) will denote the
set of roots for (G,T) and (G, T) the Weyl group of (G, T); o, will denote the
Galois action on T and 6, the transfer of o to “T° via the p.d. 5.

2. Endoscopic Groups
(2.1) Data for Endoscopic Groups

We introduce a set &, with the purpose of parametrizing the endoscopic groups
for G.

Let s be a semi-simple element of “G°®. Then “H?, the identity component of the
centralizer in “G° of s, is a connected reductive group. We are interested in pairs
(s, 0,), where g, is an action of W on “HP®. This action is to be “realized in “G”, and
to be such that YH® x W is an L-group. In order to make precise definitions we
introduce sextuples as follows.

First, in place of a single element s, it is convenient to use a coset of Z¥, the
group of W-invariant elements in the center Z of “G°. Thus s now denotes a coset
of Z¥ in YG° consisting of semi-simple elements. We consider objects

(s, *H° "By, ' Ty, {Y,,}, 0y,
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where

(2.1.1) “HCis the identity component of the centralizer in “G° of any element of s,
denoted Cent(s)° for convenience,

(2.1.2) 'BY is a Borel subgroup of “H°,
(2.1.3) TP is the maximal torus in “Bj,
(2.1.4) {Y,} is a set of root vectors for the simple roots of (“By,“Tyg), and

(2.1.5) ¢, is a homomorphism of W into Aut(*H° "By, T°,{Y,.}) which factors
through W— 6 and satisfies o(w)=ad n(w)|Ly,, for some n(w)e“G® x w which fixes
each element of s.

We will usually write wg, or o if w—¢ under W—®, for g(w). The following
result is useful in calculations. We omit the (straightforward) proof.

Lemma 2.1.6. If x is a semi-simple element of “G° then we may build an object
(xZ¥,...) of the form above, if and only if the conjugacy class of x in “G° is
invariant under W.

A further result, which we will use repeatedly, indicates some possibilities for g
once (s, “H®,“B%, T3, {Y,.,}) has been given. Note that to specify o, we need only
give an automorphism o, of “H° such that 6;,=1 and o is of the form ad gl.y,,
where geG° x (1 x o) fixes each element of s. For then we set g (w)=0 if w maps
to ¢ under W—®, and g (w)=1 otherwise.

Lemma 2.1.7. Suppose that t is an automorphism of “T° such that 1> =1. Suppose
also that t fixes each element of s and is of the form ad g|. 1, g€“G® x (1 x 6). Then
there is a unique automorphism t, of (“H®,*BY,“ Ty, {Y, }) satisfying 1= (tgler,) o,
for some we QHO,“T°). Further, 1;=1 and ty is of the form adg'lcyo for some
g'€LG® x (1 x ) fixing s pointwise.

Again the proof is straightforward, and details are omitted.

We call (s,,“H%, "B, M T2, (Y, h,0,,) and (s, “HY, “BY, T3, {Z,}, o,)
equivalent if there exists geG® such that “"H9=g"H%~ !, “By, =¢"Bj g7,
LT8,=g"T3.07 ", Zagan=Adg(Y,) and g, (w)=adgog, (woadg™", we W. It is
not required that s, =gs; g~ *. A typical equivalence class will be denoted s; later
[cf. (2.4)] we will also use s to denote a representative.

Finally, & is the set of all equivalence classes of objects (s, “H°, "By, " Ty, {¥,.},
0,). Clearly & depends only on “G; that is, & is attached to the family of inner
forms of G, rather than to G alone. We write S=&(*G).

(2.2) Endoscopic Groups

Let se . The last five entries in a representative for a s define an abstract L-group.
Clearly then, s determines a unique isomorphism class of L-groups. Any L-group
in this class is said to be attached to s.

Definition 2.2.1. Let H be a quasi-split group over R. Then H is an endoscopic group
for G if “H is attached to some s€ S(*G).
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Let H be an endoscopic group for G. We fix B, a Borel subgroup of H defined
over R, and let T}, denote the maximal torus in B,. Let s, be the element of S(*G)
defined by H. We fix a representative (sg, “H) for s, denoted also by s,. The group
LH will serve as fixed L-group for H. Later [cf. (3.3)] we will place restrictions on
the choice of pair (s, “H) but for the present we require only that

(2.2.2) LTO_LT0,
Then s, C*T° and
(2.23) X (T, =X*T%)=X (T*).

(2.3) (T, k)-Pairs

Let A°(G) be the set of all pairs (T, ), where T is a maximal torus in G defined over
R and « is a quasicharacter on

X (T )/ o’ ~ ¥ - pveX (D} nX (T,

The construction of “H(T,x, )" in [11] provides a map #°(G)—S(*G) as follows.

Fix a pseudo-diagonalization n of T. Then # transfers « to a quasicharacter on
X (T%); this new quasicharacter lifts, in several ways, to a quasicharacter on
X (T*)=X*"T°) invariant under the action of ® obtained by transferring the
Galois action on T to T* via 5. These various extension may be viewed as elements
of T?; as such, they form a coset of Z% (cf. [ 16, Sect. 2.1]), say s. We now form (s,
YHO, “B°~HC, 'T°, {Y,}, o), where *H®=Cent(s)° [cf. (2.1.1)], Y,, is the root
vector for a already chosen [cf. (1.3)], and g, remains to be defined. Let o4 ,
denote the automorphism of LT° obtained by transferring the Galois action on T
by n. Then o, fixes each element of s and is of the form ad gy, g6 “G° x (1 x 9).
Since o%,,,z 1, we may now apply Lemma 2.1.7 to define o and hence g,

Thus to each (T, k)e #(G) and p.d. n of T there is attached a representative for
a class in &. If n is replaced by another p.d. then this representative is replaced by
an equivalent one (cf. [11]). Therefore to each (T, x)e #(G) we have attached a
well-defined element s =3(T, k) of S(*G).

Proposition 2.3.1. s(T,k)=s(T",k’) if and only if there exists geG such that
adg:T-T and

(i) k(@V)=1if and only if K'(gaV}=1, «'eAY(G,T),

(i) og(g™)ge Q"NG,T), the subgroup of QAG,T) generated by the reflections
with respect to those roots o for which x(o¥)=1.

Proof. This is an easy application of the definitions.

Proposition 2.3.2. If G is quasi-split over R then the map (T, k)= &(T, k) of A '(G) to
S(*G) is surjective.

Proof. This follows from Theorem 1.7 of [18].

Lemma 2.3.3, S(LG) is a finite set.

Proof. We write se S(*G) as s(T,x), for some (T, k)e A (G*). Proposition 2.3.1
shows that there are only a finite number of possibilities for s(T, ).

For any group G, we define (T, k) and (T",«’) to be stably equivalent if there
exists weW(T) such that w:T-T and k' =« (cf. [15, Sect. 3]). We denote by
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H (G) the set of equivalence classes under this relation, and by (T,x) the
equivalence class of (T, k). By Proposition 2.3.1, we may set s({T, x>)=s((7, x)) to
obtain a well-defined map of #_(G) into S(*G).

On the other hand, the twist 1 : G— G* provides embeddings over R into G* of
the maximal tori over R in G (cf. [107]). Thus v induces a map of H#,(G) into
H(G*). Clearly this map is injective.

As supplement to Proposition 2.3.2, we observe that

HAG) > H(G¥)

. . S*G)
1s commutative.

Finally, if, as usual, G, is the simply-connected covering group of the derived
group of G, then there are natural inclusions X(G)-X4(G,) and
S(*G) +3S(M(G,,). Moreover, the diagram

H(G) — H(G,.)

&(*G) - S(M(G,.)
is commutative.

(2.4) Elements of H Originating in G

Let H be an endoscopic group for G, with sy, = (s, “H) fixed as in (2.2). Let A (G)
be the set of all pairs (T, x) which map to (the equivalence class of) sy under
H(G)—S(*G). We recover some elements of #,4(G) as follows. Let 7 4(G) be the
set of pairs (T, n), where T is a Cartan subgroup of G and # is a p.d. of T with the
property that the transfer o, , of the Galois action on T to LT via 5 satisfies

2.4.1) Or,=Wog, some weQ“H’,'T°).
Then for (T, 1) I(G), the transfer of sy to T via 5 defines a quasicharacter x on
X*(Tsc)/{O-T/lv - ﬂv : ﬂVEX*(T)} nX*(Tsc) H and (T’ K)G %H(G) .

In this manner, we obtain sufficiently many elements of 2#(G) for our purposes, as
the next lemma will show. In the statemeiit of the lemma we allow “p.d. n of T” to
mean any map #:T—T* of the form ad x-p, xeG* [In a final version of the
matching theorem for orbital integrals (cf. Sect. 3} we may omit further assump-
tions on #.]

Lemma 2.4.2. Suppose that (T,x)e AL(G). Then there exists a p.d. n of T such that
(T, n)e T (G) and the attached quasicharacter agrees with « on

E(T)={AVeX (T,): 2%+ 072" =0Y/X (T, )k — o ¥ : pYeX (T)}.

Proof. We may choose 7 so that (T,n)e 7(G) and the representative attached to
T,n and x is (s', “H). Then both s’ and sy are fixed by 64 and o, ,. Let a¥ be a root
of *:G%™T°) such that ¢ ,a¥=—a". Then:

(*) aV(s)=av(sy)= £ 1.
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By construction x is the quasicharacter attached to T,n and s'. Let xy be the
quasicharacter attached to T,x and sg. Then () implies that x and « coincide on
the span of the coroots oV of (G, T) for which 64" = —aV. The lemma then follows.

Notation. If (T,n)e 74(G) then k denotes the attached quasicharacter, unless
otherwise stated.

Suppose that (T,%)e T,(G). Then by [11] (cf. [15, Sect. 6]), there exists he H
such that

(2.4.3) T'=h"'Tyh is defined over R,
and
(2.4.4) X (T)225 X (T,) =X (T 21— X (T)

commutes with Galois action and so lifts to an isomorphism i(h,n): T'> T defined
over R

Let G,,, be the set of regular elements in G. Then y'€ H originates from y€ G,
via (T,n)e T 4(G) if ¥ is the preimage of y under some such map i(h, ).

Proposition 2.4.5. Suppose that y'e H originates from y€G,,, via (T,n). Then:
(i) 7VEH g
(i) y"€ H also originates from vy via (T,n) if and only if y"=(y")", '€ U (T),
and
(i) v originates from § via (T,n) if and only if 7=v°, with
0e 24(G, TINQY(G, T). As usual, 2(G, T)= {we XG,T): wo=cw}; Q*YG, T) was
defined in Proposition 2.3.1.

Again the proof is straightforward (cf. [15, Sect. 6]).

Finally, we will say that a Cartan subgroup T’ of H originates from a Cartan
subgroup T of G if T" is the preimage of T under some i(h, 7). Note that then to
each Haar measure dt on T there is then attached a unique Haar measure dt’
on T

3. Orbital Integrals
(3.1) (G, H)-Orbital-Integral-Transfer Factors

We continue with G and endoscopic group H ; s, =(sy, “H) is fixed as in (2.2). The
Schwartz spaces of G, H will be denoted 4(G), €(H) respectively. We continue also
with T4(G).

Suppose that for each (T, n)e I 4(G) we are given a function Ay ,, on TNG,,.
Then we call the family {4, .} of these functions a set of (G, H)-orbital-integral
transfer factors (or, more briefly, “transfer factors”) if for each fe%(G) there exists
f'€€(H) such that

A(T,n)(')’)@(fT’ Wy, dt,dg) if ¥
originates from yeG,., via (T,7)

0 if T' does not originate in G.

reg

BG.L1) STV, dt',dh) =
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The measures dh, dg on H, G respectively are subject only to the conditions of [ 15,
Sect. 9]; dt is arbitrary and dt’ as in (2.4); 87-9(, , ) and "1, , ) are as in [15],
although T, T' are now inserted in the notation.

Because of our proposed application (cf. Sect. 4), we place some restrictions on
our candidates for transfer factors. First, for each (T, #) we define a function 4 ,,
on T by

Ar o= T1 (I=ay™) [] Iy —a()~ 1

x>0 a>0
ca=—a goa¥—a
K@V)+1 K@)+ 1

where o >0 means that «ae A(G, T) is positive with respect to the order determined
by # and the Borel subgroup B* of G*; |a(y)}/?—a(y)~'/?| is to be interpreted as
11— o) 21 —aly ™ M2

Proposition 3.1.2. Let weQy(G, T)nQ*(G, T). Then
(i) Py, dt,dg)= x(w)¢(T “Ny,dt,dg), and
(i) A(T,,,)(? )=k(@)1,~ @ 1)) Ar, p(7), where
=12 Y o
a>0

o= —a
x(@V)*1

Proof. Note that 1,—w™ "1 _eX*T), so that (1, —w™ '1,)(y) is well-defined. The
proof of (i) is immediate (cf. {15, Sect. 4]). The proof of (ii) is similar to that of
Lemma 8.2 of [15], and we omit the details.

We will call a family {4 ,} of (G, H)-orbital-integral transfer factors ad-
missible if each Ay , is of the form

(3.1.3) (— 1)1 EPyT, MAx, A n

where ¢(G, H) is a constant [defined in (3.7) and inserted only for convenience],
e(T,n)=*1, and A, is a character on T satisfying

(3.1.4) A(T, ,,)(v“’) =(w~ ! le— l*)(V)A(T,,,)('))) s

we Qy(G, T)INQ"YG, T).
If {4 ,} is any family of characters satisfying (3.1.4) and {&(T, )} any choice
of signs, then the family {4, ,! defined by (3.1.3) has the property that

V= A, NPT, dt, dg),
for y' originating from
Y€ G egvia(Tn),

is well-defined and invariant under A(T}), where T, is the Cartan subgroup of H
containing y’ (cf. Propositions 2.4.5 and 3.1.2). This function depends, however, on
the choice of (Tn). Suppose that )’ originates from yeG,via (T,n) and from
Y€ G, via (T, 7). Then clearly there is we A(T) mapping T to T and y to ¥, and
satisfying 7= wyonecw ™! for some a)HeQ(H TH)CQ(G* T*). Thus T=T%; %, the
quasicharacter attached to (T,7), is * and @57, dr, dg)=K(w)P" ")(y, dt,dg),
where df is the measure (dt)®. Note that if dt’ 1s attached to dt on T then dt’ is
attached to (dt)” on T.
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On the other hand,
‘A(T_', ;,)(7) = ‘A(T“’, WEONOW ™ 1)(yw)
= ‘A(T,a)Hon)(‘)))
= (= )R] ( ) 0!) YA, (7)s

a€R(w )
where R(wg)={0e MG, T):0a=—a, k(aV)=+1, a=noe A(B*, T*),
wgde —AB*, T*)}. Hence for {4, } to be a family of transfer factors we must
have

dTogenow™ )=l — De(T 1)
(3.1.5) and

A(T,WHOHOLD“):(( 2 “)_IA(T,m)w
acR(wgH)
for all w,eQH,T,) and weU(T).

Conversely, we may use these conditions to calculate within a fixed “frame-
work of Cartan subgroups” (cf. [ 15, 16]). This is the only motivation for all but the
first paragraph of (3.2).

(3.2) Standard Position, Framework of Cartan Subgroups, etc.

Let H be an endoscopic group for G. Fix a standard Cartan subgroup of G*, say
Ty, among those from which Ty originates. Let My=M;  and oy denote the
(canonical) transfer of o, to LT® by an element of ad M. We now insist that
sy =(sy, “H) have the following properties:

(3.2.1) LTO —LTO
and
(3.2.2) oy acts on T as gy,

Then “H is “in standard position with respect to T, (cf. [ 16, Sect. 2]). That such a
representative s, exists is shown in [16].

Next we build “a framework of Cartan subgroups around T,” (cf. [16]). Thus
we select standard Cartan subgroups Ty, ..., Ty =Ty of H representing all con-
jugacy classes, and standard Cartan subgroups T, ..., Ty of G* such that T,
originates from T,, n=0,1, ..., N (in definitions concerning G* we take the inner
twist y to be the identity). We assume that S(7,) CS(Ty) for all n and that T,= T, if
T, is conjugate to T, Set M, =M, and M,=M; . Then we choose m,eM,,
m,eM, such that adm,:T,»T,=T* (over C), adm,:T,»T* (over €) and
i,=adm, 'cadm, T,>T, over R Let o, be the transfer to “T°, via adm,, of the
Galois action on T, (equivalently, the transfer of the Galois action on T, via
adm)). If T, originates in G we select T¢ in G and a map y,= adx,oyp:TS>T, over
R. Set M{ =My, 15 =adm,y,:Te>T* and i =y,°i,: T, Ts. We refer to [16,
Sect. 2] for a proof that all these choices are possible. Note that (2.3.3, d) of [16] is
omitted ; this is because we now have the element 5.
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Since 0,e Q“H®,“T %0, we have (T,,adm,)e 7,(G*); let x, be the attached
quasicharacter. Also (TF,n%)e I4(G); k¢ will be the attached quasicharacter.

Proposition 3.2.3. Suppose that y'e€H originates from yeG,, via (T,n). Then
T=(TF)", and n=wg-nScw ™", for some n, wyeQH,T,) and weA(TH™),

Proof. This is immediate.

If {41 ,} is a family of functions satisfying (3.1.3) and (3.1.5) (that is, {4t is
a proposed admissible family of transfer factors) set

G G
&, =8(T;:G’11n)’
G __

An _A(Tﬁ,nﬁ)’

T 4G~

A5 ="Arg, 1)

Proposition 3.2.4. {4, .}, satisfying (3.1.3) and (3.1.5), is an admissible family of
(G, H)-orbital-integral-transfer factors if and only if for each fe¥€(G) there exists
f'€6(H) such that

STy, dt, dh) = (— 17 C Dl AF(yy AS(y)BTF*F)(y, dt, dg)
if Y€ G, and y' =(i5)"'(y), and &V, )=0 if T’ does not originate in G.

Proof. This follows from Proposition 2.3.3 and the discussion in (3.1).
Our next step is to recall some candidates for {A%} (cf. [16]).

(3.3) Correction Characters

We assume now that s, =(sy, “H), with “H in standard position with respect to
some standard Cartan subgroup T of G*; we also fix a framework of Cartan
subgroups around T. By an admissible embedding of "H in “G we mean a
homomorphism ¢:"H—'G such that

(3.3.1) ligox ¢ 18 the inclusion mapping and
(3.3.2) 1 xw)=E&y(w)x w,we W, where Eq(w)e"G°.

These maps have been studied in [16].

Let ¢ be an admissible embedding of “H in “G. Then &,(1 x g)e*M since “H is
in standard position with respect to Ty (cf. [16]), and £,(C* x 1)C*T?. As in [16],
we attach to ¢ the pair (u*, 2*), where

;LV(éo(z X 1)) — z<“*, AV)E(GH;"'AV) , AV EX*(LTO)
and
W(Eoll X ) =2 A Ve XH(MY).
We write &=¢&(u*, A*). If 1, denotes one-half the sum of the coroots for
(*B°~"M?,“T®) and 1, one-half the sum of the coroots for ("B’ (M)°,“T°) then
1/2(u* = o,4%) + 1, — 1, =(A* +0,A*)(mod X ,(* T°))

and p*—o,u*e X*(LTO), n=0,1,..,N (Theorem 3.4.1 of [16]). Thus, after transfer
by m, we have a well-defined quasicharacter y(u*+1,—1,4*) on T, (cf. [16,
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Sect. 4.17). If T, originates in G we have further a quasicharacter x%(u* +1,— 1, A*)
on TP

We say that & is of unitary type if each y(u* 41, —1,, A*) is a character (that is, is
unitary). If £ = &(u*, A*) is arbitrary then 1/2(u* — g4u*), A* are also parameters for
an admissible embedding; clearly this embedding is of unitary type.

We assume now that “H embeds admissibly in *G and fix an embedding
E=Eu*, A*):'H -'G of unitary type. We set

(3.3.3) AS = yS(u* +1,— 1, A¥).

Then {Af} is a “set of correction characters” in the sense of [16] (this is the main
result of [16]). Hence if we set

AG:(_ l)q(G,H)SGAG‘AG
and define {4; ,} by setting
Arg =47

and requiring that (3.1.5) be satisfied then {4 ,} will be a set of (G, H)-orbital-
integral-transfer factors if and only if {¢¢} satisfies the conditions of (10.1) in [15]
(with €f replacing ¢,). Before discussing these conditions, and showing that they
can be satisfied, we introduce the set-up for some reduction arguments.

(3.4) Endoscopic Groups for the Levi Components of a Parabolic Subgroup

Suppose that H is an endoscopic group for G, with s, = (s, “H) chosen so that “H
is in standard position with respect to a (standard) Cartan subgroup T of G*.

It will be sufficient for our purpose to consider cuspidal Levi groups. Thus we
take M =M/, where T is a Cartan subgroup of G. We fix a p.d. # of T [cf. (1.3)].
Then M* will denote the attached Levi group in G*, and P* in G*, P in G the
attached parabolic subgroups; “M =“M*, by definition. Our basic assumption
will be:

(3.4.1) og=wor,, some weA*M°nLHOLT?).

We may then construct a subgroup M’ of H as follows. Let “(M")° = H°~"M°.
Then (3.4.1) implies that “(M")° is invariant under o,. Set “M'=5M')° x W, Then
LM’ is the L-group of a subgroup M’ of H defined over R; M’ contains Tyandisa
Levi component of some parabolic subgroup P’ of H defined over R and
containing By. A simple argument shows that there exists m'eM’ such that
T =(m')"'Tym’ and i(m'’,n):T'>T are defined over R. Thus M'=M,...

If, in the notation of the last section, we have T = Ty, then we may take T'=T¢
and n=n%, so that M=M¢ and M*=M,. Then M'=M_,

Let s} be the coset of s,, with respect to the group of W-invariants in the center
of “M°. Then s}f =(s¥,“M’) is a representative for some element of s(*M). Thus M’
is an endoscopic group for M. Further, (3.4.1) and a simple argument show that
TcM*; 'M' is in standard position with respect to 7. Note that if
&=§(u*, 4%):"H -G is an admissible embedding of unitary type then & = ¢&|,,,. is
an admissible embedding of "M’ in “M, again of unitary type and with parameters
(u*, A*).

Next, let (U, n)e 7 4(G), with attached quasicharacter k. We say that (U, ny) is
subordinate to M if UCM and 5y is of the form admon, meM*. Then clearly
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(U,ny)e T (M) [relative to the twist from M to M* provided by #, cf. (1.3)]. If ,,
denotes the restriction of x to {yu'eX W L) :Nmu¥=pV + g,u¥ =0}, then k,, is the
quasicharacter attached to (U,n,) as an element of 7,,.(M). Conversely, if
(U,ny)e T 1(M) then as an element of F,(G), (U, n,) is subordinate to M.

If fe%(G) then we define f,,€€(M) by

Sralm) = (5 p(m))*/? Ij;f(mn)dn and f(x)= !( flkxk™Ydk,

xeG. Here K is a suitably chosen maximal compact subgroup of G (cf. [ 3, Sect. 3]),
N is the unipotent radical of P and J, is the modular function of P... note that f,,
is the function “f% of [3]. The measures dk and dn are fixed (arbitrarily). Let dm
be the measure on M for which dg=dkdndm. Then

Oy, du,dg)= ] o) —a(y)™ 2|7 @F 0y, du, dm)

a>0
ca¥ —a

for ye UnM,,, and (U, 1) subordinate to M. Similarly we may define f,, € 6(M’),
given f'e4(H). Then
OF N dudn= T] )2 =o ()T OG0, ' dm)
oa’ ¥ ~a’
for U'CM’ and yeU'nH,,,.
If (U, 1) is subordinate to M and {4, ,} satisfies (3.1.3) we set

em(U,ny)=(~ puem- a. MI)S( U, 1)

and
AM el Us M)A,y A, ne
W,nv) H ‘ 1/2 —1/2 )
al/?—a 12
a>0
au¥ ~q
k{aV) ¥ 1

Then the following result is immediate.

Proposition 3.4.2. If {4 ,} is a set of (G, H)-orbital-integral-transfer factors then
{A{‘{,,nv):(U,nU) is subordinate to M} defines a set of (M, M")-orbital-integral-
transfer factors. Moreover, if f'e 6(H) corresponds to fe 4(G) relative to {4, ,} then
fu-€€(M’) corresponds to f,,€ 6(M) relative to {A})}.

(3.5) Choice of Signs

We continue the discussion of (3.3). We wish to choose {¢¢} so that the set {4 @m?
defined in (3.3) is a family of (G, H)-orbital-integral-transfer factors. Our first step
will be to review the conditions this places on {} (cf. [157).

Let T, and T, be adjacent Cartan subgroups of H, within our framework (cf.
[15]). Let I} and I, denote the (chosen) systems of positive imaginary roots for
TS =i%T,) and T =iS(T}). Then in [15] there is attached to (T}, T, i%,i% 1", I7) a
sign &(m, n)=¢ . (m,n)e,(m, n) (cf. proof of Proposition 3.5.3 below). In order that
{41} be a family of (G, H)-orbital-integral-transfer factors it is necessary and
sufficient that

(3.5.1) e8e¥ = ¢(m, n)
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for each adjacent pair (7, T,} (cf. Theorem 10.2 of [15]). If {c€} satisfies these
conditions then so does { ¢¢1, but there are no further possibilities.

Suppose that both T, , T,, succeed T, in H, and that T, succeeds both T, and
T, (in the sense of [15]). Then in order to construct {e¢} satlsfylng (3.5.1) we need

(3.5.2) &(m, n Je(n,, p)=2e(m, n,)e(n,, p).

Of more interest is the sufficiency of these conditions that is, it is sufficient that we
verify (3.5.2) for all “diamonds” (T, T, , T, T,) (cf. [15, Sect. 11]).

Let o be a noncompact root of T, for which there is a Cayley transform
s;3 T=T,, (i=1,2), and f§; be a noncompact root of T;, for which there is a Cayley
transform ¢;:T, —T,. Let a;, B, Sv t; be the corresponding “images in G” [15] We
may change our choxces for T,,, T, , T, (within respective conjugacy classes), o, s
and ¢; without changing &(m, n), &(n,, p) [15, Sect. 10]. It will also be convenlent to

change i, i%, i and iY; that is, to adjust the various images in G.

Proposition 3.5.3. &(m, n,)e(n,, p)e(m, n,)e(n,, p) does not depend on the choices for

.G :G G :G
4 lnl,lnz,lp.

Proof. We may replace i€ only by ad w,,iS, w,,e W(TT), ¢ by ad w,, -iy, etc. By
definition, e(m n)=g(m, n)e+(m n) and s m, n)=¢,q(s,), the kS-signature of s,. The
change in i%, i% replaces s, by ®, '. A simple calculation shows that ¢,g(s,) is
replaced by K"‘(wnl)a g(sl)rc (0, ) Argumg similarly for s,, t,, and ¢, we find that
g.(m,n,)e (n,, ple(m, n,)e (n,, p) is multiplied by

K (@ )icg (0, )16 (00, S0, )1 (@0 )1 (0, e (@0, e 0,,)

which equals one. It is immediate from the definition of & .(,) (cf. [15, Sect. 10]) that
the above change in i, and i, multiplies ¢, (m,n,) by sgn(w,,) sgn(w,,), where sgn
denotes the signature with respect to (the appropriate system of) imaginary roots.
Hence the proposition follows.

Theorem 3.5.4. For all (T T') we have

m ru’ nz’ P
(3.5.5) e(m, ny)e(ny, p)=e(m, n,)e(n,, p).

Proof. We observe first that it is sufficient to prove this in the case that G is simply-
connected and simple and T¢ is anisotopic over R. Indeed, given any diamond
(T, T,,, T,,, T,) we may assume that (T.%, n), (TZ, 5S) are subordinate to M§. We
may also assume that T, T, lie in M, We see that the terms we have to compute
are then the same, whether we compute in (G, H) or in (M% M.). Thus it is
sufficient to verify (3.5.5) in the case that T? is compact modulo the center of G.
Now we argue as in [ 15, Sect. 11] to reduce to the case that G is simply-connected
and simple.

From now on, G is simply-connected and simple, and T¢ is compact. We will
omit the superscript “G” in notation.

We consider first the case that T, =T, .. Then a, =wa,, weXG,T,,). Hence o},
o, have the same length. Because 7, is not conjugate to T, &, and o) lie in
different components of A(H,T,). Thus {a},a, the set of roots in A(H,T,)
belonging to the @Q-span of &) and o, is of type 4, x 4,. On the other hand,
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ey, 2,9, the set of roots of A(G, T,,) belonging to the Q-span of «, and «,, is either
of type C, or of type 4, x A4,.

Suppose that o, o, is of type C,. If o, and a, are long, then o} and o} are
short and ay+a3e€AY(G,T,). Since x,(a)+ay)=x, o))k, (as)=1, we have that
(ay +a)e A(G, T,) “comes from H” (cf. [16, Sect.2.4]), so that 1/2(a} +0o) is a
root of (H, T,)), a contradiction. We conclude then that «,, o, are short. In H we
may arrange that s/, s are standard, §, =s,a), f; =sa,, t; and ¢, are standard,
and t)s| =t,s,. Then we adjust i, so that o, is noncompact. Suppose that o, is
compact. Then adjust i, so that s, is standard and i, so that s,=s,w, .
Finally, adjust i, so that t, is standard. Then t, ~wt1, weQy(G,T,). Since
£S5, =1t,5,, We have that w=ts,0, _,(t;5,)”". Thus

SK(m, nl)gx(nl ’ p)gk(m’ n2)8x(n2’ p) = Kp(w)Km(wal - 112) .

Since ts,(x, —a,) is a real root we have x,(w)=1, and since a,—a, is a
noncompact root of (G,T,) “not from H”, we have x,(w,, _,,)=x,(%, —a,)")
= —1. On the other hand.

e (m,ng)e_ (ny,ple (m,n,)e (n, p)=sgnw SENW, g, -

Since w is the reflection with respect to a real root, w fixes the imaginary roots of
T, and sgnw=1; sgnw,, _,, = — 1. Thus (3.5.5) holds if a, is compact. Suppose
now that «, is noncompact. Perform a standard Cayley transform with respect to
;. Then the image &, of «, is compact, since the subgroup of G generated by T,
and the roots «,, @, must be of type Sp(2,2). There is & in the imaginary Weyl
group of the image of T such that @4 is noncompact, because there exist Cayley
transforms with respect to &, (cf. {14, Lemma 4.117). Let o be the preimage of @ in
G, T,). Then wa, =a, and we, is compact. Thus for the case o, noncompact
(after we have adjusted i,, to obtain «; noncompact) we may further adjust i, to
obtain o, noncompact and «, compact. Then our previous argument applies, and
the case oy, a,)» of type C, is disposed of.

Suppose now that o, a, is of type 4, X 4,. An argument similar to that of
the last paragraph shows that we may adjust i, so that both «, and «, are
noncompact. Then we may adjust i,,i,,,i, so that s,,s,,¢t; and t,=t,s,;5; ! are
each standard. The product of all terms ¢,(,) is one. To compute the product of
all terms ¢, (,) we observe that if we (G, T,) permutes ¢, and «, then the product
coincides with sgnwsgn® where @ is the automorphism of
{ee A(G, T,) (o, a}> = (o, a}> =0} obtained by restricting w to this system (cf. [15,
paragraph following Lemma 11.3]). If we inspect the various irreducible reduced
root systems we find that such an w exists and that sgnwsgnd®, which does not
depend on the choice of w, is one. Thus (3.5.5) follows. This completes the proof for
the case T, =T, ..

Suppose now that T, and T,, are not conjugate. Recall that T,, is compact and
G simple. Thus a,,a, must be of different length. We may therefore assume that G
is of type B,, C,, F, or G,. The case of type G, has been dealt with in [15, Sect. 11].
Thus we will assume that G is of type B,, C, or F,. Also, o, will be the long root.

Suppose that o), «, are not perpendicular We may assume that
ay =0y +(s7) 7By, By=s)(cy —(s}) ' B,) and that £,5, =1,s}. Then adjust i,, so that
a, is noncompact ; if «, is then compact we may further adjust i,, to obtain both «,
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o, noncompact. Then we adjust i,, so that s, is standard. This implies that f, is
noncompact (arguing in Sp,). Next we adjust i, so that ¢, is standard, and i,, so
that s, is standard. Then f, is noncompact (arguing again in Sp,) and ¢, =t¢,s,5, !
is of the form wt, where 3 is standard and w belongs to the subgroup of (G, T,
generated by the Weyl reflections with respect to the (real) roots «,,,. Hence

g (m n e fn,, pe(m,n,y)e (n,p)=1.

On the other hand, we compute the product of all terms ¢ (,) as in the paragraph
following Lemma 11.3 of [15]. Explicit calculation shows that the product is one.
Finally, suppose that o}, o, are perpendicular. Then both («},«,)» and
Koy, o, are of type A, x A,. We can argue as earlier (case «), o, of same length)
to show that the product of all terms ¢,(,) is one. Explicit calculation shows that
the product of all terms ¢, (,) is one also.
This completes the proof of the theorem.

(3.6) Conclusions

We have now attached to each admissible embedding ¢ :“H "G of unitary type,
two admissible families of (G, H)-orbital-integral-transfer factors. If {4, ,} is one
family, then {— A4 1 is the other.

Note that, by [16], if G is quasi-split then ¢, 5 :“H -G have attached the same
two families of transfer factors if and only if ¢ and # are ®-equivalent, that is, if and
only if &,  induce the same map &(H)— &(G) on L-packet parameters (cf. Sect. 4).

We remark that the condition that & be of unitary type is only for convenience.
An arbitrary admissible embedding ¢:"H -G provides quasicharacters AS [cf.
(3.3.3)], in place of characters. However, by [16, Sect.9], we may find a
quasicharacter on H, say A,, so that AS=A,A} for each n, where we have
transferred 4, to T without change in notation and {A%*} is a set of unitary
correction characters. Thus the families attached to {A%} as in (3.3) will match the
k-orbital integrals of fe %(G) with the stable orbital integrals of a function f’ on H
such that A, ' f'e €(H) (clearly such a function has well-defined orbital integrals).

(3.7) Definition of q(G, H)

We begin with the assumption that the fundamental Cartan subgroups of H
originate in G; then the set of Cartan subgroups “shared by G and H” is
nonempty. Suppose that the fundamental Cartan subgroup T’ of H originates
from T in G. Let 7" be the dimension of the maximal compact subgroups of M.,
and 7 be the dimension of the maximal compact subgroups of M;. Then we set

4(G, H)=1/2(z—7).
Clearly g(G, H) does not depend on the choice of T" and T.

Proposition 3.7.1. (i) ¢(G, H) is an integer.

(i) If H=G* then q(G, H)=1/2(t;—ty)=q¢— gy, where 1 is the dimension of
the maximal compact subgroups of G and 24, is the dimension of the symmetric space
attached to G,

Note that (ii) reconciles g(G, H) with the choice in [14].
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Proof. For (i), let a be the dimension of the derived group of My, b be the number
of positive roots of (M4, T) and ¢ be the dimension of the center of M ; define a', b/,
and ¢ similarly, with respect to (Mj,T). Then a=2b—c+dimT and
a'=2b"—c'+ dimT. Hence b—b'=1/2((a+c)—(a'+¢')) and so (b—b")~1/2(z— 1)
*=qp,—du, it the notation of (ii), since the split components of the centers of M
and M. are isomorphic over R. But g,,,_and g, are integers since My and M.
- are cuspidal. Hence (i) follows. Also, (i) follows from this discussion and
Lemma 2.8 of [14].

Corollary 3.7.2. ¢(G, H)=¢(G, G*)+¢(G*, H).
If the fundamental Cartan subgroups of H do not originate in G we set
4(G, H)=q(G, G*)+ q(G*, H),

both numbers on the right-hand side of this equation being well-defined.

4. Lifting Characters

Throughout this section H will be an endoscopic group for G, with s, =(s;, “H)
fixed so that “H is in standard position (with respect to some standard Cartan
subgroup of G*). We assume that “H embeds admissibly in “G and fix
E=¢E(p*, 2*):"H -G of unitary type. Then {47, will be one of the two
admissible families of (G, H)-orbital-integral-transfer factors attached to & As in
Sect. 3, we write 4,5, as

(- l)q(G' ms(T; 'T)A(T, n)‘A(T, »

where (T,n)=+1, A1, is a character on T and ‘4, is the “discriminant”
function of (3.1).

The family {4, ,} determines a correspondence (f, f') between the Schwartz
spaces 4(G) and ¥(H). Let @' be a stable tempered distribution (cf. [ 14, Sect. 5]) on

H and set
o(fN)=0'(f), [fe¥€G).
Lemma 4.0.1. O is a well-defined invariant tempered distribution on G.

The proof is straightforward (cf. Proposition 6.1 of [14]); we omit the details.
We call @ the lift of ©' to G.

(4.1) The Lift of a Stable Tempered Character

Let ¢,(H) be the set of parameters for the L-packets of infinitesimal equivalence
classes of tempered irreducible admissible representations of H; if ¢'e §,(H) then
11, will denote the attached L-packet. In [14] we have established that the
tempered distribution

X¢'= Z Xn

nellyr
is stable. Our main purpose now is to compute the lift of x, to G.
Let ¢ be the image of ¢’ under the map £%: @(H)— ®,(G) induced by our fixed
embedding ¢:YH -YG (cf. [16]). We will say that ¢ is relevant to G if ¢ lies in the
subset @,(G) of Dy (G*).
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Theorem 4.1.1. (i) If ¢ is relevant to G then the lift of ¥, is Y &n)x,, where each

nell,
&(m) is a number, either +1 or — 1, as defined below [cf. (4.4.3), (4.4.10), and (4.5.1)].
(i) If @ is not relevant to G then the lift of x,, is zero.

Corollary 4.1.2. In the notation of the theorem, Y, &(n)y, vanishes on the Cartan

T i
subgroups of G not originating in H. "

The proof of the theorem will occupy the next several subsections.

(4.2) The Lift of a Stable Tempered Eigendistribution

It will be useful to know that the lift of an eigendistribution is an eigendistribution.
More precisely, let 2 be the center of the universal enveloping algebra of h, and &
be that for g. Then we define a homomorphism #—%" as follows. Identify the
symmetric algebra on the Lie algebra t of a torus T with the universal enveloping
algebra U(t) of t. Let U(t)? denote the set of invariants in U(t) of the (appropriate)
Weyl group Q. There is a canonical isomorphism U(t*)— U(t,) inducing a map
U(E*)2C T 2(t, )T and canonical isomorphisms U (£)6D— 1 ({*)2E T,
UEYETIS (4 )?BTm for any maximal tori T in G, T in H. Let
I:Z->Ut)?C™ and I'": 2> U(t,)°™ ™ be the Harish-Chandra isomor-
phisms. The element p*eX (*T°)®QC provided by &=E&(u*, A*) is naturally an
element of Hom(t*,C) and so induces an isomorphism I, of U(t*);
LX)=X+p*X)I, Xet*. Since {(u* a')=0, aveA("H® T, I, preserves
U(t,)?®TH. We will use z—2' to denote the homomorphism (I")” el oI of &
into &, If ¥’ is a character on & then we may define a character y on by

wW)=1(), zeZ.

If y' is attached to the Q(H, Tp)-orbit of the linear functional u’ on t, then y is
attached to the Q(G*, T*)-orbit of u=y'+ p*, on our identifying t, with t*.

Lemma4.2.1. If 70 =y (z)0', 7%, then 20 =y(2)O, ze Z.

Proof. Let fe 4(G) and suppose that f'e €(H) corresponds to f under our fixed
(G, H)-orbital-integral transfer. Then it is sufficient to prove that (z)*f" cor-
responds to z*f. Here * denotes the adjoint; note that z—z' does not respect this
operation. The correspondence is verified by a simple modification of the
argument in the proof of Lemma 6.2 in [14]. We omit the details.

There is then an analytic class function Fg on G,., such that

4.2.2) ()= ;m Tn g Fo(y)® (v, dt,dg)J5(y)dt

for fe4(G), where J5(y)= [] |1—a(y™ ") and the summation extends over a set
aeA(G,T)

of representatives for the conjugacy classes of Cartan subgroups of G (cf. [3,

Sect. 13]). The integrals on the right-hand side of (4.2.2) are absolutely convergent.

To describe Fg in terms of F it is sufficient to give a formula for Fg on TG,

Proposition 4.2.3. If no Cartan subgroup of H originates from T then the restriction
of Fg to TNG,,, is zero.

reg
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The proof will be included with that of the next lemma.

Suppose now that ‘U7’ ..., ®T represent the conjugacy classes of Cartan
subgroups of H originating from T Fix (T,n,)e I4(G) with attached k,, and
i,=i(h,,n,): OT'—T defined over R, v=1,...,R. We set

FQ)=(Fe-iy Ny, 7yeTnG

reg?

and
AV =xp* =100 1 A=aly™ )7 [ eV —aly) 137}
a>0 >0
x‘ia(za_v )_: 1 k:::‘:’ )“;1

where a>0 means that a belongs to the positive system for A(G, T} determined by
(n,B*),1=1/2 Y  aand p* 1* denote the transfer to X*(T)QC by 1, of the

a>0
sa=~a

Ky(aY)+1

data p*, A* provided by our fixed embedding ¢ :“H -IG. Finally, we fix v and set
n(T)=#{ae AG,T): a>0,00=—o,x,(a") % 1};

n(T) does not depend on the choice of v among 1,...,R.

Lemma 4.2.4. For ye TnG,,, we have

R
Fgly)=(=1)%¢0*D %" T n,) > K@) ATV FR5).
v=1 weRo(G, THRVNG, T)
Recall that QuG,T)={weQG,T):ws=06w} and that Q%G,T)
=Q,(G, T)nQ™)G, T), where Q*YG,T) is the subgroup of Q(G,T) generated
by the reflections with respect to the roots a of (G, T} for which x(aV)=1.

Proof. Let fe C3((TNG,,)%). We may calculate @'(f") as

1 R T s

L @ T 1o, P00 e NI
where the summation extends over a set of representatives for the conjugacy
classes of Cartan subgroups of H. If 7" does not originate in G then the integral
over T'nH,,, vanishes by our definition of (G, H)-orbital integral transfer. If T
does originate in G, but from a Cartan subgroup not conjugate to 7, then the
integral over T'NH,,, again is zero, by definition of f. Thus Proposition 4.2.3 is

proved. For Lemma 4.2.4, we may replace Y by ). ; we then use {i,} to obtain an
T (9L

integral over TNG,,,. Our (G, H)-orbital-integral transfer and some elementary

manipulations give the formula asserted. We omit the details, except to note that

(= OB DY T )4 = A, TFTTD ™Y,

[cf (3.1.3), (3.3.3), and (3.L.5)].

(4.3) Some Parameters for Tempered L-Packets

We recall some definitions concerning L-packets, and state a theorem
(Theorem 4.3.2), a special case of which we will need for the proof of
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Theorem 4.1.1. We will then prove that special case. In (4.6) we will use
Theorem 4.1.1 to complete the proof of Theorem 4.3.2.

A homomorphism ¢ : W— G is admissible if, for each we W, o(w) is of the form
@o(w) x w, where ¢ (w) is a semisimple element of “G°. Two such homomorphisms
are equivalent if they are conjugate under 1G°; the set of equivalence classes is
denoted @(G*). The subset of classes of homomorphisms ¢ for which @(W) lies
only in parabolic subgroups of G relevant to G is denoted ¢(G); then ¢, or its
class, is relevant to G. We write {¢} for the equivalence class of ¢ when there is
need to distinguish between a homomorphism and its class; at other times, both
will be denoted by ¢, as in (4.1).

A homomorphism ¢: W—"'G is tempered if @(W) is bounded; ®,(G*) will
denote the classes of tempered homomorphisms and @y(G)= H(G)NPy(G*).

For the rest of (4.3) we will assume that there exist irreducible unitary
representations of G square-integrable modulo the center of G (that is, discrete
series representations of G). This is equivalent to the assumption that there exists
an element g of *G° such that g x (1 x ¢) normalizes *T° and acts as —1 on the
roots of (*G°,“T?). Two such elements g x (1 X 6), g’ x (1 X 6) have the same action
on “T9; this action will be denoted by &.

Let X={(2):pueX (*T)RC, 1eX (*TOQC/X T+ {v—av:veX,
(TO)®CY, and 1+1/2(u—5w) +(A+54)eX (*T°), Aei}. Here 1 denotes one-
half the sum of the roots of (*B°,*T0). If G is semisimple then 7 acts as —1 on
X, (*T°)®C, so that X may be identified as 1 +X ,(*T°). The group Q(*G°,“T?) acts
on X by the natural action on each coordinate; the action on the second
coordinate is trivial. By an orbit in X we will mean an orbit of Q*G°, T?); an orbit
is regular if it has no fixed points, and singular otherwise.

For p,AeX (*T°)®C satisfying 1+ 1/2(u—5p)+(A+51)eX (*T°), we define
admissible =~ homomorphisms @:W-LG as  follows. First, set
o(zx 1) =2(p, 2) x (z x 1), ze C*, where z(u, A)e*T° and 1¥(z(y, A)) = 2+ "7z< 2"
A¥eX*(LTP). Then choose n in the normalizer of “T? in *G° such that nx (1 x o)
acts on 'T° as & and AVm=e2™*A veX (LGOCX, (T set
¢(1 x 6)=n x (1 x o). That ¢ is a homomorphism follows from Lemma 3.2 of [10]
(cf. [16, Appendix]). We write ¢ = @(g, ).

Lemma 4.3.1. If o=¢(u, A) and ¢'= @', X') then ¢’ is equivalent to @ if and only if
(1, 4), (', &) belong to the same orbit.

Proof. Let ¢’ =adgo@, ge*G®. By modifying g by a suitable element of the
centralizer of ¢'(€* x 1) in (*G°),,, we may assume that g normalizes “T°. The rest
is immediate.

Since we are interested only in homomorphisms with bounded image we set
X,={(gp,A)eX: Rep=0}; X, is invariant under Q(“G° "T?). Clearly we have
established a 1 —1 correspondence between orbits of X, and a subset of @,(G*). If
O is an orbit we denote by {¢}, the corresponding parameter. The parameters
{@},, O regular, are precisely the classes of those homomorphisms ¢: W—"G for
which ¢(W) is (bounded and) contained in no proper parabolic subgroup of G...
the discrete parameters.

Let @ be regular. Then to {p}, there is attached an L-packet of discrete series
representations of G, as follows (cf. [10]). Choose (i, A) such that (i, A)e @ and let ¥
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denote the (unique) system of positive roots for (:G% L T?) with respect to which g«
is dominant. Fix a Cartan subgroup T of G, compact modulo the center of G, and
a p.d. n of T. Via 5, transfer p, 4, 6 to X¥T)®C and ¥ to a positive system for
A(G, T), without change in notation. Then & acts as the Galois automorphism of T.
Also if 1, =1/2 }" o then the characters y(wu— 1y, 4), € (G, T), are well-defined.
ac¥

To we (G, T) we attach the discrete series representation n{w, ) with character
O(wu, 2, o¥V), where

(—Dsdeto Y, detwoy(womp—1y, )
woeA(G, T)

[Taa—a™h

ae¥

and g, is as defined in (3.7). The set {n(w, ¥): we (G, T)} does not depend on the
choice of p, 4, T or , and forms the L-packet attached to {¢},.

Suppose now that @ is singular. Again choose (i, A) such that (u, A)e 0, and
some positive system ¥ for A(*G°,LT°) with respect to which u is dominant. Fix T,
n and transfer y, 4, ¥ as before. Then distributions &@(wu, 4, 0¥), we AG, T), are
again defined, by coherent continuation of the characters @, ,) attached to
regular orbits (cf. [5], also [17] since G may be disconnected ; our notation is
easily reconciled with that of [, 17]). The collection {@(wp, 4, ©¥P): we (G, T)} is
independent of the choice of u, A, ¥, T, and #.

On the other hand, ¢ = ¢(u, ) may factor through parabolic subgroups of G
not relevant to G. Then ¢ is not relevant to G; that is, {o}={e}, ¢D(G).

@(OOH, As ww)lTﬁGres =

Theorem 4.3.2. (4.3.3) If ¢ is not relevant to G then each of the distributions
Olop, A, 0¥), weXG,T), is zero.

(4.3.4) If @ is relevant to G then the non-zero distributions in {@(wp, A, 0¥):
we G, T)} are exactly the characters of the representations in the L-packet
attached to {¢}.

Regarding (4.3.4), the non-zero distributions among the @(wy, 4, »¥) are well
known to be tempered irreducible characters; it is only the assignment of (the
underlying representations of) these characters to L-packets that we have to check.

A simple argument with K-types shows that if @(wp, i, 0¥)+=0 then
'y, A, &' P)=0O(wp, A, w¥P) if and only if w'e(G, Tw (cf. [19, Sect. 7] for
similar arguments).

As indicated earlier, we postpone the proof of Theorem 4.3.2 until (4.6), apart
from a special case.

Set A = {0V e A*G®, L T°): (p, ¥y =0}.

Lemma 4.3.5. Suppose that A) is of type A, x ...x A,. Then (4.3.3) is true.

Proof. Let Al ={taj,..., T o)}, where each a} belongs to ¥. Clearly the coroots
ay,0%,, ... are ¥-simple. In the next paragraph we will fix (T, %), transfer p, 4, ¥, «,
etc. to T and define @(wp, 4, ¥) accordingly. If we &G, T) then wa,, wa,, ..., wa,
are P-simple. Therefore to show that &(wp, 4, w¥) is zero we have only to show

that there is a compact root among wo,, @x,, ..., w, (cf. [5, Proposition 3.61, also
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{19, Lemma 7.3]). Returning now to the L-group, set
.- {expn/4(Xa§, -X_ ) i e(lx )Xy =X_u
j

~a

Clexpim/AXy +X ) if e(lxe)Xy=—X_g

and s=s,...s,. Recall that the root vectors X,, were fixed in (1.3). Define ¢, by
@, (W)= S(p(w)s L oweW, ie. ¢, =adscq. Then @,zx1)=p(zx1), zeC", and
@,(1 x 0) normalizes “T°, acting on “T° as w, ...w,y - (1 X 6)|Lo. By replacmg
(u,2) by some suitable (wu, 1), we Q(LG0 LT°) we may assume that
Wy -0,y (1 X 6)|oo=07., for some standard maximal torus T* in G*; here we
have used ¢, to denote the canonical transfer of the Galois action on T* to X T° by
an element of adMgz. Let M*=Mj, and “M be the L-group of M*. Then
A(*M°,“T® consists of the roots of (“G°*T°) perpendicular to AY. Clearly
(pl(W)CLM and ¢, is a discrete parameter for M*. By the assumptlon of (4.3.3),
LM is not relevant to G. Hence T* does not originate in G.

The pair (T, ), used to define @(wu, A, w¥?), will be chosen as follows. In G* we
have fixed T*; fix /e M* such that adim: T*>T*. The roots a}, ..., of (“G°,T?)
are transferred to coroots of (G*,T*) by adm. Taking coroots, we obtain roots
oy, ..., o, of (G*, T*). These roots are real. We let s* be a standard inverse Cayley
transform with respect to o, and set T =(T*)*1¥ F=adm(s*...s¥)"!. Clearly
T% is compact modulo the center of G* and y: T —»T*. We then fix adacy™!:
T -G over R, ae G, and let T be the image of T®"; for # we take the now obvious
p.d.

We use 7 to transfer «f, ..., oY to coroots for T, and again denote the dual roots
by a;, ...,2,. We claim that after some sequence of Cayley transform with respect
to roots among «, ..., a,, at least one «; becomes totally compact in the following
sense.

Definition 4.3.6. Let T be a Cartan subgroup of G and o be an imaginary root of
(G, T). Then o is totally compact if and only if each wo is compact, for w in the
imaginary Weyl group of (G, T) or, equivalently, for we W(T).

A necessary and sufficient condition that there exist a Cayley transform with
respect to a (in the sense of [16]) is that « not be totally compact (cf. [147]).

If our claim were false, then a sequence of Cayley transforms, using all roots
among a,, ...,&,, would produce a Cartan subgroup of G from which T* originates,
a contradiction.

We claim next that each set {wa,, ..., wa,}, weG,T), contains a compact
root. If not, then some {wya, ..., W} contains only noncompact roots. Because
the roots are superorthogonal (that is, { £ wya,, ..., T wya,} exhausts the roots in
the @-span of wya;, ..., wen,), N0 root in this set can become totally compact after
a sequence of Cayley transforms, a contradiction. Hence Lemma 4.3.5 is proved.

Lemma 4.3.7. Suppose that A} is of type A; X ...x A. Then (4.3.4) is true.

Proof. The Levi group “M of the last proof is relevant to G. Thus T* originates in
G. Let adboy: T—T* be defined over R. We transfer «,, ...,, from T* to T via
adb-y and without change in notation; «,,...,«, remain real. We let s, be a
standard inverse Cayley transform with respect to a,, v=1..,r. We choose
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T=(T)**s>> and set n=7(s,...s,)” !, where 7 is the p.d. of T implicit above;
oy, ..., o, are noncompact on T.

The L-packet attached to {¢} is described in terms of data attached to the
homomorphism ¢, : W—"M defined in the last proof. Let ¢, =¢ (u,, 1,) relative
to “M. Then p,=p and i, =imod(X (*T%+{v—a&v: veX (LT°)®(E}) Let
¥ =¥YnA(M° LT and P be the parabohc subgroup of G with Levi component
M = M defined in (1.3). Then the L-packet in question consists of the constituents

of Ind( D o, P)R1; P, G). To decompose the the representations
we2(M, TH\N2M,T)
Ind(n(w, P)® 15, P, G) we appeal directly to the Hecht-Schmid character identities
(cf. [6, 17]). Note that the representation n(w, ¥) of M has character
@(wu,ll,w?’)
Let T,=s,Ts7 " and 7, =%-adsy . Set M, =M; and ¥, =¥nA("M},1T°);
a is P -s1mp1e Then on M, we have

(4.3.8) @(a)u,ll,w?’l)+@(wﬂ,ll,wmw'}’l)
=Ind(@(wp, A, 0P)®1 5.5, M(INOM ), M),

weQM,T), if w,, is not realized in M, and

(4.3.9) O(wp, A, 0P )=Ind(@(op, A, 0P)®15 57, M(NOM ), M),

0eQM,T), if w,, is realized in M,. On the left-hand side, (M, T) has been
embedded in Q(MI,TI) via s ; @, U Ay, Y’ and «, have been transferred also,
without change in notation. To Justlfy (4.3.8) and (4.3.9) we must check a property
of 4,. Calculation shows that ¢,(1x0)Xy =—X,, but, on the other hand, a
lemma of Langlands (cf [1, Lemma 2.3]) implies that ¢,(1x0)X,
= (=1t *UX ., where ¢, denotes one half the sum of the coroots for
the roots in ¥,. Thus {24,,a!>=<g,,a}> (mod2Z). This ensures that (4.3.8) and
(4.3.9) are well—deﬁned Hecht-Schmid character identities (cf. [6], also [17]).

To continue our argument, we set T,=s,T,s; !; etc. After r such steps we

conclude, by induction in stages, that Ind< D i, 0P)@1 P, G)

we(M, T)\Q2M,T)

is a sum of characters @(wy, 4, w¥), where w lies in the subgroup Q (G, T)
generated by the reflections with respect to a,, ..., a,, together with the reflections
with respect to the roots perpendicular to each of «, ..., o,. For each we Q (G, T),
O(wu, 4, ') appears in the decomposition of the induced representation. On the
other hand, the irreducible constituents of this induced representation appear with
multiplicity one (Multiplicity One Theorem for unitary principal series and
Lemma 3.2 of [14]). Thus we obtain

Ind( @ @(wu,ll,wlf’)®l> = ¥ Owp, A, w'P).

we2(M, THQM,T) . @G, T\AG, T)2(.,)(6,T)

To complete the proof of Lemma 4.3.7 we have only to show that if
w¢Q(G, T)Q (G, T) then Olwp, 4, 0¥)=0.

We have arranged that «,, ..., «, are all noncompact on T Suppose that also all
of wa,..,w0, are noncompact. Then we have just to show that
we G, T)Q,(G,T). There is w,eXG, T){1,w,,> such that wa, =w,a; [14,
Lemma 4.2]. Then both a,, w; 'wa, are noncompact and superorthogonal to o,.



L-Indistinguishability for Real Groups 409

Now apply a standard Cayley transform with respect to o, to T. Then both o,
w; ‘oo, are noncompact on TV, the image of T, and w; 'w belongs to the
imaginary Weyl group of T™). Choose o, in the real imaginary Weyl group of TV
so that (w))”'w; ', =0, and let w, be the preimage of w), in &G, T). Then
0,€(G, T){1,w,,> [14], and w; ‘o] 'wa, =w] 'wx, =a, so that wo, =w,w,a, ;
w7 ‘o7 oo, =a,, so that we,=ww,x, Also, w0,eXG, T)<1,m,,0,,.
Proceeding by induction, we thus find w;, .., w, such that wy,=w,w,...0%,
i=1,..,r,and w,0,...0,eQ(G, T)Q(M)(G, T). Lemma 4.3.7 now follows.

(4.4) Proof of Theorem 4.1.1 (Two Cases)

Suppose that ¢': W—LH is a tempered admissible homomorphism. Then the
image of {¢'} under £%: @ (H)—d,(G*) is simply the class of p=¢E0¢'.

We assume first that both {¢'} and {¢} are discrete. We may take ¢'=op(u', 1),
where (¢, ') >0 for all roots a" of (*H° LB, T°). Then ¢ has parameters (, A),
where p=p' + u* and A=A1"+ A*. Since we have assumed ¢ discrete we must have:

(4.4.1) the action of ¢'(1 x ¢) on XT°, which coincides with that of @(1 X o), is by
—1 on all roots of (*G°,-T9), and

4.4.2) {y, o> +0 for all roots of (*G°,LT9).

Our first task is to define the numbers &(n), ne IT,,,. First, there exists a unique
element w, of Q*G°,T°) such that {w,u,a") >0 for all roots «” of (*B%,T?). Let
Thbea Cartan subgroup of G, compact modulo the center of G. Since ¢ is discrete
such a Cartan subgroup can be found. We pick # such that (T, n)e 7,(G); this is
possible, by (4.4.1) and Lemma 2.4.2. Set ¥=4(*B°*T%. For weQ(G,T) we
define n(w, P) as in (4.3), and set

(4.4.3) &(n(w, P))=detw, T, n)x(ww,).

Here we have transferred w, to T via 5, without change in notation.
Proposition 4.4.4. &(r) is well-defined, ne Il

Proof. Each nell, is of the form m(w,¥), some weQ(G,T). Further
n(w, P)=n(w,¥) if and only if w=w,w, some w,eXG,T). Since
K(wyww,) =Ky k(ww,) = K(ww,), the assertion is immediate.

The next result can be deduced from our proof of Theorem 4.1.1, for we will
show that if &(n) is defined as in (4.4.3) then the lift of x,, is Y. &m)y,. Nevertheless
a direct proof is of some interest. rell,

Lemma 4.4.5. &(n) is independent of the choice of (T,n).

Proof. Suppose that T is a Cartan subgroup of G, compact modulo the center of G,
and (7, . 71)€ T {(G), with attached character k. Then #=7-w, where wye A(T) maps
T to T. Hence =x* and &T;#)= x(wy)e(T,n). Now replace T by T in the
definition of g(n). It is sufficient to consider two cases: w,€ (G, T) and w,eG. In
the former, n=rn(w, ¥) becomes m(ww; !, ¥) and w, is replaced by W, wg .
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Hence &(r) is replaced by

K(wo) Kk (wwy wew, wg )
Kwaw,)

_ Kow, ' myw,0q 'oy)
- K(ww,)

&(m)

gny=¢(n).

In the latter case, n=n(w, ¥) becomes n(w,ww, !, ¥) and &(n) is replaced by

k(o) K wowwy ' wew, wg 1)

g(n) =¢(n)
Kow,)
again, and the lemma is proved.
It remains now to verify that the lift @ of x,, to Gis Y, e(m)x,.
nell,
Lemma 4.4.6. (i) @ is a tempered invariant eigendistribution with infinitesimal
character p. Regard © as a function on G,,,. Then:

(i) on TAG,,,

nelly ’
(ili) O vanishes off G,.,"Z(G)G®, where G° is the identity component of G, and
Z(G) the center of G.

Proof. (i) follows from Lemma 4.2.1. For (ii), fix i(h,n): T'>T over R; this data

includes adh:T'—T,, which serves as pd. for T' in H. By definition,

Ao = Y Oloy, ¥, o¥’), where ¥'=¥YnA*H?, *T%=AH°~'B°,
weSAH, T')\QMH,T)

LT9). Lemma 4.2.4 then implies that

O coincides with Y &)y, and

O(y)=(— 1)HGB+Dg(T y) Y Kk(w) A7)
wef(G,T)/2¢NG,T)
O, 11,0 ¥) ()
w’'eQ(H, T'\QH,T)

for ye TNG,,,, where 4%/ is as in (4.2). Explicit calculation shows that this
expression coincides with

detw, &(T;7) Y Kww,) Owo g, A, 0¥P) (),
we(G, TI\(G,T)
and (ii) follows.

For (ii1), it is sufficient to show that if U is a Cartan subgroup of G from which
Cartan subgroups of H originate then |y, vanishes off UNnZ(G)G°NG,,,
Suppose that U’ is a Cartan subgroup of H originating from U. Then since x,, |y
vanishes off UnZ(H)H Or\H,eg, it is enough to show that each of our maps i( , ):
U'—U defined over R sends U'nZ(H)H® into UnZ(G)G°.

First, (U'nH},,)° is mapped into UnG),,. Representatives for the cosets of
(U'nHS, ) in U'nH),, are given by {expind": o, AV =AY, 1Ve Z[4V(H, U')]}, since
U’'nHY,, is the image of the IR-rational points in the preimage of U’ in H_, (cf. [16,
Sect. 4.17). Under i( , ) these elements are mapped into UNZ(G)G°. Recall that T
is compact modulo the center of G. We have that T=Z(G)(TNGS,,). If ze Z(H)
maps into Z(G) under i(h,n): T'-T then clearly z maps into Z(G) under i(, ):
U'—U. Thus suppose that z maps into TnG3,, under i(h, 7). Suppose also that U’ is

obtained from T’ by a Cayley transform s’ with respect to the root « of (H, T).
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Then U is obtained from T by the Cayley transform s=i(, )os'<i(h,n)”! with
respect to a, the transfer of &' to T via i(h,#n). Also a(i(h,n)(z))=1. A simple
argument, using passage to G_,, shows that if a(y)=1, ye TnG?eg, then y*e UNG),..
Since (i{h, )(2))° is the image of z under i( , ) we are done. For a general Cartan
subgroup U’ in H originating in G, we may pick a suitable sequence of Cayley
transforms starting from 77, and argue similarly. This completes the proof of
Lemma 4.4.6.

We conclude now that @ coincides with Y. &(n)y,, by lifting the eigendistri-

rell
bution © — ) &) x, on Z(G)G° to G, and applying Harish-Chandra’s uniqueness
theorem. Hence Theorem 4.1.1 is proved for the case that both ¢’ and ¢ are
discrete.
Next we retain the assumptions on ¢/, so that ¢'=¢(u, A) is discrete and
¢'(1 x 6) acts on all reots of (*G°,*T®) by —1 [cf. (4.4.1)], but no longer assume

that @ =o' is discrete. Recall that ¢ = (i, 1), where u=g' + u*, 1=21"+1*

Proposition 4.4.7. AY = {a¥€ A(*G°, *T°): (0> =0} is of type A, X A, X ... X A,.

Proof. Tt is sufficient to show that if a¥, f¥e4Y then o¥ + p¥¢ A(*G°LT°). Recall
that sy =(sg, “H), and sg is a coset of Z" in 'T°. We argue in *G%/Z". Clearly
sp=1, a¥e A(H® T°),if and only if a¥(s,)=1. Because ¢’ is discrete, aVed
implies that «'¢A(*H®,*T°). Then «¥(s5)= — 1, and the proposition follows.

We will compute @, the lift of X to G, in terms of the distributions
Olwp, A, 0¥), and then apply Lemmas 4.3.5 and 4.3.8.

Because of (4.4.1) there is a Cartan subgroup T of G compact modulo the
center of G; also we may choose 7 so that (T,n)e 74(G). Let ¥ =A(*B°,LT°). Asin
the case ¢ discrete, we choose w,, such that w, pis ¥Y-dominant; o, pu is uniquely
determined but w,, is not. Again we transfer w,, p, 4, ¥ to T without change in
notation.

Lemma 4.4.8. © =detw, &T,n) Y Kow,)O(wwui,o¥P).
wesAG, TG, T)

Proof. We have already proved this in the case that w pu is strictly ¥-dominant
(that is, ¢ discrete). If w, u is singular, but still ¥-dominant, then the right hand
side of (4.4.8) is obtained by coherent continuation to the wall (cf. [5, 17]). Thus it
is sufficient to prove coherency of the lifts to G of the characters

Oy, N, 0'¥), where ¥Y'=¥nALH®*T?), u is (strictly)
we(H, T')\QMH,T)
¥'-dominant, T" is some Cartan subgroup of H originating from 7, and y', A', ¥’
have been transferred to T’ by some suitable p.d. Certainly the characters to be
lifted form a coherent family. Coherency of the lifts then follows from Lemma 4.2.4
(cf. [15, 16]) concerning roots etc. “from H”).

Corollary 4.4.9. If O(wwu, A, 0¥P)*0 then detw x(ww,) does not depend on the
choice of w,.

A simple direct argument using the explicit form of w [cf. (4.3)] also shows this.
If ¢ is not relevant to G then Lemma 4.3.5 shows that the lift of x,, to G is zero
and Theorem 4.1.1 is proved in that case.
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If @ is relevant to G we choose (T, 1) so that if «¥e A}, then « is noncompact on T
(cf. our earlier discussion). If mell, has character O(ww, p, i, 0¥) (cf
Lemma 4.3.7), we set

(4.4.10) e(n)=detw (T, n)x(ww,).

Then &(n) is well-defined and does not depend on the choices for (T,#) and w,.
Finally, the lift of y,, to G is, clearly, ) &),

nell ,

(4.5) Proof of Theorem4.1.1 (Conclusion)

Recall that “H is in standard position with respect to some standard Cartan
subgroup of G*. It is convenient to fix a framework of Cartan subgroups around
this group, and argue with the Levi groups so provided [cf. (3.2) and (3.4)].

Suppose that ¢':W-LH is any tempered admissible homomorphism.
Replacing ¢’ by an equivalent homomorphism, we may assume that for some n,
@' (W)C*M, and ¢'(W) lies in no proper parabolic subgroup of “M, Then
@(W)CM, since "H is in standard position. The L-packet IT,, for H consists of the
irreducible constituents of the principal series representations defined by the
discrete series representations of M, attached to ¢'. Hence x, vanishes on any
Cartan subgroup of H not conjugate to a Cartan subgroup of M,. Then the lift of
X, to G vanishes on each Cartan subgroup of G from which no Cartan subgroup
of M, originates (cf. Lemma 4.2.3).

Suppose that ¢ is not relevant to G. Then 7, (in G*) does not originate in G.
Hence no Cartan subgroup of M, originates in G. We conclude then that the lift of
Xe t0 G 1s zero.

1t remains now to consider the case that ¢ is relevant to G. Then M, is relevant
to G and M¢ is defined. To our fixed family {4 ,} of (G,H)-orbital-
integral-transfer factors we have attached a family {A{} = Af‘ﬁn} for (MS,
M. )-transfer [cf. (3.4)]. The factor 4{3 , is defined only for (T;#) subordinate to
MGE, and is chosen so that if f’e @(H) corresponds to fe%(G) under (G, H)-transfer
then fi,=f)., as defined in (3.4), corresponds to f,=fys under
(M&, M,)-transfer.

Let [1% be the L-packet attached to ¢’ as element of ®(M,), and W= Y .

nelI{n
Then x,(f)= xg‘?( S by a standard argument for induced (tempered) characters.
From (4.4) we have that
Xg")(fin))": Z e(n)(n)Xn(ﬁn))'

neng‘)
Here 1% is the L-packet attached to ¢ as element of &(M{) and
E(M) = (— DIEH—aMZMIe(T ) detw (ww,,) ,

where (T, #) is subordinate to MS, with T fundamental in M$, and n=O(ww,u, 4,
o¥,,), with ¥ =A(M)AB°, 'T° and w,u ¥ -dominant; implicit is the
assumption that ¢’ = (i, A'), with g’ strictly A(M(M.)°~"B°, *T°)-dominant.

On the other hand,

Xelfin) = Yina o 1. P, 61(f) 5
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where P¢ is the parabolic subgroup used to define f;, [cf. (3.4), also (1.3)]. Thus the
lift of y,,. to G is
> Em{T) Xind (e 1) -

nell{)

In (4.3) we expressed P O(op, A, 0¥ ) explicitly as a sum of
weHME, TH\QME,T)

principal series characters on M¢ (cf. proof of Lemma 4.3.7). We may now argue
by induction in stages to conclude that the irreducible constituents of

I=Ind [P Olwp, 1, 0¥,,®1,7, P, G) form the L-packet attached to ¢ as

element of ®(G) and, moreover, that these constituents appear in IT with
multiplicity one (cf. Lemma 3.2 of [14], and the Multiplicity One Theorem for
unitary principal series). Hence we have that the lift of y,,. to G is Y. &(n)y,, where

rell,

(4.5.1) &(m) = £,y (1),

if @ is a constituent of Ind(n™”®1, PS,G), n"ell.
This completes the proof of Theorem 4.1.1.

(4.6) Proof of Theorem 4.3.2

Recall that we have defined admissible homomorphisms ¢(u, 1): W—'G, with p
singular. Suppose that p is ¥-dominant. Then Theorem 4.3.2 states that

(4.6.1) if @ is not relevant to G then all distributions O(wp, A, 0¥P), we Q(G,T), are
zero and

(4.6.2) if ¢ is relevant to G then the non-zero distributions among @(wu, 1, '),
we Q(G, T), are exactly the characters of the representations in the L-packet II .

The notation has been explained in (4.3). We may as well assume that
¥ =A(LB°T9).

Our proof will be by induction on dim G. Both (4.6.1) and (4.6.2) are immediate
if dim G < 3. Given now G arbitrary, we choose (H, £, ¢'), where H is an endoscopic
group for G such that dimH <dimG, ¢: “H LG is an admissible embedding, and
=o', Such a choice is possible (cf. [16, Sect.9]). If £=£&(u*, A*) then
@ =@, ), where p' = p— p*, ¥ =1—A*; ¢ is ¥'=A(*H°,*T°)n¥-dominant. In
lifting characters from H to G we assume (G, H)-orbital-integral transfer via one of
the two admissible families of factors attached to &.

By the inductive hypothesis, (4.6.2) is true for H. Thus

Ko = Y Olw'y, A, '¥P).
o'eH, T'’\QH, T
Suppose that ¢ is relevant to G. Then Theorem 4.1.1 implies that the lift of y, to
Gis Y e&n)y,, with each g(n)= 1 1. On the other hand, the coherent continuation

nell,

argument of the proof of Lemma 4.4.8 shows that the lift of x,, is
dTm Y  xe)OoudoP).

el (G, TI\AG,T)

Hence (4.6.2) follows for G. Similarly (4.6.1) is true, and Theorem 4.3.2 is proved.
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(4.7) Theorem 4.1.1 as a Set of Character Identities

If we combine Theorem 4.1.1 with Lemmas 4.2.3 and 4.2.4 we obtain the following
identities.
Let ¢’ be a tempered parameter for H and ¢ be its lift to G*. Then:

(4.7.1) if @ is not relevant to G then
Y. &my,=0

nell,

on all Cartan subgroups of G, and
4.7.2) if @ is relevant to G then
(@) for yeTnG,,,

v=1
Y (M) ()= (— 1HGH+D ; (T n,)

nell,

K () A6 (y?) )y
0eR(G, T)/QU5v (G, T)

if OT, v=1,...,R, represent the conjugacy classes of Cartan subgroups of H
originating from T, and

(b) Y &(m)y,=0 on those Cartan subgroups of G from which no Cartan

nell,

subgroup of H originates.

Here we have, of course, regarded characters as (analytic) functions on G . In
Sect. 5 we will return to the stronger distribution-theoretic version of these
identities,

5. Inversion of Character Identities and the Structure
of Tempered L-Packets

Our last task is to invert the identities of Theorem 4.1.1, following the procedure
outlined in the introduction to this paper. We will assume that for each endoscopic
group H for G, “H embeds admissibly in “G (cf. [11, 16] and comments in (1.3)).
Our fixed data will be that of Sect. 1: the usual y, G*,...,XG%, ... etc., together with
a skeleton for G. To formulate our results further choices are needed, but we will
show that all but one of these choices are of no consequence. Thus, we fix a
complete set of representatives for S(*G). If H is an endoscopic group for G we
denote by s, =(sy, "H) the attached representative. We assume that “H is in
standard position with respect to some subgroup in our skeleton. We choose an
admissible embedding ¢:“H -'G of unitary type and let

{4, =(— D*Pg(T, M A, Ar.m}

be one of the two attached admissible families of (G, H)-orbital-integral-transfer
~ factors. If fe®(G) then f; will denote some function in ¥(H) corresponding to f
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under the transfer so prescribed. Recall that Theorem 4.1.1 states that

Y emyf)  if o=Eoq is relevant to G
Xolf)=10""

For most of this section we will find it convenient to distinguish in notation
between a tempered admissible homomorphism ¢: W—!G and its class in @4(G);
as earlier, {¢} will then denote the class of ¢.

otherwise.

Definition 5.0.1. Let {p}le®,(G). Then {@} factors through {@xle®(H) or,
equivalently, {@gt lifts to {@}, if ¢'=C-@y for some ¢’ {0}, pye{pyt.

(5.1) The Group S,

Let ¢:W—-'G be a tempered admissible homomorphism. Denote by S, the
centralizer of ¢(W) in “G°, by S9 the connected component of the identity 1 i S
and by Z" the set of Wlnvarlants in the center of “G° [recall the role of Z¥ in
(2.1)1. We define

(5.1.1) S,=8,/Z"s..

If G is simply-connected then “G° is adjoint, so that S,=S5,/S0. In general, let
p:1G—(*G®),, x W denote the natural projection (cf. [2]) and @,=p-¢. Then S,

1s naturally a subgroup of S, =S, /S

Suppose that ¢': WolG s equ1valent to @. If ¢'=adgog, ge“G°, then adg
induces an isomorphism S ,—S,.. Langlands has shown that S is abelian and, in
fact, a sum of groups of order two [by arguments similar to those reported in (5.3);
see also Corollary 5.4.10]. Hence the isomorphism S,—S_. is canonical. We
will often write S, in place of S,

(5.2) An Example: The L-Packets of Discrete Series Representations

We include this discussion only as motivation for the more general arguments of
(5.4).

Suppose that {@}e ®,(G) is discrete and choose a representative ¢ = g(u, A) for
{o}, with u strictly A(*B°, XT?)-dominant.

On the other hand, let T be a Cartan subgroup of G compact modulo the
center of G, and  be a p.d. of T. The group &(T) has been defined in [11]
(cf. [15]). By Tate-Nakayama duality, it may be identified with

X (TX (T )Ny —opvY :vVeX (T).

Proposition 5.2.1. n induces an isomorphism between S , and &(T)", the dual of &(T).

Proof. By [10] (cf. {2 (10.5)]), S, is contained in “T°. Thus S, is simply the set of
g-invariants in 'T° [& was defined in (4.3)]. The 1somorphlsm between S, and
&(T)" 1s then produced as in [16]. In particular, S, is a sum of groups of order
two.

To each x€ S, we now attach a representative s(z) for an element of S(*G). By
definition, x is a coset of Z" in X T°. Thus we may form (x, Cent(x)°, “B°"Cent(x)°,

LT0, {Y,}) as usual [cf. (2.3)]. To define the action of W on Cent(x)°, we have that
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o(1 x o) fixes x, normalizes 1 T° and acts on *T?° as G, an automorphism of order
two. We thus extract the action by the method of Lemma 2.1.7.

There is exactly one of our fixed representatives for S(*G), say s, =(sy, “H),
equivalent to s(x). Suppose that ge “G° and g maps s(x) to s, in the sense of (2.1).

Proposition 5.2.2. ge Q(*G°,“T°) and *=s,,.

Proof. That ge Q(*G°,-T°) follows from definitions. Next, we argue in “G%/Z". It
is clear that «¥(s,)=1 if and only if a¥(x%) =1, '€ A(*G°,“T°). To complete the
proof we have only to observe that either s, and #? are of order two or both are
trivial.

It now follows that g may be replaced only by tg, where te Cent(sy) induces an
automorphism of (“H®, “H°~"B°, 'T°, {Y,}, {wy)).

We use g to construct a homomorphism ¢’ : W—"H such that {¢'} lifts to {¢}.
Indeed, for each we W, @(w) acts on Cent(x)° as an element of *H_, the L-group
defined by s(x). Hence g@(w)g ™! acts on “H° as an element of “H. We conclude
then that gp(W)g~! lies in the image of ¢:“H -*G. Thus adg-¢@, which has
parameters (gu, A) [or (gu,gA)], is the lift of some ¢': W—'H with parameters
(gu—p*, A—A*). If g is replaced by 1g, T as above, then ¢’ is replaced by ¢, with
parameters (tgu— p*, 1 —A1*%).

In conclusion, to each xeS,, we have attached s(x) equivalent to some
sy =(sy, “H) among our chosen representatives for S(“G), and a parameter {¢'}
for H which lifts to {¢} (or more precisely, a family { @} of parameters which lift to
{o}).

We have y,(fy)= Y (@ y.(f). Recall the definition of &(n). We choose any

nell o,
(Tn)eTy(G) with T comp)act modulo the center of G. Note that gu—pu* is
A(CH°NBY, *T%-dominant, and let ¥ =A(*B°,1T°). Then

e(n(ow, P)Y=«T,n)detg w(wg™ '), weQ(G,T),

where, as usual, g has been transferred to T via # without change in notation.

Our fixed skeleton provides a (unique) suitable pair (T, #) for computing &n).
We use this pair, and then extract from &(m) a term which would otherwise fail to be
well defined. Thus, we write

e(mlw, V) =e(Tn)detg x(g™ "'~ (), 0eQG,T).

Note that if {¢'} is replaced by {¢.}, so that g is replaced by tg, then x  '(w) is
replaced by (k") (w)=xK? (w), since s, =sy; that is, k* '(w) is unchanged.
Hence we may set

(x, o, P> =K (w), we G, T).

We emphasize that (x, n(w, ¥)) is well-defined only because (T,#) has been
prescribed.

Clearly &(T,n)detgx(g™ 1) X(oy(fy) must also be independent of the choice for
{¢'} in the family attached to x. We set

2(¢')(f1{) =g(T,n)detg (g~ I)X(w')(fH) .
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Our identity then becomes:

(5.2.3) Y 5T L) = T ) -

nell ()
A more natural way to compute (x, ) is the following. Regard x as a character

on X (TE)/X (TX)Nn{vW—av': v eX (T*)®C} (cf. [16, Sect. 2.17) and let @, be the
element of this quotient determined by w and # {(cf. [15, Sect. 2]).

Proposition 5.2.4. {x, n(w, ¥)) =x(®,).
The proof is immediate.

Corollary 5.2.5. (i) (x,n) is independent of the choice for sy=(sy,“H), £:“*H -*G
and the family {4 ,}.
(1i) %o1(fu) depends only on {@}, x and f.

We write J,, »(f) in place of Ko o)
As an immediate consequence of Propositions 5.2.1 and 5.2.4, we have:

Lemma 5.2.6. (i) <xp,n)> =<z, n){n,n) for x,neS,, ne H(q,).

(i) <x,m>=Lx, 7> for all x€S,, if and only if n=n'.

We now omit { }in notation. We have identified IT,, as a subset of S|, the dual
of S,,. This subset may be proper. Let H be some leCd set containing H and in
1- 1 correspondence with S7. If e H H let x—{x, &> denote the character on
S, corresponding to 7 and deﬁne the character 1z of T to be the zero distribution

on G. We will call @ a ghost. The identity (5.2.3) is then replaced by:

Theorem 5.2.7. Y <%, 7 2 (f) = ko, »(/): fEE(G).
nell,
We are now prepared for inversion. Let nye IT » Then
Y 2 Emamdx ()= 2 <8 o) e o)

1€8, nell, xS,

We therefore conclude:

Theorem 5.2.8. y, (f)=

[S(p] xS, o€ H:p'

Corollary 5.2.9. If =, is a ghost then
Y. {570 e, 0() =0, fE4(G).

x€8,,

(5.3) Preliminaries

In this subsection we recall Langlands’ (unpublished) L-group description of the
stability group of a discrete series representation of a Levi group in G (cf. [7], for
a summary). With his permission we have included his arguments along with the
statements we need. One proof (cf. Lemma 5.3.13) is a transcription of arguments
of Knapp and Zuckerman for Theorem 2.3 of [7].

Our main conclusion will be that a lemma of Harish-Chandra shows that the
order of the group R, introduced by Langlands is an upper bound for the number
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of irreducible constituents of an attached principal series representation. We do
not make explicit the connection with the results of [ 6], since in (5.4) it will be clear
from Harish-Chandra’s lemma and a necessary and sufficient condition for the
existence of a Hecht-Schmid character identity (cf. [6], also [17]), how to
decompose unitary principal series representations directly in terms of L-group
data.

Let M be a cuspidal Levi group in G, and consider a tempered homomorphism
@: W—LG which factors through “M, but through no proper parabolic subgroup
of M. We assume that ¢=@(y, 1), the parameters being defined relative to “M
[cf. (4.3)]; u is ACMO,LT%-regular.

As before, S, is the centralizer of (W) in “G°. We say that we Q(“G°,*T) is
realized in S, if “there is seS§,, such that w=ads|.0; 2,(*G%"T°) will denote the
subgroup of Q(*G° T?) consisting of elements realized in S,

Proposition 5.3.1. weQ(*G°,'T°) is realized in S, if and only if @ com-
mutes with the action of @(1xa) on “T° and wu pt, wi=Amod (X (*T°)
+{v—o(l x oy veX (*TOHRC}.

Proof. If @ is realized in S, then only the congruence requires an argument. By
definition, (1 x 6)=0q(0) % (1 X g), where @q(a)e"M°® and 1Y(p,(0))=e?™ 4",
AVeX*MP®). If weS, realizes w then w normalizes “M°. Thus e?¥<®*+" >
=2miAAD Jvex *(LM ©). An argument as in {10] (cf. proof of Proposition 3.4.2 of
[16]) the ylelds the congruence.

For the converse we note first that we may write any we Q(*G°,*T°) which
commutes with the action of @(1xe¢) on "T° as a product w,w,, where
@,€Q(*M° 1T° and w, commutes with the action of g (... we argue in G, using
[14,Theorem 2.17 and [3, Corollary 3.5]). Then if wp =y and wi=Aimod(X ,(*T°
+{v—op(1 x o)v:veX (*T°)QC}) also, we have that w, commutes with o too
(argument in G, using Lemma 3.2 of [14]). We conclude then that wa;=ozw. By
[10], (cf. also [9]) there is an element w of “G°® which realizes w and is fixed
by a6, Let o@(lxo)=z,m x(1x0), z,€Z(*M°, me(*M%,, Then
wo(l xo)w ™ te(l X 6)" P =wz,w™ 'z 't, where te'T°N(M?),,,. Because of the
congruence and the fact that (1 xo)tp(lxo) '=t"1, wz;w 'zt may be
written as u~ '@(1 x o)ugp(l X 6) 7!, for some ueT°. Then uw realizes w and lies in
S, This completes the proof.

We will identify Q,(*G%T°) with Norm(*G°,*T)nS/*T°~S§, when con-
venient (cf. Proposition 52, 3). It is easier now to work with Lie algebras Lg, Lb, Lt,
s, will denote the Lie algebras of *G°, “B°, "T°, S, respectively. Note that s, is
reductive. Let

"t,={Xe't:p(1 x o)X =X}.
Propesition 5.3.2. 't is a Cartan subalgebra of s,,.

Proof. See [7, Lemma 3.2].

Let Ag (s, ,'t,) denote the group of automorphisms of s, which preserve 1,
~ and are of the form Ads, seS,, modulo Ad(*T°nS,)= Ad(LTO 59).
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Proposition 5.3.3. Q,(*G°,"T% = A (s,.",).
Proof. We have only to show that if se S, fixes “t, then s “T°. But if s fixes ', then
se“M°. Since ¢ is discrete relative to “M, S,n"M° =S, ~"T?, and the proposition
is proved.

We will need detailed information about the root spaces for (s, Lt‘,,). If
a'eA(tg,'t) we set X,={p'eA(*g,"t):p,, =ca'|,,, some c¢>0} and
sy=5n ) X, Clearly each weight space for the adjoint action of “t,, on “g is

BYeXyy
contained in some . €X,. Thus each root space for (g,,,) is contained in
=
some s, fretay

Preposition 5.3.4. Suppose that ¢{1 x 6)0¥ =a". Then

(53.5) Xy if QX 0K, =X, (pavy=0

(5.36) s, =Ty +o(1 x0)Xp) if o'=p"+o(l x0)BY, where {u,f’>=0
(5.3.7) 0 otherwise.

In case of (5.3.5) and (5.3.7), {u,y¥>*0 for all y'e X, distinct from a”; in case of
(5.3.6), (1 x 0)X ;v = —X v, BY is uniquely determined and {u,y">+0 for all yVe X,
distinct from a, B¥, ¢(1 x 6)BY. Suppose that ¢(1 x )Y pY for all f¥eX . Then
there exists at most one root Ve X, such that {u,B">=0, and

(5.3.8) ~ {(E(X,,v+q)(1xa)Xﬁv) if B'eX, and (uB")=0
(539)  "*T0 i (upS+0, PreX,.

Proof. Note that in the definition of s, we may replace “f¥eX,” by
“Bve X, {u, B¥> =07, by arguing with (*, L), where '} is the centralizer of ¢(C*)
in Lg. In either case we obtain a set of roots preserved by (1 x g).

Suppose that ¢(1 x g)a¥=a", (1 x 0)X ,,=X,, and {y,a")>=0. Then to prove
(5.3.5) it is sufficient to show that if f¥e X v, B¥+aV, then {g, f¥)> +0. Suppose on
the contrary that {u, 8¥) =0. Clearly o(1 x 6)B¥+8"; o, B¥, (1 x 0)p" generate a
root system invariant under ¢(1 x o). Also {y,y¥> =0 for each root y in this system.
If {a, 9> =0 then ¢(1 x o)y = —y¥ so that {u,y¥> % 0. Thus the system is of type
A, and a¥ = BY + (1 x g)B". This implies that X ,, = c[X v, (1 X 6)X,], some c+0,
so that ¢(1 x 6)X ,,= —X ., a contradiction. Hence (5.3.5) follows.

Suppose next that o¥ =Y+ ¢(1 x 6)8Y, where (g, §¥>=0. Then f¥eX,, and
{uw, ¥ —o(1xo)BV>=0, so that f¥—¢(1xe)fY is not a root. Hence a¥, BY,
(1 x g)BY generate a root system of type A4,; clearly o(1 xo)X , =~X,,. To
prove (5.3.6) and that ¥ is the only root with the property that {u, ¥>=0 and
oV =Y+ (1 x 0)BY, we have only to show that if yYeX,,, y&a¥, B, (1 xo)pY
then {u,yY)> +0. Suppose that y¥e X, y¥+a", Y, (1 x )Y and that {u,y¥)=0.
Then y¥—oyV is not a root. A check of two-dimensional diagrams shows that y¥
cannot lie in the @-span of a¥ and $Y. Thus the root system R generated by aV, Y,
y¥ is three dimensional. Since {u,d¥)> =0, §YeR, we have that ¢(1 x a)d"+ — 8",
dVeR. Thus 6"+ ¢(1 X 6)6" =ca’, some c+0, and {6Ye R:{a,6")> >0} is a positive
system for R invariant under ¢(1 x ¢). There are three simple roots for this system
one is oY and the other two are ¢V and ¢(1 xc)dY, for some 6¥eR. Since
OV + (1 x 6)0¥ =an’, a+0, we have a contradiction.
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To complete the arguments for the case (1 xo)a¥=0«", assume that
o(1 X 0)X v =X ,v. We have proved the assertions if (g,a¥>=0. If (u,a¥>+0 then
we claim that (g, V>0 for all f¥eX,,. Indeed, suppose that {u, f¥>=0. Then
BY+o(l xo)f¥=ca’, some c+0 and {u,a¥>=0, a contradiction. On the other
hand, if ¢@(1xe)X, =—-X, we have proved the assertions when

=Y+ (1 x 6)BY, where {u, §¥>=0. If &V is not of this form then arguments as
in the second paragraph show that (g, f¥> %0 for any f¥e X, different from «,
and we are done.

The arguments for (5.3.8) and (5.3.9) follow the same lines. We omit the details.

Corollary 5.3.10. The non-zero spaces among the s,,’s are precisely the root spaces

for (s,,",).

Clearly the positive system A(“B°,1T°) determines a (unique) Borel subalgebra
s, of s, containing “t,. We may write

(5.3.11) Ag, (55, ,) = R,Q5,,"1,),

where R,=Ag (s, s+,',), the group of elements in As, (5, t,) preserving s .
There is an exact sequence :

(5.3.12) 1-8,AT/SoN TS, /SO>R,—1.

The next result is a transcription of Theorem 2.3 in [7], (although we leave
implicit the connection between Ay and the superorthogonal set of [ 7]). We regard
R, now as a subgroup of Q(‘g,")=Q(*G° " T°). Let Q be the operator on

1
Hom(!, €) defined by QA= iR Y. rA, Ae Hom(*t,€). The analogue of Q on G
@ reRy
was introduced by Knapp and Zuckerman, and indeed the following argument is
essentially theirs; we include details only for the sake of completeness.

Lemma 5.3.13. Let A} ={aVe A(*g,"t)<{y,«") =0, Qa¥=0}. Then
(@) if aVe A} then o(1 x o)a¥ =a" and ¢(1 X )X, = —
(i) A} is of type A; X Ay x ... XA,
(i) R, is contained in C(A}), the Weyl group generated by Ay, and
(iv) each a¥€ A} appears in the expression of some reR,, as a product of distinct
reflections in (AY).

Proof. For (i) assume that a¥e Ay Then (u,a")> =0 implies that ¢(1 X g)a¥ 4 —a.
Suppose that ¢(1 x o)a¥+a" also. Then X, + (1l x0)X,. is a root vector for
(940 Ly o) The corresponding root is af —ocv{,_t We claim that Q(«¥)=0 is im-
p0851b1e To prove this we may assume that a¥e A('“b Lt). Then aje A(s Lt o Then
also rayeA(s,,",), reR, But ray=ravj, . Thus ra'eA("b,M), re Rq,, and
Q(x¥)+0. We conclude that (p(l x oY =a¥. If (1 x o)X, =X, then aVeA(s,, ")
and again QaY =0 is contradicted. Thus ¢(1 x o)X, = — X ..

To prove (ii) we have only to show that if a¥, B¥e A¥ then a” + 8 is not a root.
But «¥, fe A} and o¥ + ¥ a root together imply that X, , ;.= c[X,.,X,,], some
c#0, and (1 X 0)X ., 5y =X, 1 pv; 8t the same time Q'+ ¥)=0a" + Q¥ =0, a
contradiction as before. Hence (ii) follows.
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For (iii), R, is contained in (b, L), b again denoting the centralizer of
o(C*) in 'q. Further, each element of R, fixes the image of Q, and so may be
written as a product of reflections in Q(h, {t), each fixing the image of Q. These are
exactly the reflections with respect to the roots in AY.

If x¥e A} and ¥ does not appear in the expansion of some element of R, as a
product of distinct reflections in €(Ay), then clearly Q¥ =a", a contradiction. Thus
(iv) and the lemma are proved.

Suppose that ¢(u, A) is replaced by ¢’ =adweo(u, 1), we Norm(*M°,=T?°). Then
¢’ has parameters (wy, 4). Clearly Lt Ltw ;examination of 5.3.4 showsthats, =s,
and hence S2.=S%. While S, =wS,w™" and Q,(*G°, %) =w@ (G, T,
which may be distinct from S Q ("Go L9 respectlvely, we have A" =Ayand R,
=R,, by Lemma 53.13 or a dlrect argument with the definitions.

We turn now to representations. Suppose that 'M is the L-group of a cuspidal
Levi group M=M; in G, attached in the manner of (1.3); implicit is the choice of
p.d. 7 of T; n will be used to transfer data from T to LT°, and vise-versa, without
indication in notation. We continue with ¢ =¢(u, 4). Let ¥,, be that positive
system for A("M°,*T®) with respect to which u is dominant. The L-packet I7,f
consists of discrete series representations n(w, ¥,,), we QM T?), of M as
described in (4.3); n(w, ¥,,) has character @wu, A, 0¥,,). In (1.3) a parabolic
subgroup P=MN was defined We set n{w)=Ind(z(w, ¥,)R1y,P,G),
weQ(*M°,LT°).

The restricted Weyl group #7. of T acts on (infinitesimal equivalence classes of)
irreducible admissible representations of M. Let e H;‘;’. We set

W ={veW, n®=n}.

Then # is independent of the choice for = (cf. [14, Lemma3.2]). I.ct
Q,(G, T)={we G, T):wor =0ow}. Thereis a natural projection Q(G, T)— # " (cf.
[16, Sect. 5.1]). If e #" there is a unique element  in the preimage of @ satisfying
op=pandwi=Aimod X*(T)+ {v—o,;v:veX*(T)®C}. Wethushave #" —-£,(G, T).
On the other hand, n allows us to identify 2,(G, T) with the subgroup of Q*G°,*T°)
consisting of the elements which commute with the action of ¢(1 x ¢) on *T°. We
conclude the following from Proposition 5.3.1.

Lema 5.3.14. # induces an isomorphism between %" and Q,(*G°,*T°).

By means of # we regard the coroot o of a root a¥ of (*g, 1) as a root of (g, 1). Let a
be the split part of t. If & is a root of (g,n) we denote by u; the Plancherel factor
attached to & and (any one of) the representations in Hf (cf. [4, Sect. 13, 24, 36)).

Lemma 5.3.15. aV|,  is a root of (s,,"t,) if and only if u, =0 and o, is indivisible.

Proof. Let oV e A(*g, 11). Proposition 5.3.4 describes whether or not V], belongs to
A(s,, "t,). We need a further result. Suppose that ¢(1 x ¢)a¥ =aY, and Set 0, equal
to one- half the sum of the roots f of (g, t) such that ff|,=ca|,, some ¢>0 (that is,
such that f¥eX,,). Then

(5.3.16) o1 X )X = —(— 1) ATy |
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We used this result in Sect. 4. The proof has been given in [1]. We conclude then
that if @(1 x a)a¥=a" then aVeA(s,, "t ) if and only if either

(5.3.17) (—1)@rema>— 1 and  (pa'd=0
or
(5.3.18) (— 1R e =1 (VY =0

and {u,fY>=0 for some fVYeX, different from «'. Moreover, if
(— )24 ee® = — 1 and (u, ') +0 then {p, YD +0 for all fYeX,,.

We have now only to examine the explicit formulas for p; in Sect. 24 and 36 of
[4] to complete the proof of the lemma.

Corollary 5.3.16. Each representation n(w) has at most [R,] constituents.

In view of (5.3.3), (5.3.11), (5.3.14) and (5.3.15) this is a restatement of the corollary
to Lemma 3 in Sect. 40 of [4]. That n(w) has exactly [R,] constituents is, of course,
known (cf. [6]).

(5.4) L-packets of Tempered Representations

Suppose now that {¢}e &(G) is any tempered parameter. We will prove analogues
of the results of (5.2).

As usual, let ¢ be a representative for {¢} such that ¢(W)CtM, for some
cuspidal Levi group M in G. We assume that ¢ = ¢(u, 4) relative to M, where u is
AMOAEBO,LT%-dominant. Let Z(*M°)"¥ denote the set of W-invariants in the
center of “M°. The following result, due essentially to Langlands, shows that our
present definition of S, coincides with the more cumbersome one suggested by
(5.3.12) which may be reinterpreted as

1-&(T)-S,/Z(*M°)"S) - R ,—1
(see Proposition 5.4.11).
Lemma 5.4.1. Z(*M°)" =Z¥(S0n"T?)

Proof. Because ¢ is discrete relative to “M, Son"T? is the connected component of
the identity in Z(*M°)". Thus to prove the lemma we have just to show that if *G°
is of adjoint type then Z(*M°)¥ is connected, for each cuspidal Levi group M in G.
Let Y be the submodule of X*(*T°) generated by A(*M°,XT°) and the elements
A —05AY, 2VeX*(LTP). Then X*(Z(*M®)")=X*T°)/Y, so that we have just to
show that X*(*T°)/Y is torsion-free; that is, that if AVeX*(*T?) and ni¥eY for
some n 1 then AVe Y. Our system of simple roots for (*B° T°) has the property
that if «¥ is simple and not a root of (*M?,“T°) then ¢(1 x 6)a” is positive. Recall
that ACMO, 1T = {aVeA*G%, LT (1 X 6)a¥= —a¥}. We may write AY as
Z n{aV)aY, where n(2¥) is an integer and the summation is over simple roots «¥, It is
then a straightforward calculation to show that if ni¥eY then AVeY, so that the
lemma is proved.
To obtain information about S, and produce parameters which lift to {¢} we
introduce another representative § for {¢}, essentially by inversion of the process
in the proof of Lemmas 4.3.5 and 4.3.7. Recall the root system A attached to ¢:A}
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={a"e A(*G% T :{p,a") =0 and Qu’ =0}, where Q is as in Lemma 5.2.13. Note
that since ¢ is discrete relative to "M we have

Z(MO) =Z (SIAETO)
where Z,={ze Z("M°)" :a"(z) =1, a¥e A}}. It is convenient to write S, as S/Z S
as Lemma 5.4.1 allows.
Ifave AY wesets,, =expin/4(X,. +X , ). Thens o(1 x 0)s ' =s2,=(1 x 6),8%
realizing the Weyl reflection with respect to a¥ in (*G°,“T°). If Ve A} then s,v s,
=s,v8,v since a’, B are either superorthogonal or equal. Let

s=[[s,, and o=[]o,,

the products to be taken over positive roots «” in Ay,

We denote by “M° that subgroup of LG° contalmng LT, which has
{0VeA(*G% T%):p(1 X 0)a’ = —oa¥} as root system relative to LTO. A simple
argument shows that “M° i is invariant under o and LM ="M?° x W is the L-group
of a cuspidal Levi group M in G.

Proposition 5.4.2. (i) A(*M°,1T) contains Ay,
(i) If a'e ACMO, 1T and {u,a">=0 then x'eAY.

Proof. (1) is immediate. For (ii) take o¥ as in the statement. If ¢({1 x 6)a¥ =a" then
oV lies in the Z-span of A} and hence by 5.3.13 (ii) in AY itself. Clearly
o(1 X o)a¥ = —a¥ is impossible. Suppose that ¢(1 xe)aY+ +a¥. Then by the
argument of 5.3.13 (i) Q(«") is a linear combination, with positive coefficients, of
simple roots:

Qo1 x o)a’)= (1 x a)(Q(x"))
is also a positive combination of simple roots. But the condition that «" be a root
of LM° implies that Q(¢(1 x o)a¥)= — Q(«"), a contradiction. Hence (ii) follows.
Proposition 5.4.3. ¢ =ads-¢ has the following properties :
(i) e(W)C"M,
(i) @(C*)C T x C* and @(1 x 6) normalizes “T°, acting as — 1 on the roots of
(“M°'T%, and .
(iil) if @=(it, A) relative to M then =y and
A=Amod (X ,(*T°)} + {v—d(1 x o)y :veX (L TORC}.
Proof. This is immediate.
Theorem 5.4.4. S, =S;N"T°/Z,.
Proof. Tt is clear that s centralizes Z,,. Thus ads:S,—S; induces an isomorphism
S,—58;/Z,83. We claim that
(5.4.5) S;/S3 has a complete set of representatives in “T°, implying
S5/Z,S3=(S;N"TZ,82/Z,S2=S,n"T°/Z (SIN'T?),
and that
(5.4.6) LSINtTOCZ,.
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An isomorphism S,—S§;N"T°/Z , has then been produced.

Note also that Lemma 5.4.1 1mp11es that Z,CZ¥(S3A"T°), so that (5.4.6) will
show that Z,=(S3N"T°)Z".

To prove (5. 4 5), we first describe a complete set of representatives for
S5,/SA-T°NS,). Recall the exact sequence 1-S,n T%/SIN"T°>5S /S0-R, —1
(cf. 5.3.12). Thus we have just to describe a representative in §,, for each element of
R, IfreR, thenr=wy...a, forsomeayeAy. Let w,=expm/2(X _,,—X ). Then
swys~ ' =expin/2a,e"T?; here a, denotes (ay)'. However, ¢(1 x o)w,y¢(1 x o)~
=expina,)w,y, so that w,. v, @ representative for r, need not lie in §,. By
definition, there is some representatlve Wy ...wut for r in S, Write t as
exp(x,o; + ...+ x,0,) expX, where x,e T, ocVeAV andXeLt is such that {X,a¥>=0,
aveAy. Since exp(xlac1 + ...+xnoc,,)eS , we may replace the representative
W,y ... Wt by w,y .,y expX. Note that

S(w,y...wy expX)s™ ' =expin/2(a, + ... +a,)expXeTO.

Thus turning to p=ads-¢, we have found in “T° a complete set of representatives
for S;/S3s(S,N*T%s™'. Next, we have s(S,N'T°)s™'CSAS;N"T°) since, if
teS,N"T° and we write ¢ as exp(x,o,+ ... +x,,)expX as above,
then teS)expX and srs™!'eSJexpX. But sis™'eS, and so we obtain
sts~ 1e SYS;N"TP). (5.4.5) now follows.

For (5.4.6), let te S3n"T°. We write t as exp(x,, + ...+ x,a,) expX, with x e T,
a €Al and X,a">=0, aveAy. Then teS; implies that
t=exp(—x,0, — ...—x,,) exp(P(1 x 6)X). Thus exp(2x,o, + ... +2x,0,)
=exp(P(1 X a)X —X). A straightforward argument shows that 2x,, .., 2x, belong
to miZ. If x,, ..., x,eniZ then we are done. Suppose that notation is arranged so
that exactly x, ..., x,¢niZ. Thus s~ 'ts is a representative for w,y ... @, in S, In
the next paragraph we will show that:

(5.4.7) QANNQ (GO, LT =R,

We conclude then that w,; ...y €R,. Thus s~ 'ts¢S, so that 1¢S3 a contradiction.
Hence if te SINLT° then all X, belong to mZ and so ocV(t)—l a’eAy. Recall
t=exp(x,a, + St x0)expX. Clearly expXeSon'T®. Since ¢ is a discrete pa-
rameter for M, Sg AETO lies in the center of LMP. We conclude that ¢ lies in the
center of “M° also, and thus te Z,,.

The proof of (5.4.7) is another argument with the operator Q. We have to show
that if we(A]) can be realized in S, by, say, s then Ads preserves s'. Let
aeAls,, t¢) We choose oneA((f“b L) such that oY =a"l,, . Then
Ads(oc") wo¥ly, . Clearly [R,]Q(2Y) is a sum of roots from ('b, Iq"t) Since
Q(wa¥)y=Q(a¥) we must have that wo'e A(*b, 1), and so Ads(a})eA(s;, ). Thus
(5.4.7) follows, and the theorem is proved.

Corollary 5.4.8. R, =S;"'T°/S;n{te" T :a¥(1)=1,a"€AY}.
Proof. We use the argument for (5.4.6) to establish a map S;n"T°—>R,,. This map

is surjective by the argument for (5.4.5). A simple cornputatlon Verlﬁes that the
kernel is S;n{te"T%;a¥(t)=1, a¥eAY}.
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We return now to the setting of the last part of (5.3). Thus M=My,and nis a
p.d. of T. When regarded as a root of T, the coroot « of a root ¥ in A} is real. We
perform, in turn, a standard inverse Cayley transform with respect to each root o
such that a¥e Ay nA("B% “T°). This determines a Cartan subgroup Tof Gand a
pd. 7 of T such that "M ="M - Recall that # induces an isomorphism

éﬂ(T)v = SJ,GLTO/Z(LMO)W

(cf. Proposition 5.2.1). The following is then a immediate consequence of Theorem
544,

Proposition 5.4.9. # induces a surjective homomorphism cf(T)V—»SM.

Corollary 5.4.10. S, is a sum of groups of order two.
On the other hand, # induces a isomorphism &(T)Y—S,N"T°/Z(*M°)".
Proposition 5.4.11. n induces an exact sequence
1-&(T)—>S,~R,—1.
Proof. This follows immediately from (5.3.12) and Lemma 5.4.1.

Corollary 5.4.8 also has an interpretation in terms of G-data. Via # we regard
each a” in A} as a coroot for T We define a submodule (AY> of & (T) as follows. By
Tate- Nakayama duality, & (T) may be identified as

{AVeX (T ):AY + 0¥ =0}/{p — ou’ :ueX (DInX (T,.);

{Ay> is then the submodule generated by the cosets of the coroots «¥ in Ay, We
will realize R, as the quotient in Corollary 5.4.8.

Proposition 5.4.12. #j induces a surjective homomorphism & (T)V-—>R The kernel of
this homomorphism is the annihilator of {A}) in &(T).

We identify Q(AY), the subgroup of Q(*G°, 'T°) generated by reflections with
respect to the roots in Ay, as a subgroup of Q(M, T), again via 7.

Corollary 5.4.13. The dual of the homomorphism o@(T)V—>R¢ embeds R}, in ro@(i").
Under Tate-Nakayama duality the image of R} is identified with

QM, T)INQAY\AAY).

Proof. We have just to check that the image of AM, T)mQ(AZ,)\Q(A;’,) under T—N
(cf. [15, Sect. 2]} is {Ay>. This is immediate from Proposition 2.1 of [15] since A is
a set of superorthogonal noncompact roots.

Turning to L-packets, we consider first the packet II; M of representations of M
attached to ¢ or §. Let ¥ be a positive system for A(LM °,LT9%) with respect to
which 4 is dominant. Then it is easily seen that the roots in ¥ 3nAY are ¥ 5-simple
and that ¥ 3D ¥, =ACM° " B%LT°). In view of Proposition 5.4.2 (ii) we can
now argue as in the proof of Lemmas 4.3.5 and 4.3.7 to show that for each
0y, RM,T),

Ind(m(wg, ¥ )@ Ly, 51, MIN AN, M) = Y Olwweop, 4, 0w ¥ ),
weQ(AL)NQM, THQAY)



426 D. Shelstad

each distribution in this sum being non-zero. Thus
{O(wp, 1, 0¥ ), e M, T)Q,(M, T)}

is exactly the set of (characters of) representations in II, M Recall that Q. )(M T)is
the subgroup of Q(M,T) generated by QAY) and Q(LM 0,XT°), with the usual
identifications. Let @%wu, A, 0¥ )—Ind(@(wu,l 0¥ y)®15 MN,G). Then by
induction in stages we have
Ind(n{wy, ¥ p)®1y, P, G)= Y O%wwy, A 0w, P y,).
eAAL)NRAM, TI{IY)
By Corollary 5.4.13 there are [R,] (non-zero) distributions in this sum.
Hence, by Corollary 5.3.16, the representations (characters) O%wu, 1, w¥y) are
irreducible, we QM, T)Q( )(M T). We conclude then that 1, —H consists
exactly of the representations @%wpy, A, 0¥ pg), weQM, T)Q(”)(M T) and that
O%ow 1, 0¥ 5)=0%w'n, 1, 'V ) if and only if w'e QM, T)w (cf. Lemma 3.2 of
[14]; note that it is not really necessary to use the Multiplicity One Theorem for
unitary principal series).
Suppose now that:
(5.4.14) (T, 7)) belongs to the fixed skeleton, M=Mgz, P=MN, as in (1.3), and
= (ji, 1): W—LM belongs to {¢}.

Then I, consists of the irreducible constituents of the representations
¢ (a),u,/l w'f’) Ind(@(@p, 1, 2F)®1 N,P G), where ¥ is some positive system for
A(*M, T) with respect to which % is dominant, and @eQ(M, T) is such that
O(@F, 4, @P) is nonzero (cf. Theorem 4.3.2 and induction in stages).

Suppose also that each non-zero @%@f, 1, ®®) is irreducible and:
(5.4.15) @ is nondegenerate in the sense that, for each root aof (M, T), {fi,a">=0
implies that a is noncompact and @V ¢(1— o)X (T) (cf. [6, 71, [15, 2.1]).

Then, accordmg to [7, Theorem 4.1(b)], there exists ge G such thatad g: T-Tand
gii=of, gi= 2, g¥= 0¥ g, for some we (G, ).
The following is then immediate:

(5.4.16) Ay ={a"eACMO°,1T®); {fi,a¥>=0} is of type A, X A, X ... X A,,

and if Ay = {BYe A(CMO,T°): (B,a">=0,a"cA}} and Q )(M T) is the subgroup of
oM, T) generated by the reflections with respect to roots in AyUAY, then
(5.4.17) O(@f, 4, oF)=0 if and only if @eQM, T)Q,”)(M, T); for such @,
if O%@'p, 1, d P)=0%ap,1,dP) then &' AG, ).

Suppose that (fi, 1) also satisfies (5 4.14) and (5.4.15), and that ¥ is some
posmve system with respect to which ji is dominant. Then by [7, Theorem 4. 1(b)]
again, there exists g€ G normalizing T and e Q(”)(M T) such that gfi=@p, gi=1
and g‘{’ @P.

We will fix:

(5.4.18) a positive system P for A(M°,2T°) with respect to which some [ satisfying
(5.4.14) and (5.4.15) is dominant.
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Then (f, 7) is determined up to conjugation by an element of G normalizing T, for
the element @ above lies in (M, T) when ¥ =¥ (cf. proof of Lemma 3.2 in [14]).
We write n(®) in place of ©@%&p, 1, ®P). The group S, may be realized as
SzNETASINIT)ZY (cf. proof of Theorem 5.4.4). Note that if te(S3N-T°)ZW
then a¥(t)=1 for a¥e AYUAY.

Let xeS,,,,. Choose xe S;n"T°/Z" mapping to x under the natural projection.
By means of # and natural identifications, we may regard x as a character on

X*(ic)/X*(T;c)m{vV —ovV: vVEX*(T)}

(cf. [ 16, Sect. 2.1]). On the other hand, if @€ (G, T)Q(ﬁ)(G, T) then & determines an
element of H'(T) and hence, by the Tate-Nakayama isomorphism, an element @,
of the above quotient (cf. [15, Sect. 2]).

Lemma 5.4.19. x(®,) is independent of the choice for x.

Proof. Suppose that x is replaced by xt, te(Sgn"T°)Z". Then we have only to
show that t(@,)=1, where t is the coset of ¢ in S;n"T°Z". Since
e QG, )2 (M, T) we have that @, belongs to the Z-span of AJUAY (cf. [15,
Sect. 27). The lemma then follows.

Let xeS,,, nell,. Choose xeS;n"T°/Z" mapping to ¥ under the natural
projection and @e Q(M, T) such that == (@) with respect to some choice of i as
above. Then we set

2,1 =X(@,).-

For given [i, {x,n) is independent of the choice of x and the choice of @ since
n(@)=n(@") if and only if @ = (G, T)®. Secondly, fi may be replaced only by gfi
where ge G normalizes T and the chosen ¥. Then x? is a replacement for x, and
gog~ ! a replacement for w. It is easily shown that x9((gig~!),) = x(@,). Hence the
following is immediate.

Lemma 5.4.20. {, >: S, x IT,,,—{+ 1} depends only on {¢} and the data of (1.3)
and (5.4.18).

Lemma 5.4.21. (i) {xy,z)=<{x,72>{y,n) for x,9eS,, nell,, and

(i) <x,m>=<x, 7> for all xeS,, if and only if n=n'.
Proof. (i) is immediate. For (i) we have only to note that S,n*T%/Z¥ = &(T)".

Therefore, as in the discrete case, we have identified 17 » s a subset of S, the
dual of S, Again this subset may be proper, and so we adjoin some “ghost”
representations with zero character and form I1, in full duality with S} (cf.
paragraph following Lemma 5.1.6). Note that [ ]1=[D(T)][R,], where
BN =AM, TN\QAM,T) (cf. [15,8ect.2]) and [SY]=[E(T)][R,] by
Lemma 5.4.11. On the other hand, the number of ghosts in the discrete packet IT)f
is [6(T)] —[D(T)]. We have therefore added exactly [R,] ghosts to IT,, for each
ghost in IT}/.

It is convenient now to divide the discussion into two parts. In the first, we
assume that “M ="G. Let xeS,, and choose x as above. To x we attach the
representative s(x) for an element of S(*G) given by

s(x) =(x, Cent(x)°, "BL, ' T°, {¥,s }, {w,}),
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where "B 21 T° and A(*B2,LT°) < P, and the action of W on Cent(x)° is extracted
from that of $(1 x ¢) in the usual way. Clearly, different choices of x may give
inequivalent elements of S(*G).

We proceed now as in the discrete case: s(x) is equivalent to exactly one of our
fixed representatives for &(*G), say s,=(sy,“H). If ge“G® is such that
adg:s(x)—sy then gxg~!=sy, (cf. Proposition 5.2.2). If also g’ maps s(x) to sy
then ¢’ =tg, where te Cent(s,) induces an automorphism of (*H°, "H°n"B°,*T°,
{Y,.}). As before, gp(W)g~"' lies in the image of “H under ¢:“H -"G. Thus
adgod =@ for some admissible homomorphism ¢': W—"H. We have then that
{¢'Ye ®(H) lifts to {¢}. Recall that & has parameters (i, 2), fi is ¥-dominant, and
E=Eu*, A*). Thus ¢ has parameters (gp—up*, A—A1%), gi—p* being
A(B°N'H® 1 T%-dominant.

The character identity of Theorem 4.1.1 states that ) &(m)x(f )= X )

nell ) . .
We need a description of &(n(@)) in terms of @; that was not provided in Sect. 4.

Lemma 5.4.22. &(n(®))=&(P)e(T, i) detg ;c(g“l)(x (), where & ¥) is the signature

of W with respect to A("B°,"T°), g:5(x)—> sy, @' = @(gii— ¥, 11— A¥), i is obtained
from sy via (T, 7), &(T, 7)) is from our chosen family of (G, H)-orbital-integral-transfer
factors, and in the terms detg and k(g™ '), g has been transferred to T via 7.

Proof. First we observe that {(x, n(@)> =%? (@), so that (g~ )<z, n(®)) = K(a)g b,
Thus the assertion is true if i is “G°-regular (cf. Sect. 4; the term &%) is now
inserted because ji is P-dominant, rather than A(*B°, 1 T°)-dominant as in Sect. 4).
In general, we argue by coherent continuation as in the proof of Theorem 4.3.2.

Corollary 5.4.23. &(P)e(T, 7)detg (g~ )1, (fu) depends only on {¢}, x and f.

We set o
Tior (N =e(P)e(T, ) detg &g~ Np(fa) -

Then the analogues of Theorems 5.2.7 and 5.2.8 and Corollary 5.2.9 are true. We
defer the statements until the end of our discussion for the general case.

We will no longer assume that "M ="G. Let xS, and xe S;n"T°|Z(M°)¥
map to x under the natural projection. Then s(x), a representatlve for an element of
G(LM), has been defined. Suppose that ge G, T=gTy ™!, and that # is a p.d. of T.
Let M=M; ¢+ Then a representative s(x)? for an element of &(“M) is defined in the
obvious manner.

Proposition 5.4.24. There exzst sy among the fixed representatives for &(*G) and
Cartan subgroup T= gTy~ 1, gegG, together with a p.d. fj of T, such that

(i) oy satisfies (3.4.1) relatwe to (T, 7), and

(i) s(Xy is equlvalent to 5,, relative to M.
The element sif was defined in (3.4).

Proof. We exhibit a choice for s, g and #, as follows. First, we may choose
xeSontT/Z¥ mapping to X under the natural projection, such that
Cent(x)0 Lo, thlS is immediate if x is realized as a quasicharacter on
ANDIKAYINY =51 x 0)vY, veX*(ET}, where (AY) denotes the Z-span of
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A(*GY,LT?), and % as a character on
{AVe (A 11 x ) AV = — A} KAV YN WY — p(1 x o)y 1 vV e X*(TP).

We form s(x) in the usual way ; 5(x) is equivalent to some chosen representative s.
There exists & such that (T, §)e #'(G) and s(x) is the 6-tuple attached to (T; %, 7) as
in (2.3). On the other hand, by arguing first with the quasisplit group dual to s(x),
we see that the conjugacy class of Cartan subgroups of G from which the
fundamental Cartan subgroups of H originate is that of T; moreover, the
fundamental Cartan subgroups of H are compact modulo the center of H. There
exist a Cartan subgroup T conjugate to T, say T—ng , g€ G, and p.d. # of T
such that (1, #)e 7 7(G) [for example, T may be chosen from a fixed framework for
H (cf. (3.3))]. In particular, “HC*M° and o, satisfies (3.4. 1) relative to (T 7).
Because s(x) and sy, are equivalent we may conclude that on &(T), the quasicharac-
ter k attached to (T;#) coincides with (k%)® for some geG mappmg T to T and
= Q(M T) (cf. Proposition 2.3.1). Then s(X)’ is equivalent to s}, and the proof is
completed.

We choose sy, and g as in the statement of the proposition. Let M denote the
endoscopic group for M determined by sM [cf. 4] If f e%(M) then fH will
denote a function in (M) correspondmg to f under the (M M g)-orbital-
integral transfer determined by the fixed data for H [cf. (3.4)].

Let ¢=adgo@: W-LM. Then @ has parameters (g, g/4). The corresponding

L-packet IT of representations of Mis {#= adgem,me II}. If = (O, 4, a)‘l’) then
f=0(gdg~ ‘(gn), g7 giog ~g¥P)). Suppose that ads: s(x)'—s¥, me M°. Then
admo@ is the lift to LM of some @' W—-'M, with parameters (mfi—u*,
A— A¥)=(ihgli— p*, g1 — A*). From the arguments for Lemma 5.4.22 we conclude
that
(5.4.25) ZH &) ()= cxefa) fEEM),

ne
for some c¢=+1. Here we have used (x, @%@, 4, w’l’))—x(w) #((gbg™1),)
=&™ '(givg™'). Now regard ¢’ as a parameter for H, and write y&. » for the attached
character. Let fe4(G). Then fH corresponds to f under (G, H)-transfer and (fy)y;,,
corresponds to fi; under (M, M ,)-transfer. Thus we set

X(((p},s)(f) = CXg'(fH) = cX@'((fH)le) s
with ¢ as in (5.4.25), to obtain the following result.

Theorem 5.4.26. Let e @y(G). Then
2 L) =T, /), XE€S,,

nell,

fe€(G).
The inversion is immediate.

Theorem 5.4.27, Let ¢c QO(G) Then

xf)= [S ] x; (&7 g 0( ), nell,,

fe¥(G).
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Corollary 5.4.28. If nell,— 11, then
Y M e, )=0, f€4(G).

xS,

Some further analysis of these identities will be carried out in another paper.
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