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Introduction 

This is the de ta i led  p r o o f  o f  the  f o r m u l a  a n n o u n c e d  in  [11] .  This  is a gene ra l i za t ion  
of the f o rmu la  first d i scove red  b y  G r o t h e n d i e c k  [2]  for a p r o p e r  m a p  f :  X ~  Y o f  
nons ingular  projec t ive  var ie t ies  a n d  a cohe ren t  sheaf  ~ -  o n  X.  I n  this  case 
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Grothendieck proves that if R~f,~ is the/th direct image sheaf of ~ then for a 
suitable theory of characteristic classes for vector bundles over projective varieties 
the Chern character of a coherent sheaf can be defined and the formula 

E (-- 1)'ch(Ry.~-)Todd(Y) = f.(ch(~)Todd(X)) 
i 

holds in the characteristic ring of Y. In [9] and [10] the Chern character of a 
coherent sheaf on an arbitrary complex manifold X is defined as an element of the 
Hodge cohomology ring ~ Hk(X, OkX) and the formula above shown to be valid in 

case Y is a point. This is the formula first proved by Hirzebruch in case X is 
projective and by Atiyah and Singer, as a special case of the index theorem, in case 
~" is locally free. 

Here the formula is proved for any holomorphic map f of complex manifolds 
and any coherent sheaf~ r on X with the property that f is proper on the support of 
~-. Moreover, our results are derived as relations between local geometric 
expressions depending on local coordinate systems for the manifolds and twisting 
cochains for the sheaves. The Chern character of~- and the R~f.~- are defined as in 
the earlier paper [9]. This approach extends Atiyah's definition of the character- 
istic ring ofa  holomorphic vector bundle via ~ech theory, so our formula is to be 
interpreted as an identity in the Hodge cohomology of Y The proof is carried out 
entirely within the framework of twisting cochains and their associated cochain 
complexes. It appears that some of these techniques can be regarded as a 
translation of derived category methods into more concrete geometrical terms. 
Those familiar with the derived category will reeognise twisting cochain versions 
of several of the constructions used in [6], for example. 

As indicated in the announcement, the proof of the formula begins, as in 
Grothendieck's original proof, by factoring f as an embedding followed by 
projection and proving the formula for each type of map separately. Functoriality 
shows that the formula is then valid for the composition. In our case the 
embedding is taken as the graph F:  X ~ Y x  X, with F(x)=(f(x), x), so that 
composition with the projection onto Y gives f. 

Multiplicativity of the Todd genus over short exact sequences of bundles shows 
that if i: X--.Z is a holomorphic embedding the formula reduces to 

(0.1) ch(i,~-) =/ ,(Todd(N)- 'ch(~-)), 

where N is the normal bundle of X in Z. We do not attempt to give a direct proof of 
the result in this generality. Instead we make the simplifying assumption that there 
exists a holomorphic map 0" Z--,X such that Q o i is the identity map. This leads to 
considerable simplifications in the local formulae appearing in the proof and is 
clearly valid for the case of the graph embedding used in the derivation of the 
general formula. The formula (0.1) is then shown to hold in the local cohomology 
space ~ H~(Z, ~z), where S is the support of i,~-. 

k 
Similarly, for the projection n: Y x X ~ Y  the formula is equivalent to 

(0.2) E ( -  l)'ch(Rir~. :~r) = S Todd(X)ch(~') 
r X 

for any coherent sheaf ~q ~" on the product with support S proper over Y. The Chern 
character is interpreted as an element of ~ H~(Y x X, ~r.  x). 

k 
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The proof of(0.2) is the more difficult and occupies the first four chapters of the 
paper. In case Y is a polydisc, for example, the proof is quite similar to the proof of 
the Hirzebruch-Riemann-Roch formula given in [10]. The various analytic results 
used in [ I0] are replaced by their relative versions. The theory of nuclear Frrchet 
modules provides suitable techniques and most of the necessary results are already 
available: Grauert's coherence theorem and the duality theory of [12] substitute 
for the corresponding finiteness and duality theorems used in [10]. 

The extension to a general Y again depends on twisting cochain methods, this 
time relative to an open cover of Y. In outline this still follows the original model of 
[14] with an explicit construction of a cocycle in Y x X x X which is the Gysin 
image, in the sense of Grothendieck duality, of a certain cocycle on Y x X under the 
diagonal inclusion. In more detail, the contents of the various sections are as 
follows. 

The first chapter shows how to associate a twisting cochain and Chern 
character to a complex of sheaves which is "perfect" in the sense of [7]. This is 
applied in the case where ~- is a coherent sheaf on Y x X with the projection onto 
Y proper on the support of ~-. If q/is a Stein open cover of X then the complex of 
d~r-modules which associates the (~ech complex C'(V x q/, ~ to an open set V of Y 
is perfect, and its Chern character is shown to coincide with the left side of (0.2). 

The second chapter introduces some familiar simplicial techniques into the 
context oftwisting cochains. These are based on the "shuffle map" of Eilenberg and 
Maclane [4]. For a product cover ~ x q /of  Y x X this map is used to transform 
cochains on ~ x ~/into cochains on ~ with coefficients which are cochains on q/. 
The map is compatible with the usual operations on cochains and for our purposes 
has the useful property that twisting cochains on ~ x q/can be transformed into 
twisting cochains on ~/r in an appropriate sense. The local complexes of the 
transformed cochain are themselves cochain complexes with differentials coming 
from the original twisting cochain. 

These two chapters thus describe two ways to obtain a twisting cochain for the 
perfect complex introduced above. In the first case the local complexes are the 
familiar complexes of free, finitely-generated Or-modules; in the second they are 
themselves cochain complexes. The next chapter relates these two constructions 
and goes on to show how they lead to an analogue of the "Lefschetz class" on 
YxXxX .  

In the absolute case this is quite straightforward and is described in [10, 
Sect. 1]. The extension to the general case is presented in terms of the constructions 
of the previous two chapters. The familiar Serre-Grothendieck duality and the 
Kiinneth formula for sheaves must be replaced by their relative versions. As before 
the class can be characterized abstractly as the Gysin image of Y x X under the 
diagonal embedding and with respect to integration along the fibres X x X of the 
product y x X x X. This chapter also includes a twisting cochain version of the 
proof of the relative duality theorem of [12]. 

The explicit construction of the dual class of Y x X in Y x X x X through the 
cochain-level Gysin map is described in Chap. 4. As usual, this is carried out in 
terms of Koszul resolutions for the diagonal submanifold of X x X, a twisting 
cochain for ~ar on Y x X and explicit chain homotopies for the Koszul complexes. 
This gives a local formula for the dual cocycle in terms of geometric data for X and 
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#r. It remains to identify this expression with the appropriate characteristic classes 
and to show that the class constructed is the same as the Lefschetz class of the 
previous chapter. This latter problem is dealt with by expressing the duality 
properties of the explicit cocycle in terms of the chain homotopy conditions which 
characterize the Lefschetz class. The final section of this chapter relates the 
geometric formula to the characteristic classes of X and ~ .  This is very similar to 
the argument in the absolute case, and combines a stronger form of the original 
invariant theory argument of [14] with explicit calculation based on the product 
operation for twisting cochains. This concludes the proof of (0.2). 

The final chapter proves the formula for an embedding i: X ~ Z  with the 
retraction Q onto X. The proof depends heavily on the exterior algebra structure in 
the local Koszul resolutions for the submanifold X. The argument is based on the 
simple fact that for endomorphisms of an exterior algebra the trace operation is a 
special case of the interior product. Globally this implies that the trace map for 
twisting cochains of sheaves of the form i,#" factors through the cochain complex 
used in the explicit construction of the Gysin map. This complex has the property 
that the image of any cocycle in it has a residue on X, and the full trace of the 
cocycle coincides with the Gysin image of this residue in Z. Applied to the powers 
of the Atiyah class of i , ~  this shows that the Chern character of i , ~  is the Gysin 
image of some cocycle on X. It remains to identify this cocycle as a representative 
of the appropriate characteristic class. This depends on a series of reductions based 
on degree arguments in the exterior algebras of the Koszul complexes. The first 
reduction shows that Z can be replaced by the normal bundle of X, with X 
included as the zero section. The same argument also shows that it is only 
necessary to consider the case ~- = ~x. Finally an inductive argument on the rank 
of N shows that it is sufficient to prove the result for codimension one, where it 
follows by direct calculation. 

Some attempt has been made to keep the proof reasonably self-contained. The 
main exceptions are the construction of the cochain level Gysin map associated to 
a submanifold [15], some elementary properties of twisting cochains described in 
[9] and various facts concerning topological tensor products and their application 
to coherence and duality questions on analytic spaces, for which [3] and [12] are 
suitable references. 

Notation 

For complexes E', F" of vector bundles or 0x-modules over a complex manifold X 
the tensor product E "| homomorphism complex Hem "(E, F) and dual/~" are 
defined over Ox according to the usual conventions. Differentials and product 
operations for associated spaces of cochains are defined according to the sign 
conventions used in [9]. For M and N locally convex topological vector spaces 
with M nuclear, the operation ~ is the usual completed tensor product over r 
unless otherwise indicated. The sheaf ~x of holomorphie k-differentials on X is 
regarded as a complex, zero except in degree - k. For the sign conventions in use 
here, this gives compatibility of products with the usual wedge product in 
~--cohomology under the Doibeault isomorphism. For open sets VBo, ..., Vpp their 
intersection is denoted by Vpo...ap. 



A Grothendicck-Riemann-Roch Formula 497 

1. Twisted Resolutions of Perfect Complexes 

1.1. Mapping Cones for Twisting Cochains 

We recall some of the terminology of twisting cochains used in [9] and extend the 
techniques to more general situations which arise here. Throughout Yis a complex 
manifold, with structure sheaf Or. For coherent sheaves or holomorphic bundles 
:-, f# the notation Hom(W; ~-, fg) means the usual space ofhomomorphisms over 
WC Y. It will also be necessary to consider the case where : or f# may not be 
coherent; for example they may be vector bundles modelled on infinite dimen- 
sional topological vector spaces. In that case the appropriate space of homomor- 
phisms will be specified as necessary. 

Suppose given an open cover ~ = {VB} of Y together with graded (9y-modules 
F~ over V#. Form the space of cochains 

CP(~, Homq(r, F)) = l-[ nom~(V#o...~p; Fh,, F~o ) 

with corresponding (~ech coboundary and product operation as in [9]. A twisting 
cochain is an element b of ~ Ck(~, Homl-k(F, F)) satisfying 6b+b. b =0, with 

k 

b~h ~ the identity map for all ft. As before this data will be denoted by (Y, F, b). 
For two twisting cochains (~:, E, a) and ( : ,  F, b) the complexes C~(~, E') and 

C~.b(Y:, Horn "(E, F)), with differentials D~ and D,,b are defined as in [9], except 
that for present purposes it is useful to require that all cochains [except for (1, 0)- 
components of twisting cochains] are non-degenerate in the sense that they vanish 
on all simplices of the cover for which two adjacent vertices coincide. The spaces of 
such cochains are closed under the differentials if it is also required that the 
twisting cochains are non-degenerate on k-simplices for k > 1. From Remark 1.8 of 
E9] this can always be assumed to be the case. 

For complexes M', N" with differentials elM, dN and a degree zero chain map 
u:M'-~N" the mapping cone of u is the complex P" with P~=Mi~N i-1 and 
differential 

_0] 
Similarly, given a degree zero cocycle u in C~,b(~/, Horn '(E, F)) the mapping cone 
of u is the twisting cochain (~r G, c) with G / = E~@F~-1 and c given by 

1_(- ( -  1) 
The condition ~c + c. c = 0 is equivalent to the similar equations satisfied by a, b 
together with the cocycle condition on u. Tile local complexes are the mapping 
cones of the chain maps up. 

Finally, if E" is a globally defined complex on Y, then for any cover ~ of Y 
there is a naturally associated twisting cochain which will be denoted by 
(~, E, e), where E B = E'IV~, the map e~" ~ is the restriction of the differential of 
E" and e~bO is the identity on E'[ V~c~ V~. 
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1.2. Perfect Complexes 

We use the following generalization of the notion of coherence for (.fr-modules. A 
more detailed discussion can be found in [7]. For our purposes a chain map 
between complexes of (~r-modules is a quasi-isomorphism if the induced map on 
complexes of sections is a cohomology isomorphism over every sufficiently small 
Stein open neighborhood of each point. Similarly a complex of t~y-modules is 
acyclic if the corresponding complex of sections is acyclic over every sufficiently 
small Stein open neighborhood of each point. Thus a chain map is a quasi- 
isomorphism if and only if its mapping cone is acyclic. 

Remark. Most of the Or-modules introduced here are quasi-coherent nuclear 
Fr~chet modules over r  in the sense of [12, Sect. 2]. If a complex of such sheaves is 
bounded above and the complex of sections is acyclic over a Stein open set V,, then 
the complex of sections is acyclic over every Stein open set WC V (see [3, 
Proposition 3] for example). 

Definition 1.2.1. A complex ~" of (gy-modules is perfect if each point of Y has a 
neighborhood V such that ~"1V is quasi-isomorphic to a bounded complex E' of 
t~v-modules , with each E k free and of finite rank. 

Suppose that g" is a perfect complex with differential 0. The twisting cochain 
(~r', ~, e) is formed as above for any open cover ~ of Y 

Definition 1.2.2. A twisted resolution of ~" over 4//" consists of a twisting cochaia 
(~w, E, a) together with a cocycle u of degree zero in C~. e(C, Horn'(E, o~)) with the 
property that each complex E~ is bounded, the E[ are free and of finite rank and 
each local chain map up:E~-~ ' t  Vp is a quasi-isomorphism. 

In the case where g" consists of a single coherent sheaf in degree zero and 
(C,  E, a) is a twisting cochain for o ~ in the sense of [9] then there exists a natural 
choice for u; let u~ be the quotient map from E~ onto g t V~ and set u k = 0 for k > 0. In 
the general case the existence of u ensures that the local maps up extend to a global 
map of the cochain complexes C~(C, E') and C~(~, g') given by left multiplica- 
tion by u. The construction of a twisting cochain for a single coherent sheaf 
given in [9, Sect. 1] can now be generalized as follows. 

Proposition 1.2.3. Given a perfect complex ~ "and an open cover q/" of Y, there exists a 
twisted resolution of ~" by a twisting chochain ( ~ ' ,  E, a) on some refinement ~ '  of 

Proof For a suitable Stein refinement of~e" it can be assumed that there exist chain 
maps u~:Eh~ ' IVa  as in the definition, such that u s induces cohomology 
isomorphisms over every Stein open subset of Vp. Suppose that E~ has differential 
a~' 1 and let Ep be the mapping cone of up. We construct a cochain A in 

C~(~, Horn I - ~(L, L)) satisfying fiA + A. A = 0. This will be the mapping cone of 
k 

some cocycle u in ~ ck ~(~e ", Hom-k(E, ~f)) extending the given up. In particular 
k 

A~' t will be the differential of E~ and A~b ~ the identity map. It follows that (~,  E, a) 
and u solve the problem. The construction of A depends on the following lemmas. 
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Lemma 1.2.4. Let E" be a bounded complex of modules with each E k free and of finite 
rank. I f  the complex F" is acyclic then the same is true for the complex Horn'(E, F). 

Proof. Either consider the spectral sequence obtained by filtering by the E" degree 
or show directly that every chain map of E" into F" is homotopic to zero, as in [7, 
Lemma 4.1]. 

Lemma 1.2.5. Suppose given chain maps r : E ' ~  F" and s : G ' ~  F" with E" as above 
and s an isomorphism on cohomolo#y. Then there exists a chain map r' : E ' ~G "  with 
s o r' homotopic to r. 

Proof [7, Lemma 4.2]. Let K "be the mapping cone ofs. The composition oft  with 
the inclusion ofF" into the acyclic complex K'gives a chain map (of degree + 1). By 
the preceding lemma this map is homotopic to zero and the components of the 
homotopy give r' and the homotopy between s o r' and r. 

Now apply (1.2.5) with r=up and s=u ,  to obtain a~p and u~p over V~r~V~ 
satisfying a~a~a = a,~ap and u p -  u~a~p = Ou~p + u~pap, where 0 is the differential of~'. 
This gives A 1, o satisfying A~A~a = A~Aa. 

The remaining A k" 1 -k are now constructed inductively. If D is the differential 
on Hom'(Lpk, Lao) this means finding A~ t ~ on V~o a~ satisfying 

P k-1 . . . . . .  Ak-|  q 
li~ ~ l ~ + l D A k  / ~ A ~ - I +  x-' A z t #  t - -  # Po...#k= l /-.-, " / " 

L i=  1 JPo...#k 
(ii) Apo .k ..#k vanishes on the subcomplex ~~ of L'pk. 
Condition (ii) is equivalent to the fact that A~o...a ~ lies in the subcomplex 

Hom'(Epk , Lao) of Hom'(La~, Lao ) and it follows inductively that the right side of (i) 
lies in this subcomplex for k > 1. The usual inductive calculation shows moreover 
that the same expression is a cocycle. But Hom'(Ea~, Lpo) is acyclic, so Aao...p ~ 
satisfying (i) exists. The resulting twisted resolution will be written as (~ ,  E, A). 

1.3. The Trace Map and Chern Character 

With suitable modifications the theory of the trace map introduced in [9] goes 
through for perfect complexes. Only certain aspects of the theory are needed for 
present purposes however, and these are described next. Let (~ ,  E, A) be a twisted 
resolution of a perfect complex g" on Y as above. The trace map 

z, : C~(~, Hom'(E, E))-~C' (~ ,  (gr) 

is the chain map into the usual ~ech complex given on cochains of bidegree (p, q) 
by 

q 

(~,uP'%o...~,+q= Z ( -  1) kCp+q}+q 
k = O  

q + l  U 

where as usual "tr" denotes the sum of traces in even degree minus the sum of traces 
in odd degree. The same calculation as in [9, Sect. 3] shows that z~ is a chain map. 

Similarly the A tiyah class of g ' i s  represented in C,(C,, Hom "(E, E | by the 
0-cocycle da, where d is the usual exterior derivative, and the Chern character of 
g" is the class in Z Hk(Y, fPr) represented by 

k 
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Independence of choice of twisted resolution can be shown as in [9, Sect. 3]. It 
follows that quasi-isomorphic perfect complexes have the same Chern character. 
Alternatively, independence also follows from the formula, to be proved below, 

(1.3.1) ch(g ") = E ( - 1)kch(A:k(g ")) 
k 

which relates the Chern character for perfect complexes to the definition given in 
[9] through the cohomology sheaves ~k(8"). The formula (1.3.1) is proved by 
reduction to the following proposition, which generalizes the additivity property 
of the Chern character given in [9, Proposition 4.5]. 

Proposition 1.3.2. Suppose g" and ~ ' a r e  perfect complexes on Y and 0 : 8"-, ~" is a 
chain map (of degree zero). Let fg" be the mapping cone of O. Then (9" is also perfect 
and 

ch(~r ") = ch(r ") - c h ( :  ") 

in ~Hk(Y, ~ ) .  
k 

From the proposition formula (1.3.1) follows by induction on the number of 
integers k such that A:k(8") 4: 0. If there are no such k the result is trivial. In general 
suppose that A:k(g ") =4= 0 and Ae;(~') = 0 for l < k. If~ ~ is replaced by zero for all l < k 
and 8 k by gk/d~'k-1 the resulting complex is quasi-isomorphic to g', so it can be 
assumed that 8 z = 0 for I < k. Let ~"  be the perfect complex with ~k(g-) in degree k 
and zero elsewhere. The inclusion of A:k(~ ) into gk gives a chain map of.~" into ~', 
with mapping cone ~ "  say. The cohomology exact sequence shows that Az~(y:) 
= f k +  x(r for i~= k+ 1, while ~:k+ I(A:.) = 0. Then (1.3.1) for 8" follows from the 
proposition and the corresponding formula for A: ". 

Proof ofl.3.2. Let (f: ,  E, A) and (~ ,  F, B) be twisted resolutions for r  :- 'with A 
as above and B the twisted resolution corresponding similarly to a twisting 
cochain b and 0-cocycle v in C~.~(f:, Hom'(F, ~r)). From the form of the Atiyah 
class and the trace map the proposition will follow from the existence of a twisted 
resolution for if" for which the associated twisting cochain is the mapping cone of 
some 0-cocycle h in Cg,b(f:, Horn'(E, F)). Let L}, M~ be the mapping cones of 
U#, 0#. 

Proposition 1.33. There exists a O-cocycle U in C j, n(f:, Horn "(L, M)) of the form 

Uk= [( hk 
--1)ks k (--O1)kO'l 

withrespecttothedecompositiong#=E~)g~ -~ and M# = F # ~ ) ~ ~  ' ~- ~, whereO~ "~ 
OIV# and Ok'-k=O for k>O. 

Remark 1.3.4. With this choice of signs the cocycle condition on U is equivalent to 
the cocyde conditions on h, 0 together with the relation 

v. h -  O " u= D.,~s. 

Proof. Let O" 0" be the differentials of~' ,  ~ ' .  Lemma 1.2.5 gives the existence of a 
chain map h~ : E~-,F~ and s# with 

v#h# -- O #u# = O" s# + s#a# 



A G r o t h e n d i e c k - R i e m a n n - R o c h  F o r m u l a  501 

and hence a cochain U ~ satisfying BaU a = UaA ~. The argument proceeds as in the 
proposition above by finding sections U[o...p ~ of the acyclic subcomplex 
Hom'(Ea~, Mao) of Hom'(La~, Mao ) with coboundary 

[ 1 (--1) k§ j u k - ~ +  ~ (B~.U~-~-uk-~.A ~) 
l = 1 A#o.--~k 

This expression is checked inductively to be a cocycle and to lie in the acyclic 
subcomplex; the existence of U k follows. 

The mapping cone of U is now a twisting cochain for local complexes 
/~.M~-. ~. Under the isomorphism of/~a0)M~ -~ with .~,awo-/~tkrit~(lg'i-1, where N~ 
=E'~@F'~ -~, this goes over into a twisted resolution (f ' ,  N, 63 for N, with 

C k = F ck 

L ( -  i ) ~  (-1)0k § lek] ' 

where now 

(--1)kh ~ (--1)k§ k ' (--1)~+ls k (--1)kv k " 

Since u~ and v~ are quasi-isomorphisms, so is w~. This gives the required twisting 
cochain for ~'. 

1.4. Non-De#eneracy of the Trace Pairin# 

If E', F" are complexes of finite-dimensional vector spaces, then the trace gives an 
isomorphism between Hom'(F, E) and the dual of Hom'(E, F). In order to state 
and prove the global analogue of this perfect pairing we use the terminology of I9] 
concerning simplicial maps between complexes associated to twisting cochains. 
For a cover ~ of Y and simplex fl=flo...flp of the nerve of f ,  write ~<fl in case 
.~ :-70...Y~ with ~k = fl,tk~ for some strictly increasing v: {0,..., q} ~{0 ..... p}. (This 
is a slightly more restrictive definition than that used previously.) 

Now let Cj(Y', E) be a twisted complex consisting of complexes of (finite- 
dimensional) vector bundles E~i over Vp = V~on... ca Vpp for each simplex fl = flo...fir 
.of ~ ,  with differential induced by bundle maps A~ for ~ ~ ft. Recall that if Ck(~, F) 
is a second such complex we define Hom'(~/'; E, F) as the complex of maps 
T: C~(~, E)~Ch(~,  F) of the form 

(Tc)~ = ~Ep r~c~ 

for suitable bundle maps Tp r. For T of total degree r the differential is given as usual 
by 

T~--~Bo T +(-1)'+ ITo A. 

Suppose that (~r E, a), (~ ,  F, b) are twisting cochains, with E~, F~ bounded, 
free and of , ~ Horn E F  and the i2echcom lex finite rank. Interpret C~ a( , "( , )) P 
C'(~,tPr) as twisted complexes C~(~,M) and C'~(~,~r), so that M~o p 
--- Hona'(Ea~, F~o) ' and ~ is zero unless ~ is a codimension one face of fl, in whici~ 
case it is the restriction map, up to sign. The next proposition is the global non- 
degeneracy result. In a derived category setting this result appears in [7, Sect. 7]. 



502 N.R. O'Brian et al. 

Proposition 1.4.1. The chain map u~-~r flora C'(U, Hom'(F,E)) into 
Hom'(q:;M,d)r),  defined by q~u(V)=Va(U" V), is a quasi-isomorphism of cochain 
complexes. 

Proof. Note that H o m ' ( ~ ;  M, Or) can itself be regarded as a twisted complex on 
~/:, for which the local complex over V~o...#, is G~o...#, say, with 

G~o...~,= Y~ nom(Hom-q(E~,, F~0), Or) 
~,o...~,=< # 

and differential T~--~ __+ To D. Under this interpretation ~ itself becomes a simplicial 
map in H o m ' ( ~ ;  M, G). The usual comparison of spectral sequences shows that in 
order to prove that ~ is a quasi-isomorphism, it is only necessary to check that each 
of the local chain maps ~ induces a cohomology isomorphism over V~. But ~ 
factorizes into a map 

(1.4.2) Hom "(F#,, E~o) ~ Hom'(Hom(E#: F~,), (91:) 

followed by the natural inclusion of the second complex into G#, where in (1.4.2) a 
bundle map VBo...#, goes into the homomorphism sending u#, into tr(b~#oV#o...~y#). 
But the second complex is isomorphic to Horn'(F#,, E#,) under the trace pairing, 
and b~,ao is a chain homotopy equivalence, so (1.4.2) induces quasi-isomorphisms 
on the complexes of sections over ~ .  

Let .,Wp q be the q-cohomology in this case. If the complex Gr is filtered by 
simplicial degree then the resulting E~ ~ can be identified with the space of (ordered, 
non-degenerate) p-chains of the simplex/~o...//,, with coefficients in ~ q  and the 
usual simplicial boundary (up to sign). The inclusion map into G~ then 
corresponds to inclusion of the vertex #,, and the acyclicity of the r-simplex gives 
the result. 

2. Direct Images of Twisting Cochains 

2.1. The Shuffle Map 
Suppose given complex manifolds X, Y with open covers q/, ~ and projection 
map ~: Y x X - ,  Y A coherent sheaf ~- on Y • X gives a complex C'(q/, ~ )  of (9: 
modules with 

c'(ou, : )  (w)  = c ' ( w  • q~, : )  

for WCY, where if q/={U,} then WxOg is the cover {Wx U,} of W x X .  This 
complex has the usual ~ech boundary operator and if q/is a Stein cover, the q,h 
cohomology gives the direct image sheaf Rq~,(~'). There is also a bicomplex 
C'(~e', C'(q/, :-)), for which a cochain c of bidegree (p, q) consists of sections c#0...~p 
of o (q / ,  ~ )  over V~o...pp, each of which in turn corresponds to sections C#o...#,:0...,, 
of : r  over V#o...~" x U,o...,o. The differential is fix + 6r, where 

q + l  

(~xV)#o...#p,,o...,,+, = Z (-l)k+%o...#,.,o...~...,,+, 
k=O 
p+1 

(6rC)#o...#,+,,,o...,,= E (-l)%ao...~...#,+,,o...,,. 
k=O 
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This bicomplex is related to the complex C ' ( ~  x q/, ~ )  by the shuffle map of 
Eilenberg and Maclane [4, 8] applied to the cover ~ x q/. This is the map 

(2.1.1) ~: c ' ( ~  • ~, ~ ) - - , c ( ~ ,  c(q/ ,  ~-)) 

given by 

(2.1.2) a(U)~o...~p, ~o...~ = y', 4- U~o ...~ +~, 

where the sum runs over all strictly increasing sequences 1 < il < . . .  < i v < p + q and 
r,=(/~l,, ~ )  w i t h / o = 0 = m o  and 

mid=mid-l ,  l i ,=li ,-  1 + 1, 

lj,=lj,-l, mj,=mj,-l-b�94 
Here the sequence 1 < j~ < . . .  <jq < p + q is the complement of the sequence (i,) and 
the sign in the formula is that of the permutation (i~, ..., iv, j l  . . . . .  jq). 

Both complexes in (2.1.1) have a cup-product. A pairing 8 |  ~ f~ induces the 
usual cup-product pairing C'(q/, o~)| ~ ) ~ C ' ( q / ,  fg) and hence a further 
cup-product between C ' ( ~ ,  C'(q/, o~)) and C '0  e-, C'(q/, ~-)), also denoted by 
u, v ~ u .  v. The important properties of the shuffle map are the following. 

Proposition 2.1.3. With respect to the above operations the shuffle map satisfies 
(i) r = ( t x  + 6r)tr(u), 

(ii) o(u. v) = o(u). a(O. 
Moreover a is a quasi-isomorphism. 

Proof. Equation (i) is proved by induction on degree, as in [4, Theorem 5.2]. The 
second formula follows from the definitions; the argument is given in [5, Sect. 3]. 
The last statement is also proved in [4]. 

2.2. Fibre Integration on (~ech Cochains 

Let rr : Y x X ~  Y and q/, ~ be as above with X, Y of complex dimension n, m 
respectively. For  a coherent sheaf o ~ on Y we use the standard notation nt8 for the 
tensor product of f~x, regarded as usual as a complex zero except in degree - n, 
with rr*r over Ox x r. The shuffle map can be used to define a f ibre integral. 

I : c '~(~ x ~,, ~,~)--, c ( ~ ,  ~), 
X 

where the subscript indicates the subcomplex of cochains with support on which rr 

is proper. This is defined as the composition of the shuffle map 

~: C~(~ x ~,, ~r c~(~, ~ ) |  

with the usual integral on C~(q/, ~x) applied pointwise with respect to Y. 
Recall that this integral is defined as the composition of a Dolbeault 

hornomorphism with the usual integration of smooth forms for the orientation 
given locally by dxldy l . . .dxndy  ~, where z i=  x i+  I/-L-ly i are holomorphic coordi- 
nates on X. Conventions for the Dolbeault homomorphism are fixed as follows. 

For fixed p, let A~ '~ be the sheaf of smooth forms of type (p, q) on X, regarded as 
a complex with A~' q in degree p - q and differential (2nl//-Z1)- 1 ~-. The correspond- 
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hag bicomplex C'(q,r A} '~) has differential D = Dl + Dz where D1 is the usual ~ech 
differential and D 2 = ( - 1 ) ' ( 2 ~ 1 / ~ ) - ~ 0  -. We require that the Dolbeault 
homomorphism 

(9 : cv(ql, ~2"x)~ n ~  A~r v) 

reduces to the cohomology isomorphism obtained from the natural inclusions of 
both spaces into the t,icomplex. Recall that ~9 can be ~enned as an explicit chain 
map in terms of a locally finite partition of unity for ~ ,  as in [14-1 or [1i. In fact 0 
and hence the integral can be extended to the whole bicomplex. IfX has boundary 
aX then Stokes' theorem takes the form 

for t / in C'(q/, A~r 

2.3. Twisting Cochains and the Shuffle Map 

Suppose given a system F~'a,~) of graded coherent (9 x • r-modules over the sets V~ 
x U~ of the product cover 3e x ~//of Y • X. Over each V~ in 3e this gives a graded 
tPr-module F~ with 

~ ( w ) =  E cp(w x ~, e~) 
p+q=r 

for W C V~. Here F~ is regarded as a system of graded sheaves over W x q/with (F~)~ 
= F('~,~. If the F('p,~) are free and related by a twisting cochain ( ~  x q/, F, b) we will 
show that the cochain b contains all information necessary to obtain a twisting 
cochain relating the F~ on the cover ~ of I'7. It must first be made clear what is 
meant by a homomorphism between the local sheaves F~. 

More generally, if E('p,~) is a second system of coherent (gx • r-modules with 
corresponding tSr-modules E~, then we take the homomorphisms from 1E~ to lz~ 
as the space of simplicial operators as described in Sect. 1.4 above. In the nota- 
tion used there 

Horn'(W; E~, Fr) = Hom'(W x q/; Ea, F~) 

for W (  Vpm V~. In this case the space consists of all operators P of the form 
u (Pu)g = ~, P~u~, 

v<# 

where # is a simplex of 0// and if #=#0. . .#v and V=Vo...v q then P~ lies in 
H o m ' ( W x  U,o...~o; EcB.,o), F~r.~o~). In particular, cup-product multiplication by 
dements of C'(W• Hom(E~,Fr)) belongs to this space, as does the ~ech 
boundary operator in case E~ = F~. 

This is not the only possibility for maps between the local complexes. For 
future reference note that we also have the space ofsmoothino operators from ~fi to 
F~. We distinguish these by a subscript, and if p~: Y • X • X ~  Y • X are the 
projections on the first and second factors we write 

Hom~(W; F~p, Fy) = C'(W • qJ • ad, Hom'(p~Ep, p~Fr)). 
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The action of a cochain k in this space on u in F,a(W) is given by 

k(u)= I k.p'~u 
X2 

where the integral is evaluated along the second copy of X in the product. 
IfE~ over V~ is free and finitely generated over (Or it is also necessary to consider 

homomorphisms of F~ into L'~. These will always be taken to be of "smoothing 
operator" type, so for WC Vpn V~ we have 

(2.3.1) Hom "(I4~ F~, L~) = C'(W x ag, Hom'(F~, zdL~)) 

with ~p acting on u in F~(W) as 

(2.3.2) tp(u) = I u u 
x 

in L'r(W). For maps in the other direction the space Hom'(W; Lr, Fp) has the 
obvious interpretation. 

With this definition we can use the shuffle map and the twisting cochain b to 
define a twisting cochain/~ in C ' (~ ,  Horn "(F, IF)). First note that the formula (2.1.2) 
for the shuffle map extends immediately to give a map 

a:  C ' ( ~  x q/, Hom "(E, F))-o C'(q/', C "(q/, Hom "(E, F))) 

even though in the present case the local complexes may vary. A cochain ~ on the 
right has components epo...p, over Vpo...a,, where each ~po...a, is in turn a cochain of 
C'(V~o...a" x q/, Horn "(Ea,, Fao)). Cup-product identifies this space with a subspace 
of Hom'(V~o...a x ~ ;  Ea,, Fijo) and so a can be regarded as a map into 
C '(~, Hom "(E, F)). 

For a third local system G('a.~j with corresponding d~r-modules 1~ there is the 
usual cup product between C'(r Hom '(F, ~ )  and C ' (~ ,  Hom "(1E., ~) .  Moreover, 
for u, v in C ' ( ~  x ql, Hom'(F, G)) and C ' ( ~  x q/, Hom'(E, F)) formulae (i) and (ii) 
of Proposition 2.1.3 remain true. In this case & 6x, and 6r are the modified (~ech 
differentials, with first and last face operators omitted. However, this does not 
affect the proof of (ii). 

A twisting cochain (~ ,  F,  ~ is now obtained by defining the action of ~o...a~ in 
H~ Fa~, ~ao) on ua~ in ~(Vao...a~) as follows. For k > 0  

= �9 

while 

6po(U/3o) = CSx(Upo ) + (a(b )~o) . (up,,) 
for k -0 .  Here fx acts on C'(Vao x q/, F~o) in the usual way [9]. Note that ~ is then 
the usual differential for the space C'(Vp x q/,F~) with respect to the twisting 
eoehain obtained by restricting b to the cover V~ x q/of  Vp x X. It follows from the 
nondegeneracy assumption on b that a(b)pp, ~o...~ = 0 unless q = 0, and a(b)pp,~,o is 
the identity. The usual derivation properties for the operator fix hold, so that 

6 . 6 =  axa(b) + a(b) . 

and the formula 6r/~ + ~;. ~ = 0 follows from Proposition 2.1.3 and the correspond- 
ing formula for b. 
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Ifad is Stein and ( ~  x q/, F, b) is associated to a coherent sheaf Z on Y • X then 
it will be shown that (~ ,  ]F,b') gives a twisted resolution for the Or-module 
C'(ad, #-) introduced in 2.1. In this sense ( f , F ,  b')can be thought of as the direct 
ima#e of ( ~  x ad, F, b). For future reference we make the following remark. 

Remark 2.3.3. If q/, f are Stein and the complexes C'(Y x q/, Horn'(F, F)) and 
C'(~r Hom'(F, F)) are filtered by ~ech degree and total ~ech degree respectively, 
then the corresponding E~ q terms are the cochain complexes C ' ( ~  x q/, ~q) and 
C ' (~ ,  C .(o//, ~,~)) respectively. Here ~ q  is the globally defined sheaf obtained by 
using the local chain maps b t ' ~  to glue the qth cohomology sheaves of the 
complexes Hom "(F~ao. ~o), F~a,, ~o)" Since a induces an isomorphism between the E~ ~ 
terms, the comparison theorem shows that a is a quasi-isomorphism between the 
original complexes. 

The relation between a coherent sheaf on Y x X and an associated twisted 
resolution is preserved by the shuffle map, as shown by the next proposition. As 
before #- is a coherent d~r ~ x-module and ql a Stein open cover of X. Write ~" for 
the complex of d~r-modules C'(~, ~,~) defined in Sect. 2.1. Suppose also that there is 
a twisting cochain ( ~  x ~/, F, b) which, together with the usual cocycle u in 
C ~  x ad, Hom~ #')), gives a twisted resolution for ~ .  The shuffle map 
applied to b and u now gives a twisted resolution for ~" as follows. 

Proposition 2.3.4. The twisting cochain (~1/, F, 6) together with a(u) in C'(~, 
Horn'(F, ~)) #ire a twisted resolution of ~ ". 

Proof. Ife is the trivial twisting cochain for ~ on C x o//then ~ is the trivial twisting 
cochain for t~" on # ,  so that 

6ra(U) + ~. a(u)- ~(u)./; 
= fir(a(u)) + 6x(a(,u)) + a(e). o(u)-  o(u). o(b) 

=0 by Proposition 2.1.3. 

The maps a(u)~ ~o �9 are zero for q > 0, while a(u)~ ~ is the projection of F~ ~ 
i " ' ~  q " 0 P " " 

onto ~1Va x U,. Since q,t is Stem the map a(u)p :F~-olI~ ~s therefore a quas~- 
isomorphism and a(u) provides the twisted resolution as required. 

3. The Relative Lefschetz Class 

3.1. Resolutions by Nuclear Fr~chet Modules 

As above, let ( ~  x q/, F, b) be a twisting cochain for the coherent sheaf Z on 
Y x X, with each F ~ free and finitely generated and f ,  q/Stein open covers. The (#, ~) 
sheaves I~" and F~ defined in the previous section are not coherent as d~r-mod ules, 
but are quasicoherent nuclear Fr~chet Or-modules in the sense of 112, Sect. 2]. Re- 
call that, in particular, this means that for each Stein open set W of Y (resp. V~) the 
complex ~'(IV) (resp. F~(W)), with its natural topological vector space structure, 
is a complex of nuclear Fr~chet modules over the nuclear Fr6chet algebra d~r(W) �9 
Moreover F~(W) is a complex of free dYr(W)-modules. In this sense F~ can be 
regarded as a "free resolution" of ~'1Va. 

As in [121 nuclear Fr6chet spaces will be referred to as spaces of type FN and 
their strong duals as spaces of type DFN. 
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Suppose now that the projection ~r: Y x X ~  Y is proper on the support of ~ .  
Then the proof [3] of Grauert's theorem shows that ~" is perfect, so that for a fine 
enough cover ~ of Y there exists a twisted resolution for which the local complexes 
of the associated twisting cochain (~r,L,c) are bounded, free and finitely 
generated. 

One step in the proof [10] of Hirzebruch-Riemann-Roch in the absolute case is 
the choice of cocycles representing a basis of the finite-dimensional space 
tit(X, ~),  together with cocycles representing the dual basis of Ext n- k(x ; r f2~k) 
under Serre-Grothendieck duality. The relative case is quite analogous, except 
that the full twisting cochain machinery is used and the choice ofcocycles becomes 
a comparison of the finite and infinite dimensional twisting cochains (~, L, c) and 
U/, F, b'). The precise formulation is as follows. 

Proposition 3.1.1. After a suitable refinement of V ,  there exists a O-cocycle h in the 
complex C'( ~ ,  Hom'(L, F)) with the property that the local chain maps h~ : Ep~F~ 
are compatible, up to chain homotopy, with the quasi-isomorphisms of both 
complexes into ~r "[ V a. 

Proof. This follows directly from Proposition 1.3.3 and Remark 1.3.4. 

In the absolute case the existence of a dual basis for the Ext space depends on 
the Serre-Grothendieck duality theorem, so it is not surprising that the relative 
duality theorem is needed here. In order to state this result, define the complex ~ 
over V a as in (2.3.1) by setting 

~ ( W )  = C'(W x 0//, Hom.(Fa, ntey)) 

for WC Va, with differential given by the twisting cochain 6 a. Similarly L a is the 
complex dual to E a. The following relative duality theorem is equivalent to that 
proved in [12] or [13], for example. 

Theorem 3.1.2. The map ~a : ~ [ ; # ,  adjoint to h a under the cup-product and 
integration pairing (2.3.2), is a quasi-isomorphism of (gr-modules. 

The published proofs of this result use the terminology of derived categories 
and Forster-Knorr systems. However the underlying analytic ideas can be 
translated into the context of twisting cochains. Such a proof is given in Sect. 3.4 as 
a further illustration of twisting cochain techniques. 

Let M~ be the mapping cone of h a. Then the dual complex M~ is the mapping 
cone of h-a : [ ~ L ' a ,  where F~ is the complex ~ with the sign of the differential 
changed, and/~a acting on ~ as ( -1 )  "+ 1/~ a. The relative duality theorem implies 
that j ~  is acyclic. 

Proposition 3.1.3. Let h in C'( ~ ,  Horn(L, F)) be as above. For a suitable refinement 
~r'of 3e" there exists a O-cocycle g in C'(~//'', Hom'(F,L)) such that g. h is 
cohoraologous to the identity cochain in C~ "', Hom~ L)). 

Proof. Consider the complex C ' (~ ,  Hom "(M, L)) with differential given by the 
~apping cone of h and the twisting cochain c. For WC V~c~V~ there is an 
~ Omorphism of Horn "(I4~ Ma, L~) with Horn "(W; L~, ~r a) given by taking adjoints. 
inoe [ .  is free and ~ acyclic, this implies that the complexes Horn '(W; M a, Lr) 
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are locally acyclic, which in turn shows that any cocycle of C ' (~ ,  Horn(M, L)) 
bounds on a suitable refinement. 

In particular this applies to the 0-cocycle corresponding to the identity 
cochain 1 in the subcomplex C'(~,Hom'(L,L)),  which is bounded on some 
refinement by a cochain with components (k,g) say, with respect to the 
decompositions of the M~. But this is equivalent to the equations 

6 k + c . k + k . c = l - g . h  

~g + c. g - g  . /~=0 

as required. 

3.2. The Kiinneth Map 

Recall from Sect. 2.3 that for WC V~c~V~ we defined a complex of "smoothing 
operators": 

Hom~(W; Fp, F~) = C'(W • ~//x ~ ,  Hom'(p*F~, p~F~)). 

The twisting cochain ~ gives a differential on the space of cochains 
C'(~,  Hom~(F, F)) sending u into 

,~ru+p'3~" u+(- 1) ~~ 'u. p~6 

where p*/~is induced from 6by the refinement ofp~- lo//by q/x q/. The Kiinneth map 
is then the chain map 

x: C'(~,  Horn'(L, L) )~C ' (~ ,  Hom~(F, F)) 

defined by r(u)=p~h, p*u. p'g, where p Y x X x X ~  Y is the projection. 

Proposition 3.2.1. For ~ sufficiently fine the Kiinneth map is a quasi-isomorphism. 

Proof. Filter with respect to the ~ech degree coming from ~e ~. Comparison of the 
resulting spectral sequences shows that it is enough to prove that r induces a quasi- 
isomorphism of local complexes Horn'(W; L~, Lr) and Hom2(W; F~, Fr) for some 
neighborhood W of each point in Vac~V r. But r factorizes: 

Hom'(14~ L~, L~) 

(A) -+L'~(W)| 

(B) -+F~(W)~w~(W) 
(C) ~ C'(W • p~ ~q/, W • Pi- ~ ~ ;  Horn "(p*Fp, p~F~)) 

(D) -.C'(W x ag xqZ, Hom'(p~F~,p~F~)). 

Here (A) is the obvious identification and (B) is the tensor product of the maps 
uv-*h r o (r~*u) and r / ~  (n'r/) o Op. Any point of V an V r has a neighborhood on which 
both maps are quasi-isomorphisms. If M', N', P 'are complexes of nuclear Frrchet 
modules over a nuclear Frrchet algebra A, bounded below and with P" free over A, 
and if 0: M ' ~ N "  is a quasi-isomorphism, then so is 0| 1 : M '~aP '~N '~ .4P ' .  In 
fact since P" is free, filtration by P" degree gives an isomorphism on E~ terms, and 
the convergence of the spectral sequence gives the isomorphism on total 
eohomology. But (B} factorizes as two maps of this type. 
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The map (C) is the formal identification with cochains of the double cover via 
the isomorphism 

Hom(WxU~, o ~, XU~o ~ ; " * ~  ~tJT~ . . . . . .  F 2  (#, vq), F 1  l ('~,Uo)J 

= F~r ' ~o)(W x U,o..,,)@,(w)Hom(W x U~o..., ~; F~a ,,0, n"d~r) �9 

For u, v of bidegree (p, q), (r, s) in F~(W) and ~ ( W )  the tensor product uP'q| '~ 
maps to a cochain whose value on the simplex #o... #pVo...v~ of the double cover is 

( - -  1 )q ruP  "q (:s s 

Finally, (D) is the map w~--,ff, where 
p+q 

W(~o, vo)...(p.p + qvp + ~) = k~= O W l~o...m:, v~,...vp + ~ �9 

The Eilenberg-Zilber theorem [8] shows that this induces an isomorphism on 
E:terms obtained by filtration with respect to ~ech degree, and hence on total 
cohomology. 

The properties of the Kiinneth map are most easily established by factoring it 
through the shuffle map as follows. By Remark 2.3.3 the shuffle map induces quasi- 
isomorphisms 

: C ' ( :  x q/, Horn "(r:L, F))--+ C ' ( : ,  Horn "(L, F)) 

and 

a : C ' ( ~  x q/, Hom'(F, zIL))~C'(~,  Hom'(F, L)), 

so there exist g', h' with a(g) =g and a(h') = h in cohomology. For i , j= 1,2 define 

' �9 C ' (~ ,  Horn'(L, L))--+C'(~ x q/x q/, Horn'(p'F, plF)) tc U . 

by setting x~j(u)=p*(h'), p*(u), p*(g'). Then, for example, ~r o x~2 is chain homo- 
topic to r, so r~2 is also a quasi-isomorphism. From the definition of the fibre 
integral and the choice of g it also follows that 

(3.2.2) ~ g'. h '= 1 
X 

in the cohomology of C ' (~ ,  Horn "(L, L)). 

3.3. Characterization of the Lefschetz Class 

This section deals with the relative version of the "Lefschetz calculation" of [10], 
and characterizes the image of the identity class in C ' (~ ,  Horn'(L, L)) under x~2 as 
the Gysin image of a class supported on the diagonal Y x X in Y x X • X. The 
main result is the following proposition. 

Proposition 3.3.1. Let 2 be a cocycle in C ' (~  x all x ql, Hom'(p*F, pt~(F)) with the 
property that the two maps from C'(3 e~, Hom "(L, L)) into C'(3e', Or) given by 

(3.3.2) u~,  ~ r 
X x x  
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and 

(3.3.3) u~-* ~ TbA*x'2z(U) 
X 

are chain homotopic via a simplicial chain homotopy. Then ~ = x'~ 2(1) in cohomotogy. 

Proof Choose v so that x'12(v) = 2 in cohomology. Then the maps sending u to zr 
and z,(u. v) are chain homotopic. This is shown by the following sequence of chain 
maps, where the notation indicates that the formulae define simplicially chain 
homotopic maps from C "(~e', Hom "(L, L)) into C'(~e ~, d~r). 

u z (u) 

(il $ zc( *u, g'- h') 
X 

(ii)- J" rc*u. g3 
X 

(lli) "~ ~ ZbZI*Kr22(U) 
X 

(iv)  
X• 

(v)--- 
X •  

I 
X x X  

(vii)--- z~(u. v). 

�9 z(v)) 

~b(p*h'. lt*u. p* g'. p*h'. rc*v. P'gO 

~c(rt*u. p*~'. p'Ch'. ~*v. p~g'. p'h3 

The homotopies (i) and (vii) follow from the fact that ~ g'. h' is cohomologous 
x 

to the unit section. Relations (ii), (vi) follow from the calculation of [9, Proposition 
3.8]. The choice of v and the hypothesis give (iv). The proposition then follows from 
the nondegeneracy of the trace pairing. 

Remark 3.3.4. The proposition will be applied with 2 defined on a cover ~ • ~ ,  
where ~ is some Stein refinement of q /x  q/. Then restriction to ~ x ~r  induces an 
isomorphism on cohomology, so it is still possible to find v such that the restriction 
oftc[2(v ) to ~e x ~" is cohomologous to 2. Integration ofcochains on q/x q/can be 
factored through restriction to ~ and the same argument shows that v is 
cohomologous to the unit section. 

3.4. Relative Duality 

As usual ~- is a coherent sheaf on Y x X, with the projection map n: Y • X ~  Y 
proper on the support of ~'. Let V be a Stein open set in Y with the property that 
there exists a twisting cochain (V x ~/, F, b) for ~- over V x X, where V• q/is a 
locally finite cover {V x U~} with each U~ Stein. It will be necessary to assume that 
the indexing set of ~//is ordered, and that associated cochains are defined only on 
strictly increasing simplices of the nerve. This ensures that the corresponding 
coehain complexes are bounded. The complexes of such coehains are quasl- 
isomorphic quotients of the full cochain complexes and the quotient maps are 
compatible with the duality pairing, so the conclusion of the theorem is not 
affected by this restriction. 
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For V sufficiently small there is a quasi-isomorphism of r 

]_:(V)~C(V • ~,F') ,  

given by the coherence theorem, where L" is a bounded complex of free, finitely 
generated Or-modules. The duality theorem is established by showing that the 
adjoint map 

(3.4.1) C'(V x q/, Horn'(F, ntOr))-.',L'(V), 

defined by the duality pairing, induces a quasi-isomorphism of Ov-modules. The 
proof uses some properties of nuclear spaces and topological tensor products, but 
is otherwise quite analogous to the proof of Serre duality in the case when Y is a 
point and #- locally free. 

Let A~' q and D~' * be the sheaves of germs of smooth forms and currents of type 
(p, q) on X. For V, K Stein open and compact sets respectively in Y the presheaves 
d~r(V)~)A~ ,q and d~r(K)~D~c '~ on X defined by 

and 

U ~Or(K)~  D~,'~( U) 

are both sheaves on X. In the first case this can be proved as in [12, Proposition 4] 
via the identification of 0 r(V)~)A~' 4(U) with the space of continuo us linear maps 
from Or(V )' into A~'*(U). The second example is the sheaf of r 
currents on X (see [16, Proposition 50.5] for example). Note that both sheaves are 
title. 

Since ~ is Stein and Or(V) nuclear the inclusion of Ox(U) into the 0--complex 
A~ gives a quasi-isomorphism 

(3.4.2) E(V) ~ C'(qg, F "| ~ ")). 

The coefficient sheaf is now 

U~--~ F'(U x V)| a~ , 

where the first tensor product is taken over Or(V)~Ox(U)= Or• x U). 
The map (3.4.2) has the property that both complexes consist of free Or(V)- 

modules of type FN. Therefore the mapping cylinder Q'(V) is a bounded, acyclic 
complex of free Or(V)-modules of type FN. By a standard property [12, p. 98] of 
such complexes over the nuclear FrOchet algebra Or(V), the dual complex 
Homtop,tv)(Q'(V), Or(K)) is an acyclic complex of Or(K)-modules of type DFN 
for any ~Stein compact subset K of V. Consequently the map 

(3.4.3) Homtop,(v)(C "(q/, F "| (O r(V) ~) A ~ ")), �9 r(K)) -" Somtop,(v)(L'(V), Or(K)) 
adjoint to (3.4.2) is a quasi-isomorphism. By definition 

^A~ U 0 K Homtop,(v)(dgr(I0| x ( ) ,  r ( ) )  

is the space ofdistributions with compact support in U and taking values in Or(K). 
Thus (3.4.3) can be interpreted as a quasi-isomorphism 

(3.4.4) C.(q/, Hom~(F, Or(K)~D"x))-~L'(K), 
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where the coefficients ofthe chain complex over an open set W in the nerve of ~//are 
elements of 

Honker ,  w,(F'(V x W), ~)r(K)~D~I,'c(W)) 

and the subscript as usual denotes the sections with compact support. The 
differential is the adjoint of the usual twisting cochain differential on the cochain 
complex. 

Now let ~" = {M~} be a covering of X by Stein compact sets, so that each M~ 
has a fundamental sequence of Stein open neighborhoods U~ ) with U~ ~ = U~. Let 
{t#~} be a partition of unity for ~/, with suppg~CM ~. 

Cup-product and fibre integration, via the partition of unity, induce a chain 
map with components 

(3.4.5) CP(M(, Horn "(F ~, ~r (K)~D~r) )~  X Ck(q/, Homc(F ~, er(K)~D~/')). 
l - k=p+r  

It remains to show that this map, and also the natural inclusion of 

C'(K x ~ ,  Horn'(F, ~!Or)) 

into 

C'(.A/, nom'(F ,  t~r(K)~D))) 

are quasi-isomorphisms. For then the map (3.4.1) restricts to a quasi-isomorphism 

C'(K x ~ ' ,  Horn "(F, ~ter))~L'(K) 

and the duality theorem follows easily from the fact that, if W is any Stein open 
subset of U and ~tk) is the cover { u~k)}, the complexes C'(W x q/(k), Hom'(F, rc~(~r)) 
are isomorphic for all k_>_0. 

Over U~ let ,,~f.t be the k th cohomology sheaf of the complex Hom(F~, 
er(K)~D~/t). The chain maps between the local complexes F~ glue the ~f ' l in to  a 
globally defined, compactly supported ex-module ~k,  l. This sheaf is also fine. A 
suitable t'titration on the complexes of (3.4.5) reduces the problem to that of 
showing that the induced maps 

(3.4.6) CP(dt, ~q")-~  ~ Ck(a//,.,~e") 
l - k = p + r  

give a quasi-isomorphism on the associated complexes. The second complex is 
now the usual complex of chains on the nerve of ad with coefficients which are 
compactly supported sections of ~q't .  The map preserves the filtration induced on 
the first complex by r and on the second complex by 1. The map on the cohomology 
of the associated graded complexes reduces to the identity map on the space of 
global sections of the fine sheaf ~ " ,  so that (3.4.6) is indeed quasi-isomorphism. 

For the final step of the proof, it is sufficient to show that for a Stein compact set 
M in X, the ~--complex t~r(K)~D~'(M) is a resolution of (;r• • 
=Or(K)~d)r(M ). All the spaces are of type DFN, so by [12, Proposition 1] it is 
enough to show that L~(M)  gives a resolution of d)x(M ). This follows, for 
example, by taking limits over a fundamental sequence of Stein open neighbor- 
hoods of M. 
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4. Construction and Properties of the Dual Class 

4.1. Koszul Complexes 
Let ~F = ~ P//" be a cover ofX x X, where q/' consists of the sets U~ x U~ for U~ 
in ~//, and q/" is a Stein open cover of the complement of the diagonal. Assume also 
that ~ refines o-//x q/. The sheaf A,•x on X x X has a twisting cochain ($F, K, a) 
as in [15]. In fact the construction given in [15] can be simplified by taking K; to 
be zero on the sets of~ while on q/' the K; are the usual Koszul resolutions formed 

~ - z ,  defining A,Ox in U~ x U,. As usual z~ by the functions i i i and (~ are the 
coordinates for U~ x U, defined via Pl, P2 by fixed coordinates z~ on U~. This is the 
approach which will be taken here. The extension ofthe local differentials proceeds 
as before, except that the ~o...~k will be zero unless both eo and 0~ k are vertices of ~'. 

Now use A to denote the diagonal embedding of Y x X into Y x X x X, and let 
( f  x ~ ,  F, b) be a twisting cochain for ~- on Y x X. The cochains a, b can be 
pulled back to Y x X x X and restricted to ~e x ~r so that the product operation 
gives twisting cochains ( ~  x ~ ,  p*F| p*b~a) for A , ~  as in [9]. If? =(fl, e) is 

�9 ' i i i i i i a vertex of ~e- x q/ we write zr, ~,  K~ for the pull-back of z~, ~, K~ to Vp x U~ x U~. 
The twisting cochains p2b| and Px b define a differential for the complex 

(4.1.1) C ' ( ~  x # ' ,  Hom'(p*F| pttF)) 

with cohomology Extk(Yx X x X; A,~-, p~- ) .  This complex is trigraded with 
(p, q, r) component 

(4.1.2) C~(~ x W', Homq(p*F, p*F)| p~Or) ) . 

Interest will center on the behavior of these cochains on the simplexes of o//,. A 
cochain f of (4.1.2), with W" replaced by q/', corresponds to a family of cochains f t  
in CP(~ x o//,, Homq(p,F, p'F)) depending in an alternating fashion on an r-tuple 
I=q...i, of integers with 1<i l  .... .  i,<n. We also write IIl=r in this case. If 
e~.,x ...,e~" is" the basis used to construct the Koszul complex K~ the cochain f~ is 
gwen explicitly by 

I I n __  I ( f  )vo...,,,d~,,...dC,,,- Lo...,p(e,~,) 
I ia i~ where e~ = er ^ . . .  ^ e r . For r = 0 the corresponding cochain is denoted by f~ and 

~ in o e~ Kv =g~rxxxx. 
Similarly, cochains in the space 

(4.1.3) CP(~ x ad', Homq(p*F, p'F)| Hom'(K, K)) 

can be identified with families of cochains u~ in CP(~ x q/', Homq(p*F, p'F)) with 
III-IJI = r and alternating in the components o f J  =Ja...J~ and I = i t . . . i r  +a" The u~ 
are given explicitly by 

I I 
Uvo...r,(er)= Y. (ua)ro...rY~o, 

I a l = l l l - e  

where the summation is carried out over strictly increasing J only, so that the u~ 
are uniquely determined. Note also that if the spaces (4.1.2) and (4.1.3) are bigraded 
by combining the first two degrees then the usual product operations between 
them can be expressed in terms of the component cochains by 

v'O  = ( -  1)" X �9 (vl.) 
L 
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and 

( f ~ .  v")' = ( -  1)~'E (ft.). (v[). 
L 

The cochain-level residue map of [15] corresponds in the present situation to a 
chain map 

Res: C'0e ~ x ad', Horn'(p'F, p*F) |  p ~ x ) ) ~ C ' ( ~  x 0//, Horn'(F, F)), 

of degree zero, given by 
n _ _  1 . . , n  (Res f)yo...vpdz~, ̂ . . .  ^ dz~v - A . ( f  )ro...rp" 

That this defines a chain map is a consequence of the definition of p'~b~ a and the 
fact that A.a k = 0 for k ~_ 1, while A,a 1 provides the transition functions for f~x. For 
future reference, note the explicit formula [15, (3.10)]: 

(4.1.4) ((A*a~)ts)~# = ~ sgn(a)~'o,,r162 

where I = i l . . .  iv, J =Jl...Jr and r = ~z~/bz~; the sum extends over all permutations 
tr of {1, ...,p}. 

4.2. Construction of the Dual Class 

As in the absolute case the residue map induces quasi-isomorphisms 

Horn "(p~F r, p*Fr) |  "(Ky, P ~ r  • x) ~ A .  Hom '(Fr, Fr) 

on the local complexes, and the usual comparison of spectral sequences gives 
the global isomorphism 

Res: Extk(Y x X x X; A . :  r, p~::)~Extk(X; ~ ,  ~ ) .  

This shows the existence of a unique class io Ext~ x X x X; d ,~- ,  p~r )  which 
corresponds under this isomorphism to the identity section of Horn(:-, ~).  We use 
the procedure of [14, 15, 10] to construct an explicit cocycle representing this class. 
For this purpose decompose the differential D for the complex (4.1.1) as D'+ O", 
where for f of total degree m, 

(4.2.1) D'f =6f  + p~b . f -~-(- 1) ra+l ~.s f "  ((P*b)k~ak) , 
k>__l 

(4.2.2) O"(f) = ( -  1) m* if.  (1 @a~ 

With respect to the bidegree obtained by adding first and second degrees in (4.1.2), 
D' has components of bidegree (k, 1 - k) for k > 0 and D" has bidegree (0,1). For a 
simplex y = Yo-..Yp of r x q/' and f of tridegree (p, q, r) the differential D" is given 
explicitly by 

( -  1 ) '  § * '  § I 

r + l  
1+ 1 iz i! I! = ( - - 1 )  ((~-z,~)(f),(zr~,(r~), 

1:=1 
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where I = i l. . .i  r + ~ and I t = it... ~... i~ + 1. A corresponding homotopy operator P is 
defined as in [14, 15] by the formula 

( -  1)P+~+'((Pf)')~(z~,, ~ )  

= t [3/d~r~(f )~] (zv., z~. + t (~-zr~))dt ,  
k = l  0 

where I=i~...i,_~ and kI=ki~...i~_ ~. The f~  are interpreted as matrix-valued 
cochains via the fixed trivializations of the F~. We than have the relation 

PD"f + O"Pf = f - o " f  , 

where 

{ fo t(Z, Z) if ,I, = n 
(o"f)1(z' ~)= otherwise�9 

Now define rf '  ~ of bidegree (0, 0) and tridegree (0, 0, 0) in the complex (4.1.2) by 
setting ..o,o~..., , ~ , k- given in terms of the fixed (,I Jr = lr, where the map l~ : p2 Fr p~ Fr ls 
trivializations by the identity matrix. The method of [14] or 1-15, (1.11)] shows that 

t/~176 extends to a cocycle ~/= ~ if '  -k, which by the definition of r/~176 maps to the 
k = O  

identity section under the residue map. A calculation, similar to that which shows 
the residue to be a chain map, gives the condition o"D'rl~176 0 and ~/is given 
explicitly on ~ '  by the formula 

(4.2.3) ~/1~ x q / '=  E ( -  1)'(PD')'r/~176 
i>=0 

4.3. Properties of the Dual Class 
The local chain maps uO. o. * . ~  , �9 . �9 p2F~ p2Fr| induced by the quotient map ofp*~- 
onto A,~' ,  extend to a 0-cocycle u in C'(~Y" x qCr, Horn'(p 'F,  p*F| Then the 
map 

n ~ : Ex t~(Y x X x X, A ,~-,  pt 1 ~=)--* Extk( Y x X x X, p~'~-, p ~ )  

induced by the same quotient map is given at cochain level by setting n~ = ~. u 
for ~ in the complex (4.1.1). In this section it is shown that rc~ in C ' ( ~  x ~,r 
Horn'(p'F, p~F)) represents the dual class of the diagonal in the sense that for any 
cocycle w in C~(~ x ~/', Hom'(p*F, p'iF)), 

(4.3.1) I Zb(W" n~ = S %A*(w) 
X •  X 

in the cohomology of C'(~e', ~r)- Here the subscript c denotes those cochains with 
support proper over Y. In fact we prove a stronger result which will be used later: as 
chain maps from C~(~ • ~: ,  Horn'(p 'F,  p[F)) into C ' (~ ,  ~r) the two sides of 
(4.3.1) are chain homotopic via an explicit chain homotopy. This depends on a fairly 
straightforward generalization of the "(~ech parametrix" construction of 1"14]. We 
review the argument, using the notation of the previous section. 

Since all the local complexes K~ become acyclic on restriction to Y • X x X -  A 
the same holds for the global complex C'(~: x ~r Hom'(p*F|  p~F)), so the 



516 N.R. O'Brian et al. 

cocycle ~/bounds on the complement ofA. The existence of the homotopy depends 
on the explicit construction of a boundary of g, and this in turn needs the existence 
of explicit chain contractions for the K~ offA. Such exist only if smooth, rather than 
holomorphic, coefficients are introduced. This means working in the trigraded 
space of cochains with (p, q, r) component 

(4.3.2) ~ Ck(~ • ~/",Hom~(p~F,p*F)|174176 
k+l=p 

Here qU' is the restriction of ~ to the complement of the diagonal and the 
coefficient ~ o,, sheaf pat~y| is the tensor product over t~xx x of p~t~y with the 
sheaf of smooth forms of type (0, r) on X • X. These cochains have differential 
D = D ' + D " + D "  where for f of degree (p, q, r) the operators D', D" are given by 
(4.2.1) and (4.2.2) with m = p + q ,  and D"f=(-l)P+~Jf/27t[/r-Z1. In the formulae 
(4.2.1), (4.2.2) the third, antiholomorphic degree is ignored in the formation of 
products. Away from the diagonal D ~" has a homotopy operator �9 defined on 
(p, q, r) cochains by 

~ 1  k kI = O ,  (-  

where ~(z ,  ?,)= ( ~ - ~ ) / I z ~ - [ , [ z  and the formula 

(4.3.3) D"~ + ~D" = 1 

follows from the relation Z ( ~ - ~ ) ~ ( z , O = l .  The formula (4.3.3) gives the 
k 

relation q [ ~ x ~ '  = D/~, where 

P= E ( -  1)~(~(D" + D"))~(tl] "U • "ff/'). 
k>O 

The terms making up # will have singularities of various orders along the diagonal, 
and in case ~- is locally free and Y is a point the cochain/~ is essentially the kernel of 
the ~ech parametrix of [14], and we use the terminology of that paper, especially 
Sect. 2, to describe the singularities which occur. In fact p decomposes as Y~ #r 

k>_l 

where p(k) is "regular of order - k " .  In particular this means that every component 
(~r satisfies an estimate 

(n(k)~l I 2n- k 

on compact subsets of (z, 0. The effect on the order of regularity of the various 
operators used in the manufacture of # is such that #(~) can be taken to be of 
tridegree (0, - n, n -  1), given by 

= ( _  1)"- I • 

A direct calculation then shows that 

(~) o t ,, 1)~+ -o, ( -  

= l~| ~ (-l)'+'lw~l-~"~"1"-~'"d~r"dwrd~,~ - -" ~ d4r " 
k = l  

= ly| [y), 
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where w~ = r _ zi, the constant cn is ( -  1) "(n- t~/Z(n- 1) !/(2~rV'-Z 1) "-1 and k(z, ~) is 
the Bochner-Martinelli kernel on ~2"x r  as in [14] for example. The basic 
property of this kernel is that if co is a smooth (0, n) form with compact support on 
r r and coefficients in P~'fPx, then 

(4.3.4) lim S co^ k=2nl/-Z~ ~ A'co, 
E ~ O  0~ e n 

where a~ is the boundary of the region I~-zl_-<e. 
For co of degree r in C ' ( ~  x # ' ,  Hom'(p*F,p;F)) with boundary Dco, right 

multiplication by u followed by the trace map gives 

(4.3.5) D%(o) �9 n~ = Zb(Dco" no(#)) + (-- 1)%((o. n~ 

in C ' (~  x ~/V', p'~r|  ~ Since n~ is locally integrable in the X x X direction 
and the map �9 is (locally) independent of the Y-coordinates, there is a map 

S: C~(~ x #~, Hom'(p~F, p'zF))~C'(~, Or) 

defined on cochains of degree r by 

(4.3.6) S(w) = ( -  1)" S %(o9. n~ 
X x X  

and the duality property of n~ appears in the following form: 

Proposition 4.3.7. 

~(,o. ~o(~))_ ~ ~b~,(co)=~S(o~)+SD(o,). 
X x X  X 

Proof. Suppose first that co has total degree r and vanishes except on a fixed simplex 
~0...Tp o f ~  x q/'. From Stokes' theorem, (4.3.4) and the formula for ]z (1) in terms of 
the Bochner-Martinelli kernel: 

I O%(co. ~o~)) = fir ~ Zb(co" ~0(/~))_ (_ i),(2~V~)-I lira I ~b(a~" ~0~)) 
X •  X x X  ~ 0 0 ~  

= (-- 1)'6rS(a~ ) + ( -  1)" ~ % A'co. 
X 

Together with (4.3.5) this proves the formula in this case. If 09 is supported on a 
simplex of ~e" x q/* the proof is the same except that the limit and diagonal terms 
vanish identically. The general case follows by linearity. 

Corollary 4.3.8. The dual class 7r~ is cohomologous to the image of the unit section 
of C'( ~ ,  Hom(L, L)) under the Kiinneth map ~; 2 and restriction to #-. 

Proof. From Proposition 3.3.1 and Remark 3.3.4, with 2 = n~ it suffices to find a 
simplicial chain homotopy between the two maps (3.3.2) and (3.3.3). But from the 
previous proposition, 

~b(K'2~(u)' ~~ ~ rb A*x~2(u) = ,~rS'(u) + S'D(U), 
X x X  X 

where for u of total degree r 

S ' ( u ) = ( -  1)" ~ ~(v~h'.p*u.p~g'.~~ 
X •  
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If the definitions of the trace and fibre integral are followed through, it can be 
verified that the value of S'(u) on a simplex flo..-fir of~/: depends only on the values 
ofu on simplices of the form ilk...flk+v This gives a chain homotopy of the required 
type. 

This corollary is the case k = 0 of the more general formula of the next 
proposition, which gives explicit representatives for the images of the powers of the 
Atiyah class under the Kiinneth map. 

Proposition 4.3.9. For any k >= O, 

1 ((tic) k) = p ? (dyb) k" 

in the cohomolo#y of  C'(~r r x # ' ,  Horn'(p'F, p~F| Here d = dr+d x is the 
decomposition of the exterior derivative on the product space Y x X. 

Proof. Since 0' is a cocycle, t~g '+b-g ' -g ' ,  c=O. Exterior differentiation in the 
Y-direction shows that the cocycles g'- dc and drb. g' are cohomologous. This gives 

x'21 ((de) i) = P*g'" P* (dc) ~" p'h" 
__ * k , t , J 
- Pl (drb) "Pl 0 "P2 h 

= p~(drb) k. rt~ 
in cohomology. 

This result shows the existence of a local geometric expression for a cocycle on 
Y x X which gives the trace of the k th power of the Atiyah class dc when integrated 
over X. In fact the previous proposition combined with Lemma 3.3.4 shows that 

(4.3.10) = S 
X 

in the cohomology of ck(~,  f~r). 
It remains to identify the class A*r~~ in the complex C'(~ 

x~F, Horn'(p'F, pt~bO). This is quite similar-to the corresponding problem in the 
absolute case. The next section gives a suitably modified presentation of the 
argument of [10]. 

4.4. Restriction of the Dual Class to the Diagonal 

Since P involves derivatives the formula for the cocycle A*n~ given by (4.2.3) is a 
priori extremely complicated. However, it is immediately simplified by use of the 
following properties of P. Write Q for the operator A* o P and note that if the lower 
index is kept fixed then P and Q also operate on cochains in the complex (4.1.3) so 
that, for example, 

n 

(4.4.1) i ((Qu)z)ro...~, = ( -  1)d's'(n--III)- J ~ A*td/d rk :Uk1~ t t ~ I p k  J ] 7 o . . . 7 o 3 "  
k = l  

Proposition 4.4.2. The operator P satisfies 
O) p( o,o) = o 

(ii) P2=O 
(iii) Po, +, oe=O 

while for f in the complex (4.1.3): 

(iv) P(p~b. f )  + (pTb)" (Pf) = O. 



A Grothendieck-Riemann-Roch Formula 519 

Also, the operator Q behaves as follows with respect to products. Suppose u lies in 
(4.1.3) and f in either (4.1.3) or (4.1.2). I f  A ' u = 0  then 

(v) Q ( f  " u ) = ( -  1)a'gf (A*f) �9 Qu 

while if u = ( b ) l ~ a  t then 

(vi) Q ( f .  u ) = ( Q f ) - A ' u + ( -  1)de'f (A'f) - e u .  

Proof. Formulae (i), (ii), (iii), and (v) are immediate consequences of the definitions, 
while (iv) follows from the fact that p*b is independent of the ~-coordinates. The 
relation (vi) is obtained by a straightforward calculation using the above formula 
for Q. The main ingredient is the identity 

$ k J ukl  a (~/~p+.((f)~o.. .~)( J ),,. ~,+) 
k = l  

( I k I ~7o\k3 /YO...Yplk Jm]Yv...Yp+sl = _Dm+lA*Cg/ar~-,ca~ ~ u  ~ ~ 
m = l  

which follows from the chain rule and the explicit formula (4.1.4) for A*a 1. Here 
J=Jt...J,, I = i 1 " " i , - I  and JM=jl...f~...j,. 

Now the formula (4.2.1) for D' and the above properties of P and Q reduce the 
expression for A*~~ given by (4.2.3) to a linear combination of terms, each of 
which is simply a product 

(4.4.3) (A*n ~176 (QskO...(Qskm) 

where sk=(b)k~a  k and k 1 + . . . + k m = n ,  with each ki> 1. 
The expression (4.4.3) can be regarded from a slightly different point of view as 

follows. If y=(fl ,  g), identify A*K~-' with fd 'x=A'T*X over VpxU~ via the 
correspondence z z i~ i, erv--~dzr = dzr.. .dzy. Under this identification the formula (4.1.4) 
shows that (A*a~)rov~ becomes the identity map on f~x and Qs ~ is a cochain in the 
direct sum of complexes 

E C~(~ x q/, n o m ' ( F |  F |  f~c+ k)) �9 

For this interpretation the definition of ~/o, o shows that (4.4.3) is precisely the 
cochain 

(4.4.4) (Qsk~) . (Qsk2)... (Qs k.,) 

of c "(~ x q/, Horn "(F, F| under the identification of Horn(f2 ~ f~x) with f~x. 
The next proposition gives a more precise description of the cochains Qs k. Recall 
that the calculation of[9, Sect. 5] shows that the product operation for the twisting 
cochain b defines a chain map from the usual ~ech complex C ' ( :  x q/, ~ ,  • x) into 
C ' ( :  x q/, Horn'(F, F)) which takes a k-cochain u k to the cochain (b)k~u ~ of total 
degree k. 

Proposition 4.4.5. Define the cochains Qa k according to (4.4.1), applied in the case 
where F and b are trivial and Y is reduced to a point. Extend Qa ~ to a cochain on the 
cover ~ • all in the obvious way. Then 

(i) Qs~=(b)k~Qak for k > l ,  
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k = l  

k = l  

k = l  

k = l  

as required. 

while, acting on elements of C ' (~  • ~1, F'| 

(ii) Qs ~ = (b) ~ ~Qa  ~ - dxb/(n-  p), 

where db defines cochains in Cs • ~/, Hom'(F| O$, F |  f2~c + 1)) via the map from 
fl~ into Hom([2~, O$ + 1) given by left exterior multiplication. 

Proof. The first formula follows immediately from A*a k = 0. For (ii) the formula for 
~ ~ - Oz~./ ~Z~o, Q gives, with I = it...ip and ~-  ~ J 

- ( n -  p) (Qs 1 - (b) t ~ Qa 1)~o...~.(dzzr,) 

~_ s 1 1 (Ob,o...,ffO~) (a,o,,(d~)) 

s k t~ .it d f l ~ , §  (Ob~o...rffO~,) ~,~.,sgn(a)r ." i~, �9 ( b jo~p  § ~" dz~o . . . . .  ro 
J a 

. . .  d 4 : . . . d 4 :  +' 

( Ob~o...rff O~)d~ f lz  w ..dz~. 

The cochains Qa k in ~ C~(q/, Hom(OIx, f/x+ k)) are related to the characteristic 

ring of X by the following proposition, which is a simple modification of the 
invariant theory argument of [14, Sect. 5]. 

Proposition 4.4.6. There exist cocycles ~ in Ck(ql, fix) such that ~ corresponds to 
the appropriate component of Qa k under the injective map from 12kx into 
Horn(f/x, f~;k) given by left exterior multiplication. Moreover, each ~ represents 
an Atiyah-Chern class of X. 

Proof. We first show that Qa ~ is a cocycle. This follows by applying (i), (v), and (vi) 
of Proposition 4.4.2 to the equation Q(~a + a. a) = 0 to obtain 

~(Qa k) + (A *al). Qa ~ - Qa ~. A *a 1 = 0 

as required. 
Furthermore, as in [14, Sect. 11], both a k and P are equivariant under affine 

transition functions, so that the same is true for Qa k. Therefore the argument of 
[14, Sect. 5] can be adapted to the universal model for Qa k over C". So let ~+  be 
the group of local automorphisms of C" which fix the origin and whose linear past 
is the identity. Write V for the vector space C n. Then the universal model for Qa k is 
determined by its restrictions 

F+ :[JS(~+)]k~AZV| 

to the N-jets of its arguments, for N sufficiently large. Under conjugation by a 
constant 2 4= 0 the right side behaves like A k V*, so that exactly the same reasoning 
as in [14, Sect. 5] shows that F+ is in turn given by a GL(V)-invariant form 

(4.4.7) ~ ( $ 2 V * |  V)|174 

The usual invariant theory for GL(V), as applied in Theorem 5.10 of [14] for 
example, shows that the space of such forms is spanned by the maps obtained by 
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contracting each copy of V with some copy of V*. Note however that the 
contraction of both copies of V in an S2V * with At+~V gives zero, so that it can be 
assumed that each S2V * contracts with one V from |  and one from A~+kV, 
leaving AkV * to contract with A*+kV. 

More explicitly, suppose a is a permutation of {1 ..... k} and 

u =xt  |174174174 

with xi in SZV * and Yi in V. Define uo in AkV * by contracting xl with Yo(i) and skew- 
symmetrizing the resulting element of | V*. Then for v in AW* and w in Ak+W 
the maps r defined, in terms of the usual pairing of Ak+~V and Ak+tV *, by 

r 1 7 4 1 7 4  = (u~ ^ v, w )  

span the space of GL(V)-invariant forms (4.4.7). 
If r is regarded as a GL(V)-equivariant map 

c~o : | SZ V* | V)-oHom(AiV *, Ak + W*) 

the above expression translates into the formula (r (v) = uo ̂  v. This proves 
the first part of the proposition. 

In order to see that the resulting cocycle ~ represents an Atiyah-Chem class, 
note that its universal model satisfies all the hypotheses of Theorem II of [14, 
Sect. 4] except for skew-symmetry. Therefore its skew-symmetfization, which 
represents the same class in cohomology, is an Atiyah-Chern class at the cochain 
level. 

To summarize, the cocycle d'n~ is a sum of terms of the form (4.4.4), and 
each of these terms is itself a linear combination of products ~1 ^. . .  ^ ~,, of 
cocycles in Cg(~ x q/, Horn'(F, F| These cocycles themselves are given by 
either ~i=dxb or ~ = ( b ) k ~ ,  for some k~  1 and O < l < n - k .  

Now multiply this expression for A*n~ by (drb) l, apply the trace map and 
rearrange each of the terms zo(~ t ^- . .  ^ ~, ^ (drb) t) according to Propositions 3.8 
and 5.11 of I-9] to give, in cohomology, 

r ^ . . .  ^ r ^ (drb) z) = + 0~ ^ . . .  ^ ~ ^ ~b((,/xb) k ̂  (drb) ~) 

where p + k = m  and it + ... +ip+k=n.  This gives 

(4.4.8) rb((drb) z- A *n~ O,_~(X). (dxb) k. (drb)'/k! 

for certain universally defined polynomials Ok(X ) of degree k in the Atiyah-Chern 
lasses of X, independent of X, Y, ~" and l. But in case Y is a point and l = 0 we 
now that Ok(X) represents the k th Todd class Toddk(X). Multiply (4.4.8) by 1/l!, 

sum over I and integrate over X. Type considerations show that each O,_k(X) can 
be replaced by ~O~(X)=Todd(X).  Formula (4.3.10) therefore gives, in 
cohomology, s 

E = I ToddtX). ~b (E  (dxb) k" (drb)'f k! l!] 
k x \ l , , l  / 

= ~x Todd(X). % ( ~  (dx b+drb)mlm') 
= S Todd(X). ch(~') 

x 

- the Riemann-Roch formula for the projection n. 
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5. Riemann-Roch for Retractible Embeddings 

5.1. Factorization of the Trace Map 

Let i: X ~ Z  be a holomorphic embedding of an m-dimensional complex manifold 
X into a complex manifold Z of dimension n = m + r. Let N be the normal bundle 
of X in Z, and assume the existence of a holomorphic map Q : Z ~ X  with Q o i the 
identity. 

Let (~/:, K, a) be a twisting cochain for i .6x  on Z, constructed as in [15, 
Sect. 3] with Koszul resolutions and coordinates adapted to the splitting i* TZ 
= TX@ N given by Q. The Stein cover ~ consists of a cover : of Z -  X, on which 
the K~ are taken to be zero, and a cover ~/ofa neighborhood of X which restricts to 
a Stein cover q/x of X. It can also be assumed that ~r refines Q- lq/x. 

Let 3~- be a coherent sheaf on X with associated twisting cochain (q/x, F, b). The 
product operation gives a twisting cochain (~/:, F|  b| for i .~' ,  where F, b 
stand for the restrictions of the Q*F~ and Q*b to ~/: (see [10, Lemma 2.1] for 
example). As usual the quotient map from t~z onto i.t~ x is associated with a 
0-cocycle u in C "(~r K ") which induces ~o : C "(~r Horn "(K, 1)) ~ C "(~r 1) with 

Proposition 5.1.1. The trace map 

T: C'(~/:, Hom "(F| F |  C'(~r, 1) 

factorizes (up to simplicial homotopy) as T=  n ~ o S for suitable 

(5.1.2) S: C'( ~F, Hom'(F | K))- ,C'(  fF, Horn'(K, 1)). 

Proof. The construction is similar to that used for the refined trace map of [9, 
Sect. 5]. For a simplex ~o...~v of ff" set M~ = Horn "(F~, F~o), L'~ = Horn "(K~, K~ o) 
and/(~ = Horn "(K,., 1), so that (5.1.2) will take the form of a simplicial chain map 
between twisted colnplexes C~(~f, M "| and C~(~/f ", I("). The first complex is 
bigraded by combining the first two degrees, and the map S will take the form 

S ~ where, according to this convention, S k has bidegree (k, - k). The map S O is 
k_>O 

defined in terms of the algebra structure of the Koszul complexes. For any vertex 7 
there is the chain map e~ : K~--}Hom'(K~, Kr) given by e~(w) (v) = w ^ v. This has 
adjoint ~ :  Horn "(K~, K~)-}Hom'(K r, 1) with 

~(~b) (w) = trace~ o (e~(w)). 

For simplices ~=0t0...~ p and fl=flo...flq with fl<=a this gives chain maps 
E~ # : Epl W~--+/~ with E~#(~b~) = ~ ( a ~ o ~ p a p ~  ). 

Let %: C "(~x, Horn "(F, F)) ~ C "(~d x, 1) be the usual trace map for (:dx, F, b) and 
suppose that the restriction of Q*% to r is described in terms of local vector 
bundle maps z~ # for fl<_- a. Then S ~ is defined by setting (S~ # = z#~| #, and the fact 
that this extends to a global chain map S follows by a spectral sequence 
argument, as in the proof of Theorem 5.7 of [9]. In fact the local complexes 
Hom'(Hom{K#r Kpo), Hom(K~,, 1)) are isomorphic to Hom'(K~, Horn(K#0, K:)) 
under the adjoint operation, and two applications of Lemma 1.6 of [9] show that 
this latter complex is acyclic in degree q < 0. 
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Then for ~, # as above, define I~:g~l W~--,/~ and J~ :L'BI W ~ E ,  by I~(q~p) 
= ~0~a~,~p and J~(v2p)= a~opoUJBapo~,. The argument of [9] now applies once it is 
established that for Y=Yo...~s with y<fl  the maps # ~ # ~ _ l~Ep, E~J B, and E. ~ are chain 
homotopic. For the last two maps this is straightforward. For the first two maps 
the problem reduces to the following lemma. 

Lemma 5.1.3. The two maps from Hom'(Ka~, K~p) to Hom'(K~p, 1) sending v2 into 
~p(tpap~) and g'p.(atjq~plp) o,ap~ are chain homotopic, 

Proof. Let ~p~p = A'(at~ p [K~I). Then the chain maps a~o  and ~p ~ are chain 
. . . .  - _ q / ~  

homotopic over Wpc~ W~_, since both hft the identity map on i.tPx. Therefore a~ 
y I ,  . . P q  p 

can be replaced by ti#~ without changing the homotopy classes of the maps. But 
then the maps become identical, since for w~, in K~ we have 

Since (n~ is just the projection of K~ onto K ~ = tPzl W~, the formula for $~ 
shows that (n~ is a local trace map acting on Hom'(F~| F,| 
Uniqueness of trace [9] then shows that n ~ o $ and T are chain homotopic and 
completes the proof of the proposition. 

This result shows that the trace map factors through the complex used in [15] 
for the cochain-level description of the Gysin map. Recall the construction of the 
Gysin map in this context: for any vector bundle E over Z there is a chain map 

(5.1,4) Res: C'('tt/', Horn "(K| f~z))~C'(al/x, Hom(i*E, t2~)) 

of degree zero, induced by the isomorphism i*f~z = A'/~| and the identification 
ofi*K~ ~ with A'/~ over W~c~X. if K~ is the Koszul complex on generators e~, ..., 
defined by coordinates ~ ..... (~ vanishing on X, then this identification is 

1 compatible with the action of i*a~a and takes e~ ̂ . . .  ^ ~ into d~ ^ . . .  A d(~. The 
map (5.1.4) induces an isomorphism on cohomology; this is essentially the 
"fundamental local isomorphism" of Grothendieck duality theory. If E = f2~ -k 
then the natural map /~:f2~x~Hom'(i*f~z -~, s9~), defined by restriction and 
exterior product, composed with n ~ and the cohomology inverse of (5.1.4), gives 

H~+'~Z f2 ~+'~ if the Gysin map i. from Hk(X, f2~x) into the local cohomology x ~ , z ~, 
this is defined in terms of relative cochains for the covers ~ ,  ~ .  

5.2. Reduction to the Normal Bundle 

If S is applied to powers of the Atiyah cocycle d(b~a) for i,~ a~', it turns out that 
none of the correcting homotopies making up ~o, S and a can appear in the 
expression for the residue. This follows from the simple degree arguments given 
below and implies that the residue is unchanged when the embedding of X into Z is 
replaced by the embedding of X into the zero section of N. This situation is of 
course much simpler, since in this case i.(~x is resolved by the globally defined 
Koszul complex on N, and in fact the splitting principle for vector bundles allows 
us to reduce to the case where N is a line bundle, where the required formula is an 
easy explicit calculation. The next proposition gives the reduction to the 
embedding into the normal bundle. 
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Proposition 5.2.1. For l~O there exist cocycles ~z(N) in Cl(~x, f2Zx), representing 
classes in Ht(X, ~x) which depend only on the normal bundle N of X in Z, such that 
for all p ~_ 0 

(5.2.2)  ResoS(d(b~a))~ ~, #(zb((db)~/k!)~Pt(N)) 
k-I-l=p 

in the cohomology of CP(qlx, Hom(i*f~z -v, f2~)). 

Proof. From [15] the a k for k > 1 vanish on X, so d(b~3a) can be replaced by db~a 1 
+ b ~da  without changing the residue. Since the residue involves only components 
of Koszul degree r and all components of S have Koszul degree _<0, only terms 
involving r or more da ~ factors will contribute to the first expression in (5.2.2). On 
the other hand, on X the coefficients of da ~ operate by exterior multiplication by 
normal cotangents, and since A~N = 0 for q > r any term contributing to the residue 
must involve exactly r copies ofda ~ This in turn implies that no factors of negative 
Koszul degree can appear in the residue, so that in the formula (5.2.2) da can be 
replaced by da~ I and S ~ can be taken to be zero for q>0.  Moreover, the 
normal component of da 1 must also disappear in (5.2.2) since the r copies of da ~ 
already fill up the normal cotangent directions. From all this one concludes that 
the residue is unchanged when a is replaced by the twisting cochain for the 
standard Koszul complex of N, with respect to local trivializations given by the 
above identifications of the i*K~ q with A ~ .  

In order to see that the residue lies in the image of # it is enough to check that 
for l>0  it vanishes on the components A~/~| -p-z of the decomposition of 
i*f~z -p. This again follows since A~b~=0 for q>r. 

The complex C'(allx, Hom'(F| F| decomposes into a direct sum of 
complexes, each of which is acted on by the trace map, 

%: C "(~x, Hom "(F|176 F|  ~ C "(allx, Hom(AP/~, Aq/V)). 

Since a a operates as the identity on A'A~, for w in CP(~tx, Hom'-e(F| 
F|174 the identities 

%((db~al) �9 w)= %(w. (tibia1)) 

%(w " (b~da)) = Zb(W) " da 

hold in cohomology, where the cochain coefficients are composed using wedge 
product. This is proved as in I9, Proposition 3.8, 5.11], and allows us to rearrange 
the residue in (5.2.2) into an expression of the type occufing on the fight of the same 
formula, where ~Vt(N) is independent of .~r. 

In order to see that the class of ~'t(N) is independent of the twisting cochains 
and partial trace (5.1.2) on different covers ~", ~F', the argument of [9] can be 
adapted and the entire construction carried out on the union ~FI I~r r '  of the two 
covers in such a way that all cochains take on their original values when all vertices 
lie in ~ or ~/P' respectivdy. 

Since n ~ o S is a trace map for i.~" the theory of the cochain-level Gysin map 
gives 

ch(i.~ r) = i.[ch(~r) �9 ~P,(N)] 

in ~ H~t(Z, f~z). The class represented by ~Vl(N ) is related to the Todd genus of the 
k 

bundle N in the next section. 



A Grothendieek-Riemarm-Roch Formula 525 

5.3 Identification of the Todd Genus 

The proof of the Riemann-Roch theorem is completed by showing that for any 
holomorphic vector bundle E over X the class ~(E) = ~ ~t(E) coincides with the 

l 

inverse Todd(E)- 1 of the total Todd class of the bundle. In fact it is sufficient to 
establish the following properties. 

Proposition 5.3.1. (a) For L a line bundle, ~(L) = Todd(L)- t 
(b) I f  O ~ E ~ F ~ G ~ O  is an exact sequence of bundles, then ~V(F)= ~'(E) 

, ~ ( G ) .  

(c) For a holomorphic map f :  Z ~ X  and bundle E over X, we have ~(f*E) 
=f*~(E).  

These properties imply that ~(E) = Todd(E)- 1 in general: assume inductively 
that this is true for bundles of rank less than r. If the rankr bundle E has a line sub- 
bundle L, formulae (a), (b) show that 

~(E) = ~P(L). ~(E/L) = Todd(L)- 1. Todd(E/L)-I = Todd(E)- ' .  

But by the splitting principle [6], for any E there exists a map f :  Z ~ X  such that 
f*E has line sub-bundle and Hk(X, fmkx) injects into Hk(Z, f~z). Then (c) gives the 
required result. 

Proof of 5.3.1. Assume that L is trivialized by local sections e, with corresponding 
fibre coordinates ~. These trivializations give a twisting cochain for the sheaf of the 
zero section, for which da ~ operates by interior product with e~| The 
component da~a vanishes on K~ and operates on K~-1= L as multiplication by 
-A~a, where (~ = tp~B( p and A,a = tp~tdtp~p is the Atiyah class of L. The component 
of Koszul degree 1 in (da) p is therefore (da~ �9 ( - A) p- 1, with residue #(( - A) p- 1). 
Now multiply by l/p! and sum to obtain 

Res(,~o (da)'/p[) = ,~o ~" # ( ( -A) ' / (p+  1)!) 

= #(Todd(L)- 1). 

For part (b) the sequence can be locally split over a fine enough cover q/ofX so 
that F is described in terms of transition matrices 

b,p=[a,~ O]  
Lh~p c~a 

with respect to decompositions E,~)G, of F~=FI U,. Suppose that E, G, F have 
fibre dimensions p, q, r respectively. The Koszul degree has two components 
corresponding to the isomorphisms A'P~ = A "/~| "d, and the twisting cochain 
for the zero section of F has components of bidegree (1, 0) and (0,1) given by 

(5.3.2) b ~ = a~174 1 + 1 | ~ , 

while b I has components of Koszul bidegree (k, - k) for k > 0, the (0, 0) component 
of which does not involve the h,~. 

The degree argument of the previous section, applied to the second Koszul 
degree, shows that no more than q copies of dc ~ can appear in the residue in this 
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case, since the coefficients o fdc  ~ lie in the sub-bundle d of the conormal bundle P, 
and A q+ l d = 0. Therefore no terms of negative second Koszul degree can appear 
and the residue does not involve the h~a. It follows that the residue is unchanged 
when F is replaced by EG. In this case b ~ is still given by (5.3.2), while 

1 1 1 1 t db~p = damp | c~p + a~ ~ d c ~  . 

N o w  write db as db'+db" where db'=da~174174 and  db"=l| o 
+ a~| The  cochains  rib" and  db" c o m m u t e  in cohomology :  db'. db"-db", db' 
=Df, where f is the cochain  d a l |  1. Therefore  

T~(F) = Reso S[(db) ~ +~/(r + s) !] 

= E ResoS[ ( (db ' )P+*/ (p+k) ! )  .((db')~+'/(q+l)!)] 
k + l = s  

= E ~,~(E).~,,(6) 
k + l = s  

as required. 
Finally,  p rope r ty  (c) is an immed ia t e  consequence  of  the functorial i ty of the 

construct ion.  
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