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I. Introduction 

Let M be a C ~ manifold. Let S C M be a closed submanifold of codimension 1. 
Assume that the conormal  bundle N*S C T*M is oriented. Let P be a second order 
linear differential operator  in M - S  with coefficients in C ~ ( M - S ) ,  the space of 
C ~ functions in M - S  having locally C ~ extensions across S from either side. 
Assume S to be non-characteristic for P from both sides. Under  principal type 
conditions on P we can discuss the C ~ singularities of a distribution u ~ ~ ' ( M -  S), 
where ~ ' ( M -  S) is the space of distributions in M - S which are locally extendible 
across S from either side, solving the transmission problem 

Pu E C~176 S), 

(T) u[S+-uIS ~C~(S), 

D+ulS+ +D_ulS_ ~ C~(S). 

Here u[S+ and ulS_ denote the boundary  values of u on S when approaching S 
from its positive and its negative side, respectively. (The sides of S are defined 
through the orientation of N*S.) These boundary values, as well as those of higher 
derivatives of u, exist by Peetre's theorem. D + and D_ are the normal  vectorfields, 
canonically associated with P, for the positive and the negative side of S, 
respectively. To define them let x ~ C~(M) be a local defining function for S and for 
the orientation of N'S,  i.e. S n  U = x -  l(0)n U and dxl U~S is positively oriented in 
an open subset U CM. D• equals, in U, the principal part  of the commuta to r  

i 
~ [O[-x/Z[P, + x ] .  

The function 9 = - � 8 9  x], x] has nonvanishing restrictions 91S• Although D• 
may depend on the choice of x the restriction D + upS • does not. Let f2 • denote the 
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function on S given by O• = sign (g lS +_ ). Assume that 

f2+=f2_ on S. 

This completes the setup of (T). 
Note that no further generality is gained by relaxing the last condition in (T) to 

D+ulS+ +a.D_ulS_  ~ C~ with some positive function a e C~ In fact, if 
b e C~(M - S) is positive up to S then the normal vectorfields of P and P ' =  bP are 

related through D'+_ = ~/~S_+ �9 D_+. 
We shall introduce, following Melrose's theory [5], the singular spectrum 

ssr(u ) of a solution u of(T) and the characteristic variety S v associated with (T) as 
closed conic subsets of T*(M, S), the cotangent bundle of M compressed along S. 
The Hamilton vectorfield Hp is defined on Z ~ the part of S T not lying over S. The 
gliding fields H+ and H_ are defined on Z~ ) and Z (2), the glancing sets for the 
positive and the negative side of S, respectively. 

We shall assume that P is of real principal type with respect to S. By this we 
mean that the principal symbol p of P is a realvalued function on T*(M, S), 
singular over S, such that 

(1.1) the radial direction in T*(M, S) is linearly independent of 
H v at Z ~ 

(1.2) at Z~)wS~  ) the radial direction in T*(M,S)  is linearly 
independent of H +, H _ and of any convex combination of H +, 
H_ whenever these are defined. 

Using only the Hamilton vectorfield and the gliding fields we shall define rays 
for P. Our result can then be stated as follows. 

(1.3) Theorem. Let u e ~ ' ( M - S )  be a solution of (T). Suppose that P is of real 
principal type with respect to S. Then ssr(u) C Zr and ssr(u) is a union of maximally 
extended rays. 

Away from glancing points rays just consist of pieces of Hp-bicharacteristics 
reflected and refracted at S in the natural way. The propagation result given in the 
theorem is wellknown for this case (see H6rmander [1], Nosmas [8], Taylor [9]). 
That essentially the same propagation result holds true when the only glancing 
points involved are nondegenerate diffractive points was shown by Taylor 
[10, 11]. Near a point over S which is glancing for just one side of S the theorem 
can readily be deduced from the results of Melrose and Sj6strand [7]. The main 
novelty in the theorem above is a propagation result near points which are 
glancing for both sides of S. In proving this result we shall follow the ideas of [7] 
very closely. We should mention that the result stated in Theorem 1.3 may not be 
optimal at points Which are gliding for one side of S, diffractive for the other, and 
where the glancing sets, St+ 2) and Z~), do not intersect symplectically. Also we wish 
to point out that we do not give results on uniform approximation of rays by 
broken bicharacteristics. 

The plan of this paper is as follows. In Sect. 2 we recall some of those notions 
and facts of microlocal theory which we shall use. The basic energy estimates on 
ssr(u), still crude geometrically, are given in Sect. 3. Rays are defined in Sect. 4 were 
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also some of their geometric properties are exhibited. Finally, in Sect. 5, we com- 
plete the proof of Theorem 1.3 by iterating the estimates on ssr(u) obtained in 
Sect. 3 to construct rays which are completely contained in ssr(u). 

2. Singular Spectrum and Characteristic Variety 

We recall some concepts and results of Melrose [5], referring to this paper for 
details, on the microlocal analysis of boundary problems on a C ~ manifold M o 
with boundary 0M o. The boundary singular spectrum SSb(U ) [or boundary 
wavefront set WFb(U)] of a distribution u supported on Mo is a closed conic subset 
of the compressed cotangent bundle T*M o. It is defined using the algebra of totally 
characteristic operators on M o, Lb(Mo). The principal symbols of these operators 
are sections in a line bundle over T*M o and, therefore, their characteristic varieties 
are subsets of T*M o. SSb(U ) is the intersection of the characteristic varieties of all 
those zeroth order totally characteristic operators mapping u into the space A(Mo) 
of Lagrangian distributions, supported in Mo, which are associated with the 
conormal bundle of ~Mo. Boundary Fourier integral operators transform SSb(U ) 
naturally. 

There is a natural map 

n: T*Mo-~ T*M o 

given by (x, y, Z, ~/) ~ (x, y, 2, q), 2 = x Z, in local canonical coordinates, x > 0 in Mo. 
Its range is 

(2.1) T*OMow T*IVI o 

which can be regarded as a subset of T*Mo. Under this identification SSb agrees, in 
T*~/o, with the usual notion of singular spectrum in manifolds without boundary. 

Solutions to noncharacteristic boundary problems belong to the space of 
normally regular distributions, JV(Mo). A normally regular distribution has its 
boundary singular spectrum contained in (2.1). Furthermore, choosing any local 
coordinates (x, y) with x > 0 in Mo, and with coordinate patch U, we have 

JV'(Mo) C C~(P-~ + ; ~'(~,~- 1)) 

in Uc~ {0 < x < e} for some e > 0. For u ~ JV(Mo) one can determine T*OMoc~ssb(u), 
over U, with tangential pseudodifferential operators Q(x, y, Dy) using the WFb- 
definition given in [6]. In fact, choosing J ~ L~ such that I d -  J is smoothing 
on ~Ar(Mo) and such that the symbol of J vanishes in ]2] > c{q{, TJ becomes a 
boundary Fourier integral operator, with the same ellipticity properties as T at 
T*c3Mo, if T is a tangential Fourier integral operator. 

Let p denote the principal symbol of a second order differential operator Po on 
Mo, noncharacteristic with respect to OM o. The characteristic variety 2; b of Po is 
defined as the image under n in T*M o of the set p -  1(0) C T*M o. We have, by (2.1), 
the decomposition Zb ---- ZbO W Zb,O Z 0 "~- Z b O  T* l~to, Z~ = Zb('~ T* O M o. 
~= T * O M o - Z  ~ is the set of elliptic boundary points. On Z ~ the Hamilton 
vectorfield Hp is defined, 

0p 0p 
(2.2) np= x ~ c , -  X ~x OZ + . 
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Here we have chosen local coordinates (x, y), x > 0 in Mo, giving rise to canonical 
coordinates (x, y, 3, q) in T*Mo and compressed canonical coordinates (x, y, 2, r/), 
2 = x~, in T*Mo. Consider 

(2.3) r= p -  �89 {p, x} Z/{ {p, x}, x} , 

{, } the Poissonbracket, and the (noninvariant) vectorfield 

Or Or 
(2.4) Hr = - x ~xx 0z + �9 

Note that r does not depend on the variable ~, conormal to x = 0. The restrictions 
ro = riG, G being the symplectic manifold x = {r, x} = 0, and H ~ = HrlS~b 2), Stb 2) being 
the glancing set, are invariantly defined. By definition, StbZ)=~z(Gc~{ro=0}). 
2;~ ---- --bre _ --br(Z) is the set of hyperbolic boundary points [6]. H ~ is the gliding field. It 
is tangent to T*~M o = {x = 2 = 0}, and it approximates the Hamilton vectorfield, 

(2.5) I H p f - H r f L < C f l r [  x/2 on K ~ X  ~ 

K r 7"*M 0, for every f ~  C~(T*Mo).  This is easily checked using (2.2), (2.3), and 
(2.4). The glancing set can be further decomposed into the set of nondegenerate 
diffractive points, Z 2' = S~2)c~({p, {p, x}} > 0), and Z~ = Z~ z) - Z 2' , the set of all 
nondegenerate gliding points and all points of higher order bicharacteristic 
tangency. The characteristic variety Sb, the decomposition of S b, the Hamilton 
vectorfield and the gliding field transform naturally under boundary and 
tangential canonical transformations. 

We can now associate a characteristic variety S T with (T) and define the 
singular spectrum SST(U) for solutions u of (T). These are closed conic subsets of the 
cotangent bundle compressed along S, 7"*(M, S), which is the dual bundle to the 
compressed tangent bundle which has the vectorfields tangent to S as its sections. 
Let M+ and M_ be the manifolds, with boundary S, forming the positive and the 
negative halfspace in M, respectively. Then we have canonical embeddings 

(2.6) T ' M •  ~ T*(M, S) 

agreeing on T*S. The images, S+, of the characteristic varieties of P• =P[M+ 
under the mappings (2.6) now give the characteristic variety S t = S +  wS_. ~T 
inherits a natural decomposition, S T = S ~  ~, S ~ 1 7 6 1 7 6  
~ S  ~ S S S+ w S _  C T*S. Furthermore, Ss+_ ~--z. ,+,Jz. ,  • , z.~ •  t , 'f '(2) y'(2)----z~2,_ wS~ and g• = T*S 

- 2;s+_, the set of elliptic points. At S o we can define the Hamilton vectorfield Hp a s  

in (2.2). The symbol 

(2.7) r • 1 8 9  in + x > 0  

defines, via Hr~, the gliding fields HE, invariantly at S~ ). As in (2.5) Hp and H• are 
related through 

(2.8) [ n p f - n • 1 7 7  1/2 on Kc~S ~  

K~ T*(M, S), for every f ~  C~(7"*(M, S)). Here and elsewhere in the paper H+ 
also denotes an extension, into a neighbourhood of the glancing set, of the gliding 
field by Hr ~. 



Singularities of Transmission Problems 237 

The radial direction in T*(M, S), referred to in (1.1) and (1.2), is in compressed 
canonical coordinates given by 

~2 + X Oj (~ rb  " 
J 

Let u be a solution of (T). Then ssr(u ) is defined as the union of the images 
under (2.6) of SSb(U+), U+ =uLM+. u+ is normally regular, implying SST(U)C T*S 
u T*(M-S). In local coordinates, (x, y), near (0, Yo) we may write 

P=g+(Dx+V+)E+R+ in _+x>0,  

with g + e C ~ g + - g -  > 0 at x = 0, and tangential differential operators V_+ and R + 
of order 1 and 2, respectively. The normal derivatives D+ and D_ are the 

vectorfield parts of sign(g+). II/~+['Dx and -s ign(9  )-I] /~-[ 'Dx,  respectively. 
Changing P outside a neighbourhood of(0, Yo) if necessary, we can find tangential 
Fourier integral operators T_+ in x > 0, elliptic near (0, Yo) globally in 0, restricting 
to the identity on x = 0  (modulo a smoothing operator), such that (D,+ V• 
-T+Dx is smoothing on normally regular distributions supported near (0,yo). 
(For a proof see the proof of Theorem 5.10 in [7].) When studying the singularities 
of u near (0, Yo) we may thus assume, at the expense of introducing a term fu+, 
f~C*(S), into the last boundary condition of (T), that P can be written 
P=g+_D~x+R+_ in _+x>0. 

Remark. We use the orientation of N*S only as a means to label the sides of S 
globally. Changing the orientation does not change (T). Suitably reformulated (T) 
also makes sense in the nonorientable case. Our results extend to this situation 
since they are essentially local. 

As in [7], the tangential pseudodifferential operators Q = q(x, y, Dr) we shall 
work with will have variable order. The symbols q are C ~ functions in x ~ 0 with 
values in the symbol classes S(m, g) of HOrmander [2], where g is the "variable 
order metric" 

gy,,7(Y', 0') = ly'12(log (0)) 2 + 10'12(log (0 ) / (0 ) )  z , 

(q )2=  e + [ql 2, and m(y, 0) is a positive weight function satisfying the continuity 
and temperateness conditions of [2] (for the nonsymmetric calculus). Let 7~(m) 
denote the space of tangential pseudodifferential operators corresponding to the 
symbolspace ~ + C (R~ ;S(m,g) ) and equip it with its natural Frech6t space 
topology. For any # ~ S o 1,o, (0)  ~' is a weight function and (0)  u E S((0) ~, g). Note 
also the continuous inclusions 

S~,oCS((o)U,g)(S~,o, /~<v real. 

3. Est imates  on SSr(U ) 

Away from T*S the propagation of singularities of solutions u of (T) is wellknown, 
ssr(u)c~ T*(M-  S) is contained in Z ~ and invariant under the Hamilton flow [1]. 
At T*S but outside Zg+ u Z g_ the analysis of the singularities of u can be reduced to 
that of solutions of the Dirichletproblem (for either side of S) by using the 
Neumann operators. We recall this reduction. Let ao ~ T*S. Neumann operators 
N+ at ao are operators on S which relate the boundary data v+=ulS+, 
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w• =D+u]S• of solutions to 

(3.1) Pu---O mod C ~  

microlocally near a o by 

(3.2) ao r ss(w + - N + v •  

It follows from the theory of elliptic, hyperbolic, and diffractive boundary 
problems that there exist pseudodifferential operators N• satisfying (3.2) on all 
solutions u of (3.1) if ao ~ ~+ and pseudodifferential operators Nb• (respectively 
N~) satisfying (3.2) on all solutions u of (3.1) having no singularities on the forward 
(respectively backward) half-bicharacteristics through a 0 if tro E X~ or a o ~ X 2' - 
These operators are classical first order pseudodifferential operators at r177 and at 
S~ with principal symbols near ao 

a(N• = if2+_ Ol/~+r+, a o ~ ~•  

r = - ,(NY+) = - V - f 2 + r + ,  t ro6S 1 . 

[f2+ and r+ are defined in the introduction and in (2.7), respectively.] At 
nondegenerate diffractive points Nb_+ and NY_+ are nonclassical pseudodifferential 
operators [4]. 

Let u be a solution of (T) which has no singularities on the forward 
(respectively backward) half-bicharacteristics emanating from O-o (if they exist). 
Then v=ulS+=ulS  [modulo C~~ satisfies 

(3.3) cr o r ss(N + v + N_ v) , 

where N• = N~ (respectively N+ = Us+)in case o- o e X~ uXz+ ' -. Then ao Cssr(u) 
follows from the known regularity results for the Dirichletproblem once the 
hypoellipticity of the operator N+ + N_ is shown. At (g+ ~X~+)c~(o ~_ uX~_) this is a 
classical elliptic pseudodifferential operator. (Use f2+ = g 2  at g+c~g_.) By the 
symbolic calculus for Airy operators [4] N+ + N_ is hypoelliptic ifao is diffractive 
for at most one side of S. N+ + N _  is also hypoelliptic at Xz+,- c~XZ_.- This was 
shown by Taylor [11] via estimates (nonsymbolically). So we know that ssr(u)C $7" 
and that the assertions in Theorem 1.3 on propagation of singularities hold at least 

g g locally outside Z + u X _  because rays will be broken bicharacteristics there (see 
Sect. 4). 

We now consider the case, where ao e T*S is glancing for precisely one side of 
S, say ao ~ X~ ) -  S(2). Let u solve (T) and assume that u has no singularities on the 
forward half-bicharacteristics (provided there is one) emanating from ~o to the 
negative side of S, x <0. Then u satisfies, microlocally near ao, the boundary 
problem 

Pu=O in x > 0 ,  
(3.4) 

( D + + L ) u ~ C ~ ( S )  at x = 0 ,  

with L = N_ if ao ~ ~-  and L = N b_ if a o ~ X1. The principal symbol I of L satisfies 
Re l < 0 in a conic neighbourhood of ao. Recalling the definition of D + we see that 
the boundary problem (3.4) is, after conjugating with a tangential Fourier integral 
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operator, of the type studied in Theorem 2.3 of [7]. When O + = f 2 _ = l  
(respectively f2+ =/'2_ = - 1 )  condition (2.2)+ [respectively (2.2)_] of [7] holds 
true. From this we get the following estimate on SST(U). 

(3.5) Theorem. Let u be a solution of ( T). Let a o e Z~ ) - St2_ ). Let e > O. Suppose that 
the forward half-bicharacteristic emanatin 9 from go into Z~ provided it exists, is 
disjoint from SST(U) near a o. I f  for some t, 0 < t < t(ao, e), the set SST(U) does not 
intersect 

{a ~ Z+ ; d(a, exp(tH § )(ao) ) < et} 

then ao r SST(U). The same assertion holds with forward replaced by backward and 
H+ replaced by - H + .  

Here d is a metric on T*(M, S) which is induced by some Riemannian metric on 
7"*(M, S). We shall keep d fixed throughout the paper. 

Remark. It would be interesting to know whether Theorem 3.5 also holds at 
O'0E~ +y'(2)r'x Y ' 2 ' ,  , ~ _  . The reduction to the boundary problem (3.4) is valid in this case, 
too. However, L becomes an Airy operator then. 

Our main result in this section is the following estimate on SST(U) at double 
glancing points. 

Y'(2)r'~ Y'(2) l o t  (3.6) Theorem. Let u be a solution of ( T). Let Oo E ~ + . . . . . . .  e > O. If, for some t, 
0 < t < t(o o, O, ssr(u) does not intersect the set 

~tr ~ 2;r; inf d(o, exp(t(2H + + (1 - 2)H_) (o0))) < eta, 
( 0--<2_<1 J 

then ~o q~ ss~.(u). 

Proof. We fix coordinates (x, y) near the base point of tT o = (0, Yo, O, qo) such that 
x > 0 precisely on the positive side of S. In a neighbourhood of (0, Yo), U, (T) is 
equivalent, after changing to a system in x > 0 and conjugating with tangential 
Fourier integral operators, to the boundary problem for normally regular 
distributions u• 

(3.7) P + u + - P  u _ - O  m o d C ~ ( U n { x > 0 } ) ,  

(3.8) ( u+ -u_ ) l (x=0 )~ -0  mod C~ 

(3.9) (D+u+ +D u_- fu•  mod C ~ ( U n { x = O } ) ,  

with f a smooth function on x = 0. Here 

(3.10) P• =g• + R+ , 

(3.11) D+ = sign(g• 1/~_+ I" D~, 

where 9_+ ~C~ with g + ' g - > 0 ,  and where R• is a classical tangential 
pseudodifferential operator of order 2 with real principal symbol r• The 
restriction of r• to x = 0 does not change under the reduction of (T) to (3.7)-(3.9). 

For every smooth function v, compactly supported in U, we have, using partial 
integrations (cf. Lemma 2.2 in [6]) 

(3.12) (v, P u ) = ( p * v , u ) - i ( ~ l v ,  D u ) e - i ( ~ / ~ D v ,  u)o-(g '~v ,u)o ,  
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where ( , )  and <, )0 are continuous extensions of the (sesquilinear) L 2 - inner 
products in x > 0 and x = 0, respectively. To ease the notation we have omitted in 
(3.12) the subscript + at u, P, D, etc., and we will continue to do so in formulas 
which are valid for both subscripts. Taking v=Qu in (3.12) with a smoothing 
tangential pseudodifferential operator Q• and adding ( - Q P u ,  u> we get the 
following identities 

(3.13)• ( ( P * Q - Q P ) u , u ) = ( Q u ,  P u ) - ( Q P u ,  u)  

+ i<[//~lQu, Du)o + i(l /~[QOu, u)o + <~lu, u)o , 

where 

(3.14) 

Assuming 

(3.15) 

t M = gx" Q -4- il/~l[D, Q]. 

~l//~+bQ+= I ~ _ I Q  at x = 0  

and using the boundary conditions (3.8) and (3.9) we get 

(3.16) < [~/~+[Q+u+,D+u+>o+<]/~+lQ+D+u+,u+>o+<]/~_J Q u ,O_u_)o  

+ <11/ -Io _D u_, u_ >o+ 

modulo boundary brackets containing in one entry one of the smooth functions 
(u+-u_)l(x =O)or(D +u+ + D_u_ - fu+)l(x=O). L e t 2 C  ~u(<q> No),whereNozN 
is large enough for (3.13)_+ to make sense if Q• e 2 ,  be bounded as a subset of 

o '/'(<t/>") for some # ~ S~, o- In addition, suppose that the symbols of all operators in 
vanish outside a compact set contained in U. Then, adding the Eqs. (3.13)+ and 

(3.13)_ and using (3.7) and (3.16), we obtain the estimate 

(3.17) I ( ( P * Q + - Q + P + ) u + , u + ) + ( ( P * Q _ - Q _ P  )u_, u_)] 

< C + I<M+u+, u+ >~l + I<M_u_, u_ >o1, 

uniformly for all Q • e ~ satisfying (3.15). 
Here 

m + = 57I + + i f l / lg  +lQ + , 
(3.18) 

M_ = ]VI_ + i ~ Q _  f . 

If (3.7)-(3.9) hold only microlocally near ao then (3.17) is also true, provided - /a  
is large outside a conic neighbourhood of (Yo, t/o). 

We shall find such a family of operators ~ so that for Q r ~ the dominant terms 
in (3.17) are those involving the modified commutators 

(3.19) R * Q - Q R  . 

Actually, the negative imaginary part of (3.19) will have a squareroot A _+, elliptic at 
(Yo, qo), modulo cutoffs supported in regions, where u_+ has no singular spectrum. 
This will lead to a bound on IIA•177 II, as desired. 

Suppose that the gliding fields H+ and H_ are linearly independent at a o. By 
the principal type assumption (1.2) we can find symbols in the (y, q)-variables, ~o+, 
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~pj e S ~ o, J = 1 . . . . .  2n - 5, and ~ e S ~, o, with 

H+q~_+(yo, No)= 1, H+q~,(yo, No)=0, 
(3.20) 

H+_~Pj(Yo, No) = 0 for all j .  

q~ ~ and all ~ vanish at (Yo, No) and are, in a conic neighbourhood F of (Yo, No), 
homogeneous of degree zero, ~ is 1-homogeneous in F, ~3(yo, No)= 1, and the 
differentials 

dq) +, dq) _ , dip1 . . . . .  dlP 2n- 5, d ~  , 

are linearly independent at (Yo, No). The assumption on SST(U) implies that, near ao, 
the boundary singular spectra of u+ and u_ do not contain points with 

Iq~+ +r - t [ < e t ,  q ) + > - e t ,  
(3.21) 

Yl~ ; l<~ t ,  O<__x < e t ,  
J 

for some small t > 0. Here we have absorbed into e a constant caused by the change 
of the metric. 

Fix C ~ functions ~+ and ~_ ,  compactly supported in U, 4~ • Yo)> 0, with 

I1/~+1~+= I 1 / ~ -  at x=0. 
Next, choose a nonnegative C ~ function b on the real line, b(s) = 1 for s <�89 b(s) = 0 
for s>  1, such that b 1/2 is also C ~176 Let N >  1. With p e n  still to be determined, 
depending on e, and with t > 0 to be chosen later on, small enough, we consider the 
family ~ of operators Q_+ with symbols 

q • (x, y, N) = �9 • y) .  b(xp/ t) ,  m(y, N), 

where m = m z, 2 > 1, is the family of weight functions given by 

(3.22) (log m)/(log (N)) = - No - N(~o + z((q~ + + q~ _ - t)p/t)  + Z((N)/2) - 1). 

Here zeCoo(N; [0 ,2 ] ) ,  )~(s)=0 for s<�89 X(s)=2 for s > l ,  and, in a conic 
neighbourhood of (Yo, No), 

(3.23) o(y,  N) = 1 (40 -  zp((q~ + _ 402p + (q~_ _ 4t)2p + S, iP~PjlZP). 

We can extend o9, provided t > 0 is small enough, as a zeroth order symbol of type 
(I, 0) such that formula (3.23) holds, where co < 2. More  specifically, we extend ~o by 
applying to the right-hand side of(3.23) a realvalued Coo function f with f ( s )  = s for 
s < 2, f ( s ) >  2 for s > 2, f ( s ) =  3 for s > 3, and setting o)= 3 everywhere else. Note 
that the sets {o) < 2} form a conic neighbourhood basis of (Yo, No) as t shrinks to 
ZerO. 

Observe that (3.15) holds and that Q • e 7J(m). The operator R Q - Q R  belongs 
to 7~(rn(q) log (q)).  Moreover, its symbol b(xp / t ) .  A +_ satisfies, modulo symbols in 
c~(~-2:~; S(m(N), g)), 
(3.24) iA --- {r, ~ m }  - ~m{r ,  logm} 

- N ~ m . ( l o g ( N ) ) { r , o ) + Z ( ( q ) 2 - 1 ) }  

in the region, where ~9 < 2 and q~ + + q~ _ < t, t small. If c9 < 2 then, using (3.20) (3.23), 

(3.25) {r +, o9} = p (40 -  zr({r • q~ • } (q~ • - 4t) zp -  1 + O(tZp)), 
Z 
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uniformly as t-*0, and if, in addition, ~o+ +~0_ <2t,  p>3 ,  then 

(3.26) (q~ _ 4t)zp-1 < _ Cpt2p-1.  

Note that {r, Z((N)2- i)} stays uniformly bounded in Sl.o for 2>  1. By (3.20) {r, q~} 
> C(N), C>0 ,  in 0)<2, O < x < t / p ,  and N large. This together with (3.24)-(3.26) 
implies 

(3.27) C -  1 <= _ I m ( t A / m ( N )  log(q))  < C 

in co<2, O < x < t / p ,  q~+ +~o_ < t ,  

with a positive constant C independent of 2 and t. 
Using (3.27), b 1/2 ~ C ~, we can carry out the construction of an approximate 

squareroot A + ~ q-~((m(q ) log (N)) I/2), 

(3.28) Re( iR*Q - iQR) = A *A  + W,  

with W• ~ ~u((q)u). Here, and throughout the rest of the proof, all bounds, in 
particular those on symbolnorms, hold uniformly for 2 > 1. A + is elliptic in the 
region, where 0) < 2, 0 < x < t/2p, q~ + + q~_ < t. # is a zeroth order symbol of type 
(1, 0), independent of 2, with # <  1 - N o  holding outside the cutoff region 

(3.29) 0)<-~, O < x < t / p ,  and [qg++~o_- t l< t /p .  

We can now fix p, of size l/e, so that the region (3.29) is contained in (3.21) for small 
t > 0. Although t may still have to be decreased later on, we can assume that the 
region (3.29) does not meet the singular spectra of u+ and u_. Hence, in particular, 
there is a constant C such that 

(3.30) I(Wu, u)l < C.  

We shall encounter more general remainders W below. For bounding these as 
in (3.30) it will suffice to assume that ssb(u• also does not intersect the region 

(3.31) 0)<2,  q0+ +q~_ < 2 t ,  t / 3 p < x < 2 t / p .  

A priori this assumption need not hold. However, we can insure it, without 
affecting (3.17) and the regularity ofu at Oo, by replacing u by u - Hu  with operators 
H • e L ~ which satisfy 

s s b ( [ P , n ] u ) n { 0 ) < 2 ,  q~+ +q)_ <2t,  O< x <2t /p}  = 0 ,  

and which have total symbols vanishing, where 0 < x < t/4p and equaling ! in the 
region (3.31). Such operators exist. Following the standard method of "exact 
commutators" their symbols can be constructed by integrating along those 
bicharacteristics of P which are contained in {0) < 2, ~p + + ~0_ < 2t, 0 < x < 2t/p}. 
Note that these bicharacteristics can meet at most one of the regions 0 < x < t/4p, 
(3.31), if t is small enough. This follows, using (2.8), from (3.20), H •  and 
r(y o, No) = O. 

Given 6 > 0 we shall prove, for sufficiently small t, 

(3.32) I(((P* - R*)Q - Q ( P -  R))u, u)] =< 6 l{ An 1[ 2 + C~, 

(3.33) I (Mu,  u)0l < 611Aull2 + Cj ,  
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with a constant Co, depending also on t. Then we have, using (3.17), (3.28), (3.30), 
(3.32), and (3.33), a bound 

(3.34) IIA +u+ ]12-t - IIa-u-112< C. 

The construction of Aa_+ can be done so that 

(3.35) Az--*A ~ as 2 ~ ,  

A ~ ~ 7J((m~ (r/> log(q>)1/2), with convergence in 7J(]/m~(q>), say. Here m ~ is the 
weight function defined as m a above, however, with the term in (3.22) involving 2 
omitted. Then (3.34) and (3.35) give 

(3.36) IIA~u+II2+ Lla~_u 112< + o o .  

A_~ is elliptic in 7~((m~176 1/2) and of high order at ao because ~o(y o, qo) 
=�89 1. Therefore, N > 1 being arbitrary, the assertion ao r ssr(u) follows from 
(3.36). 

To prove (3.32) we note that [recall (3.10)] 

(3.37) (P* -- R*)Q - Q(P - R) = [D~,, [Dx, 9Q]] + 2[Dx, 9Q]D x + [9, Q]D~, 

with [Dx, [Dx, gQ]], [Dx, 9Q] E 7J(m), [9, Q] ~ 7~(m(q>- 1log(r/>). Let A be the 
tangential pseudodifferential operator with symbol (~/>-1. We can solve, modulo 
operators W satisfying (3.30), 

(3.38) [Dx, [Dx, gQ]] =- A*BAA , 

(3.39) [Dx, gQ] - A * B A A ,  

(3.40) [9, Q] - A*BA2A.  

Here and in the following B, and B', denote operators in 7J(1) which are, in general, 
different in different formulas. Recall that operators in 7'(1) are bounded on L 2. 
Therefore, (3.38) implies 

(3.41) [([Dx,[D~,gQ]]u,u>l<b[lAu[[2+C6, 6 > 0 .  

Using (3.39) we get 

(3.42) [(2IDa, 9Q]Dxu, u>l < C]IAAD~u]I. IlAul[ + C. 

Modulo an operator which stays bounded on u• we have 

[ AA,  O x] = B A A . 

Thus, showing 

(3.43) IIAADxull <611Aull +C0,  6 > 0 ,  

is equivalent to showing 

(3.44) [ID~,AAult<6llaull+Co, 6 > 0 .  

A classical interpolation inequality on the halfspace x > 0 gives 

[IDxAAull < CllAull " IID~A2 Au[I . 
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We can write 

IDa, A2A] :- BAZA + B'A2ADx, 

modulo an operator which stays bounded on u +. Hence, 

I[[D~ z, A2A]ul} <61[Aul} +6[IAADxuH + Co, 6 > 0 ,  

thereby reducing the proof of (3.43) and (3.44), to that of 

(3.45) }IA2ADZ~ull <=6tlAu]b + Co, 6 > 0 .  

1 
Replacing D~ by g ( P -  R) (3.45) follows from (3.7) and 

A2A~Ru <6llAul] +Co. 

This inequality holds for 0 < t < t~ (C~ may also depend on t) because the principal 
symbol of R is small, where co < 2, 0 < x < t/p, when t is small. Using (3.40) we 
obtain 

(3.46) KEg, Q]DZ~ u, u)[ < CIiA2AD2xull �9 IIAu[I. 

The estimates (3.41)-(3.46) now give (3.32). 
Finally, we show (3.33). By (3.14) and (3.18), we can write 

M =- A*A1/2BA1/2A + A*A1/ZB'A3/2AD~,, 

modulo an operator W+ W'Dx bounded on u • i.e. 

[((W+ W'D~)u, u)ol < C. 

Hence, 

I(Mu, u)ol < C Ilaa/Zaull~ + C]lA3/ZAD~ullollA1/ZAullo + C.  

The classical trace inequality 

IlA'Zvll~ < Cllvll" IIAD~vl] 

then implies 

(3.47) [(Mu, u)ol < cIIaull " IIhDxaull + cIIahOxull . IlhO~,ZaOxull + C. 

(3.43)-(3.45), and analogous estimates now give (3.33). 
This completes the proof of the theorem in the case, where H+ and H_ are 

linearly independent at ao. In case the gliding fields are linearly dependent at ao we 
can find by (1.2) symbols in the (y, r/)-variables, q~ • ~v~ e S ~ o, J = 1 . . . . .  2n - 4, and 
q3sS~.o, 0- and 1-homogeneous near (yo, r/o), respectively, ~p• 
= ~Pj(Yo, r/o) = 0, with 

H•177 q o ) = l ,  H• qo)=0 for all j ,  

~o+ =a.q~_ with a positive constant a, and such that the differentials d~p+, 
d~pl . . . . .  d~vz,-4, dt~ are linearly independent at (Yo, qo). Now, the same proof as 
above goes through with only obvious modifications. We may leave these to the 
reader. 
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4. Rays 

A curve 7 : I ~ N ,  I C ~ an interval, N a C ~ manifold, is called locally Lipschitz if it 
is locally Lipschitz with respect to every chart of N. For  such a curve 7 it makes 
sense to define its derivative 7'(0, t �9 I, as the subset of T~(0N consisting of all limit 
points of the difference quotients 

~o(~(s)) - ~o(7(t)) 
C~ ~ rp-} 

s - - t  

as s-}t,  s # t .  The restrictions s > t  and s< t  define the forward, 7'+(0, and the 
backward derivative, 7'-(0, respectively. 7 is differentiable at t precisely when 7'(t) 
consists of only one tangent vector in which case 7'(0 will also be regarded as an 
element of T~(oN. It is clearly meaningful to call y tangent to a submanifold N'C N 
at 7(0 �9 N'  iff 7'(t) C T~(t)N'. 
(4.1) Definition. A ray (for P) is a locally Lipschitz curve 7 : I ~ T * ( M , S )  with 
7(0 �9 Z r  for all t �9 I, I C ~  an interval, satisfying the following conditions 

(4.2) If 7(0 �9 Z~ t �9 I, then 7"(0 = H~(7(t)). 

(4.3) If 7(0 r 2o+ u2~ t �9 I, then 7(s) �9 2 ~ for I s -  tl > 0 small. 

(4.4) If 7(0 �9 S'~ -- 2(2) + -v, t �9 I, then 

7(s)EE ~  s-- t>O small, or else 7+(t)=H+(?(t)) , 

and 

7(S)�9176 _, t - -s>O small, or else 7'_(t)=H+(7(t)). 

(4.5) If 7(0 �9 2~ c~Z(2) or 7(0 �9 ro  ,.-,, ~/-(2) . . . . . .  +,  t �9 I, then 

7'(t) C {(2H+ + ( 1 - 2 ) H _ ) ( ? ( t ) ) ;  0_<2_< 1}. 

(4.6) Remark. Let ?:I---}Z r be a ray. For  any t e I the derivative 7'(0 can only 
consist of convex combinations of the gliding fields H+ and of (limits of) the 
Hamilton field H v at 7(t). In fact, 7"(t)= 7+(t)wT'_(t), and if 7(s)�9 Z ~ for s - t  > 0 
small, s, t �9 I, then 

?'+(t) = lira Hp(7(s)) �9 T~tt)(T*(M , S)). 
s"~t 

By (2.8) the limit equals H + (7(0) if 7(0 �9 2 4  ). The corresponding assertion for 72 
also holds. This allows one to estimate the variation, along 7, of smooth functions f 
defined in a neighbourhood of 7(1) in terms of H p f  and H_+ f because 

f6 ' ( t ) ) - f (7 ( s ) )  = ~ ( t - s ) ,  t > s ,  s, t �9 I ,  

for some ~ = ~(t, s) contained in the closed convex hull of 

U <df(Y(t)), 7'(~)> �9 
~e(s,t) 

(Compare Lemma 5.10 below.) 
0 O We now discuss the geometry of rays. Locally outside 2+ u Z _  a ray consists of 

pieces of bicharacteristics reflected, refracted and diffracted according to the usual 
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laws of geometric optics. This follows from the known behaviour of 
bicharacteristics away from boundary points of higher order bicharacteristic 
tangency [3]. Note that a compressed conormal variable 2 = x r  is Lipschitz 
continuous on broken bicharacteristics whereas the usual conormal variable r 
has jumps at hyperbolic boundary points. 

A ray passing through a point which is gliding and of finite order 
bicharacteristic tangency with respect to one side of S and nonglancing with 
respect to the other side consists of a gliding ray segment (possibly degenerating to 
a point) in the boundary exiting or entering as a bicharacteristic on the 
nonglancing side or running into boundary points of higher order degeneracy. 
This essentially follows from the fact (see Melrose and Sj6strand [6, Sect. 3]) that 
the gliding field is transversal to each 22~, k = 3, 4 . . . . .  the set of glancing points of 
bicharacteristic tangency precisely k - I .  At gliding points of infinite order 
bicharacteristic tangency a ray may contain an infinitely reflected ray instead of a 
gliding ray. 

To justify our definition of rays near double gliding points we show that 
condition (4.5) implies that rays behave very much in the way one expects uniform 
limits of bicharacteristics and gliding rays to behave. We consider the special cases 
of symplectic and of involutive intersection of the two glancing hypersurfaces. 

(4.7) Proposition. Let 7:I---~ZT be a ray. Suppose T(to) =~t2),-,F(2) ~ ,~ + . . . .  and 
{r+, r_ } (7(to)) 4= 0 for some t o ~ I. Then 7(0 q~ S~ )c~ S~) f or I t -  to l > 0 small and 

7+(to)=H+(7(to) ) or 7+(to)=H_(y(to)), 

7"_(to)=H+(r(to)) or 7'_(to)=n_(7(to)). 

Proof. We may assume {r+, r_}(ao)>0 ,  ao=7(to). So, in a neighbourhood U 
of ao, 

(4.8) H+r_>O,  H_r+ <O, and H•177  

Using (2.8) and (4.8), we can find for every b > 0 a neighbourhood U~ C U of a o such 
that 

3Hpr_>[Hpr+[ in U~c~Z ~  
(4.9) 

-6Hpr+>lHpr-I  in U~c~Z~ 

In view of Remark 4.6 the estimates (4.8) and (4.9) imply that the function 
(r_ -&+)(? ( t ) ) ,  6 >0,  is strictly increasing in an open interval containing to. In 
particular, the first assertion of the proposition follows. Furthermore, (4.8) and 
(4.9) imply the following alternative. Either 

(4.10) for all 6 > 0 :  Ir_(~(t))l<b(-r+(y(t))), t - t o > 0  small, 

or else 

(4.11) there is a sequence tk"~ to with r-(7(tk))>O and X(7(tk))>O. 

In fact, Ir_l+fr+ = 0  can hold at 7(t)~ U~, t>to, only if r_(7(t))>0 and since 
Hp(fir+ + r _ ) < 0  in U~c~Z ~ we then also have x(7(t))>O. (4.10) clearly implies 
it = 1 when (itH_ + (1 - it)H +) (ao) ~ 7+ (to). We now show that (4.11) implies 7+ (to) 
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= H + (ao). Starting at a point 7(0 �9 U1, t > to, with x(7(t))> 0, the function r_ o 7 
will increase until y either leaves U 1 or enters x < 0, because H + r_ > 0, H_  r_ = 0, 
in U1 and Hvr_ > 0 in U1 n S  ~ In particular, r_ will stay positive if r_(y(t))> O. 
Therefore, assuming (4.11), we have 7"(t)=H+(7(t)) or x(y( t ) )>0 for t - t o > 0  
small. Hence, by Remark 4.6, ~'+(to)= H§ (ao). Since the proof of the assertion on 
7'- (to) is the same except for obvious sign changes the proof of the proposition is 
complete. 

A curve 7" I ~ Z %  nZ"_ which is piecewise a H• gliding ray is, of course, a ray in 
the sense of Definition 4.1. We call such rays gliding ray polygons. 

(4.12) Proposition. Suppose that r+ and r_ can be extended to an open subset 
V C T* S with {r+, r_} = 0  in V. Furthermore, suppose {r+ = r _  =O}n V C Xg+n2 g_ 
and suppose that H+ and H_ are linearly independent on {r+ = r_ =0}nV.  Let 7:1 

VnSg+ n Z ~  be a ray. Then 7 is locally a uniform limit of gliding ray polygons. 

Proof. Fix t o �9 I. Using Darboux's  theorem we find coordinates r§ r_,  03 . . . .  , 
g,-  1, f+,  f - ,  f3  . . . . .  f , -  1 in a neighbourhood U of y(to) with {r•177 = {gJ,fi} = i 
in U and all other Poissonbrackets vanishing in U. The submanifold 
{r+ = r _  = 0 } n U  is foliated by the two-dimensional leaves on which g~,fj are 
constant. Using that Y is a ray, we may assume, after passing to a subinterval of I if 
necessary, that 7(1) is contained in some leaf L. On L n  U the functions f§ and f_  
are coordinates. The gliding flows commute on L. We have 

(2H+ + ( 1 - 2 ) H _ ) ( f +  + f _ ) ( a )  = 1, 

0 < ( 2 H +  + ( 1 - 2 ) H _ ) f •  1, 

for all 0 < 2 < 1, a �9 L n  U. In view of Remark 4.6 we thus get 

(f+ + f_ ) ( y ( t ) ) - ( f+  + f _ ) ( 7 ( s ) ) = t - s ,  t, s E I ,  

f •177177  t, s e I ,  2 •  2 + + 2 _ = 1 .  

It is now easy to construct gliding ray polygons approximating 7- We leave the 
details to the reader. 

Remark. A ray passing through a point in ,~2. - c~X~+ may continue as an integral 
curve of H_ ,  i.e. as a gliding ray in the diffractive set S~' -.  In boundary problems 
C~176 do not propagate along such rays. Therefore, one may expect that 
singularities of solutions to (T) propagate along rays satisfying the stronger 
condition: The assumptions in (4.4) hold with 7(0 �9 S ~ -  2 (2) replaced by y(t) 

S ~ -  2%.  Singularities would propagate in this way if Theorem 3.5 were also 
Y ' ( 2 ) r ~  Y ' 2 ,  - true at ao ~ - +  . . . .  

5. Propagation of Singularities 

In this section we shall, for any o o e ssr(u ), construct a nontrivial ray, starting at ao, 
which is contained in ssr(u). This will complete the proof of Theorem 1.3. Indeed, 
just note that a ray with relatively compact image in Xr is globally Lipschitz 
continuous (see Remark 4.6) and that ~, ~(t)= 7 ( - t ) ,  is a ray for - P  if ~ is a ray 
for P. 
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(5.1) Definition. Let I C R  be compact and let 7:1---2; r be continuous. (I,7) is 
called an approximate ray of mesh < e, 0 < e < 1, if and only if 

sup inf I t ' - t l<e  
t e l  t ~ - t ' E l  

and for every t o e I, t o < sup/,  

(5.2) If 7(to) e S O then t e I for t -  t o > 0 small and the forward 
derivative 7~-(to) exists and equals Hp(7(to) ) . 

(5.3) If 7(to)~Z0+uZ% then t e l  and 7( t )eZ  ~ for t - t o > 0  small. 

(5.4) If 7(to)eSg_-S~ ~ [respectively 7( to)eS0+-Z~ ~] then either 
t e I and 7(0 e S ~ [respectively 7(0 e Z~ for t -  to > 0 small or 
else there exists t e l ,  t>to,  (to, t)c~I=O, such that 7( t )r  ~ 
[respectively 7(0 ~ Z~ and 

d(7(t), exp(t - to)H_ (7(t o))) < e l t -  to[ 

[respectively d(v( t ), e x p ( t -  to)n + (7( to) ) ) < elt - to] ]. 

(5.5) IfT(to) e 2;0+ o2;~ ) or 7(to) e S~)nZ% then there exists t e I, t o < t, 
(to, t ) n I = 0 ,  such that for some 0 < 2 <  1 

d(7(t), exp ((t - to) (2H + + (1 -- 2)H_) (7(to)))) < ept - to l. 

We shall call the number s u p I - i n f I  the length of the approximate ray (I, 7)- 
It will be important  to estimate the variation of functions along approximate 

rays. To measure this we associate a "field of tangents" with every approximate 
ray. 

(5.6) Definition. Let (1, 7) be an approximate ray. V(I, 7) denotes the closure in 
T(7"*(M, S)) of the set of all (7(t), ~) e T~,)(T*(M, S)), t e 1, satisfying one of the 
following conditions 

(5.7) 7(0 e Z o and ~ = Hp(7(t)), 

(5.8) 7 ( t ) e S  ~2), (=H+_(7(t)), provided 7 does not leave into S-~ for 
times greater than t.  

(5.9) 7(t)eX0+c~Z~ ) or 7(t)eZ%c~S~ ) and, for some 0 < 2 < 1 ,  
= (2H+ + (1 - 2)H_)(7(0) .  

(5.10) Lemma. Let K ~ Z r. Let f be a C ~ function defined in an open neiohbourhood 
of K in 7"*(M, S). Then there exists a constant C > 0 such that every approximate 
ray (I, 7) with mesh < ~ and 7(1)C K satisfies 

(5.11) [f(7(t)) - f (7(s ) )  - e ( t -  s)[ N Celt-  s{, t, s e I ,  

for some ~ (dependin9 on s and t) which is an element of the convex hull of the set 

{<~,f>(7(t)); (7(t), ~) e V(I, 7)}- 

Proof. Let to be the supremum of the set of all T e  [infI, sup/ ]  such that (5.11) holds 
under the additional assumption s, t =< T. to exists since T = infI belongs to this set. 
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We have t o E I and by the continuity of 7 (5.11) holds for s, t e I n ( - 0 %  to]. To 
prove the lemma we have to show t o = sup/.  Assume that t o < sup/.  If there exists 
t t e  I, to < tl, such that (5.11) holds for s, t ~ I n [ t o ,  q ]  then we have for s, t ~ I, s < to 
<_t<_tl, 

I f ( 7 ( t o ) ) - f ( 7 ( s ) ) -  ~ ' ( to-s)l  < C ~ ( t o -  s),  

]f(7(t)) - f (7 ( to ) )  - c(" ( t - to)t < Ce( t - to). 

This implies 

I f (7( t ) ) -- f (7( s) ) -- ~( t -- s)[ _-< Ce( t - s) 

with a = ( ( t o - S ) a ' + ( t - t o ) a " ) / ( t - s ) .  Then (5.11) holds for s, t E I n ( - o o , t l ]  
contradicting the maximality of t o. Using Tay|orexpansion it follows from the 
definition of approximate rays and from the definition of V(I,  7) that such tl E I, 
t 1 > to, exists except (possibly) when 7(to) ~ Z ~  and 7(0 e X~ for t -  t o > 0 
small. In the latter case we choose tl > to such that 7(0 e Z~  for t o < t =  t, and 
conclude that (5.11) holds for the approximate rays ( I n [ t , h ] ,  7 [ I n [ t , q ] ) ,  
t o < t < t  ~. Letting t ~ t  o we see that (5.11) holds on I n [ t o ,  h ]  in any case. This 
proves the lemma. 

Since the metric d is locally equivalent to the euclidean metric in any local 
coordinate system we get as a corollary to Lemma 5.10 the Lipschitz continuity of 
approximate rays. 

(5.12) Corollary. Let  K <  S T. There exists C>O such that every approximate ray 
(I, 7) with 7(I) C K satisfies 

d(7(t) ,7(s))<=Clt-s[ ,  s, t e I .  

Remark. With Definition 5.6 suitably modified Lemma 5.10 and Corollary 5.12 
hold also for rays. 

We can now prove the local existence of approximate rays contained in ssr(u ). 

(5.13) Proposition. Let u be a solution o f  (T).  Let Ko~sSr(U ). Then there exists  
To > 0 such that one can f ind  for  every a E K o and every ~ > 0 an approximate ray 
(I, 7) of  mesh < ~ and length T O with 7(infI)= tr and 7(1)C SSr(U). 

Proof. We choose To>0 with CTo<d(Ko ,  OK), where K ~ S r ,  K o C K ,  
d(K o, 8 K ) >  0, and where C > 0 is the Lipschitz constant on K given in Corollary 
5.12. Let e > 0 and a ~ Ko be given. Consider the set ~ of all approximate rays (I, 7) 
of mesh < e, length < To, with 7(infl) = tr and 7(1)C ssr(u). ~ is not empty because 
(';o, {0}) ~ ~ ,  7o(0) = a. We define an ordering < on ~ /by  saying that (1, 7) < (I', ~') if 
and only if there exists some T~ R such that I = I ' n ( -  0% T],  7 = 7'1I. The ordered 
set (~, < )  satisfies the hypotheses of Zorn's lemma. In fact, if ~ t  CA is a totally 
ordered subset then (Io, 7o), 

I o =  U I ,  7o11=7 for all ( I , 7 ) ~ 1 ,  
(I, ~ , ) ~  

is the supremum of ~1 and (Io, 7o) ~ ~.  Note that 

Io- U 1c{sup/o} 
(1, ~ ) ~ t  
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and that the extension of ?o to Io exists and is unique by Corollary 5.12. 7o(suplo) 
SST(U) since SST(U) is closed. So there exists a maximal element (1, 7) of (.~, <). We 

have to show that its length T equals To. Suppose T <  T o. By our choice of To we 
have 7(supI)C f<c~ssT(u). It follows from the ssT(u)-estimates given in Sect. 3 that 
there exists an approximate ray (I', 7') of positive length, of mesh <5, with sup/  
= infI', 7'(infI') = 7(sup I), and 7'(I') C SST(U). Then (I•I', 70) ~ ~ ,  where 7o[I = 7 and 
7o{I'= 7', is strictly greater than (I, 7). This contradiction to the maximality of (1, 7) 
completes the proof of the proposition. 

Recalling that SST(U ) is a closed set Theorem 1.3 now follows from Proposition 
5.13 and the following result. 

(5.14) Proposition. Let K ~ ~-~T" Let (Ij ,  Tj), j e N ,  be a sequence of approximate 
rays with meshes tending to zero as j ~ Go and with a positive lower bound T o on their 
lengths. Assume that i n f l j ~ 0  a s j ~  00 and that ?j(I j) C K for allj. Then there exists a 
curve 7:[0, To]~K with 

(5.15) lim inf sup d(y(t), 7j(t)) = 0. 
j~o~ tEl3r~[O, To] 

Moreover, every such curve 7 is a ray. 

Proof. By Corollary 5.12 the 7j's are uniformly Lipschitz continuous. It follows 
from the Arzela-Ascoli theorem - or rather its p r o o f -  that a continuous 7 
satisfying (5.15) exists. We fix such a limit curve ? and assume without loss of 
generality that 

lim sup d(Tj(t), 7(0) = 0. 
j ~  0o tEl in[O, To] 

We have to show that 7 is a ray. It is easy to see that 7 is Lipschitz continuous. It 
follows from Lemma 5.10 that approximate rays in Z ~ are actually 
bicharacteristics. This leaves us with the task of determining 7'(to), say 7% (to), at 

0 g points ?(to) ~ ~ + wE_, t o E [0, To), where 7(0 ~ Z~ for t - t o > 0 small does not hold 
if ?(to) ~ S~. We consider such a point a o = ?(to) and fix coordinates (x, y) near its 
basepoint such that x > 0 (respectively x < 0) on the positive (respectively negative) 
side of S. As before, we have the canonical and the compressed canonical 
coordinates, (x, y, 4, t/) and (x, y, 2, t/), respectively. By the choice of a o we cannot 
have x(?j(Tj)) > 0 and Hpx(?j(Tj)) > 0 for some sequence Tj~to, Tj~ I j, if a o r Z~ 
We now study the case aor176 more closely. Applying the following lemma to the 
approximate rays 7i, restricted to a suitable neighbourhood of to if necessary, we 
get a sequence tj--,to such that for small 6 > 0  

(5.16) x(Tj(0)<0 for all t ~ I j t~[ t j ,  to 4-(~ ] . 

(5.17) Lemma. Let ([0, T],?') be an approximate ray with x(~(0))<6< 1, 6>0,  
satisfying either inflHpx[>0 or infH(p2)x>0, the infima being taken over 
Z ~ n~([0, T]). Assume that there is no t ~ [0, T] with x(~(t))> 0 and Hpx(~(t))> O. 
Then, 

xW(t))<O for all t ~ [O ,~] ,  t > T ,  

where T = C . 6 ~/2. The constant C > 0 only depends on bounds on Hpx and H (2) over - - p  

the set ~o+ c~([0, ~]). 
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Proof. Note that x(~(t)) < 0 holds lfx(y(t )) _ 0, 0 < t' < t < T.. In fact, ~Tcan only leave 
as a bicharacteristic into x > 0 with either Hpx > 0 or Hpx > 0 and H~Z)x > 0. It 
suffices to assume T <  7" and to show that the function a( t )= x(~(t)), t e [0, T],  
cannot satisfy simultaneously ~ > 0 and ~' < 0 on [0, T]. Assume to the contrary 
that a satisfies these inequalities on [0, T]. If IHpxl has a positive lower bound C' on 
Z ~ c~([0,  T]) then ~' < - C' on [0, T]. This contradicts ~ > 0 when T > 6/C' since 
~(0) < 6. In case H~2Jx has a positive lower bound on Z ~ n~7([0, ~]) we have with 
some positive constant Co 

C o a < ~ , , < C o  o n [ 0 ,  T ] .  

It follows from elementary calculus that this cannot hold together with a > 0 and 
~ '<0  on [0, T] and T>=C61/2, a(0) < b, if C > 0  is large enough. This proves the 
lemma. 

Continuing with the proof of Proposition 5.14 we get as an immediate 
consequence of (5.16), after letting j ~  ~ ,  

(5.18) x(?(t))=<O for t-to>O small. 

[Of course, we also obtain x(?(t)) > 0 for t - to > 0 small if ao r Z ~ just by changing 
signs.] To show that ?'+(to) is tangent to x = 0  it now suff• in view of (5.18), to 

x-(2) consider the case ao ~ +  and to show that for every 6 > 0  

(5.19) •  if It-to[ is small. 

Applying (2.8) with f = x  and noting that H+x=O we obtain 

Hpx(?(t))---~O as t ~ t o  and ?(t)eS~ 

This implies (5.19) since a violation of (5.19) leads to a sequence t j ~ t  o with 
[Hpx(y(tj))l > 6. Since r = 2Ix stays bounded on Z ~  we have actually shown that 
~'+ (to) is tangent to x = 2 = 0, i.e. ?'+ (to) C T~o(T*S). Consider the case ao ~ Zo_ _ Z~). 
We have to show 

(5.20) 7'+ ( to) = H_ ( a o) . 

With tj as in (5.16) introduce the approximate rays (Ij6, ?j6), 6 > 0, 

lj~ = [ j ~  It j, t o + 6 ] ,  7jo = ?jllj~ �9 

Using (5.16) we get for small 6 > 0  

(5.21) ~ V(Ijn, ?ja)C • ,  
J 

where 

(5.22) V~ = {(a, Hp(a)); a ~ Kc~Z~ d(a, go) < C6} 

w {(a, H_ (a)); a ~ Kc~ Z~,  d(a, ao) <= C6}. 

We may choose functions (Pl . . . . .  (~2n-2 defined in a neighbourhood of ao forming 
together with x and 2 a coordinate system near ao such that 

H _ c p l ( a o ) = l ,  H _ % ( a o ) = O  for k > l .  
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Using (2.8) we get a constant C > 0 such that 

I(~, goa)(o)- l l<  C0, 
(5.23) 

I((,gok)(a)l<CO for k > l ,  

for all (o, () e ~ ,  0 < O small. We apply Lemma 5.10 with f = gok, (I, Y) = (Ij~, ~iO) and 
obtain using (5.21) and (5.23) and letting j---} oo 

Igo 1 ( ? ( t ) )  - -  (/)1((70) - -  ( t -  to)l < COlt - tol, 

Igok(y(t))-- gok(O'0)l < COlt-- to[ for k >  1, 

for all t ~ [to, to +O]. The preceding estimates also hold with 7(0 replaced by 
exp( ( t - to )H_(ao)  ). Comparing these estimates we conclude (5.20) after letting 
O--*0. 

Finally, we consider the case a o 6 Z(c~Z~ ). ~f(to) is tangent to x =/t = 0 by 
( 5 . 1 9 ) .  We still have to show 

(5.24) 7 ' ( t o ) C { 2 n + ( a o ) + ( l - 2 ) n  (ao); 0_<2< 1}. 

First, assume that H+(ao) and H_(ao) are linearly independent. We can find 
smooth functions go• defined near ao with 

H_+ go• = 1, H+go_(O-o) = H_ go+(ao) = 0 .  

Thus, 

(5.25) (2H+ +(1 - 2)n_)go•  , 0_<2_< 1, 

and, setting go = go + + go_, 

(5.26) (2H+ +(1-2)H_)go(ao)  = 1, 0_<2< 1. 

Using (2.8), (5.25), and (5.26) we get a constant C > 0 such that 

(5.27) (~, go •  (a) ~ - co ,  o > o, 

(5.28) I(ff, go)(~r)- iI < C6, 6 > 0 ,  

for all (o, 0 ~ W, d(a, ao) < O, where 

W= {(a, H~(a)); a ~ Kc~Z ~ 

w{(a,(2+H+ + 2 _ H _ ) ( a ) ;  

a E K - - S  ~ 0 < 2 •  2+ + 2 _  =1,  2 •  o n l y i f a e X ~  ~} . 

We define the approximate rays (Ija, y j0), j E N, O > 0, 

l je,  = l j n  [to - O/Co, t o + O/Co], Tgo = " f j l l j~  �9 

Here C O > 0 is chosen strictly greater than the uniform Lipschitz constant for the 
(I j, ~,j)'s. Then, for small O > 0, 

(5.29) V(Ij~, 7j~) C ff'c~ {(o, ~); d(a, % )  < 6} if j is large. 

Using Lemma 5.i0 we get from (5.27}-(5.29) after ietting j ~  

(5.30) go • (y(t)) - go • (ao) > - C O l t -  tol, 
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(5.31) I~p(y(t))- q~(~o)- ( t -  to)l ~ C61t- tol, 

for It-tol <6/Co. Similarly, we get for any C ~ function ~p near ao with 

(5.32) H • ip(ao) = 0 

an estimate 

(5.33) Iw(T(t))- W(ao)l < C6[t- t01, I t-  tol < 6/Co. 

F r o m  (5.25), (5.26), and (5.30)-(5.33) we conclude that there exists 2 e  [0, 1], 
depending on t and 6, such that  

I~o_+ (y(t)) -- q~ _+ (exp (t - to) (An + + (1 - 2 ) n _ )  (ao))l < c61t - to I, 

]lp(~(t)) - lp(exp(t - to)(2H + + (1 - 2 ) n  )(%))1 < C6lt-  tol. 

Choos ing  finitely m a n y  ~p's such that  the differentials of the ~p's together  with the 
differentials of  x, 2, q~ +, and q)_ span the co tangent  space to T*(M,  S) at a o we 
obtain the inclusion (5..24), after letting 6 ~ 0 .  

If  H+(ao)  and  H _  (%) are linearly dependent  we may  find, by (1.2), a smoo th  
function q~ near a o with H+q~(ao)= 1 and H_qo(ao)>0 .  Choos ing  functions ~p 
which together  with x, 2 and q~ form a coord ina te  system near a o and which satisfy 
H+_~p(ao) = 0 we obta in  the inclusion (5.24) also in this case by reasoning as in the 
preceding case. 

Since we have analysed up to trivial sign changes - all possible cases the p roof  
of the proposi t ion,  and thus, also of  Theorem 1.3, is now complete.  
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