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1. Introduction 

The purpose of this paper is to extend some of the basic results about reductive 
group actions on affine algebraic varieties to the more general class of complex 
Stein spaces. These results concern both global and local aspects of such actions - 
the existence of a complex quotient space which approximates the orbit space and 
the existence of local complex subspaces transversal to a closed orbit in which the 
action of the group in an entire neighborhood of that orbit is determined. 

To be more precise, let X be a complex Stein space and G a reductive complex 
Lie group acting holomorphically on X. Instead of looking at the usual orbit space 
of X which may not even be Hausdorff, we consider the quotient of X by the 
analytic equivalence relation defined by the invariant holomorphic functions, (9(X) a. 
The resulting space X/G, the so-called categorical quotient of X by G, is easily seen 
to be a Hausdorff IE-ringed space satisfying a certain universal property with 
respect to the action of G. For arbitrary complex spaces, such quotients need not 
be locally compact and hence are not a priori isomorphic to complex spaces. We 
prove the following: 

Theorem. The categorical quotient X/G is isomorphic to a complex Stein space such 
that n ' ~ X / G  is holomorphic. 

In particular, 6~(X) G = n*6(X/G) is a Stein algebra. The corresponding theorem 
in the category of affine algebraic varieties is one of the central results of classical 
invariant theory where it is reduced via equivariant imbeddings to Hilbert's 
famous theorem: The algebra of invariant polynomials on a rational repre- 
sentation space of a reductive complex Lie group is finitely generated, cf. [1t, 12, 
2a, 22, 21]. 

As in the algebraic case, the map n ~ X / G  has certain geometric properties 
which make it a reasonable substitute for the orbit map. For example, each fiber of 
n contains precisely one closed orbit so that X/G is a natural parameter space for 
the closed orbits of G in X. Note that X/G then coincides with the usual orbit space 
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of X exactly when all orbits are closed. In this case, we say that X/G is the 
geometric quotient of X by G to distinguish it from the more general situation. 

Our  local description of the action of G on a Stein spaceX is a generalization of 
Luna's slice theorem [18] for reductive group actions on affine algebraic varieties. 
This theorem parallels the standard local description of compact group actions, 
but of course is more general, since it also handles the behaviour of non-closed 
orbits. Let G .x be a closed orbit for some xEX. A slice for the action of G at x is a 
locally closed Gx-stable Stein subspace B of X containing x such that the natural 
map of the twisted product G x GxB~X is biholomorphic onto a n-saturated open 
Stein subset of X. The twisted product G xGxB is defined to be the geometric 
quotient of G x B by the action of G x : h. (g, b): = (gh- 1, hb) ; hE Gx, gE G, bE B. The 
action of G on G • is completely determined by the action of the reductive 
group Gx on B, thus yielding a natural isomorphism (G x GB)/G_~ B/G~. 

Theorem. Slices exist for the action of a reductive complex Lie group on a Stein 
space. 

A slice at x can be realized as a Gx-stable complex subspace of a rational 
representation space of G x, and hence the action of G on X is actually modelled 
locally on linear algebraic actions. Using this fact, we show that the fibers of the 
categorical quotient n :X~X/G are equivariantly biholomorphic to affine alge- 
braic varieties on which G acts algebraically. Moreover, if a fiber is non-singular, 
then it is a homogeneous vector bundle over its unique closed orbit. 

The main difficulty which must be overcome in proving the above assertions 
for Stein spaces is the absence of linear equivariant imbeddings - a key tool in the 
affine algebraic theory. Such imbeddings, if they existed, would essentially reduce 
the problem to the algebraic case, since every holomorphic representation of a 
reductive complex Lie group is rational with respect to its canonical structure as a 
linear algebraic group, cf. [13]. Nevertheless, due to the well-known theorem of 
Harish-Chandra [10] concerning continuous representations of compact groups 
on Fr6chet spaces, we do have local equivariant immersions of Stein spaces at our 
disposal. By inspecting the local behaviour of a reductive complex Lie group in a 
rational representation space, as described for example in a local version of the 
Hilbert-Mumford-Birkes lemma [2], we maintain just enough control over certain 
of these local equivariant immersion to obtain equivariant imbeddings of 
n-saturated open subsets. It is then an easy matter to lift slices back to the Stein 
space X and to guarantee that the categorical quotient X/G is isomorphic to a 
complex space. 

The paper is organized as follows. In Sect. 2 we recall some of the regularity 
properties of reductive complex Lie group actions and prove that there always 
exist local linear equivariant immersions of a finite dimensional Stein space which 
imbed any given closed orbit. 

In Sect. 3 we discuss the formal properties of categorical quotients and the 
special geometric characteristics of the map n'X- ,X/G for Stein spaces. These 
properties are consequences of Theorem B and the existence of a Reynolds 
operator on (9(X). With them, one can easily show that if X/G is isomorphic to a 
complex space, then it is Stein. In particular, we obtain the above mentioned 
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description of geometric quotients, since Hausdorff orbit spaces carry natural 
complex structures, cf. [6, 15]. 

This description enables us to define in Sect. 4 the notion of a slice for the 
action of a reductive group on a Stein space. Slices are not usually local objects, 
and since we are forced to work with local equivariant immersions, it becomes 
important to know whether there are arbitrarily small subsets of a slice which still 
retain all of the pertinent information of the slice. We call such subsets local slices 
and prove that they exist in rational representation spaces of reductive complex 
Lie groups. It is through these local slices that the potentially bad behaviour of 
local equivariant immersions is avoided. 

In Sect. 5 we apply all of the foregoing results to prove the theorems quoted 
above as well as some direct corollaries of the existence of a slice. 

Finally, we conclude the paper in Sect. 6 with a description of two stratifi- 
cations of the categorical quotient rc 9 ( ~ X / G  and some of their applications. 

2. Local Equivariant Immersions 

Throughout this paper, all complex spaces are assumed to be reduced and have 
countable topological bases. 

A complex Lie group G with finitely many connected components is said to be 
reductive if it is isomorphic to the complexification of one of its maximal compact 
subgroups. A reductive complex Lie group always carries a compatible structure 
of a linear algebraic group such that every holomorphic representation of G on a 
finite dimensional complex vector space is in fact rational, cf. [13]. 

Assume the reductive Lie group G acts holomorphically on a complex space X. 
This action induces a continuous representation of G on the Fr6chet space (9(X). 
We say that a function fE (riO() is G-finite if the vector subspace of (9(X) spanned by 
the elements fog, gEG, is finite dimensional. Due to the basic result of Harish- 
Chandra concerning continuous representations of compact groups on Fr6chet 
spaces, cf. [10, Lemma 5] and [4, Sect. 3], we have the following (cf. also [1, 23]): 

2.1. The G-finite .functions are dense in (9(X). 

As is well-known, this fact implies that reductive group actions on complex 
spaces are very well behaved, at least when C(X) is fairly large. To make this more 
precise, we first mention a simple but useful 

2.2. Lemma. Let h "X ~IE n be a linear G-equivariant holomorphic map. Then, for all 
xEX, Ght~ is an algebraic subgroup of  G. Moreover, if x is isolated in h-lh(x),  then 

G~ C G x C Gh~x) ,. 

and hence G x is also an algebraic subgroup of  G. 

Proof. It is clear that Gh~x) is algebraic, since the holomorphic representation of G 
on ~2" is rational. Furthermore, by equivariance, G~ fixes h(x), and G~ must fix x 
because x is isolated in h-lh(x).  [] 
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2.3. Proposition. I f  X is holomorphically spreadable, i.e. if each point x ~X is isolated 
in the fiber of some holomorphic map f :  X-*rE", then : 

(1) G x is an algebraic subgroup of G for all xEX. 
(2) I f  x , y ~ X  with xecl(G.y~,G.y,  then d imG.x  <dimG,y .  
(3) Each orbit of  G is locally closed in X. 

Proof(cf. [23, Proposition 2.4]). Let x be isolated in a fiber o f f :  X-~tE". By (2.1), we 
may approximate each coordinate function of f by a G-finite holomorphic 
function to obtain a linear equivariant holomorphic map h:X~tE N, N >  n, such 
that x is still isolated in a fiber of h. Then (1) follows from Lemma 2.2. 

Now, suppose x ecl(G-yEG.y. We claim that h(x)ecl(G.h(y))\G.h(y) which 
implies dim G.h(x)<dimG-h(y) by a standard fact of algebraic transformation 
groups, cf. [3, p. 98] ; and this in turn implies dim G.x  < dim G.y by Lemma 2.2. To 
prove the claim, we note that G. h(x) is a locally closed submanifold of I12". Thus, 
there exists a connected neighborhood Wof  h(x) in tI~ N such that Z := G. h(x)c~ Wis 
a connected closed submanifold of W. Since x is isolated in h-lh(x), there exists a 
connected neighborhood U of x such that, after shrinking W if necessary, the 
restricted map hv, w : U ~ W  is finite, cf.[9, p. 54]. Therefore, h[1w(Z) has only 
finitely many connected components. By the equivariance of h, it is clear that we 
may choose U and W even smaller so that hv~w(Z)=G.xc~U. It follows 
immediately that if h(x) were contained in G.h(y), then x would be contained in 
G .y, since G. h(y)c~ W -  Z and xe  cl(G. y). This shows that h(x)e cl(G- h(y)}~G, h(y) 
as claimed, finishing the proof of (2). 

Finally, (3) follows directly from (2) and the fact that the set of orbits of 
dimension less than a fixed integer is a closed complex subspace of X. [] 

2.4. Remark. An important consequence of this proposition is that the orbits of 
minimal dimension in X are always closed. 

For convenience, we shall call a holomorphic m a p f  :X ~ Ya local immersion at 
x e X  if there is a neighborhood U of x such that f : U ~ f ( U )  is a homeomorphism 
onto f(U) with the induced topology from Y Using G-finite functions as above and 
employing a well-known technique which goes back to Cartan [5], we now prove 
the following : 

2.5. Proposition. Let G be a reductive complex Lie group acting holomorphically on 
a finite dimensional Stein space X, and let G ;x be a closed orbit for some x e X .  Then 
there exists a linear equivariant holomorphic map h : X-~ff~" which imbeds G. x and is 
a local immersion at x. 

Proof Since X is finite dimensional, there exists a proper injective holomorphic 
map f :X--*~ n, cf. [9, p. 126]. As in the proof of Proposition 2.4, we may approx- 
imate the coordinate functions of f by G-finite functions to obtain an equivariant 
holomorphic map h o : X ~ Y  ~, N > n, which is a local immersion at x. We shall now 
modify h o so that it imbeds G.X. ' 

Since G.x is Stein, G x is algebraic and hence a reductive subgroup of G by a 
theorem of Matsushima [19]. It is then well-known, cf. e.g. [14], that G .x ~-G/G x 
admits a linear G-equivariant holomorphic imbeddingj :G. x - ~  k, realizing G. x as 
an affine algebraic subvariety of some ~k. By Theorem B, such a map can be 
extended to all o f X ,  j : X - ~  k. The idea of Cartan is that by averaging the map 
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m -1.join over meM, a maximal compact subgroup of G, we obtain a linear 
G-equivariant holomorphic map ]:X--,C k. Since this map still imbeds G.x, the 
holomorphic map h :=(ho,]):X~ff2 N+k has the desired properties. [] 

3. Categorical Quotients 

Let G be a complex Lie group acting holomorphically on a complex space X. The 
induced representation of G on the Fr6chet space (fi(X) is continuous and hence the 
subspace of fixed points (fi(X) ~ is a closed subalgebra of (fi(X), called the algebra of 
invariants of G in C(X). This algebra defines a natural analytic equivalence relation 
onX"  

R:={(Xl,X2)~X •  for all f~(fi(X)G}. 

Let ~1, ~z : R ~ X  be the canonical projections and n:X-~X/G the continuous map 
of X onto the topological quotient space X/G of X by the equivalence relation R 
such that n ~ = n ~ Note that X/G is Hausdorff and n is naturally equivariant 
with n og=n for all g~G. We define the categorical quotient of X by G to be the 
topological space X/G endowed with the following sheaf Cx/c of local G-algebras" 
For U open in X/G, Cx/6(U) consists of those continuous complex valued 
functions on U which lift via n to holomorphic functions on n-~(U)CX, i.e. 
n*Cx/c(U)= (fix(n-I(U))G. In this way, (X/G, (fix/c) becomes a Hausdorff C-ringed 
space such that n'X-~X/G is a surjective morphism satisfying the universal 
property : 

3.1. I f  ~ "~ ~ Z is any morphism of ff~-ringed spaces such that a ~ = a ~ then there 
exists a uniquely determined morphism ~' :X/G~ Z such that a= a' on. 

In general, the categorical quotientX/G is a much smaller object than the usual 
orbit space of G acting on X, since invariant holomorphic functions cannot 
separate orbits whose closures have non-trivial intersection. Whenever the 
categorical quotient and the orbit space actually do coincide, i.e. when the orbits of 
G equal the fibers of the map n, we say that X/G is the geometric quotient of X by G. 

Such quotients of X need not be isomorphic to complex spaces, cf. [8]. We 
would now like to mention an almost obvious criterion for when they are. First, we 
recall that a complex space (X, (fix) can be given an enriched (but still reduced) 
structure sheaf (fix such that the identity map (X, (gx)~(X, (fix) is holomorphic and 
the weak Riemann extension theorem holds on (X,(fix), i.e. any "continuous 
function on X which is holomorphic outside of a nowhere dense analytic subset of 
X is in fact holomorphic on all of X. In addition, any holomorphic map 
Of, (gx)-*(Y,, (fir) of complex spaces lifts to a holomorphic map (X, Cx)-,(Y,, (fir),Cf. 
e.g. [7, Sect. 2.29]. We shall say that X has maximal complex structure if (fix = (fix. 

3.2. Lemma. Assume (X, (fix) has maximal complex structure and that the categorical 
quotient (X/G, (fix/c) can be covered by open sets U with the property: 

There exists a complex space (Y,(fir) and a morphism of tF.-ringed spaces 
h :(U, Cx/c[ U)~(Y,, (-9 r) which is a homeomorphism of the underlying topological 
spaces. 
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Then, (X/G, Cx/G) is isomorphic to a complex space with maximal complex 
structure such that 7r :(X, (gx)~(X/G, CX/G) is holomorphic. 

Proof L& U' := 7t-I(U). The morphism h :(U, Cx/GIU)--*(Y, (gr) induces a holomor- 
phic map h':(U',(gxlU')--*(Y,,(fr), since (gxlU' is maximal. By the universal 
property (3.1), we then obtain a morphism of IE-ringed spaces (U, (gx/GIU)~(Y, (9r). 
We claim that the inverse homeomorphism h-  1 : y ~  U is also an inverse morphism 
of these IE-ringed spaces, showing that (U, (9x/al U) is isomorphic to a complex 
space. To see this, let f~(gx/~(W) for some open set WCU. Then f defines a 
continuous function foh-~ on h(W). By lifting to W' :=rc-l(W) via h', it is easy to 
check that fob-  ~ is holomorphic outside of the nowhere dense analytic set 
S(W)wA of h(W) where S(W) is the set of singular points of Wand A is the set over 
which the holomorphic map h'l W' is degenerate. Therefore, foh-  1 E (9y(h(W)). This 
shows that h- 1 indeed defines an inverse morphism of ~-ringed spaces, as claimed. 

The above implies that (X/G, (gx/~) is isomorphic to a complex space. Since 
then induces a holomorphic map zt:(X, (gx)~(X/G,(~x/G), the universal property 
(3.1) shows that (X/G, Cx/G) is isomorphic to (X/G, (9x/G). [] 

Whenever (X/G, Ox/G) is isomorphic to a complex space, it inherets not only a 
unique maximal complex structure from X, but also connectedness, irreducibility, 
local irreducibility, or normality from X. Again, this follows from the definition of 
(gxj G and the universal property (3.1). 

We now turn our attention to the case where G is a reductive complex Lie 
group as in Sect. 2. Let M be a maximal compact subgroup of G and let f e  (9(X). 
We define, for x~X,  

f (x) := ~ f(m.x)dl~, 
m e M  

where dp is a left-invariant normalized Haar measure on M. Since G is the 
complexification of M, it is clear that f ~  C(X) ~. We thus obtain a surjective 
continuous linear projection C(X)~C(X) G, the so-called Reynolds operator. 
Although this map is not an algebra homomorphism, we do have the Reynolds 
identity: 

3.3. I f  I C (9(X) ~ is an ideal, then (I(-9(X)) G= I. 

Due to the well-behaved nature of reductive group actions, as described in 
Sect. 2, and Theorem B for Stein spaces, we can now easily prove the following 
proposition and its ensuing corollaries. 

3.4. Proposition. Let ~z "~ ~ X / G  be the categorical quotient of a Stein space X by a 
reductive complex Lie group G, and let F be an arbitrary fiber of ~z. Then there exists 
a unique orbit G. z in F satisfying any one of the followin 9 equivalent conditions : 

(1) G.z is an orbit of minimal dimension in F. 
(2) G. z is closed. 
(3) G. z is contained in every non-empty closed G-stable subset of F. 

Proof Since F is a closed Stein subspace of X, any orbit of minimal dimension in F 
is closed by (2.4). Now, suppose, G .x o and G .x 1 are two distinct closed orbits in F. 
Since X is Stein, Theorem B implies there is an f e  6(X) such that f l  G. x o = 0 and 
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f l G . x  1 = 1. But then ~Te (g(X) G also takes the value 0 on G.x o and 1 on G.x I which 
is impossible, since f m u s t  be constant on F. Therefore, F has a unique closed orbit 
which is also the unique orbit of minimal dimension in F. This proves (1) and (2). 

Now, let Y be a non-empty closed G-stable subset of F and let ye  Y By 
Proposition 2.3, cl(G.y) is a closed G-stable Stein subspace of F. By the same 
reasoning as above, cl(G. y) contains a closed orbit which must also be the unique 
closed orbit in F. This proves (3). [] 

Retaining the above assumptions and notation, we now list a few corollaries of 
this proposition. 

3.5. Corollary. The number of connected components of any closed G-stable subset 
of F does not exceed the finite number of connected components of G. 

Note that this means F itself has at most finitely many irreducible components. 
We shall see in Sect. 5 that F is in fact equivariantly biholomorphic to an affine 
algebraic variety. 

Proof Let Y be a closed G-stable subset of F and let Y' be any connected 
component of Y. Since Y is closed and G-stable, G o. Y'= Y', and therefore G. Y' is 
the disjoint union of closed connected subsets Y'~glY'u. . .WgkY'  for some 
9~ ..... gk ~ GkG ~ with k<number  of connected components of G. It is easy to see 
that each set 91 Y',..., gk Y' is a connected component of Y so that both G-Y' and 
Y~G. Y' are closed G-stable subsets of F. Now, Y\G.Y '  must be empty, for 
otherwise both it and Y' would contain the unique closed orbit in F by 
Proposition 3.4. Thus, Y= Y'~glY 'U'"UgkY"  [] 

3.6. Corollary. I f  Y1 and Y2 are disjoint closed G-stable subsets of X, then re(Y1) and 
zt(Y2) are closed and disjoint in X/G. 

Proof Let Y= Y1 or Y2. We first show that zt(Y) is closed. Let {~(y,)lne N,y ,e  Y} be 
a sequence of distinct points in n(Y) which converge to p~X/G. Choose 
z,~rc-lrc(y,) such that G.z, is closed and note that G.z,C Y. If U G . z ,  (n~N) is a 
closed subspace of X, then by Theorem B there exists an fe(9(X) such that 
f l G . z , = n .  But then f~(9(X) G defines a continuous function on X/G such that 
f(rc(y,)) = n, contradicting the assumption that {rt(y,)} converges. Therefore, there 
exists a sequence {z',lz',~ G. z,} in Y which converges say to y~ Y with zt(y)= p, and 
hence zt(Y) is closed. 

Now, let y~e Y1 and y2 C Y2" Since the unique closed orbits G.z 1 Czt-lrt(yO 
and G.zzClr-lr~(y2) are contained in Y1 and Y2, respectively, we have n(yl) 
=~t(Zl)#:zt(z2)=n(y2). Therefore, rt(Y1) and re(Y2) are disjoint. [] 

3.7. Corollary. I f  (X/G, Cx/a) is isomorphic to a complex space, then it is Stein and 
n : (X, (gx)~(X/G, Cx/~) is holomorphic. 

Proof. To see that (X/G, Cx/G) is Stein, we need only check that it is holomorphi- 
cally convex, since it is already holomorphically separable by definition. Let 
{p, tn~ IN} be an infinite discrete sequence of distinct points in X/G. Then, there 
exists an infinite sequence of distinct closed orbits G.z, Crc-l(p.) with ~J G.z, 
(ne IN) closed inX. Again, by Theorem B, there is an f~(9(X) such that f t G . z , = n .  
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Then j~e 0(X) G defines a holomorphic function on X/G such that j~(p.)= n. This 
proves X/G is holomorphically convex, cf. [9, p. 110]. [] 

We close this section with a criterion for when a categorical quotient X/G is a 
geometric quotient, i.e. when X/G is homeomorphic to the orbit space of the action 
of G on X. Necessary conditions for X/G to be a geometric quotient are that all 
orbits be closed or that they all have the same dimension, cf. [15, Satz 7]. We now 
show that in our special case either of these conditions is also sufficient. 

3.8. Theorem. Let 7z : X ~ X / G  be the categorical quotient of a Stein space X by a 
reductive complex Lie 9roup G. The followin 9 are equivalent: 

(1) X/G is a 9eometric quotient of X by G. 
(2) The orbits of G are closed in X. 
(3) The orbits of G are equidimensional in X. 
In all cases, (X/G,(_gx/6) is isomorphic to a Stein space such that 

~z : (X, Ox)~(X/G, (gx/G) is holomorphic. 

Proof. We have already remarked that (1) implies (2) and (3), so we shall prove 
(3)=~(2)=~(1). If all orbits have the same dimension, they must all be closed by 
(2.4); and if all orbits are closed, then each fiber of ~ : X ~ X / G  consists of exactly 
one closed orbit by Proposition 3.4. Therefore, the orbit space is homeomorphic to 
the Hausdorff space X/G. Hence, we may apply [15, Satz 17] directly to conclude 
that (X/G, (_gx/6) is isomorphic to a complex space (cf. also [6]). By Corollary 3.7, 
this space is Stein and ~ is holomorphic. [] 

4. Local Slices 

Let H be a reductive complex subgroup of a Stein Lie group G, and let Y be a Stein 
space on which H acts holomorphically. We define a holomorphic action of H on 
G x Y by h(g, y) := (gh-1, hy); he l l ,  ge G, ye Y. The orbits of H in G x Y are all 
isomorphic to H. By Theorem 3.8, a geometric quotient of G x Y under this action, 
which we denote by G x ,  Y, exists and has the structure of a complex Stein space 
such that Gx  Y ~ G x , Y  is holomorphic. We write [9,Y] for the image of 
(9, y)e G x Y in G x H Y. Note that G acts holomorphically on G x ,  Y and the map 
G x ,  Y ~  G/H, defined by [9, Y] ~gH,  is easily seen to be a G-equivariant, locally 
trivial, holomorphic fiber bundle with Steinfiber Y and Stein base G/H. The action 
of G on Z : =  G x ,  Y is entirely determined by the action of H on Y. For example, 
the isomorphisms 

(9(Y)" ~((9(G x Y)~)" "~ (9( G •  Y)~ 

immediately induce an isomorphism of categorical quotients: Z/G ~-Y/H. If we 
identify Y with the closed complex subspace Yo : = {[1, y]]ye  Y} < Z, these isomor- 
phisms can be seen geometrically by the fact that: 

4.1. Z = G . Y o and, for all ye Yo, G . yr~ Yo = H . y. 

This also implies: 

4.2. I f  Z' is a closed G-stable complex subspace of Z, then Z' is equivariantly 
biholomorphic to G x n Y' where Y' := Z' c~ Y o. 
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Now let G be a reductive complex Lie group (necessarily Stein) acting 
holomorphically on a Stein space X and let G. x be a closed orbit for some x e X  so 
that G x is a reductive subgroup of G, cf. [19]. We say that the action of G has a 
slice at the point x if there exists a locally closed Gx-stable complex Stein subspace 
B CX containing x such that the natural G-equivariant holomorphic map 

G XGxB--*U:= G'B,  [g,b]--*9"b, 

is biholomorphic onto a G-saturated open subset U of X. By G-saturated we shall 
always mean saturated with respect to the map r~ : X ~ X / G .  Note that U is then 
necessarily Stein. We remark that the holomorphic map G x G x B ~ U  will be 
biholomorphic whenever it is a homeomorphism and B is finite dimensional. For, 
in this case, (4.1) implies 

(9(U)~(9(G x u)G ~(_9(G • B)G~'~-(9(G xGxB) 

which is enough to conclude that the two finite dimensional Stein spaces are 
isomorphic, cf. [9, p. 184]. We say that slices exist for the action of G on X if they 
exist at every point x ~ X  for which G.x  is closed. 

We define a local slice for the action of G at x ~ X  to be a relatively compact, 
locally closed complex subspace C of X containing x such that B := G x. C is a slice 
for the action of G at x and C is open in B. We say that local slices exist for the 
action of G o n X  if, for any point x ~ X  with G-x closed and any neighborhood of x, 
there exists a local slice for the action of G at x contained in that neighborhood. 

The existence of a slice immediately implies : 

4.3. Gb C G x for all b6 B and hence G, is conjugate to a subgroup of G x for all uE U. 

We also obtain the isomorphisms of categorical quotients : 

4.4. U/G-~ (G • ~xB)/G ~ B/Gx. 

For a local slice C at x we have: 

4.5. U = G. B = G. C is a G-saturated open Stein subset of  X.  

4.6. For any ecC, there exists a point zecl(G.c)t~C such that G.z  and Gx'z are 
closed and contained in cl(G-c) and cl(G~-c), respectively (ef. Proposition 3.4). 

We now restrict our attention to a rational representation space V of a reductive 
complex Lie group G. A fundamental result of Luna [18, p. 98,3 ~ is the following 

4.7. Slice Lemma. Slices exist for the action of  G on V. 

Of course, this result also applies to reductive groups acting morphically on 
affine algebraic varieties via equivariant imbeddings and facts like (4.2), cf. 
[18, III]. 

The remainder of this section is devoted to proving that local slices exist for the 
action of G on V. We begin by presenting a local version of the Hilbert-Mumford- 
Birkes lemma, cf. [2], and a local property of reductive group orbits in V. We use 
the notation B(O, ~) to denote the open euclidean ball with center Oe V and radius e. 
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4.8. Lemma. Let M be a maximal compact subgroup of G. Then, there exist 
coordinates for V such that the following hold: 

(1) For any x6B(O,~), e>0,  and any closed G-stable subset Y contained in the 
closure of G.x, there exists a one-parameter subgroup Z :~*-*G such that 

2(t).xeB(O,e), 0 < [ t l < 1 + 6  for some 6 > 0  

and 

lim 2(t). xe  Y~B(O, e). 
t ~ O  

(2) I f  x, yeB(O,e), ~>0, and y~G.x ,  then there is an m e M  and a smooth path 
~o:[0 ,1]~G ~ with ~p(0)=16 such that m~o(r).xeB(O,e) .for all re[0 ,1] ,  and 
mtp(1), x = y. 

Proof. We may clearly assume G is an algebraic subgroup of GL(V). Fix 
coordinates in V such that M is unitary and such that a maximal compact torus of 
M is diagonal. Let T~(~2'~) k be the complexification of this compact torus to a 
maximal torus in G. Then T is also diagonal. 

The proof of (1) is now an easy adaptation of the proof given in [2, p. 464]. We 
claim : 

(*) For some meM, cl(Tm.x)c~Y#:O. 

If (.) is true, then by [2] there exists a one-parameter subgroup/~ :~*-~T such 

that limo#(t)m-xeY. Now, since ~t(t)m.x=(tP~zl,...,tP"z,) where (z~ . . . . .  z,) are 

coordinates for m.xe  B(0, e) and P l . . . . .  p, >0, it follows immediately that 

I~(t)m.xeB(O,e), 0 < l t l < l + t 5  forsome c5>0, 

and 

lim/~(t) m. xe  Y~B(O, ~). 

Since B(0,e) and Y are stable under M, the one-parameter subgroup 
)~:= m- 1pro :~*-~G satisfies the assertions of (1). 

We now sketch the proof of (,). If (.) is not true, then using Toinvariant 
functions one easily shows that cl(TM-x)c~ Y=0  and hence M.cI (TM.  x)~Y=O, 
But then, since G = M T M ,  G.xCM-cl (TM.x)Ccl (G .x); and since M.cI(TM .x) 
is closed, it equals cl(G.x), contradicting YCcI(G.x). 

To prove (2), let y = g . x e G . x .  Since G = M T M ,  there are elements m, m l e M  
and g'e T such that g=m(mlg'm~ 1). Now, g' =exp(z) for some z in the Lie algebra 
of T. Define ~(r):= exp(rz)eG for re [0, 1]. Since ~p(r) is a diagonal matrix whose 
diagonal entries are exp(ral) . . . . .  exp(ra,) for some (a 1 . . . . .  a,)e ~ " ~  V, we see that 
I~p(r).vl 2 is a strictly concave function of r for any v~V, v4=O. Define 
q~(r):=mltp(r)m~ 1, re[0,  1]. Then ~p : [0, 1 ] ~ G  ~ is a smooth path with ~o(0)--1~ 
and m~o(l).x=y. Furthermore, if Ix],lyl<~, then I~0(0)m~-l.xi<e and 
I~,(1)m~- l "xl <e. By the above remarks we have [~0(r)m~- ~ 'xl <e for all re [0, 1] and 
hence k0(r)'x[ < e for all re [0, 1], as claimed. [] 
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4.9. Corollary. For all e > O, G. B(O, e) is a G-saturated open neighborhood of Oe V. 

Proof. Let z~B(O,e) and let yen- In(z )  where n:  V-,V/G.  By Proposition 3.4, 
there exists a unique closed orbit YCcl(G.z)ncl(G.y) .  By Lemma4.8,  
YnB(0, e) ~ 0 and therefore G. yc~B(0, e,) 4: 0. This implies n -  1riB(0, e) = G 
�9 B(0, e). [ ]  

4.10. Local Slice Lemma. Local slices exist for the action of G on V. 

Proof. Let G-x be closed for some x~ V so that Gx is reductive. A sliceB for the 
action of G at x is obtained by taking a G~-splitting of V ~  T~(V)= T~(G-x)OW 
where W is a Gx-stable complex subspace of the tangent space Tx(V), choosing a 
Gx-saturated neighborhood U of 0 in W, and defining B : = x + U ,  cf. [18, III, 
Sect. 1]. For  appropriate coordinates in W and e>0,  we have G~.B(O,e)C U is a 
G~-saturated open neighborhood of 0 in W by Corollary 4.9. Hence, n:,B(O, e) is an 
open neighborhood of nx(0) in W/Gx where n x : W--* W/G~. Since W/G~ is an affine 
algebraic variety, cf. [21, p. 27] we can choose a Stein neighborhood S of n~(0) in 
W/G~ which is contained in rc~B(0,~). Define B'~ to be the open neighborhood 
B(O, e)c~n] ~(S) of 0 in W. It is not hard to show that the open G~-saturated subset 
G~. B', of W is holomorphically convex and therefore Stein. Defining B~ := x + B'~, 
we see that the natural map G x a G ~ . B ~ G . B ~ C G .  U is biholomorphic onto an 
open G-saturated Stein subset of V. Therefore, B~ is a local slice at x. [ ]  

We note for future reference that the local slices B~ at x e  V just constructed 
clearly possess the same two properties as B(0, e.) in Lemma 4.8, namely: 

4.11. For any z6B~ and any closed Gx-stable subset Y contained in the closure of 
G x . z in V, there exists a one-parameter subgroup 2 : fig* ~ G x such that 

and 

2(t)'z~B~, 0 < l t l < l + 6  forsome 6 > 0 ,  

lim 2(t)- z~ Y~B~. 
t ~ 0  

4.12. I f  y, zeB~ and y~Gx.z,  then there is an m6Mx and a smooth path 
q g : [ 0 , 1 ] ~ G  ~ with q~(0)=16x such that mq~(r).y6B~ for all r~[-0, l],  and 
mrp(1) .y = z. 

The construction of B~ also shows it to be stable under a maximal compact 
subgroup of G x and : 

4.13. The categorical quotient G . B J G ~ G x . B J G  x is a relatively compact Stein 
open subset of the affine algebraic variety V/G. 

Using the existence of local slices with the above properties, we can now prove 
the following regularity lemmas. 

4.14. Lemma. Let A be a locally closed complex subspace of V and let G. a be closed 
for some aeA.  Assume there is a neighborhood N of l~ in G such that A is open in 
N .A .  Then there exists a local slice B~ at a and a neighborhood A' of a in A such 
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that : 
(1) G.A'=G.A'~ where A'~:= A'nB~; 
(2) G.A'  is a closed G-stable complex subspace of the G-saturated open Stein 

subset G.B~ of V. 

Proof. (1) Since A is locally closed and open in N . A ,  we may choose a suitable 
local slice B~ at a and a symmetric neighborhood N o C N  of 1~ in G such that 
A' := A n N  o �9 B~ is a closed complex subspace of the open neighborhood N O �9 B~ of 
a in V and such that N O . A ' n N  o .B~=A'. Then, for all a'EA' we have a '=h .b  for 
some heNo, beB~; and since h - l e N o ,  beNo.A'c~B~=A'c~B~=A' ~. Therefore, 
A ' = N o . A '  ~ and G.A'=G.A' , .  

(2) Let {9,.a',lneN, 9,eG, a, eA'~} be a sequence of points in G.A'~ converging 
to 9" be G. B~. Since {9-19, '  a',} converges to be B,, we have 9-19," a',e N o �9 B~ for 
large enough n. Then, there are h, e N  o, b.eB~ such that 9-~g,-a' ,=h,.b, .  Now, 
b, eG.a ' ,nB~=Gx.a ' .nB ~ by (4.1). Applying (4.12) above, we see that there is an 
meM~ and a path q~ : [0 ,1 ]~G ~ with q~(0)=lG, such that mqo(1).a',=b, and 
mq)(r) .a',eB, for all re [0, 1]. Again, since A' is closed in N o -B~ and open in N o .A', 
it follows that q)(r).a',eNo.A'c~B,=A' ~ for all re[0,  1], and hence b, eMx.A'~. We 
conclude that b=limb,eM~.A'~ and that 9.beG.A'~. [] 

4.15. Lemma. Let A be a closed G-stable complex subspace of a G-saturated open 
subset UCV, and let l t : U ~ n ( U )  be the restriction of the categorical quotient 
V ~  V/G. Then nIA : A ~ r ( U )  is a semi-proper holomorphic map and hence ~z(A) is a 
closed complex subspace of the open set 7t(U) in the affine algebraic variety V/G. 

Proof. Let K be a compact subset of re(U). For each p e K  let C be a local slice at u 
in U where G.u is the closed orbit in r~-t(p). There exists a finite number of these 
slices, call them C~ . . . . .  C k, such that z(COu. . .ur t (C k) DK. Define 
K':=Anrc-~(K)ncl (C~u. . .uCk) .  Then, K'  is compact in A. Note that if 
perc(A)nK, then there is a point ce rt-~(p)nCj for some j such that G. c is closed, 
by (4.6). Since A is closed and G-stable, it follows from Proposition 3.4 that 
c e A n C  i. Therefore, zc(K')= n(A)c~K, showing that rtlA is semi-proper. It is then 
well-known that n(A) is a closed complex subspace of rt(U) as claimed, cf. e.g. [7, 
Sect. 1.19]. []  

5. Main Theorems 

Throughout this section X will denote a Stein space and G a reductive complex Lie 
group acting holomorphically on X. 

5.1. Proposition. Let G.x  be a closed orbit for some x e X  and let h : X - ~  n be a 
linear equivariant holomorphic map which imbeds G . x and is a local immersion at x. 
Then, there exists a local slice C 'for the action of G at x such that h is injective on 
the G-saturated open Stein subset U := G. C and h(U) is a closed G-stable complex 
subspace of a G-saturated open Stein subset of ~ .  

Proof. Let U 0 be a relatively compact neighborhood of x in X and N a sufficiently 
small neighborhood of 1G in G such that U a := N . U  o is still relatively compact in 
X and h: UI~h(U1)  is a homeomorphism with h(U 0 relatively compact and 
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locally closed in I12 ". Then, h(Uo) is open in h(U~)=N.h(Uo), so we may apply 
Lemma 4.14: There exists a local slice B~ for the linear action of G at h(x) in r  and 
a neighborhood h(U'o) of h(x) in h(Uo) such that G.h(Uo)=G.(h(Uo)nB,) is a 
closed G-stable complex subspace of the G-saturated open Stein subset G. B~ of r 
Define C:=  Uonh-l(h(U'o)nB~) and U:=  G.C. Then U is open and G-stable inX, 
and h(U)= G. h(C)= G. h(U'o). Moreover, by (4.2) and the fact that Ght~) = G x, h(U) 
is G-equivariantly biholomorphic to G x a D ,  where D is the closed Gx-stable 
complex subspace h(U)c~G~.B,=G~.h(C) of G~.B~. Then, B :=  G~.C= Unh-l (D)  
is a closed G~-stable complex subspace of U and so locally closed in X. It remains 
to prove : 

(1) U is G-saturated; 
(2) h : U-*C" is injective ; 

for these assertions immediately imply that B is Stein and GxoxB--,U is a 
homeomorphism, i.e. that C is a local slice at x. 

(1) We must show rc-~rc(c) is contained in U for all cEC where n : X  
--,X/G. Let yerc-~rc(c) and let G-z be the unique closed orbit in ~z-~r~(c), cf. 
Proposition 3.4. If we show that G.zC U, then G .ynU+O and hence ye U since U 
is G-stable. Now, by (4.6), there exists a point z ' eC  such that 
h(z')e cl(G. h(c))c~B~ C h(C) with G. h(z'), G~,. h(z') closed and contained in cl(G-h(c)), 
cl(G~.h(c)), respectively. By (4.11), there exists a one-parameter subgroup 
2 : 112"-* G~ such that 

and 
2(t),h(c)eh(U)c~B,=h(C), O<lt[=<l, 

lim2(t), h(c)e G:~ " h(z')nB~ . 
t ~ O  

Since H is injective on C, it follows that 2(0"ceC,  0 <  Itl < 1, and lim2(t).ceG x 
�9 z' n C. Therefore, G. z' C cl (G. c). Also, since h : G. z'--* G. h(z') is a finite unramified 
homogeneous covering map by Lemma 2.2, G. z' is closed. By uniqueness of G. z 
we then have G. z = G-z'C U as desired. 

(2) Due to the equivariance of h and the fact that U-- G. C with h injective on 
C, we need only show that h is injective on each orbit G.c, ce C. Let G.z  be the 
closed orbit in cl(G-c). By (1) we may assume zsC. Since G~ is reductive, 
Lemma 2.2 implies that Ght~ is reductive also. Let M be a maximal compact 
subgroup of G. By (4.3), Mh(z)CMh(x)=Mx and s o  Mh(z).ZCC. It follows that 
Mh~).z-*Mht~).h(z)=h(z ) is M-equivariant and injective, i.e. Mh(z)'Z=-2. But 
MzCMhtz) by Lemma 2.2. Thus, Mz=Mh(z) and G~ = Gh(zt. Hence h is injective on 
G -z. Let h~ be the restriction of the map h to F~ := n -  in(z). Then, by uniqueness of 
G.z in F~ and the equivariance of h z on F~, we conclude that h[ ~h~(G. z)= G.z, cf. 
Proposition 3.4. Therefore, since h~ is locally injective, there exists a neighborhood 
W of G.z in F~ such that h~ is injective on W and h; ~hz(W)= W. Since G. cc~ W =1 = 0, 
it follows that G~ = Gh(cl and h is injective on G-c. []  

Our main theorems are now easy consequences of this proposition. 

5.2. Theorem. Local slices exist for the action of G on X. 

Proof. Let G. x be a closed orbit and let X o be the union of the finitely many 
irreducible components of X containing G-x. Then X' := G .X o is a Stein subspace 
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of X with finitely many irreducible components, since G ~  o- -X o and G has 
finitely many connected components. By Proposition 2.5, there exists a linear 
equivariant holomorphic map h:X '~C"  which imbeds G.x and is a local 
immersion at x. Proposition 5.1 then implies that a local slice C exists at x; and 
since U = G. C is a G-saturated open Stein neighborhood of G.x  in X', it follows 
that U is also G-saturated and open in X. []  

5.3. Theorem. I f  X has maximal complex structure, then the categorical quotient 
X/G is isomorphic to a complex Stein space with maximal complex structure such 
that rr :X--*X/G is holomorphic. 

Proof. Let G.x be a closed orbit and let h : X ' ~ C "  be a linear equivariant 
holomorphic map which imbeds G. x and is a local immersion at x, as in the proof 
of Theorem 5.2. By Proposition 5.1, there is a local slice C at x such that h : U 
= G.C~h(U) is an equivariant homeomorphism and h(U) is a closed G-stable 
complex subspace of a G-saturated open Stein subset W ofll~". Note that WIG is an 
open subset of the affine algebraic variety 112"/G, and we obtain an equivariant 
holomorphic map z oh:U~ WIG where z :C"--+IE"/G. By Lemma 4.15, z oh(U)is a 
closed complex subspace of W/G, and since U is G-saturated, the above map yields 
a morphism of Ir-ringed spaces U/G~roh(U) which is a homeomorphism of the 
underlying topological spaces. The theorem now follows from Lemma 3.2. [] 

5.4. Remark. Since a local slice C at xEX is invariant under a maximal compact 
subgroup M x of G x, we can Mx-equivariantly imbed it into the Zariski-tangent 
space Tx(X ) where M x acts linearly, cf. [25, p. 63]. This shows that we may also 
G:equivariant ly identify the slice B:=  G~.C with a locally closed G:s table  
complex subspace of T~(X) where G~ acts rationally. Therefore, the action of G on 
the entire open G-saturated subset U = G . B = G x ~ x B  is modelled on the re- 
striction of a linear algebraic action with U/G~-B/G~. This description is 
particularly useful when X is smooth at x, for then B is open and G:sa tura ted  in a 
Gx-stable ~-linear subspace of Tx(X). 

5.5. Corollary. I f  every isotropy subgroup G~, x~X, is conjugate to a fixed subgroup 
H of G, then X is a locally trivial G-equivariant holomorphic fiber bundle with Stein 
fiber G/H and Stein base X/G. In particular, X is a holomorphic principal G-bundle 
if and only if G acts freely on X. 

Proof. Since every orbit of G has the same (minimal) dimension, every orbit is 
closed and X-~X/G is the geometric quotient of X by G, cf. Theorem 3.8. Thus, a 
local slice C exists at any point xEX by Theorem 5.2 and X has a covering by 
G-saturated open Stein subsets U=G.C_~G XGxB, B:=  Gx.C. Now, for any ceC, 
we have G c C G~ by (4.3); and our assumption says that G~ = gG~g- ~ for some ge G. 
Therefore, G~ = Gc for all c~ C and G~ acts trivially on the slice B = Gx. C = C. We 
conclude that U_~ G/G~ x C'~ G/H x C and U/G ~- C which provides a local 
trivialization for a holomorphic fiber bundle structure on X. []  

5.6. Corollary. Assume G has exactly one closed orbit in X. Then there exists a 
reductive complex subgroup H of G and a closed H-stable complex subspace Y of X 
such that: 
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(1) Y is H-equivariantly biholomorphic to an affine algebraic variety on which H 
acts algebraically with exactly one closed orbit, a fixed point of H. 

(2) X is G-equivariantly biholomorphic to the affine algebraic variety G x n Y on 
which G acts algebraically. 

(3) I f  X is smooth at some point in the closed orbit of  G, then Y is 
H-equivariantly bihotomorphic to a rational representation space of  H. In particular, 
X is then a homogeneous vector bundle over the homogeneous affine variety G/H. 

Proof. Let G ,x  be the unique closed orbit in X, let B be a slice at x, and let 
U = G.B. Since U is a G-saturated, open, and contains the unique closed orbit of 
G, it follows that U is all of X, cf. Proposition 3.4. Setting Y= B and H = G x, we 
have X ~ G  x n Y  and X/G ~- Y/H. 

To prove that Y is equivariantly biholomorphic to an affine algebraic variety, 
we first realize Y as an H-stable locally closed complex subspace of the rational 
representation space Tx(X) of H, cf. (5.4). Since Y = H.  C for some local slice C at x, 
it follows from Lemma 4.14 that Y is closed in T~(X). 

Let T be a maximal (connected) torus in G and choose coordinates in T~(X) 
such that T acts on Tx(X ) diagonally. The set of all one-parameter subgroups 
# : (E*--* T forms a finitely generated abelian group and is in particular countable, 
cf. [3]. Let {/~i[ i~ IN} be an indexing of these one-parameter subgroups and define 
for i t  N 

Yi:={veY[#z(t) 'v=(tk 'vl  . . . .  , tk"v,),kj>O if V~+0}, 

where k 1 . . . .  , k, are fixed integers depending on/~i. Since 0e T~(X) is the only closed 
orbit of H in Y, Lemma 4.8 implies that for each ye  Y there is a one-parameter 
subgroup 2y : IE*~G with lim2,.(t)-y=0. Now, every 2y, ye  Y, is conjugate in G to 

t ~ 0  ~" 

some #i and therefore we must have Y = ~ G. Y~ (ie IN). Clearly, Y can have only 
finitely many irreducible components (cf. also Corollary 3.5), so the assertion will 
follow if we prove that each Yi is an algebraic variety. Let Y' be an irreducible 
component of u and let V' be the minimal C-linear subspace of Tx(X) containing 
Y'. Then, for all ye Y', i~i(t).y=(tk'yl, ..., tkmy,n ) for some positive integers k t . . . .  , k,,. 
Let f = ~ c~z ~ (multi-index) be a holomorphic function defined in a neighborhood 
B(0, e) C V' for some e > 0  which vanishes on Y'c~B(O,e). Let k.ct:= kl~ a + ... + kme,, 

and define f~:-- ~ c~z ~ so that f - -  ~ f~. Then, for all yE Y'c~B(O,s), t t I<l ,  we 
k . ~ = r  r = l  

have i~i(t).y~ Y' c~B(O,e) and f(l~i(t).y)= ~ t" f~(y). 
r = l  

Therefore, for s>0 ,  Itl < 1, 

0 =  f(12i(t)'y)= ~ = ~ t ~ - ~ f , ( y ) .  

Setting t=0 ,  we see that the polynomials f , ,  r>0 ,  also vanish on Y'c~B(O,e). This 
shows that Y' is an algebraic subvariety of V'. 

Finally, if X is smooth at x, Y is open in an H-stable ~E-linear subspace V of 
T~(X), cf. (5.4), and hence equal to all of V by the same remarks as in the beginning 
of the proof. [] 
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In a rational representation space of a reductive group G, there is a well-known 
criterion for when an orbit of G is closed, cf. [16, p. 354 and 17, Corollary 1]. Since 
the above corollary implies that every fiber of n :X--*X/G is an affine algebraic 
variety on which G acts algebraically, this criterion also holds on Stein spaces: 

5.7. CoroLlary. Let H be any reductive complex subgroup of G, let N := NG(H ) be 
the normalizer of H in G, and let x ~ X  be a fixed point of H. Then G .x is closed if 
and only if N .  x is closed. In particular, if an isotropy subgroup G x, x s X ,  contains a 
maximal torus of G, then G. x is closed. 

We conclude this section with a few remarks about holomorphically convex 
spaces. Recall that a complex space X is holomorphically convex if for all compact 
subsets KCX the set 

 :=/x xllf(x)l  xlfi, for all SEC(X)} 
is also compact. It is a well-known theorem of Remmert (cf. [7, 1.25]) that under 
these circumstances there exists a proper surjective holomorphic map with 
connected fibers z : X ~  Y where Y is a complex Stein space and z*C(Y)~ C(X). 

5.8. Corollary. Let X be a holomorphically convex space with maximal complex 
structure, and let G be a reductive complex Lie group acting holomorphically on X. 
Then the categorical quotient X/G has the structure of a complex Stein space with 
maximal complex structure such that n :X ~ X / G  is holomorphic. 

Proof. The action of G on X induces a natural holomorphic action of G on the 
Stein space Y since z is proper with connected fiber. The proof of this well-known 
fact is as follows: For all ye  Y and ge G, g" z-~(y) is compact and connected, so 
that zg.v-~(y) is a connected compact complex subvariety of Y by the Proper 
Mapping Theorem. Therefore, zg' r -  l(y) must be a point. The action of G on Y is 
then defined by g" Y := zg" z -  l(y) which is easily seen to be holomorphic. Since Y 
must also have maximal complex structure (cf. [7, 2.29]), we may apply 
Theorem 5.3 to obtain the categorical quotient r(: Y ~  Y/G. It is trivial to verify 
that X/G_~ Y/G and n =  n' or. []  

Note that the categorical quotient n :X--*X/G is this setting does not nec- 
essarily possess the same geometric properties as it does for Stein spaces. For 
example, local slices may not exist and the fibers of n may not contain unique 
closed orbits. 

6. Stratifications of the Quotient 

We would like to conclude this paper by describing two related stratifications of 
the categorical quotient X/G of a Stein space X by a reductive complex Lie group 
G and some of their applications. We assume X has maximal complex structure so 
that X/G is isomorphic to a Stein space with maximal complex structure and 
n : X ~ X / G  is holomorphic, cf. Theorem 5.3. 
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6.1. Proposition. There exists a natural stratification of X /G into a finite number of 
mutually disjoint, locally closed complex subspaces X/G = I11 u . . .  u Yt such that, for 
l ~_k~_t: 

(1) cl(Yk)c Y ~  . . .wY  k. 
(2) The map 7r k :Xk-* Yk, where X k := n-I(Yk) and nk := nlXk, is the categorical 

quotient of X k by G and assertions (3.5)-(3.7) remain valid for n k. 
(3) The closed orbits of  G in X k are closed in X and they all have the same 

dimension. 
(4) I f  G.x  and G.y are closed orbits in X k such that nk(X ), nR(Y) lie in the same 

connected component of Yk, then G o is conjugate to G ~ 

Proof. Let Z1 be the closed G-stable complex subspace of X consisting of the 
orbits of G of minimal dimension. By (2.4), these orbits are closed. Define 
Y1 := re(Z1) and X 1 := re- ~(Y~). For  k > 1, we define Z k recursively to be the closed 
subspace of X' k_ ~:=X\cl(X k_ 1) consisting of the orbits of minimal dimension in 
X'k_~. Again by (2.4), these orbits are closed in X~,_ r By Propositions 2.3 and 3.4, it 
is easy to see that the orbits in Z k are also closed in X, that Yk := re(Zk) is locally 
closed in X/G with cl(Yk)CYlw...WYk, and that 7zk:Xk:=~z-l(Yk)-'~Y k is the 
categorical quotient as described in (3). Since the dimension of the minimal orbits 
in X~,_ t strictly increases with k, this process stops after a finite number of steps. It 
remains to prove (4). Since nk(X ) and 7ck(y ) lie in the same connected component of 
Yk, there exists a path c~ :[0, 1 ] ~ X  k and g~G with c~(0) = x, c~(1) = g.y, and G.e(r) a 
closed orbit in X k of fixed dimension, 0_<r_< 1. It follows from Theorem 5.3 and 
(4.3) that G~~ is conjugate to G~~ 0 < r, s N 1. []  

We now cite an example where the above stratification is trivial. We say that a 
fixed point x ~ X  of G is attractive if there exists a neighborhood U of x such that 
for all y~ U, cl(G.y) contains a fixed point of G. We remark that in the important 
special case of ~*-actions, attractive fixed points can be identified by a simple 
differential criterion, cf. [20]. 

6.2. Theorem. Let X be an irreducible Stein space with maximal complex structure, 
and let G be a reductive complex Lie group acting holomorphically on X. Assume G 
has an attractive fixed point in X.  Then : 

(1) 
(2) 
(3) 

on F. 
(4) 

Every fixed point of G is attractive. 
The set of all fixed points F is a closed irreducible Stein subspace of X. 
There exists a natural hoIomorphic retraction X - * F  inducing the identity 

I f  X is non-singular, then X--* F is a holomorphic vector bundle. 

Proof. The assumption that G has an attractive fixed point implies that X~ as 
defined above has an interior point and hence X = X  1 since X is irreducible. Thus, 
cl(G. y) contains a fixed point of G for all yeX ,  and the only closed orbits of G are 
its fixed points, cf. Proposition 3.4. It follows that z :=~IF:F--*X/G is a ho- 
meomorphism and F is irreducible, cf. Sect. 3. If we endow F with a maximal 
complex structure, then z is biholomorphic, cf. e.g. [7, Sect. 2.20], and z-1 oft 
defines a holomorphic retraction X ~ F .  Assertion (4) follows from Corollary 5.6 
and Propositions 6.3 and 6.4. []  
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For the remainder of this section, we shall assume that X is non-singular. As 
noted in (5.4), the action of G on X can then be locally modelled on linear algebraic 
actions G xnB where B is open and H-saturated in a rational representation space 
V of H. This fact leads to a finer (possibly infinite) stratification of X/G than that 
above and allows us to draw the same conclusions for Stein manifolds as presented 
in [18, III, Sects. 2-4] for smooth affine algebraic varieties. 

Let JCL denote the set of isomorphism classes of rational representation spaces 
of the reductive complex subgroups of G. Define a map / t  :X /G~ ,~ /a s  follows : Let 
y e X / G  and let G.x  be the unique closed orbit in n- in(y)  where n : X ~ X / G .  We 
define g(y)e J/g to be the isomorphism class of the rational representation of G x on 
the normal tangent directions to G.x  at x in X. For 2e.//g we define 
(X/G)a :=/t-~(2) and Xz:= n-I(X/G)x. Contrary to the affine algebraic case, the 
image of y need not be finite. However, we do have: 

6.3. Proposition, For all 2e J / ,  (X/G)z is a locally closed non-singular complex 
subspace of X/G and the map n :Xa--*(X/G) z is a locally trivial, G-equivariant, 
holomorphie fiber bundle. In particular, the fibers of n in X ~ are all G-equivariantly 
biholomorphic. 

For the proof we refer to [18, Corollaries 4 and 5]. The point is that for a local 
model G x n B, B C V, we have (G x n B)z = F n B/H = F n B where the representation 
of H on V belongs to the isomorphism class 2 and F is the linear subspace of fixed 
points of H in V. The construction of the fiber bundle structure uses Corollary 5.6 
and is similar to that in the proof of Corollary 5.5. 

Since X = U Xa (2E ~ ' )  and the number of isomorphism classes 2~ ~ such that 
X a + 0  is at most countable, it follows that Xa has non-empty interior for some 
2eJg.  I fX /G is connected, it is clear that only one such 2 is possible, which we call 
the principal model of X. 

6.4. Proposition. Assume X/G is connected and let 2~,/t1 be such that X x 4: 0. The 
following are equivalent: 

(1) 2 is a principal model of X. 
(2) (X/G)x is open in X/G. 
(3) I f  G .x  is a closed orbit, x~Xx, then G.x  fibers equivariantly over every 

closed orbit in X. 
(4) I f  G .x  is a closed orbit, x~Xx, then n : X ~ X / G  is non-degenerate at x. 

For the proof see [18, Corollary 6]. 
With the existence of a principal model, one can apply the arguments of Luna 

to obtain the following two theorems, the second of which was originally proved 
by Richardson [23] using different methods. We omit the proofs, since they are the 
same as in the affine algebraic case, cf. [18, Corollaries 7 and 8]. 

6.5. Theorem. Let G be a reductive complex Lie group acting holomorphically on a 
Stein manifold X. Suppose the tangent space at each point possesses a non-degenerate 
symmetric bilinear form which is invariant under the isotropy subgroup of that point. 
Then, there exists a dense open subset of X consisting of orbits which are closed in X. 

6.6. Theorem (Richardson). Let G be a reductive complex Lie group acting 
holomorphically on a Stein manifold X. Then, there exists a subgroup H of G, not 
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necessarily reductive, such that the set of points in X whose isotropy subgroups are 
conjugate to H is dense and has non-empty interior. 
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