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1. Introduction 

Let 9 r be a transversely holomorphic foliation on a paracompact manifold X, of 
dimension p and complex codimension n. This means that ~- is given by an open 
covering {Ui}i~x and local submersions fi : Ui ~ E"  with fibers of dimension p such 
that, for i,j e / ,  there is a holomorphic isomorphism gii of open sets of C" such that 
fj=gj, .f~ on U,c~Uj. 

A complexification of ~" is a complex analytic manifold X of complex 
dimension n+p with a holomorphic foliation ~ of codimension n, and an 
embeddingj: X ~ . ~  such that ~ = j -  1 (~g-) as transversely holomorphic foliations, 
and such that the images of the leaves of~" by j  are totally real in the leaves of ~,~'. 

So locally the leaves of ~ are complexifications of the leaves of at. In fact, we 
are only interested in the germ of ~ along j(X). 

In this note, we show that a complexification of ~- always exists when the 
codimension is one, but that in general complexifications do not exist when the 
codimension is greater than one. 

2. Complexification of the Leaves 

In this paragraph we show that we can construct in an essentially unique way a 
complexification in the following weak sense. 

2.1. Proposition. Let ~- be a transversely holomorphic foliation on X. One can 
construct a real analytic manifold X with a real analytic transversely holomorphic 
foliation ~ with leaves complex manifolds and an embedding j : X ~  such that 

=j- 1(fir) as transversely holomorphic foliations, the leaves of fir being complex- 
ifications of the leaves of ~ .  More precisely, on X we have an open covering { Ui}~1 
with real analytic charts t~i : 0 ~ , "  • (E p such that the change of charts (a jt~;- 1 is of 
the form 

(z, w)-,%,(z),  hj,(z, g, w)) 
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with gji holomorphic in z, #jl holomorphic in w and real analytic in z. The foliation ~, 
is defined by the local projections obtained by composin# the c~i's with the linear 
projection on C". Moreover, the charts tpi = (9~ oj map U~ =j -  1(0i) in C" x R n. 

The oerm of ~ along j(X) is unique up to isomorphism. 

For complexifications in the sense of the introduction, in general, we don't have 
existence nor uniqueness. 

Proof. First of all, we can introduce on X a real analytic structure (inducing the 
given smooth C~ on X) such that the given foliation ~ is real analytic, 
and this can be done in an essentially unique way. Indeed, consider provisionally 
on X a real analytic structure X' inducing the given smooth structure. Then there is 
a unique germ of real analytic manifold Y with a transversely holomorphic 
foliation f~ (sometimes called the graph of ~ )  and a smooth embedding i: X ~ Y  
such that i-~(c~ = ~ as transversely holomorphic foliations. Using Grauert [1] 
and Royden I-5], we can construct a smooth isotopy it of i= io such that i~ is 
analytic and it is transversal to f~ for all t. So there is a smooth isotopy ht of X such 
that h,(~') = i~ l(f~); when X is not compact, we have to construct i t approaching 
the identity at the infinity of X. Then ~- will be real analytic for the real analytic 
structure h~- I(X'). 

The existence and uniqueness of the germ of the foliation ~ and of the real 
analytic embedding j : X ~ X  as in the proposition follows from Haefliger [2, 
p. 296, Theorem 1]. Indeed, as ~ is real analytic, we have a real analytic atlas 
~ : U ~ C " x  R p on X defming ~ ,  the change of charts being of the form 
(z, w) ~ (Oil(z), hj~(z, ~, w)), where 9ii is holomorphic in z and hii real analytic in z 
and w. Those charts can be extended to charts of .~ and the change of charts is 
given by the unique extension of hj~ as a holomorphic function in w. 

3. The Integrability Condition 

We are looking now for a complex structure on .~ inducing the given complex 
structure on the leaves of ~ and such that the projections obtained by composing 
q3 t with the projection on C" are holomorphic. 

The restriction to X =j(X) of a real analytic almost complex structure on a 
neighbourhood ofj(X) in X, inducing the given structure along the leaves of f i  and 
the given holomorphic transverse structure, is given by a vector valued 1-form co on 
X defined on the complexified tangent bundle To(X) of X with value in the 
complexified tangent bundle TC(~ at) to the leaves of~" whose restriction to To(X) is 
the identity. The kernel of co will be by definition the complex subspace for the 
given almost complex structure complementary to the tangent spaces to the leaves. 

In the local coordinates (z l , . . . , z , ,wl  . . . . .  wp) given by the chart 
~i: Ui - - ~ x  RP, co is of the form 

co = E cok| ~lOwk, 
where k 

cok = dwk + Z akj(Z, ~, w)dz i + ~,. bk/(z, Z, w)dzl 
J J 

the functions ak~ and bk~ being real analytic in z, :i, and w. 
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There is a canonical way of extending co to a neighbourhood ofj(X) in X, 
namely for complex values of wl,. . . ,  wp, the functions akj and b~i extend uniquely 
as holomorphic functions of the %'s. 

If the almost complex structure on X derives from a complex analytic structure 
on ~" satisfying the prescribed compatibility conditions, then it can be defined by 
such a 1-form co, with akj and bkj holomorphic in w. 

Indeed, the integrability condition can be expressed by the condition that the 
component of type (0, 2) of dcok, k=  1 .... ,p, with respect to the almost complex 
structure defined by the coframe dzl .. . . .  dz,,, col ..... cop should vanish. 

A straightforward computation gives 

, j \  l 

+ ~.~bkj/~,dff t ̂  d~q. 
l , j  

So the integrability conditions are 

3.0. ~bkj/Offl = 0, for k, l=  1 ... . .  p and j = 1, ..., n. 

3.1. ~ ( ~ b k j ~ , - -  ~ dbkjdff, b,i)d~, ^ df j=0  for k = l  .. . . .  p. 

3.0 can always be achieved by taking the holomorphic extensions of the real 
analytic functions b~j. Another choice for the coefficients akj does not change the 
almost complex structure defined by co, so that we can also choose the coefficients 
akj holomorphic in w. 

The integrability condition can also be expressed in a more intrinsic way in 
terms of the Nijenhuis bracket, namely the component of type (0, 2) of [co, col 
should vanish (cf. Malgrange I-4]). 

If the integrability conditions are satisfied, then the almost complex structure 
defined by co derives from a complex structure (cf. for instance Weil [6] for an 
elementary proof in the real analytic case). 

If the codimension n is one, then the integrability conditions are always 
satisfied. Hence we get the following result. 

3.2. Theorem. Any transversely holomorphic foliation of codimension one admits a 
complexification. 

4. Principal Circle Bundles over Complex Manifolds 

We consider a principal circle bundle X over a complex manifold M with 
projection re. Such a bundle carries a natural transversely holomorphic foliation : -  
whose leaves are the fibers of n, namely the inverse image by rc of the holomorphic 
foliation of M by points. 

4.1. Theorem. The natural transversely holomorphic foliation on X admits a 
complexification if and only if the associated complex line bundle over M comes 
from a holomorphic line bundle. 

Proof. It is clear that if the associated line bundle L comes from a holomorphic line 
bundle, then ~" admits a complexification. The embedding j of X in 3f = L is 
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obtained by introducing a hermitian metric on L and by identifying X with the set 
of vectors of length one in L. 

Conversely assume that ~- admits a complexification. The germ alongj(X) of 
the corresponding almost complex structure will be determined by a vector valued 
1-form c9 satisfying the integrability conditions. 

For a diffeomorphism h of X inducing an automorphism of :~- (in this special 
case this means that h maps fibers in fibers and projects on a complex analytic 
automorphism of the base space M), we define h'to as the vector valued 1-form 

(h'co, ~> = dh- t(og, dh(~)) 

for any ~ e TcX. 
If co satisfies the integrability conditions, then so does h*w. Replacing co by its 

average under the fight action of the circle SO(2) on X, we get a 1-form still 
denoted by ~o which is SO(2)-invariant and satisfies the integrability conditions. 

Let P be the principal Gl(l, C) bundle associated to the SO(2)-bundle X; we 
identify SO(2) with the subgroup U(1) of Gl(1, ~) so that X is identified with a 
subspace of P and the complexified tangent bundle to the fibers ofn : X ~ M  is the 
restriction to X of the tangent bundle to the fibers of P. 

The 1-form co being U( 1 )-invariant extends uniquely as a connection form 03 on 
P [a connection form for P is nothing else than a vector valued 1-form on P with 
values in the tangent space to the fibers of P, whose restriction to the tangent 
spaces to the fibers is the identity and which is Gl(1,C)-invariant]. The bracket 
[03, 03] is the curvature form of the connection and the integrability condition 
means that the component of type (0, 2) of [e3, 03] vanishes. This is precisely the 
condition that the principal bundle P (or equivalently the associated line bundle 
L) can be given a holomorphic structure (cf. Koszul and Malgrange [3]). 

4.2. Example. A principal circle bundle X ~ M  is characterized by its chern class 
cl e HZ(M, 7_,). Its associated line bundle comes from a holomorphic line bundle if 
and only if the image of cl in H2(M, O) by the homomorphism i induced by the 
inclusion of Z in the sheaf 0 of germs of holomorphic functions in M vanishes. 

If M is a compact Kaehler manifold, i(H2(M, Z)) generates H2(M, O) (this 
follows from Hodge theory). So ffH2(M, O) ~- O, for instance i fM is a complex torus 
of dimension bigger than one, then there are circle bundles for which the 
underlying transversely holomorphie foliation does not admit a complexification. 

4.3. Remark. The same considerations can be applied to the more general case of a 
principal K-bundle X with base space a complex manifold, where K is a compact 
Lie group. The underlying transversely holomorphic foliation ~- on X, whose 
leaves are the fibers admits a complexification if and only if the associated principal 
bundle with group K c (the complexification of K) admits a holomorphic structure. 
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