Math. Ann. 271,493-526 (1985) Am
© Springer-Verlag 1985

A Grothendieck-Riemann-Roch Formula
for Maps of Complex Manifolds

Nigel R.,O’Brian’, Domingo Toledo®*, and Yue Lin L. Tong™ **

1 Department of Pure Mathematics, University of Sydney, Sydney, N.S.W. 2006, Australia
2 Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
3 Department of Mathematics, Purdue University, W. Lafayette, IN47907, USA

Contents

Introduction . . . . . . . . oL L L Lo e e e e e 493
Notation . . . . . . . . . . . Lo o e e e e e e e e 496
1. Twisted Resolutions of Perfect Complexes . . . . . . . . . . . . . . . . ... 497
1.1 Mapping Cones for Twisting Cochains . . . . . . . . . . . .. ... .. .. 497
12 Perfect Complexes . . . . . . . . . . L. L Lo 498
13 Trace Map and Chern Character . . . . . . . . . . . . . . .. ... . ... 499
14 Nondegeneracy of the Trace Pairing . . . . . . . . . . . ... .. ..... 501
2. Direct Images of Twisting Cochains . . . . . . . . . .. .. .. .. ... .. 502
21 TheShuffleMap. . . . . . . . . . . . .. 502
22 Fibre Integration on Cech Cochains . . . . . . . . . .. .. ... ..... 503
23 Twisting Cochains and the Shuffle Map . . . . . . . . . . . . . . ... ... 504
3. The Relative Lefschetz Class . . . . . . . . . . . . . . v v v v v o 506
31 Nuclear Fréchet Modules . . . . . . . . . . . . ... . ... ....... 506
32TheKiimnethMap . . . . . . . . . . . . . e 508
33 Characterization of the Lefschetz Class . . . . . . . . . . . . . ... .. .. 509
34 Relative Duality . . . . . . . .. e e 510
4. Construction and Properties of the Dual Class . . . . . . . . . . . ... ... 513
41 Koszul Complexes . . . . . . . o v v i e e 513
42 Construction of the Dual Class. . . . . . . . . . . v v v vt i 514
43 Properties of the Dual Class . . . . . . .« v v v v i e e 515
44 Restriction of the Dual Class to the Diagonal . . . . . . . . . . ... .... 518
3. Riemann-Roch for Retractible Embeddings . . . . . . ... .. .. ... ... 522
5.1 Factorization of the Trace Map . . . . . e e e e e 522
52 Reduction to the Normal Bundle. . . . . . . . . . . v o oo v 523
33 Identification of the Todd Genus . . . . . « o« « o i v it e 525
References . . . . . . . ... 526
Introduction

Thisis the detailed proof of the formula announced in [11]. This is a generalization
of the formula first discovered by Grothendieck [2] for a proper map f: XY of
l"ﬂw projective varieties and a coherent sheaf & on X. In this case
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Grothendieck proves that if R, is the i** direct image sheaf of & then for 5
suitable theory of characteristic classes for vector bundles over projective varieties
the Chern character of a coherent sheaf can be defined and the formula

> (—1)'ch(R¥, #)Todd(Y) = f,(ch(#)Todd(X))

holds in the characteristic ring of Y. In [9] and [10] the Chern character of a
coherent sheaf on an arbitrary complex manifold X is defined as an element of the

Hodge cohomology ring 3, H*(X, &%) and the formula above shown to be valid in
k

case Y is a point. This is the formula first proved by Hirzebruch in case X is
projective and by Atiyah and Singer, as a special case of the index theorem, in case
F is locally free.

Here the formula is proved for any holomorphic map f of complex manifolds
and any coherent sheaf # on X with the property that f is proper on the support of
. Moreover, our results are derived as relations between local geometric
expressions depending on local coordinate systems for the manifolds and twisting
cochains for the sheaves. The Chern character of # and the R, # are defined asin
the earlier paper [9]. This approach extends Atiyah’s definition of the character-
istic ring of a holomorphic vector bundle via Cech theory, so our formula is to be
interpreted as an identity in the Hodge cohomology of Y. The proofis carried out
entirely within the framework of twisting cochains and their associated cochain
complexes. It appears that some of these techniques can be regarded as a
translation of derived category methods into more concrete geometrical terms.
Those familiar with the derived category will recognise twisting cochain versions
of several of the constructions used in [6], for example.

As indicated in the announcement, the proof of the formula begins, as in
Grothendieck’s original proof, by factoring f as an embedding followed by
projection and proving the formula for each type of map separately. Functoriality
shows that the formula is then valid for the composition. In our case the
embedding is taken as the graph I': XY x X, with I'(x)=(f(x), x), s0 that
composition with the projection onto Y gives f.

Multiplicativity of the Todd genus over short exact sequences of bundles shows
that if i: X —Z is a holomorphic embedding the formula reduces to

(0.1) ch(i, #) =i (Todd(N)~ 'ch(#)),

where N is the normal bundle of X in Z. We do not attempt to give a direct proof of
the result in this generality. Instead we make the simplifying assumption that ther¢
exists a holomorphic map ¢ : Z— X such that g - i is the identity map. This leads to
considerable simplifications in the local formulae appearing in the proof and s
clearly valid for the case of the graph embedding used in the derivation of the
general formula. The formula (0.1) is then shown to hold in the local cohomology
space Y HY(Z, (%), where S is the support of i, #.
k
Similarly, for the projection n: Y x X—~Y the formula is equivalent to
0.2) 3 (— 1)'ch(Rin, F) = | Todd(X)ch(#)
i X
for any coherent sheaf # on the product with support S proper over Y. The Chert
character is interpreted as an element of ¥ HY(Y x X, Qf . y).
k
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The proof of (0.2) is the more difficult and occupies the first four chapters of the
paper. In case Y is a polydisc, for example, the proofis quite similar to the proof of
the Hirzebruch-Riemann-Roch formula given in [ 10]. The various analytic results
used in [ 10] are replaced by their relative versions. The theory of nuclear Fréchet
modules provides suitable techniques and most of the necessary results are already
available: Grauert’s coherence theorem and the duality theory of [12] substitute
for the corresponding finiteness and duality theorems used in [10].

The extension to a general Y again depends on twisting cochain methods, this
time relative to an open cover of Y. In outline this still follows the original model of
[14] with an explicit construction of a cocycle in ¥ x X x X which is the Gysin
image, in the sense of Grothendieck duality, of a certain cocycle on Y x X under the
diagonal inclusion. In more detail, the contents of the various sections are as
follows.

The first chapter shows how to associate a twisting cochain and Chern
character to a complex of sheaves which is “perfect” in the sense of [7]. This is
applied in the case where & is a coherent sheaf on Y x X with the projection onto
Y proper on the support of #. If % is a Stein open cover of X then the complex of
0y-modules which associates the Cech complex C (V x %, %) to an openset V of Y
is perfect, and its Chern character is shown to coincide with the left side of (0.2).

The second chapter introduces some familiar simplicial techniques into the
context of twisting cochains. These are based on the “shuffle map” of Eilenberg and
Maclane [4]. For a product cover ¥" x % of Y x X this map is used to transform
cochains on ¥~ x % into cochains on ¥~ with coefficients which are cochains on #%.
The map is compatible with the usual operations on cochains and for our purposes
has the useful property that twisting cochains on ¥~ x % can be transformed into
twisting cochains on ¥~ in an appropriate sense. The local complexes of the
transformed cochain are themselves cochain complexes with differentials coming
from the original twisting cochain.

These two chapters thus describe two ways to obtain a twisting cochain for the
perfect complex introduced above. In the first case the local complexes are the
familiar complexes of free, finitely-generated @y-modules; in the second they are
themselves cochain complexes. The next chapter relates these two constructions
and goes on to show how they lead to an analogue of the “Lefschetz class” on
YxXxX.

In the absolute case this is quite straightforward and is described in [10,
Sect. 1]. The extension to the general case is presented in terms of the constructions
of the previous two chapters. The familiar Serre-Grothendieck duality and the
Kiinneth formula for sheaves must be replaced by their relative versions. As before
the class can be characterized abstractly as the Gysin image of ¥ x X under the
diagonal embedding and with respect to integration along the fibres X x X of the
product Y x X x X. This chapter also includes a twisting cochain version of the
proof of the relative duality theorem of [12].

The explicit construction of the dual class of ¥ x X in ¥ x X x X through the
cochain-level Gysin map is described in Chap. 4. As usual, this is carried out in
terms of Koszul resolutions for the diagonal submanifold of X x X, a twisting
cochain for # on Y x X and explicit chain homotopies for the Koszul complexes.

his gives a local formula for the dual cocycle in terms of geometric data for X and
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& . It remains to identify this expression with the appropriate characteristic classes
and to show that the class constructed is the same as the Lefschetz class of the
previous chapter. This latter problem is dealt with by expressing the duality
properties of the explicit cocycle in terms of the chain homotopy conditions which
characterize the Lefschetz class. The final section of this chapter relates the
geometric formula to the characteristic classes of X and #. This is very similar to
the argument in the absolute case, and combines a stronger form of the origina}
invariant theory argument of [14] with explicit calculation based on the product
operation for twisting cochains. This concludes the proof of (0.2).

The final chapter proves the formula for an embedding i: X —»Z with the
retraction g onto X. The proof depends heavily on the exterior algebra structure in
the local Koszul resolutions for the submanifold X. The argument is based on the
simple fact that for endomorphisms of an exterior algebra the trace operationisa
special case of the interior product. Globally this implies that the trace map for
twisting cochains of sheaves of the form i, # factors through the cochain complex
used in the explicit construction of the Gysin map. This complex has the property
that the image of any cocycle in it has a residue on X, and the full trace of the
cocycle coincides with the Gysin image of this residue in Z. Applied to the powers
of the Atiyah class of i, # this shows that the Chern character of i, # is the Gysin
image of some cocycle on X. It remains to identify this cocycle as a representative
of the appropriate characteristic class. This depends on a series of reductions based
on degree arguments in the exterior algebras of the Koszul complexes. The first
reduction shows that Z can be replaced by the normal bundle of X, with X
included as the zero section. The same argument also shows that it is only
necessary to consider the case & = 0. Finally an inductive argument on the rank
of N shows that it is sufficient to prove the result for codimension one, where it
follows by direct calculation.

Some attempt has been made to keep the proof reasonably self-contained. The
main exceptions are the construction of the cochain level Gysin map associated to
a submanifold [15], some elementary properties of twisting cochains described in
[9] and various facts concerning topological tensor products and their application
to coherence and duality questions on analytic spaces, for which [3] and [12] are
suitable references.

Notation

For complexes E ', F* of vector bundles or Oy-modules over a complex manifold X
the tensor product E'®F’, homomorphism complex Hom (E, F) and dual E” ar¢
defined over 0, according to the usual conventions. Differentials and product
operations for associated spaces of cochains are defined according to the sign
conventions used in [9]. For M and N locally convex topological vector spaces
with M nuclear, the operation & is the usual completed tensor product over C
unless otherwise indicated. The sheaf Q% of holomorphic k-differentials on X 18
regarded as a complex, zero except in degree — k. For the sign conventions in use
here, this gives compatibility of products with the usual wedge product i
3-cohomology under the Dolbeault isomorphism. For open sets ¥, ..., Vj, thelf
intersection is denoted by ¥, ..
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1. Twisted Resolutions of Perfect Complexes

1.1. Mapping Cones for Twisting Cochains

We recall some of the terminology of twisting cochains used in [97] and extend the
techniques to more general situations which arise here. Throughout Y is a complex
manifold, with structure sheaf @y. For coherent sheaves or holomorphic bundles
F,% the notation Hom(W, &, %) means the usual space of homomorphisms over
W Y. It will also be necessary to consider the case where # or 4 may not be
coherent; for example they may be vector bundles modelled on infinite dimen-
sional topological vector spaces. In that case the appropriate space of homomor-
phisms will be specified as necessary.

Suppose given an open cover ¥ = {V;} of Y together with graded ¢y-modules
F; over V3. Form the space of cochains

C*(v",Hom(F, F))=[THom*(V;, 4,; F;,, F;,)

with corresponding Cech coboundary and product operation as in [9]. A twisting
cochain is an element b of 3 CY(¥",Hom! "¥F, F)) satisfying 6b+b - b=0, with
k

by;° the identity map for all B. As before this data will be denoted by (¥, F, b).

For two twisting cochains (¥, E, a) and (¥, F, b) the complexes C,(¥", E’) and
C..s(¥",Hom'(E, F)), with differentials D, and D, , are defined as in [9], except
that for present purposes it is useful to require that all cochains [except for (1,0)-
components of twisting cochains] are non-degenerate in the sense that they vanish
on all simplices of the cover for which two adjacent vertices coincide. The spaces of
such cochains are closed under the differentials if it is also required that the
twisting cochains are non-degenerate on k-simplices for k> 1. From Remark 1.8 of
[9] this can always be assumed to be the case.

For complexes M ", N with differentials d,,, dy and a degree zero chain map
u:M'>N" the mapping cone of u is the complex P* with P'=M'®N'"! and

differential
dy 0
u - dN )

Simi%arly, given a degree zero cocycle uin C, (¥, Hom '(E, F)) the mapping cone
of u is the twisting cochain (¥, G, c) with Gi = E.@®F. ! and c given by

k
ck - |: Ago...pre +01 N :I
Porb™ | (=Dl g (=D 'B5,
The condition dc+c-c=0is equivalent to the similar equations satisfied by a, b
together with the cocycle condition on u. The local complexes are the mapping
cones of the chain maps u.

Finally, if E is a globally defined complex on Y, then for any cover ¥ of Y
there is a naturally associated twisting cochain which will be denoted by
(f, E,e), where E;=E'| Vj, the map ep-! is the restriction of the differential of
E"and e};° is the identity on E'|V,nV,.
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1.2, Perfect Complexes

We use the following generalization of the notion of coherence for @y-modules. A
more detailed discussion can be found in [7]. For our purposes a chain map
between complexes of Oy-modules is a quasi-isomorphism if the induced map on
complexes of sections is a cohomology isomorphism over every sufficiently small
Stein open neighborhood of each point. Similarly a complex of Oy-modules is
acyclic if the corresponding complex of sections is acyclic over every sufficiently
small Stein open neighborhood of each point. Thus a chain map is a quasi-
isomorphism if and only if its mapping cone is acyclic.

Remark. Most of the Oy-modules introduced here are guasi-coherent nuclear
Fréchet modules over @y in the sense of [12, Sect. 2]. If a complex of such sheaves is
bounded above and the complex of sections is acyclic over a Stein open set V, then
the complex of sections is acyclic over every Stein open set WCV (see [3,
Proposition 3] for example).

Definition 1.2.1. A complex & of Oy-modules is perfect if each point of Y hasa
neighborhood ¥ such that & |V is quasi-isomorphic to a bounded complex E’of
0,-modules, with each E* free and of finite rank.

Suppose that & is a perfect complex with differential 0. The twisting cochain
(¥, &,e) is formed as above for any open cover ¥” of Y.

Definition 1.2.2. A twisted resolution of & over ¥ consists of a twisting cochain
(¥, E, @) together with a cocycle u of degree zero in C; (¥", Hom(E, &) with the
property that each complex E; is bounded, the E% are free and of finite rank and
each local chain map u,: E;— & '|V; is a quasi-isomorphism.

In the case where & consists of a single coherent sheaf in degree zero and
(¥, E, a) is a twisting cochain for & in the sense of [9] then there exists a natural
choice for u; let ug be the quotient map from Ej onto &|Vsand set w=0fork>0.In
the general case the existence of u ensures that the local maps u, extend to a global
map of the cochain complexes C,(¥", E") and C,(¥",&") given by left multiplica-
tion by u. The construction of a twisting cochain for a single coherent sheaf
given in [9, Sect. 1] can now be generalized as follows.

Proposition 1.2.3. Given a perfect complex & and an open cover ¥ of Y, there exisisd
twisted resolution of & by a twisting chochain (", E, a) on some refinement 7 of
V.

Proof. For asuitable Stein refinement of ¥” it can be assumed that there exist chain
maps ug:E;—&'|V; as in the definition, such that u, induces cohomology
isomorphisms over every Stein open subset of V. Suppose that E, has differential
ad! and let L, be the mapping cone of u,. We construct a cochain 4 1
3 C¥¥", Hom' “%(L, L)) satisfying 64 + A - A=0. This will be the mapping cone of
st)me cocycle u in % Ct (v, Hom YE, &)) extending the given u,. In particular

AS* will be the differential of L' and A43;° the identity map. It follows that (¥, E.9)
and u solve the problem. The construction of 4 depends on the following Jemmas-
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Lemma 1.2.4. Let E be a bounded complex of modules with each E* free and of finite
rank. If the complex Fis acyclic then the same is true for the complex Hom (E, F).

Proof. Either consider the spectral sequence obtained by filtering by the E " degree
or show directly that every chain map of E"into F"is homotopic to zero, as in [7,
Lemma 4.1].

Lemma 1.2.5. Suppose given chain maps r: E'—F " and s: G'—F  with E’ as above
and s an isomorphism on cohomology. Then there exists a chain mapr': E'— G with
sot homotopic to r.

Proof [7, Lemma 4.2]. Let K" be the mapping cone of s. The composition of r with
the inclusion of F “into the acyclic complex K "gives a chain map (of degree + 1). By
the preceding lemma this map is homotopic to zero and the components of the
homotopy give *’ and the homotopy between sor” and r.

Now apply (1.2.5) with r=u; and s=u, to obtain Uap and u,; over V,n¥j
satlsfymg Gyllyp = Gopg and Ug—u, 0,5 = OUl,p + 55, Where 0 is the differential of £
This gives Aro satisfying A,A4,; = A,p4,.

The remaining A% ~* are now constructed inductively. If D is the differential
on Hom(Lg,, Lg,) this means ﬁndlng Aﬂ0 soon To g, satisfying

(i) (—1)**'D4, [(M" T+ Z A4 .
=1 0--Bi
(i) A5, 4, vamshes on the subcomplex &, of Ly,

Condition (ii) is equivalent to the fact that A,,O . lies in the subcomplex
Hom(E,,, L, ) of Hom (Ly,, L, ) and it follows inductively that the right side of (i)
lies in this subcomplex for k> 1. The usual inductive calculation shows moreover
that the same expression is a cocycle. But Hom(E,,, L, ) is acyclic, so A s
satisfying (i) exists. The resulting twisted resolution will be written as (¥, E, 4).

1.3. The Trace Map and Chern Character

With suitable modifications the theory of the trace map introduced in [9] goes
through for perfect complexes. Only certain aspects of the theory are needed for
present purposes however, and these are described next. Let (¥, E, 4) be a twisted
resolution of a perfect complex & on Y as above. The trace map

1,: C(¥ ,Hom (E, E))->C{¥", Oy)

S the chain map into the usual Cech complex given on cochains of bidegree (p, g)
y

q
(Taup'q)ﬁo...ﬂ,,+q = kZO (— 1)k(p+q)+q

g+1
tr(@gl gos oo BB Bics )

Where as usual “tr” denotes the sum of traces in even degree minus the sum of traces
inodd degree. The same calculation as in [9, Sect. 3] shows that 7, is a chain map.

Similarly the Atiyah class of & is represented in C (¥, Hom (E, E®QD) by the
0‘COCYCIe da, where d is the usual exterior derivative, and the Chern character of
&"is the class in ZH"(Y Q%) represented by

ch(€) =1, (%: (da)"/k!) .



500 N. R. OBrian et 4],

Independence of choice of twisted resolution can be shown as in [9, Sect. 3], 1t
follows that quasi-isomorphic perfect complexes have the same Chern character,
Alternatively, independence also follows from the formula, to be proved below,

(1.3.1) ch(6)= 3 (— 1)ch(#*&)

which relates the Chern character for perfect complexes to the definition given in
[9] through the cohomology sheaves #*(&"). The formula (1.3.1) is proved by
reduction to the following proposition, which generalizes the additivity property
of the Chern character given in [9, Proposition 4.5].

Proposition 1.3.2. Suppose & and F " are perfect complexeson Y and @ : 8"~ F ‘isq
chainmap (of degree zero). Let 9" be the mapping cone of ®. Then % 'is also perfect

and
ch(¥%)=ch(&)—ch(F )
in 3 HX(Y, &%)
k

From the proposition formula (1.3.1) follows by induction on the number of
integers k such that #°%(& ) 4 0. If there are no such k the result is trivial. In general
suppose that #*(& )+ 0and #'(€)=0for I <k. If 8 is replaced by zero for all | <k
and &€* by £*/06* ! the resulting complex is quasi-isomorphic to &, so it can be
assumed that #'=0{for [ <k. Let Z " be the perfect complex with 5#*(¢€ ) in degrec k
and zero elsewhere. The inclusion of #%(£ ) into &* gives a chain map of & “into &,
with mapping cone 5 say. The cohomology exact sequence shows that #(1")
= #* (&) for i+ k+ 1, while #** (2" )=0. Then (1.3.1) for & follows from the
proposition and the corresponding formula for .

Proof of 1.3.2. Let (¥, E, A) and (¥, F, B) be twisted resolutions for £, # "with A
as above and B the twisted resolution corresponding similarly to a twisting
cochain b and 0-cocycle v in C; (¥, Hom (F, #)). From the form of the Atiyah
class and the trace map the proposition will follow from the existence of a twisted
resolution for % for which the associated twisting cochain is the mappmg cone of
some O-cocycle h in C; ,(¥",Hom (E, F)). Let Ly, M; be the mapping cones of

Ug, Ug.
Proposition 1.3.3. There exists a 0-cocycle U in C; (¥, Hom (L, M)) of the form

h 0
k. k
<[ e v
withrespect to the decomposition Ly=Es@ &5 * and My=Fy@F; ', where a5 °is
O|V; and &% *=0 for k>0.

Remark 1.3.4. With this choice of signs the cocycle condition on U is equivalent 10
the cocycle conditions on h, @ together with the relation

v-h—@-u=D,s.

Proof. Let &', 8" be the differentials of £, # . Lemma 1.2.5 gives the existence ofa
chain map h,: E;—Fj and s; with

-7
Uphp— @ﬂup --5 S,;+Sﬁaﬂ
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and hence a cochain U° satisfying B,U,= UzA,. The argument proceeds as in the
proposition above by finding sections Uj, , of the acyclic subcomplex
Hom (Eg,, Mg,) of Hom(Lg,, Mg ) with coboundary

k—1
(_1)k+1|:5Uk—1+ Z (Bl-Uk—l——Uk—"Al)] X
=1 Bo. B
This expression is checked inductively to be a cocycle and to lie in the acyclic
subcomplex; the existence of U* follows.
The mapping cone of U is now a twisting cochain for local complexes
L,@My . Under the isomorphism of L,®Mj * with N;@%} ', where N}
=EL@Fjy ", this goes over into a twisted resolution (¥", N, C) for ', with

ct 0
Ck: I:(_ l)kwk (_ 1)k+ lek] ’

where now

ak 0 u* 0
ck:[(—l)kh" (—1)"“b":|’ Wk:[(—l)*“s* (—D"u"]

Since ug and vj are quasi-isomorphisms, so is w§. This gives the required twisting
cochain for 4",

14. Non-Degeneracy of the Trace Pairing

IfE, F are complexes of finite-dimensional vector spaces, then the trace gives an
isomorphism between Hom (F, E) and the dual of Hom (E, F). In order to state
and prove the global analogue of this perfect pairing we use the terminology of [9]
concerning simplicial maps between complexes associated to twisting cochains.
For a cover ¥~ of Y and simplex f=f,...B, of the nerve of ¥", write y< § in case
P=7q...7, With y;, = B, for some strictly increasing v: {0, ..., ¢} {0, ..., p}. (This
is a slightly more restrictive definition than that used previously.)

Now let C(¥",E) be a twisted complex consisting of complexes of (finite-
dimensional) vector bundles E gover Vy=V; n...nV, for eachsimplex f= Bo---Bp
Qf 7", with differential induced by bundle maps 4} for y < 8. Recall that if Cz(¥", F)
18 a second such complex we define Hom(¥"; E, F) as the complex of maps
T:C (¥, E)-»Cy¥", F) of the form

T0)= T
= 7,

LOr suitable bundle maps T7. For T of total degree r the differential is given as usual
y

TisBoT+(—1)y*1ToA.

Suppose that (¥, E, a), (¥, F, b) are twisting cochains, with E;, F; bounded,
f“?e and of finite rank. Interpret C, (¥, Hom(E, F)) and the Cech complex
C(r,0) as twisted complexes Cp(¥,M) and C'i(¥",0y), so that My ,
=H9m'(Ep,, Fy,), and 6} is zero unless y is a codimension one face of B, in whic
¢ase 1t is the restriction map, up to sign. The next proposition is the global non-
degenmlcy result. In a derived category setting this result appears in [7, Sect. 7].
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Proposition 14.1. The chain map u—¢, from C(¥ ,Hom'(F,E)) int
Hom'(¥"; M, 0y), defined by ¢ (v)=r1,(u-v), is a quasi-isomorphism of cochain
complexes.

Proof. Note that Hom (¥"; M, 0y) can itself be regarded as a twisted complex on
¥", for which the local complex over Vg, 5 is Gy, 5 say, with
G},..5.= } Zy‘, < Hom(Hom™%E, , F, ), Oy)

and differential T+ + T'- D. Under this interpretation ¢ itself becomes a simplicial
map in Hom (¥"; M, G). The usual comparison of spectral sequences shows that in
order to prove that ¢ is a quasi-isomorphism, it is only necessary to check that each
of the local chain maps ¢} induces a cohomology isomorphism over V;. But ¢}
factorizes into a map

(14.2) Hom (Fy, Eg))—Hom (Hom(Ey , Fj ), Oy)

followed by the natural inclusion of the second complex into G,, where in (1.4.2)a
bundle map vy, ;. goesinto the homomorphism sending ug,_into tr(b b.80080...0. 8,
But the second complex is isomorphic to Hom (Fy , E; ) under the trace pairing,
and b}, is a chain homotopy equivalence, so (1.4.2) induces quasi-isomorphisms
on the complexes of sections over Vj.

Let o4 be the g-cohomology in this case. If the complex G, is filtered by
simplicial degree then the resulting E24 can be identified with the space of (ordered,
non-degenerate) p-chains of the simplex f,...5,, with coefficients in #7 and the
usual simplicial boundary (up to sign). The inclusion map into Gj then
corresponds to inclusion of the vertex §,, and the acyclicity of the -simplex gives
the result.

2. Direct Images of Twisting Cochains

2.1. The Shuffle Map

Suppose given complex manifolds X, Y with open covers %, ¥~ and projection
map n: Y x X > Y. A coherent sheaf # on Y x X gives a complex C (%, ) of Oy
modules with

C@U,FYW)=CWxUF)

for WCY, where if % ={U,} then W x % is the cover {W x U,} of WxX. This
complex has the usual Cech boundary operator and if # is a Stein cover, the ¢"
cohomology gives the direct image sheaf Rin (%). There is also a bicomplex
C(¥, C'(%, %)), for which a cochain ¢ of bidegree (p, g) consists of sections Cs,..5
of C{U, F)over V,_,,,€ach of whichin turn corresponds to sections ¢z, g,,40.-%
of F over Vg, 5 % Uy, .. The differential is Oy +dy, where

q+1
—_ k+
(6xv)ﬁo...ﬂ,,ao..<aq+ 1 - k§0 (‘—‘ 1) pcﬁo...ﬂp,rzo.“&k...aq.; 1

p+i
—= k N
(6Yc)ﬁo.—-ﬂp+ 1,R0--8g kgo (_ 1) Cpo..‘ﬁk...p,, +1,00...0g *
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This bicomplex is related to the complex C'(¥" x %, %) by the shuffle map of
Filenberg and Maclane [4, 8] applied to the cover ¥ x %. This is the map

@2.1.1) o:C(V xUF)->C(V,C U, F))
given by
(212) a(u)ﬁo...ﬂ,,ao...uq = Z iuto...1p+q s

where the sum runs over all strictly increasing sequences 1 £i; <... <i,<p+qand
T =(ﬂlr’ o:,,,) with 10 =0= mg and

m=m__y, L=L_,+1,
1. =1

i =li-1, my=m;_+1.

Here the sequence 1£j;<...<j,Ep+qisthe complement of the sequence (i,) and
the sign in the formula is that of the permutation (iy, ...,ip, j1, ---sJg)-

Both complexes in (2.1.1) have a cup-product. A pairing 8 ®F — % induces the
usual cup-product pairing C(%,8)RQC ¥, F)—C(%,%) and hence a further
cup-product between C(¥',C(#%,8)) and C(¥,C (%, #)), also denoted by
u,v—u-v. The important properties of the shuffle map are the following.

Proposition 2.1.3. With respect to the above operations the shuffle map satisfies
(1) 6(du)=(0x+dy)a(u),
(i) o(u-v)=0(u)- o(v).

Moreover ¢ is a quasi-isomorphism.

Proof. Equation (i) is proved by induction on degree, as in [4, Theorem 5.2]. The
second formula follows from the definitions; the argument is given in [5, Sect. 3].
The last statement is also proved in [4].

2.2. Fibre Integration on Cech Cochains

Let 7: Yx X—Y and %, ¥ be as above with X, Y of complex dimension n, m
respectively. For a coherent sheaf & on Y we use the standard notation #'# for the
tensor product of 2%, regarded as usual as a complex zero except in degree —n,
with n*& over Oy, y. The shuffle map can be used to define a fibre integral.

[:C xUnE~C 0, 8),

where the subscnpt indicates the subcomplex of cochains with support on which =
is proper. This is defined as the composition of the shuffle map

6:C(V xU,TE-C(V,C (U, %B)RE)

with the usual integral on C%, ) applied pointwise with respect to Y.

Recall that this integral is defined as the composition of a Dolbeault
hOmomol'phlsm with the usual mtegratlon of smooth forms for the orientation
given locally by dx!dy'...dx"dy", where z'=x +[/:—1y are holomorphic coordi-
nates on X, Conventlons for the Dolbeault homomorphism are fixed as follows.

For fixed P let AZ? be the sheaf of smooth forms of type (p, g) on X, regarded as

acomplex with 4%in degree p— q and differential (2r)/ — 1)~ 'd. The correspond-
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ing bicomplex C'(%, A% 9 has differential D= D, + D, where D, is the usual Cech

differential and D,=(—1)(2zn}/—1)"'d. We require that the Dolbeault
homomorphism

6:CP (U, )~ H(X, A%P)

reduces to the cohomology isomorphism obtained from the natural inclusions of
both spaces into the bicomplex. Recall that @ can be defined as an explicit chain
map in terms of a locally finite partition of unity for %, as in [14] or [1]. In fact @
and hence the integral can be extended to the whole bicomplex. If X has boundary
0X then Stokes’ theorem takes the form

{Dn=Qn)/~1)"" | Oy
X X
for nin C(%, A% ).

2.3. Twisting Cochains and the Shuffle Map

Suppose given a system F ., of graded coherent ¢ y . y-modules over the sets V;
x U, of the product cover ¥" x % of Y x X. Over each V; in ¥ this gives a graded
0y-module I with
Fy(W)= +Z CH(W x U, F§)
prq=r

for W V. Here Fisregarded as a system of graded sheaves over W x % with(Fy),
=Fj , I the F; , are free and related by a twisting cochain (¥ x %, F, b) we will
show that the cochain b contains all information necessary to obtain a twisting
cochain relating the IF; on the cover ¥~ of Y. It must first be made clear what is
meant by a homomorphism between the local sheaves IF;.

More generally, if Ej ,, is a second system of coherent 0 . y-modules with
corresponding @y-modules IE,, then we take the homomorphisms from IE; to F,
as the space of simplicial operators as described in Sect. 1.4 above. In the nota-
tion used there

Hom (W, E, IF)=Hom (W x%; Eg, F,)

for WCV;nV,. In this case the space consists of all operators P of the form
(Pw),= Y Puu,,
vEp

where p is a simplex of # and if pu=p,...n, and v=v,...v, then P} lies in
Hom' (W xU,, ,; Eg . Fo.uq) In particular, cup-product multiplication by
elements of C(W x4, Hom(Ej, F,)) belongs to this space, as does the Cech
boundary operator in case E;=F,.

This is not the only possibility for maps between the local complexes. For
future reference note that we also have the space of smoothing operators from [E; 10
FF,. We distinguish these by a subscript, and if p;: Y x X x X-»>Yx X are the
projections on the first and second factors we write

Hom,(W; s, F )= C (W x % x %, Hom (p3E;, p\ F ) .
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The action of a cochain k in this space on u in JE,(W) is given by
k(u)= { k-pfu
X2

where the integral is evaluated along the second copy of X in the product.

If L, over ¥, is free and finitely generated over Oy it is also necessary to consider
homomorphisms of IF; into L',. These will always be taken to be of “smoothing
operator” type, so for WC¥;nV, we have

(2.3.1) Hom (W, IF;, L,)=C(W x %, Hom (F, 7'L,))
with  acting on u in IFg(W) as
2.32) P(u)= J{ you

in L(W). For maps in the other direction the space Hom (W; L,,IF,) has the
obvious interpretation.

With this definition we can use the shuffle map and the twisting cochain b to
define a twisting cochain #in C'(¥", Hom ‘(F, IF)). First note that the formula (2.1.2)
for the shuffle map extends immediately to give a map

¢:C'(¥ x %, Hom (E, F))~C (¥, C (%, Hom (E, F)))

even though in the present case the local complexes may vary. A cochain ¢ on the
right has components @, 5 over V3, , where each ¢, , isin turn a cochain of
C(Vo...s, X%, Hom (Eg , Fp ). Cup-product identifies this space with a subspace
of Hom'(V, , x%; Eg, Fg) and so o can be regarded as a map into
C'(v,Hom (E, F)).

For a third local system Gy, ,, with corresponding Oy-modules &;; there is the
usual cup product between C (¥, Hom (IF, G)) and C (¥, Hom (I, IF)). Moreover,
foru,vin C'(#" x %, Hom(F, G)) and C'(¥" x %, Hom (E, F)) formulae (i) and (ii)
of Proposition 2.1.3 remain true. In this case 8, d,, and dy are the modified Cech
differentials, with first and last face operators omitted. However, this does not
affect the proof of (ii).

A twisting cochain (¥, IF, b) is now obtained by defining the action of 8%, _,, in
Hom! Vo5 g, Fy,) on u,, in IF, (Vy, 4. as follows. For k>0

Bpo... g ) =(0(B)g0..p) - (45
while

by (ttpe) = Ox (s )+ (6(b)s,) - (t4p,)

for k=0. Here dx acts on C'(V;, x %, IF; ) in the usual way [9]. Note that b3 is then
the usual differential for the space C(V; x%,IF;) with respect to the twisting
cochain obtained by restricting b to the cover Vy x % of Vy x X. It follows from the
no“,d"-generacy assumption on b that a{(b)s ..., =0 unless =0, and o(b); ,, is
the identity. The usual derivation properties for the operator dy hold, so that

b6 =05,0(b)+a(b)- o(b)

and the formula 6,6+ 5 - =0 follows from Proposition 2.1.3 and the correspond-
ing formula for b.
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If% is Stein and (¥ x %, F, b)is associated to a coherent sheaf & on Y x X thep
it will be shown that (¥",TF,5) gives a twisted resolution for the @y-module
C (%, %) introduced in 2.1. In this sense (¥",IF,b) can be thought of as the direcs
image of (¥" x %, F, b). For future reference we make the following remark.

Remark 2.3.3. ¥ %, ¥ are Stein and the complexes C(¥" x %, Hom (F, F)) and
C'(#", Hom (FF, FF)) are filtered by Cech degree and total Cech degree respectively,
then the corresponding E4? terms are the cochain complexes C (¥ x %, 5% and
C'(¥V, C(#, #7) respectively. Here 5#1 is the globally defined sheaf obtained by
using the local chain maps b''° to glue the g™ cohomology sheaves of the
complexes Hom (F g, 4.5, Fg,.4,))- Since g induces an isomorphism between the E3!
terms, the comparison theorem shows that ¢ is a quasi-isomorphism between the
original complexes.

The relation between a coherent sheaf on ¥ x X and an associated twisted
resolution is preserved by the shuffle map, as shown by the next proposition. As
before & is a coherent Oy, y»-module and % a Stein open cover of X. Write G for
the complex of Oy-modules C (#, #) defined in Sect. 2.1. Suppose also that thereis
a twisting cochain (¥ x %, F,b) which, together with the usual cocycle u in
Ch (¥ x U, Hom"(F, %)), gives a twisted resolution for #. The shuffle map
applied to b and u now gives a twisted resolution for & " as follows.

Proposition 2.3.4. The twisting cochain (¥ ,F,b) together with a(u) in C(V,
Hom (IF, &) give a twisted resolution of &

Proof. If e is the trivial twisting cochain for % on ¥~ x % then é is the trivial twisting
cochain for G on ¥/, so that

Syo(u)+é-o(u)—o(u)-b
=0dy(6(w))+0x(c(1)) +0(e) - o(w) —o(u) - o(b)
=0 by Proposition 2.1.3.

The maps 6(u)p ,,...., are zero for >0, while a(u)g , is the projection of F 0.0
onto & |V;x U,. Since % is Stein the map o(u)g : IF;—@; is therefore a quasi-
isomorphism and o(u) provides the twisted resolution as required.

3. The Relative Lefschetz Class
3.1. Resolutions by Nuclear Fréchet Modules

As above, let (¥ x4, F,b) be a twisting cochain for the coherent sheaf # on
Y x X, with each F%, , free and finitely generated and ¥", % Stein open covers. The
sheaves & and IF; defined in the previous section are not coherent as Oy-modules,
but are quasicoherent nuclear Fréchet Oy-modules in the sense of [12, Sect.2]. Re-
call that, in particular, this means that for each Stein open set W of ¥ (resp. Vp) the
complex G (W) (resp. Fz(W)), with its natural topological vector space structure,
is a complex of nuclear Fréchet modules over the nuclear Fréchet algebra Oy(W)
Moreover IFy(W) is a complex of free Oy(W)-modules. In this sense IF; can be
regarded as a “free resolution” of & | V}.

Asin [12], nuclear Fréchet spaces will be referred to as spaces of type F
their strong duals as spaces of type DFN.

N and
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Suppose now that the projection : ¥ x X —Y is proper on the support of #.
Then the proof [3] of Grauert’s theorem shows that G "is perfect, so that for a fine
enough cover ¥~ of Y there exists a twisted resolution for which the local complexes
of the associated twisting cochain (¥",L,c) are bounded, free and finitely
generated.

One step in the proof [ 10] of Hirzebruch-Riemann-Roch in the absolute case is
the choice of cocycles representing a basis of the finite-dimensional space
HY(X, %), together with cocycles representing the dual basis of Ext" %X ; #, 2§)
under Serre-Grothendieck duality. The relative case is quite analogous, except
that the full twisting cochain machinery is used and the choice of cocycles becomes
a comparison of the finite and infinite dimensional twisting cochains (¥; L, ¢) and
(v, FF, b). The precise formulation is as follows.

Proposition 3.1.1. After a suitable refinement of ¥, there exists a 0-cocycle h in the
complex C' (", Hom (L, IF)) with the property that the local chain maps hj : L;—~F;
are compatible, up to chain homotopy, with the quasi-isomorphisms of both
complexes into G| V.

Proof. This follows directly from Proposition 1.3.3 and Remark 1.34.

In the absolute case the existence of a dual basis for the Ext space depends on
the Serre-Grothendieck duality theorem, so it is not surprising that the relative
duality theorem is needed here. In order to state this result, define the complex lFf;
over V; as in (2.3.1) by setting

E,(W)=C(W x %, Hom (F, 7'0y))

for WV, with differential given by the twisting cochain 5ﬂ. Similarly IVJ,, is the
complex dual to L. The following relative duality theorem is equivalent to that
proved in [12] or [13], for example.

Theorem 3.1.2. The map ﬁ,,:IF‘}—»Eﬁ, adjoint to hy under the cup-product and
integration pairing (2.3.2), is a quasi-isomorphism of Oy-modules.

The published proofs of this result use the terminology of derived categories
and Forster-Knorr systems. However the underlying analytic ideas can be
translated into the context of twisting cochains. Such a proof is given in Sect. 3.4 as
a further illustration of twisting cochain techniques. 5

Let M s be the mapping cone of h,. Then the dual complex M is the mapping
cone of hy:IF;— L, where IF; is the complex IF; with the sign of the differential
changed, and hj acting on IFj as (— 1y * ',. The relative duality theorem implies
that M; is acyclic.

Pl'?I’OSition 3.1.3. Let hin C (¥, Hom(L, IF)) be as above. For a suitable refinement
V" of ¥ there exists a 0-cocycle g in C'(¥", Hom'(IF,L)) such that g-h is
cohomologous to the identity cochain in C°(¥”, Hom®(L, L)).

Proof. Consider the complex C(¥", Hom (M, L)) with differential given by the
Mapping cone of h and the twisting cochain ¢. For WCV;nV, there is an
Somorphism of Hom (W; M, L,) with Hom (W; L,, M) given by taking adjoints.
Since L'? is free and M s acyclic, this implies that the complexes Hom (W; My, L)
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are locally acyclic, which in turn shows that any cocycle of C(¥",Hom (M, L))
bounds on a suitable refinement.

In particular this applies to the 0-cocycle corresponding to the identity
cochain 1 in the subcomplex C{(¥", Hom (L, L)), which is bounded on some
refinement by a cochain with components (k,g) say, with respect to the
decompositions of the M. But this is equivalent to the equations

ok+c-k+k-c=1—g-h
dg+c-g—g-b=0

as required.

3.2. The Kiinneth Map

Recall from Sect. 2.3 that for WC ¥V, we defined a complex of “smoothing
operators”:

Hom (W, IF,,FF,)=C'(W x % x %, Hom (p}Fy, p\ F,)) .

The twisting cochain b gives a differential on the space of cochains
- C(¥,HomF, IF)) sending u into

Syu+pib-u+(—1)%#+ ly. pp

where p*bis induced from b by the refinement of p;” '% by % x %. The Kiinneth map
is then the chain map

k:C(¥ ,Hom'(L, L))»C (¥ ,Hom (IF,IF}))
defined by x(u)=pth- p*u- p%g, where p: Y x X x X—Y is the projection.
Proposition 3.2.1. For ¥~ sufficiently fine the Kiinneth map is a quasi-isomorphism.

Proof. Filter with respect to the Cech degree coming from 7. Comparison of the
resulting spectral sequences shows that it is enough to prove that x induces a quasi-
isomorphism of local complexes Hom (W; Lg, L,) and Hom{(W; IF,, IF) for some
neighborhood W of each point in ¥;nV,. But x factorizes:

Hom (W, Lg, L,)

(A) L (W)® o Lsy(W)

B) —’Fﬁ(W) ® a(W)Pé(W')

©) —C(W xp; 'U, W x p; '%; Hom (p}F,, ' F,))
(D) —>C (W x % x%U,Hom (p}F 4, pi F ).

Here (A) is the obvious identification and (B) is the tensor product of the maps
urh, o (*u) and 5 (*n) ° g5. Any point of ¥, V, has a neighborhood on which
both maps are quasi-isomorphisms. If M, N, P"are complexes of nuclear Fréchet
modules over a nuclear Fréchet algebra 4, bounded below and with P’ free over A,
and if §: M~ N is a quasi-isomorphism, then so is 6®1: M ', P »N'®,P"In
fact since P is free, filtration by P’ degree gives an isomorphism on E, terms, and
the convergence of the spectral sequence gives the isomorphism on total
cohomology. But (B) factorizes as two maps of this type.
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The map (C) is the formal identification with cochains of the double cover via
the isomorphism
Hom(W X Ullo---llp X Uvo...v,‘; ng:#, vg)? pllF:y,ug))
=F{u0(W X Uy, )@emHom(W x U, , 5 Fig ), n'0y).
For u, v of bidegree (p, g), (v, s) in IF,(W) and ]F,;( W) the tensor product u?41®@v"*
maps to a cochain whose value on the simplex p,...1,v,...v, of the double cover is
(=D"uf? , vyt .-

Finally, (D) is the map wi—W, where

0---Hp.

ptyq
w(I‘O’ VO)“'(ﬂp +q¥p+gq) = kZ'O wl‘OU-I‘k, Vk---Vp+gq*

The Eilenberg-Zilber theorem [8] shows that this induces an isomorphism on
E,-terms obtained by filtration with respect to Cech degree, and hence on total
cohomology.

The properties of the Kiinneth map are most easily established by factoring it
through the shuffle map as follows. By Remark 2.3.3 the shuffle map induces quasi-
isomorphisms

0:C(¥ x%,Hom (n*L, F))—C (¥ ,Hom (L, F))
and
6:C (¥ x%,Hom(F,n'L))-C(¥,Hom(F, L)),
so there exist ¢’, b’ with 6(¢)=g and a(h")= h in cohomology. For i, j=1, 2 define
K;;:C'(¥",Hom (L, L))~ C(¥" x U x %,Hom (p}F, p;F))

by setting k;(u)=p¥(h") - p*(u) - p}(g). Then, for example, ¢ -k}, is chain homo-
topic to x, so k, is also a quasi-isomorphism. From the definition of the fibre
integral and the choice of g it also follows that

(322 fg-w=1
X
in the cohomology of C(¥", Hom (L, L)).

3.3. Characterization of the Lefschetz Class

This section deals with the relative version of the “Lefschetz calculation” of [10],
and characterizes the image of the identity class in C'(¥", Hom (L, L)) under  , as
the Gysin image of a class supported on the diagonal ¥ x X in Y x X x X. The
main result is the following proposition.

Proposition 3.3.1. Lez A be a cocycle in C (¥ x % x %, Hom (pF, p\(F)) with the
property that the two maps from C(¥",Hom'(L, L)) into C'(¥",Oy) given by

(332) us | ok ()- )
XxX
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and
(3.3.3) u § 1,4%5,(u)
X

are chain homotopic via a simplicial chain homotopy. Then A=« (1) in cohomology.

Proof. Choose v so that k7 ,(v) = A in cohomology. Then the maps sending u to (u)
and 7,(u - v) are chain homotopic. This is shown by the following sequence of chain
maps, where the notation indicates that the formulae define simplicially chain
homotopic maps from C(¥", Hom (L, L)) into C(¥", Oy).

u—>1(u)

()= ;I: t{n*u-g'- k)

(i) = 3[{ T, (0 - 7*u- g°)
(i) | 7,4%K5,(0)
(2 | (3,0 x120)

W= [ w@ih n*u-pty pth - n*v-p3g)
()= | w(m*u-pig’pi-n*o-p3g’ p3h)
(vi)zt(u-v).

The homotopies (i) and (vii) follow from the fact that § g’- &’ is cohomologous
X

to the unit section. Relations (ii), (vi) follow from the calculation of [9, Proposition
3.8]. The choice of v and the hypothesis give (iv). The proposition then follows from
the nondegeneracy of the trace pairing.

Remark 3.3.4. The proposition will be applied with A defined on a cover ¥" x #/,
where # is some Stein refinement of % x %. Then restriction to ¥" x %" induces an
isomorphism on cohomology, so it is still possible to find v such that the restriction
of i ,(v) to ¥~ x W is cohomologous to A. Integration of cochains on % x % can be
factored through restriction to # and the same argument shows that v is
cohomologous to the unit section.

3.4. Relative Duality

As usual & is a coherent sheaf on Y x X, with the projection map n: Y x XY
proper on the support of #. Let V be a Stein open set in Y with the property that
there exists a twisting cochain (V x %, F,b) for # over ¥ x X, where Vx¥ isa
locally finite cover {¥ x U} with each U, Stein. It will be necessary to assume that
the indexing set of % is ordered, and that associated cochains are defined only on
strictly increasing simplices of the nerve. This ensures that the correspondmg
cochain complexes are bounded. The complexes of such cochains are quast
isomorphic quotients of the full cochain complexes and the quotient maps ar°
compatible with the duality pairing, so the conclusion of the theorem is not
affected by this restriction.
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For V sufficiently small there is a quasi-isomorphism of @(V)-modules,
LV)-C(Vxu,F),

given by the coherence theorem, where L is a bounded complex of free, finitely
generated Op-modules. The duality theorem is established by showing that the
adjoint map

(34.1) C(Vx%,Hom (F,n'0y))~L(V),

defined by the duality pairing, induces a quasi-isomorphism of @,-modules. The
proof uses some properties of nuclear spaces and topological tensor products, but
is otherwise quite analogous to the proof of Serre duality in the case when Y is a
point and # locally free.

Let A%?and D% be the sheaves of germs of smooth forms and currents of type
(p,q)on X. For V, K Stein open and compact sets respectively in Y the presheaves
0,(V®A%? and O(K)®D%? on X defined by

U 0/(V)®AZYU)
and
U O0,(K)®D%%(U)

are both sheaves on X. In the first case this can be proved asin [12, Proposition 4]
via the identification of @,(V)&® A% % U) with the space of continuous linear maps
from O0x(V) into A%%U). The second example is the sheaf of @y(K)-valued
currents on X (see [ 16, Proposition 50.5] for example). Note that both sheaves are

ﬁneéince % is Stein and Oy(V) nuclear the inclusion of @4(U) into the d-complex
AY'(U) gives a quasi-isomorphism
(34.2) L(V)»C@,F®(0,(V)®AY)) .
The coefficient sheaf is now
UrF (U x N@Oy(V)R A% (V)),

where the first tensor product is taken over Oy(V)®04(U)=0y . x(V x U).

The map (3.4.2) has the property that both complexes consist of free Oy(V)-
modules of type FN. Therefore the mapping cylinder Q (V) is a bounded, acyclic
complex of free ®,(¥)-modules of type FN. By a standard property [12, p. 98] of
such complexes over the nuclear Fréchet algebra 0y(V), the dual complex
Homtopy,(Q (V), 04(K)) is an acyclic complex of ¢y(K)-modules of type DFN
or any Stein compact subset K of V. Consequently the map

(34.3) Homtopyy,(C (%, F ®(@(V)® 4% )), 0x(K))~Homtopey,(L(V), O(K))
adjoint to (3.4.2) is a quasi-isomorphism. By definition
Homtope(0r(V)® A% (U), Oy(K))

is the space of distributions with compact support in U and taking values in 0y(K).
hus (3.4.3) can be interpreted as a quasi-isomorphism

(34.9) C (%, Hom(F, 0(K)@D%))~L(K),
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where the coefficients of the chain complex over an open set W in the nerve of % are
elements of

Hommgy  w(F (V x W), O(K)® D5 (W)

and the subscript as usual denotes the sections with compact support. The
differential is the adjoint of the usual twisting cochain differential on the cochain
complex.

Now let 4 ={M,} be a covering of X by Stein compact sets, so that each M,
has a fundamental sequence of Stein open neighborhoods U® with U®=U . Let
{¢.} be a partition of unity for %, with suppg,CM,.

Cup-product and fibre integration, via the partition of unity, induce a chain
map with components

(3.4.5) CH(A, Hom'(F“,(Dy(K)®D'§'))—>I Y Cy@,Hom,(F%, O4(K)RD%Y).
—k=p+r

It remains to show that this map, and also the natural inclusion of
C(K x .#,Hom (F, n'0y))
into
C'(#,Hom (F, 04(K)® D3))
are quasi-isomorphisms. For then the map (3.4.1) restricts to a quasi-isomorphism
C'(K x .#,Hom (F, n'0,))- L(K)

and the duality theorem follows easily from the fact that, if W is any Stein open
subset of U and #® is the cover {U®}, the complexes C (W x %®, Hom (F, 7'0y))
are isomorphic for all k=0.

Over U, let #*' be the k™ cohomology sheaf of the complex Hom(F,
O{K)®D""). The chain maps between the local complexes F, glue the ;! intoa
globally defined, compactly supported Ox-module 5#*". This sheaf is also fine. A
suitable filtration on the complexes of (3.4.5) reduces the problem to that of
showing that the induced maps
(3.4.6) Co( M, H "")—>l kZ Cl, 2"

~k=p+r
give a quasi-isomorphism on the associated complexes. The second complex is
now the usual complex of chains on the nerve of % with coefficients which are
compactly supported sections of #%!. The map preserves the filtration induced on
the first complex by r and on the second complex by I. The map on the cohomology
of the associated graded complexes reduces to the identity map on the space of
global sections of the fine sheaf #%”, so that (3.4.6) is indeed quasi-isomorphism-

For the final step of the proof, it is sufficient to show that for a Stein compact set
M in X, the J-complex Oy (K)®@D} (M) is a resolution of Oy, x(K X'M,)
=0(K)®0,(M). All the spaces are of type DFN, so by [12, Proposition 1] 1t 18
enough to show that D% (M) gives a resolution of @x(M). This follows, for
example, by taking limits over a fundamental sequence of Stein open neighbor-
hoods of M.
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4, Construction and Properties of the Dual Class

4.]. Koszul Complexes

Let # =% 114" be a cover of X x X, where %’ consists of the sets U, x U, for U,
in %, and %" is a Stein open cover of the complement of the diagonal. Assume also
that % refines % x 9. The sheaf 4,0, on X x X has a twisting cochain (#", K, a)
asin [15]. In fact the construction given in [15] can be simplified by taking K, to
be zero on the sets of %7, while on %’ the K , are the usual K oszul resolutions formed
by the functions {;—z. defining 4,0y in U, x U,. As usual z, and {} are the
coordinates for U, x U, defined via p,, p, by fixed coordinates z{ on U,. This is the
approach which will be taken here. The extension of the local differentials proceeds
as before, except that the af,__,, will be zero unless both «, and o, are vertices of %".
Now use 4 to denote the diagonal embedding of Y x X into ¥ x X x X, and let
(v x4, F,b) be a twisting cochain for # on Y x X. The cochains a, b can be
pulled back to ¥ x X x X and restricted to ¥” x %" so that the product operation
gives twisting cochains (¥" x #", p*FQK, pfb&a) for 4, asin [9]. If y=(B, o) is
avertex of ¥~ x %’ we write z}, (¥, K’ for the pull-back of z;, {}, K} to Vy x U, x U,.
The twisting cochains ptb®a and p¥b define a differential for the complex

@.1.1) C'(v x % ,Hom (ptFQK, p\ F))

with cohomology Ext{Y x X x X; 4, %, p\#). This complex is trigraded with
(p,¢,r) component

@.12) C*(¥ x W, Hom%p%F, p*F)@Hom'(K, p, 0y)).

Interest will center on the behavior of these cochains on the simplexes of #’. A
cochain f of (4.1.2), with ¥ replaced by ', corresponds to a family of cochains f*
in C*(¥" x %', Hom%p%F, p*F)) depending in an alternating fashion on an r-tuple
I=i,...i, of integers with 1<i,,...,i,<n. We also write |I|=r in this case. If
e,,..., €t is the basis used to construct the Koszul complex K the cochain f” is

given explicitly by
(MNonypdlrye--05,= o 153,

“ghere ei=el' A ... A& For r=0 the corresponding cochain is denoted by f ’ and
evzl. n K;):@Yxxxx'
Similarly, cochains in the space

4.1.3) CP(¥ x %', Hom*(p%F, pF)® Hom'(K, K))

can be identified with families of cochains u} in CP(¥" x %', Hom%p%F, p}F)) with
HI—1J]=r and alternating in the components of J=j; ...j, and I =iy...i, . The u}
are given explicitly by
uyo...-yp(ei,,) = vl =;” — (ug)yo'--)‘pe:() ’

where .the summation is carried out over strictly increasing J only, so that the u}
are uniquely determined. Note also that if the spaces (4.1.2) and (4.1.3) are bigraded
by combining the first two degrees then the usual product operations between
them can be expressed in terms of the component cochains by

@) =(-1) 2 ) (v1)
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and
(v =(~ 1)"'; CRNCHE
The cochain-level residue map of [15] corresponds in the present situation to g
chain map
Res: C' (¥ x %', Hom (p*F, p* F)®Hom (K, p} 04))—»C (¥ x %, Hom (F, F)) .
of degree zero, given by

(Res [y, 825, A oo A2 =4, (1), s, -

That this defines a chain map is a consequence of the definition of p¥b®a and the
fact that 4 *a" =0for k= 1, while 4,,a* provides the transition functions for Q%. For
future reference, note the explicit formula [15, (3.10)]:

(414) (4*a"))op= T80, 870 H2

where I=i,...i,, J =j;...j,and ¢} = 0zj/0z}; the sum extends over all permutations
cof {1,...,p}.

4.2. Construction of the Dual Class
As in the absolute case the residue map induces quasi-isomorphisms

Hom (p}F,, ptF,)®Hom (K, POy x)—>A4,Hom (F,, F,)

on the local complexes, and the usual comparison of spectral sequences gives
the global isomorphism

Res: Ext{(Y x X x X; A, 7,0\ F)-Ext(X; F, F).

This shows the existence of a unique class in Ext(Y x X x X; 4,#, p} %) which
corresponds under this isomorphism to the identity section of Hom(# , ). We use
the procedure of [14, 15, 10] to construct an explicit cocycle representing this class.
For this purpose decompose the differential D for the complex (4.1.1) as D'+D’,
where for f of total degree m,

“.2.1) Df =of+ptb-f+ (="' X 1+ (b)) ®d),
4.2.2) D(f)=(=D"*'f-(1®a°).

With respect to the bidegree obtained by adding first and second degrees in (4.1.2)
D’ has components of bidegree (k, 1 —k) for k>0 and D" has bidegree ©, 1_). Fora
simplex y=7,...y, of ¥" x %" and f of tridegree (p, 4, 7) the differential D” is given

explicitly by
(= 1P+ (DY) Nz, 6,

=5 U ),
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where I =i,...i,+, and I;=i,...5,...i, . ;. A corresponding homotopy operator P is
defined as in [14, 15] by the formula

(=1P* T (BfY), (2,0 L)
n 1
= 3 07008, () (z,,0 2, + 10, =2, ),

where I=1i,...i,_, and kI=ki,...i,_,. The f’ are interpreted as matrix-valued
cochains via the fixed trivializations of the F, . We than have the relation

PD'f+D'Pf =f—¢,
where

. _fflz2) if |I=n
@Y @)= {0 otherwise .

Now define #°° of bidegree (0, 0) and tridegree (0,0, 0) in the complex (4.1.2) by
setting (% °)}"=1,, where the map 1, : p§Fx—p}F% is given in terms of the fixed
trivializations by the identity matrix. The method of [14] or [15,(1.11)] shows that

k, —k

1% extends to a cocycle n= Y. n* ~* which by the definition of #°° maps to the
k=0

identity section under the residue map. A calculation, similar to that which shows
the residue to be a chain map, gives the condition ¢”D’n%°=0 and 7 is given
explicitly on % by the formula

4.2.3) nY x@'= 3 (~ 1Py,

4.3. Properties of the Dual Class

The local chain maps u)-° : pyF,—p3F,® K ;, induced by the quotient map of p*#
onto 4, %, extend to a 0-cocycle uin C'(¥" x #", Hom (p4F, p3 F® K)). Then the
map

7 Ext(Y x X x X, A, F,p\ F)-Ext"Y x X x X, p3F , p\ F)

induced by the same quotient map is given at cochain level by setting n°(£)=¢ - u
for ¢ in the complex (4.1.1). In this section it is shown that () in C'(¥" x ¥/,
Hom (p3F, p F)) represents the dual class of the diagonal in the sense that for any
cocycle w in C(¥" x %, Hom (p*F, p,F)),

43.1) . ] . T (w- 70(m) = 3‘; T 4*(w)

in the cohomology of C'(¥", @y). Here the subscript ¢ denotes those cochains with
support proper over Y. In fact we prove a stronger result which will be used later: as
chain maps from C,(¥" x %, Hom (p*F, p\F)) into C (¥, ;) the two sides of
(4.3.1) are chain homotopic via an explicit chain homotopy. This depends on a fairly
Straightforward generalization of the “Cech parametrix” construction of [14]. We
Teview the argument, using the notation of the previous section.

Since all the local complexes K ; become acyclic on restrictionto Y x X x X —4
the same holds for the global complex C(¥ x %, Hom (p3F®K, p'F)), so the
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cocycle n bounds on the complement of A. The existence of the homotopy depends
on the explicit construction of a boundary of #, and this in turn needs the existence

of explicit chain contractions for the K, off A. Such exist only if smooth, rather than
holomorphic, coefficients are introduced. This means working in the trigraded
space of cochains with (p, g, r) component

(4.3.2) > C¥ x %', Hom!(p3F, pt FH@Hom¥K, p, Oy R AYL x)) -

k+l=p

Here %" is the restriction of #” to the complement of the diagonal and the
coefficient sheaf p,0y® AY% x is the tensor product over Oy, x of p} @y with the
sheaf of smooth forms of type (0,r) on X x X. These cochains have differential
D=D’'+D"+ D" where for f of degree (p, q,r) the operators D’, D" are given by

(4.2.1) and (4.2.2) with m=p+q, and D"f =(—1)?*43f/2n]/ —1. In the formulae
(4.2.1), (4.2.2) the third, antiholomorphic degree is ignored in the formation of
products. Away from the diagonal D” has a homotopy operator @ defined on
(p, q, ) cochains by

(=P @, D= 3 64, DR, 0,

where g¥(z, () = (T — #£)/|z,— 1> and the formula
4.3.3) D'®+dD" =1
follows from the relation % ((*—2%)g%(z, ) =1. The formula (4.3.3) gives the
relation 5% x #"'=Dpu, where

b= ,;o (= DS +D")d(n| ¥ x #).
The terms making up u will have singularities of various orders along the diagonal,
and in case # is locally free and Y is a point the cochain y is essentially the kernel of

the Cech parametrix of [14], and we use the terminology of that paper, especially
Sect. 2, to describe the singularities which occur. In fact u decomposes as ;1 u®
k2

where u® is “regular of order —k”. In particular this means that every component
(u®)!  satisfies an estimate

Y0.--¥Yp
#"Y0..,(2 DS CNEy, ~ 2, 1" 7F

on compact subsets of (z, {). The effect on the order of regularity of the various
operators used in the manufacture of y is such that 4@ can be taken to be of
tridegree (0, —n,n—1), given by

ﬂ(1)=(—— 1)n—1(¢DW)n— IQ(”O’OIV x W')

A direct calculation then shows that
—(uONde .. 4 =1,®c, é:l (= 1)+ 1g*3g} .. 3%, .Bgndl ! ...dL"
= 1,06, T, (= UK o, 2} T TGS ]
=1,8k(z,{,),
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where w, = {; —z}, the constant ¢, is (— 1)~ (n— 1)! [@m)/ =1y~ tand k(z,{)is
the Bochner-Martmelh kernel on €" x C", as in [14] for example. The basic
property of this kernel is that if w is a smooth (0, n) form with compact support on
C" x €C" and coefficients in p¥Q%, then

(4.34) lim fwAak= 21:\/__ | 4o,

e—0 O¢

where d¢ is the boundary of the region |[{ —z|Se.
For o of degree 7 in C' (¥ x ", Hom (p*F, p, F)) with boundary Dw, right
multiplication by u followed by the trace map gives

4.3.5) Dy n°(1) =D - n°(u) + (— 1) tp(e0 - n°())

inC'(¥ x %", pL0y®A"). Since n°(y) is locally integrable in the X x X direction
and the map @ is (locally) independent of the Y-coordinates, there is a map

S : CC(V X Ws Hom (PTF, p!ZF))_)C (fV, 01’)
defined on cochains of degree r by
(43.6) S(w)=(— 1)'x£x (e - n°(p))

and the duality property of n°#) appears in the following form:
Proposition 4.3.7.
N i . 1,(@ - w°(n))— 3(( 1,A%) =0yS(w)+ SD(w) .
Proof. Suppose first that w has total degree r and vanishes except on a fixed simplex

Yo7, 0f ¥~ x ¥’. From Stokes’ theorem, (4.3.4) and the formula for p*) in terms of
the Bochner-Martinelli kernel:

A Do n°@) =6y | w0 n°w)—(=1YCa)/ =)™ lim | 7(w- )
=(—1)8yS(w)+(— 1)'3[( ,4%0.

Tpgether with (4.3.5) this proves the formula in this case. If @ is supported on a
smplcx of ¥ x %" the proof is the same except that the limit and diagonal terms
vanish identically. The general case follows by linearity.

Corollary 4.3.8. The dual class n°(n) is cohomologous to the image of the unit section
of C(¥",Hom(L, L)) under the Kiinneth map ', and restriction to .

Proof. From Proposition 3.3.1 and Remark 3.3.4, with A= nr), it suffices to find a
simplicial chain homotopy between the two maps (3.3.2) and (3.3.3). But from the
previous proposition,

x{ RICHOR n°(m) — :I: T 4* K, (1) =0y S (W) +S'D(w),
Where for u of total degree r
Sw=(— 1)'X5 . (3 - p*u-ptg’ - n°(n)).
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If the definitions of the trace and fibre integral are followed through, it can be
verified that the value of $'(u) on a simplex §,...58, of ¥" depends only on the valyes
of u on simplices of the form ;... B ., This gives a chain homotopy of the required
type.

This corollary is the case k=0 of the more general formula of the next
proposition, which gives explicit representatives for the images of the powers of the
Atiyah class under the Kiinneth map.

Proposition 4.3.9. For any k=0,
131((dc)*) = p}(dyb)* - n°(n)

in the cohomology of C'(¥" x W ,Hom (p4F, p\F®S2)). Here d= dy+dy is the
decomposition of the exterior derivative on the product space Y x X.

Proof. Since g’ is a cocycle, 0g'+b-g'—g - ¢=0. Exterior differentiation in the
Y-direction shows that the cocycles ¢’ - dc and dyb - g” are cohomologous. This gives

K21((dc)) =ptg’- p*(dc)* - p3h’
=pi(dyb)* - pty - p3h’
=p(dyb)*- n°(n)
in cohomology.
This result shows the existence of a local geometric expression for a cocycle on

Y x X which gives the trace of the k™ power of the Atiyah class dc when integrated
over X. In fact the previous proposition combined with Lemma 3.3.4 shows that

(4.3.10) To(de)) = }f‘ T,((dyb)*- 4*n°(n))

in the cohomology of C¥(¥", 2%).

It remains to identify the class 4*n%y) in the complex C(¥
x% , Hom (p%F, p\ F)). This is quite similar-to the corresponding problem in the
absolute case. The next section gives a suitably modified presentation of the
argument of [10].

4.4. Restriction of the Dual Class to the Diagonal

Since P involves derivatives the formula for the cocycle 4*n°(y) given by (4.2.3)is2
priori extremely complicated. However, it is immediately simplified by use of the
following properties of P. Write Q for the operator 4* o P and note that if the lower
index is kept fixed then P and Q also operate on cochains in the complex (4.1.3)s0
that, for example,

@41 (@0, =(= 1= )" 5 A%/,

Proposition 4.4.2. The operator P satisfies
(@) P(n>%)=0
(i) P>=0
(iii) Pod+6-P=0
while for f in the complex (4.1.3):

(iv) P(pts-)+(tb)-(Bf)=0.
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Also, the operator Q behaves as follows with respect to products. Suppose u lies in
(4.1.3) and f in either (4.1.3) or (4.1.2). If A*u=0 then

(v) Q(f -wy=(—1)"*/(4*)- Qu
while if u=(b)*®a’ then
(vi) O(f - w)=(Qf)- A*u+(—1)**/(4*f)- Qu.

Proof. Formulae (), (ii), (iii), and (v) are immediate consequences of the definitions,
while (iv) follows from the fact that p¥b is independent of the {-coordinates. The
relation (vi) is obtained by a straightforward calculation using the above formula
for Q. The main ingredient is the identity

DN T (s W W

= mE;ll (G VA M G/ (60 M T (0 MU

which follows from the chain rule and the explicit formula (4.1.4) for 4 *q!. Here
J=j1...j,., I=il"'i"-1 and Jm=jl...jm...j,..

Now the formula (4.2.1) for D’ and the above properties of P and Q reduce the
expression for 4*1%(n) given by (4.2.3) to a linear combination of terms, each of
which is simply a product

(4.4.3) (4*1°°) - (@s*)...(Qs"™)

where s*=(b)*®d"* and k, +...+k, =n, with each k;2 1.

The expression (4.4.3) can be regarded from a slightly different point of view as
follows. If y=(B,a), identify A*K," with Qy=A"T*X over Vy;x U, via the
correspondence ej—dz] =dz!...dzi. Under this identification the formula (4.1.4)
shows that (4*a'),,,, becomes the identity map on £ and Qs* is a cochain in the
direct sum of complexes

3. Ci(¥" x %, Hom (F®, FQHH).

For this interpretation the definition of #%° shows that (4.4.3) is precisely the
cochain

(444 (@5 (Q5™)...(Qs*)

of C'(# x %, Hom (F, F®£2?)) under the identification of Hom(Q$, %) with Q%.

The next proposition gives a more precise description of the cochains Qs*. Recall

that the calculation of [9, Sect. 5] shows that the product operation for the twisting

cochain b defines a chain map from the usual Cech complex C (¥ x #, Oy ) into

g'("lf x4, Hom (F, F)) which takes a k-cochain 4* to the cochain (b)*&@u* of total
egree k.

Proposition 4.4.5, D efine the cochains Qa* according to (4.4.1), applied in the case
Where F and b are trivial and Y is reduced to a point. Extend Qa* to a cochain on the
Cover ¥" x % in the obvious way. Then

) Os*=(b)*@Qda* for k>1,
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while, acting on elements of C'(¥" x U, F ' @£%),
(i) Qs*=(b)'®Qa' —dxb/(n—p),

where db defines cochains in Cy(¥" x %, Hom (FQQ%, FR Q%)) via the map from
Q} into Hom(Q%, Q%) given by left exterior multiplication.

Proof. The first formula follow_s immediately from A*a*=0. For (ii) the formula for
Q gives, with I=i,...i, and ¢i=0z, /02 ,

~(n—p)(Qs' —®)' ®Qa"),,.,,(d2,)
X, Q... /o) (@}, (@2)

k

= kgl (ob5,., _,/62’;,)%‘,Ea:sgn(a)qﬂim;b;;(z) B, Azl dzi
= S0, /08) T o X B Ay, el

= 1= Jp+1=1
= 5 @, o

as required.
The cochains Qa* in ¥ CX%, Hom(£2%, 2."¥)) are related to the characteristic
14

ring of X by the following proposition, which is a simple modification of the
invariant theory argument of [14, Sect. 5].

Proposition 4.4.6. There exist cocycles 6% in C*(U, %) such that 6} corresponds to
the appropriate component of Qa* under the injective map from Qy into
Hom(, Q%) given by left exterior multiplication. Moreover, each 6f represents
an Atiyah-Chern class of X.

Proof. We first show that Qa* is a cocycle. This follows by applying (i), (v), and (vi)
of Proposition 4.4.2 to the equation Q(da+a-a)=0 to obtain

8(Qd") +(4*a?)- Qd*— Qd* - A*a' =0
as required.

Furthermore, as in [14, Sect. 117, both a* and P are equivariant under affine
transition functions, so that the same is true for Qa*. Therefore the argument of
[14, Sect. 5] can be adapted to the universal model for Qa* over C". So let s, be
the group of local automorphisms of €" which fix the origin and whose linear past
is the identity. Write ¥ for the vector space C". Then the universal model for Qd‘is
determined by its restrictions

F.,, :[JN(%-P)]I‘_)AIV@AI-Q-I(‘/*

to the N-jets of its arguments, for N sufficiently large. Under conjugation by a
constant 40 the right side behaves like A*V"*, so that exactly the same reasoning
as in [14, Sect. 5] shows that F, is in turn given by a GL(V)-invariant form

44.7) RKSPV*@V)QATV*@A YV -C.

The usual invariant theory for GL(V), as applied in Theorem 5.10 of ['14] for
example, shows that the space of such forms is spanned by the maps obtained by
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contracting each copy of V with some copy of ¥*. Note however that the
contraction of both copies of ¥ in an §2V* with A'**V gives zero, so that it can be
assumed that each S?V* contracts with one ¥ from ®*V and one from A***V,
Jeaving A*V* to contract with A'**V.

More explicitly, suppose o is a permutation of {1, ...,k} and

U=x;Qy8...0x,y

with x;in SV * and y; in V. Define u, in A*V'* by contracting x; with y,, and skew-
symmetrizing the resulting element of ®*V*. Then for vin A'V* and win A*+'V
the maps @, defined, in terms of the usual pairing of A**'V and A**'V*, by

D, (uRvAW)={u, Av,w)

span the space of GL(V)-invariant forms (4.4.7).
If &, is regarded as a GL(V)-equivariant map

@,: RS2V *@V)—»Hom(A'V*, A*+1V*)

the above expression translates into the formula (®,(u)) (v)=u, A v. This proves
the first part of the proposition.

In order to see that the resulting cocycle 8 represents an Atiyah-Chern class,
note that its universal model satisfies all the hypotheses of Theorem II of [14,
Sect. 4] except for skew-symmetry. Therefore its skew-symmetrization, which
represents the same class in cohomology, is an Atiyah-Chern class at the cochain
level.

To summarize, the cocycle 4*n%pn) is a sum of terms of the form (4.4.4), and
each of these terms is itself a linear combination of products &, A...A &, of
cocycles in Cy(¥" x %, Hom (F, F®Qy)). These cocycles themselves are given by
either &, =dyb or £,=(b)*@8F, for some k=1 and 0<I<n—k.

Now multiply this expression for 4*n°%(n) by (dyb)', apply the trace map and
rearrange each of the terms 7,(¢, A ... A &, A (dyb)) according to Propositions 3.8
and 5.11 of [9] to give, in cohomology,

(1 A AL Adyb))= 0% A .. A B2 ATy ((dxh)* A (dyb))
where p+k=m and i, +...+i,+k=n. This gives
(4438) w((dyb) - A*7°(n)) = 0, _ (X)) - (dxb)* - (dyb)'/k!

for certain universally defined polynomials ©,(X) of degree k in the Atiyah-Chern
classes of X, independent of X, Y, # and . But in case Y is a point and I=0 we
know that @,(X) represents the k™ Todd class Todd(X). Multiply (4.4.8) by 1/1!,
Sum over / and integrate over X. Type considerations show that each 8,_,(X) can
be replaced by Y. 0/X)=Todd(X). Formula (4.3.10) therefore gives, in
cohomology, f]

; t(de)l = ;{ Todd(X) - 1, (g (dyb)*- (dyb)/k! n)
= }5{ Todd(X)- 1, (z (dyb+dyb)™/m !)
= [ Todd(X) - ch(¥)

~ the Riemann-Roch formula for the projection 7.
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5. Riemann-Roch for Retractible Embeddings

5.1. Factorization of the Trace Map

Let i: X —Z be a holomorphic embedding of an m-dimensional complex manifold
X into a complex manifold Z of dimension n=m+r. Let N be the normal bundle
of X in Z, and assume the existence of a holomorphic map g: Z—X with goi the
identity.

Let (#,K,a) be a twisting cochain for i 0y on Z, constructed as in [15
Sect. 3] with Koszul resolutions and coordinates adapted to the splitting i*TZ
=TX@N given by g. The Stein cover ¥ consists of a cover ¥” of Z— X, on which
the K, are taken to be zero, and a cover # of a neighborhood of X which restricts to
a Stein cover % of X. It can also be assumed that #" refines ¢~ '%.

Let # be a coherent sheaf on X with associated twisting cochain (%, F, b). The
product operation gives a twisting cochain (¥, FQ K, b®a) for i, F, where F, b
stand for the restrictions of the g*F, and ¢*b to # (see [10, Lemma 2.1] for
example). As usual the quotient map from @ onto i, 0 is associated with a
0-cocycle u in C' (%", K’) which induces n°: C(#", Hom (K, 1))—»C(#",1) with
o(w)=w-u.

Proposition 5.1.1. The trace map

T:C(# ,Hom (FRK,FRK)-C(¥#,1)
factorizes (up to simplicial homotopy) as T=n"-S for suitable
(5.1.2) S:C'(#,Hom (FRK))—»C(#,Hom (K, 1)).

Proof. The construction is similar to that used for the refined trace map of [9,
Sect. 5]. For a simplex ag...a, of #”set M,=Hom (F,, F, ), L,= Hom(K,,, K,,)
and K,=Hom (K, , 1), so that (5.1.2) will take the form of a simplicial chain map
between twisted complexes C (%, M QL) and Cyx(# ', K"). The first complex is
bigraded by combining the first two degrees, and the map S will take the form

3" S* where, according to this convention, S* has bidegree (k, — k). The map S° is
kz0
defined in terms of the algebra structure of the Koszul complexes. For any vertexy

there is the chain map e,: K,~Hom(K,, K,) given by e,(w) (v) =w A v. This has
adjoint é,: Hom(K,, K,)-»Hom(K,, 1) with

¢,(§) (w)=traceg - (e,(w)) .

For simplices a=a,...a, and f=p,...5, with f<a this gives chain maps
EL: Ly| WK with EX$p) =2, (3, 5640 0,)

Let 1, : C (%, Hom (F, F))—C (%, 1) be the usual trace map for (%, F, b) and
suppose that the restriction of g*, to %~ is described in terms of local vector
bundle maps £ for < a. Then S° is defined by setting (S°) = f® Ef and the fact
that this extends to a global chain map S follows by a spectral sequence
argument, as in the proof of Theorem 5.7 of [9]. In fact the local complexes
Hom'(Hom(K , K,,), Hom(K, , 1)) are isomorphic to Hom'(K, , Hom(K,, K;z)
under the adjoint operation, and two applications of Lemma 1.6 of {9] show that
this latter complex is acyclic in degree g<0.
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Then for a, B as above, define I?: K;|W,— K, and J2: L,|W,~L, by I¥(¢,)
=gl ., AN Jﬁ(tpﬂ)—:a,oﬁow,,a,,’, . The argument of [9] now applies once it is
established that for y=y,...7, with 7S B the maps I4E}, E%J}, and E] are chain
homotopic. For the last two maps this is straightforward. For the first two maps
the problem reduces to the following lemma.

Lemma 5.1.3. The two maps from Hom (K , K, ) to Hom (K, , 1) sending  into
éap(tpa,,q‘,p) and &g (ag ., W) ° ag,,, are chain ﬁomotopic‘

Proof. Let dg, = A'(agq,|K, ). Then the chain maps a,, and 4, are chain
homotopic over Wy nW, , since both lift the identity map on i,0y. Therefore ag ,,
can be replaced by dg , without changing the homotopy classes of the maps. But
then the maps become identical, since for w,, in K, we have

dﬂq“p ° e“p(wap) = eﬁq(&ﬂqﬂpwh) ° dﬁq“p -

Since (n°) is just the projection of K, onto K?=(@,|W,, the formula for S
shows that (z°)2S2 is a local trace map acting on Hom(F,®K,, F,®K),).
Uniqueness of trace [9] then shows that #z°-§ and T are chain homotopic and
completes the proof of the proposition.

This result shows that the trace map factors through the complex used in [15]
for the cochain-level description of the Gysin map. Recall the construction of the
Gysin map in this context: for any vector bundle E over Z there is a chain map

(5.1.4) Res: C'(#", Hom (K®E, 23))— C (U y, Hom(i*E, Q™)

of degree zero, induced by the isomorphism i*Q% = A’N ® Q% and the identification
of i*K ;" with A"N over W,nX. If K is the Koszul complex on generators el, ..., €]
defined by coordinates (!,...,{7 vanishing on X, then this identification is
compatible with the action of i*a}; and takes e; A ... A€ into d{; A ... Ad(},. The
map (5.1.4) induces an isomorphism on cohomology; this is essentially the
“fundamental local isomorphism” of Grothendieck duality theory. If E=0QF %
then the natural map u:Q%—Hom'(i*Q3 % QF), defined by restriction and
exterior product, composed with n° and the cohomology inverse of (5.1.4), gives
the Gysin map i, from H*(X, Q%) into the local cohomology HY'"(Z, Q%+, if
this is defined in terms of relative cochains for the covers ¥, ¥".

3.2. Reduction to the Normal Bundle

If § is applied to powers of the Atiyah cocycle d(b®a) for i, &, it turns out that
none of the correcting homotopies making up 7% S and a can appear in the
expression for the residue. This follows from the simple degree arguments given
below and implies that the residue is unchanged when the embedding of X into Z is
replaced by the embedding of X into the zero section of N. This situation is of
course much simpler, since in this case i, 0y is resolved by the globally defined
Koszul complex on N, and in fact the splitting principle for vector bundles allows
Us to reduce to the case where N is a line bundle, where the required formula is an
tasy explicit calculation. The next proposition gives the reduction to the
¢mbedding into the normal bundle.
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Proposition 5.2.1. For 120 there exist cocycles ¥{N) in C'(%,, ), representing
classes in H(X, ) which depend only on the normal bundle N of X in Z, such thqt
Jor all pz0

(52.2) Reso SA(B @) /(p+1)!= . +Zl',= , Uz ((db) kY P ANY)

in the cohomology of CP(4Uy, Hom(i*Q7 7, QF)).

Proof. From [15] the a* for k> 1 vanish on X, so d(b&a) can be replaced by db@a'
+b®da without changing the residue. Since the residue involves only components
of Koszul degree r and all components of S have Koszul degree <0, only terms
involving r or more da® factors will contribute to the first expression in (5.2.2). On
the other hand, on X the coefficients of da® operate by exterior multiplication by
normal cotangents, and since AN =0for ¢ >rany term contributing to the residue
must involve exactly r copies of da®. This in turn implies that no factors of negative
Koszul degree can appear in the residue, so that in the formula (5.2.2) da can be
replaced by da®+da' and $7 can be taken to be zero for g>0. Moreover, the
normal component of da' must also disappear in (5.2.2) since the r copies of da°
already fill up the normal cotangent directions. From all this one concludes that
the residue is unchanged when a is replaced by the twisting cochain for the
standard Koszul complex of N, with respect to local trivializations given by the
above identifications of the i*K;? with A?N.

In order to see that the residue lies in the image of p it is enough to check that
for >0 it vanishes on the components A'N®Q% P~ of the decomposition of
*Qn P, This again follows since AN =0 for g>r.

The complex C (%, Hom (F®i*K, F®i*K)) decomposes into a direct sum of
complexes, each of which is acted on by the trace map,

1, C (U, Hom (FQ APN, F® A'N)) - C (%, Hom(A?N, A*N)).

Since a! operates as the identity on AN, for w in C?(%, Hom’ *(F®K,
FRi*K®i*2})) the identities

5(db®a’) - w)=1,(w - (dbBa"))
T,(w - (b@da)) =1,(w) - da

hold in cohomology, where the cochain coefficients are composed using wedge
product. This is proved as in [9, Proposition 3.8, 5.11], and allows us to rearrange
the residue in (5.2.2) into an expression of the type occuring on the right of the same
formula, where W, (N) is independent of #. .

In order to see that the class of ¥,(N) is independent of the twisting cochains
and partial trace (5.1.2) on different covers #°, #”, the argument of [9] can be
adapted and the entire construction carried out on the union % 1]#" of the two
covers in such a way that all cochains take on their original values when all vertices
lie in %~ or #" respectively.

Since n°o § is a trace map for i, # the theory of the cochain-level Gysin map
gives

ch(i, ) =i,[ch(F) - ¥(N)]

in 3" H%(Z, @%). The class represented by ¥,(N) is related to the Todd genus of the

k

bundle N in the next section.
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5.3 Identification of the Todd Genus

The proof of the Riemann-Roch theorem is completed by showing that for any
holomorphic vector bundle E over X the class Y(E)= Y ¥,(E) coincides with the
i

inverse Todd(E) ™! of the total Todd class of the bundle. In fact it is sufficient to
establish the following properties.

Proposition 5.3.1. (a) For L a line bundle, P(L)=Todd(L) '.

(b) If 0>E—>F—->G—0 is an exact sequence of bundles, then ¥(F)=V(E)
P(G).

(c) For a holomorphic map f:Z—X and bundle E over X, we have ¥(f*E)
= f*P(E).

These properties imply that ¥(E)=Todd(E) ! in general: assume inductively
that this is true for bundles of rank less than r. If the rankr bundle E has a line sub-
bundle L, formulae (a), (b) show that

W(E)=P(L)- P(E/L)=Todd(L)"! - Todd(E/L) "' = Todd(E) ! .

But by the splitting principle [6], for any E there exists a map f: Z— X such that
f*E has line sub-bundle and H*(X, &%) injects into H*(Z, (%). Then (c) gives the
required result.

Proof of 5.3.1. Assume that L is trivialized by local sections e, with corresponding
fibre coordinates {,. These trivializations give a twisting cochain for the sheaf of the
zero section, for which dal operates by interior product with e,®d(,. The
component da); vanishes on KJ and operates on K; ! =L as multiplication by
— Aqg, Where {, = @, gl g and A5 = @.;'d@,4 is the Atiyah class of L. The component
of Koszul degree 1 in (da)” is therefore (da®) - (— 4)? !, with residue u((— A4)?~1).
Now multiply by 1/p! and sum to obtain
Res( X, (@a)/p!) = % u(—AY/p+1))

>0
= u(Todd(L)™Y).

For part (b) the sequence can be locally split over a fine enough cover % of X so
that F is described in terms of transition matrices

_ | au 0
baﬂ"‘ [haﬂ caﬁ:l

with respect to decompositions E,®G, of F,=F|U,. Suppose that E, G, F have
fibre dimensions P, q, r respectively. The Koszul degree has two components
corresponding to the isomorphisms A 'F, = A E,®A°G, and the twisting cochain
for the zero section of F has components of bidegree (1,0) and (0, 1) given by

(5.3.2) b°=a’®1+1Qc°,

while b! hag components of Koszul bidegree (k, — k) for k=0, the (0,0) component
of which does not involve the k.

The degree argument of the previous section, applied to the second Koszul
degree, shows that no more than q copies of dc® can appear in the residue in this
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case, since the coefficients of dc? lie in the sub-bundle G of the conormal bundle f
and A7* 1G=0. Therefore no terms of negative second Koszul degree can appea;
and the residue does not involve the k. It follows that the residue is unchanged
when F is replaced by EG. In this case b° is still given by (5.3.2), while

db:p = da:ll@Calp + aiﬁ®dczﬂ .

Now write db as db'+db” where db’'=da’®®1+da'®c! and db”=1Q®dc°
+a'®dc!. The cochains db’ and db” commute in cohomology: db’ - db” —db” - dy
=Df, where f is the cochain da'®dc!. Therefore

¥ (F)=Res o S[(db) **/(r+5)']
= ¥ ResoS[((@) ™ /(p+k)})- (db")*/(g+DY]

k+l=s

= P(E)- P(G)
k+l=s
as required.
Finally, property (c) is an immediate consequence of the functoriality of the

construction.
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