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O. Introduction 

In [A] and [Y 1], Aubin and Yau proved the existence ofa Ricci-negative Einstein- 
K~ihler metric on compact complex manifolds with ample canonical bundles. The 
purpose of this paper is to generalize the Aubin-Yau theorem to the category of 
open Satake F-surfaces with isolated quotient singularities. We note that this 
category includes as a special case the logarithmic canonical models of minimal 
surfaces of logarithmic general type which are treated in IS, K1, K2, K2 Added in 
Proof]. In this paper, we use the terminology"Satake F-manifolds" in the following 
sense. A complex space X is called a (Satake) F-manifold if it has at worst isolated 
quotient singularities. Let X be a V-manifold and ds 2 a Riemannian metric defined 
in the regular part of X. ds 2 is called a V-metric if we obtain it by pushing down a 
smooth metric defined in local uniformizations. Therefore a F-metric looks like a 
smooth metric in terms of local uniformizing coordinates. Two-dimensional 
V-manifolds are called F-surfaces. Our main result is: 

Theorem 1. Let X be a compact complex surface with at worst isolated quotient 
singularities and C a divisor which lies in the regular part of X with at worst normal 
crossings. Let X--*X be the minimal resolution of X and D = Y. Di its exceptional 

i 
divisor. We can determine the nonnegative rational numbers #i by requiring 
K~ + ~, I~D~ to be trivial near D. Assume the following conditions are satisfied: 

i 

(1) (K$ + C). Cj > 0 for every irreducible component Cj of C; 
(2) the divisor consisting of  Cj's with (K ~+C) .  Cj>0 has at worst simple 

normal crossings; 
(3) there is a no ( -  1)-curve (exceptional curve of the first kind) which meets 

Supp(C) at most one point; 
(4) for every ( -2)-curve  E ~ Supp(D) which meets D, there exists a component 

Di of D meeting E with I~i > O. 
I f  x(K$ + D + C) = 2, then there exists a complete Ricci-negative Einstein- 

K?ihler F-metric on X -  C with finite volume, which is unique up to multiplication by 
positive numbers. 
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L e t  B 2 be the open unit ball in ~E 2 and F a discrete subgroup of PSU(2, 1) 
acting o n  B 2 properly discontinuously with at worst isolated fixed points. The ball- 
metric is Einstein-K/ihler whose holomorphic sectional curvature is negative and 
constant, which is invariant under the action of PS U (2, 1). Assume the volume of 
X '= /~B  2 is finite. Then we can compactify X' by adding a finite number of cusp 
points. Let X be the partial minimal resolution of X' over the cusp points and C the 
exceptional divisor. C consists ofdisjoint elliptic curves. (X, C) with the ball-metric 
yields an example of Theorem 1. Hirzebruch-Mumford's proportionality theorem 
tells us that the following equality 

(K~ + ~i lx,Di+C)2 =3 {e(X)-e(C)-e(D)+ ~ (l/16,,I)} 
holds, where {p} runs over the quotient singularities of X. We obtain the following 
uniformization theorem by integrating the pointwise deviation of the canonical 
Einstein-K/ihler V-metric in Theorem 1 from the ball-metric (cf. the proof of 
Theorem 2 in [K2]). It is a converse of the proportionality theorem. 

Theorem 2. Let X, C, X, D be as in Theorem 1. I f  we assume x( K ~ + D + C) = 2 and 
conditions (1) (2) (3) (4) in Theorem 1, then we have the following inequality 

(K~+ ~i piDi+C)2 <3 {e(X) -e (C)-e (D)+ ~ (1/]Gpi)}, 

where {p} runs over the quotient singularities of X and Gp is the finite subgroup of 
U(2) corresponding to p. The equality holds if and only if the universal covering of 
the regular part of X -  C is biholomorphic to the open unit ball B 2 in ff~2 minus a 
discrete set of points. In other words, the equality occurs if and only if there exists a 
discrete subgroup F of PSU (2, 1) which acis on B 2 properly discontinuously with at 
worst isolated fixed points such that X - C  is biholomorphic to the minimal 
resolution of I~B 2. 

The inequality part of Theorem 2 was first proved in [M] using algebraic 
geometry. The advantage of our differential geometric proof of Theorem 2, whose 
original is Yau's method in the proof of Calabi's conjecture IY 1], gives us a point 
of view to regard the inequality as the precise deviation of the canonical Einstein- 
K/ihler V-metric from the ball-metric. 

1. Remarks and Examples 

1. IfC = 0 and D contains only ( -  2)-curves, Theorem I implies the existence of the 
canonical Einstein-K~ihler V-metric on the canonical model X of X, where X" is a 
minimal surface of general type (cf. [K1]). The first Chern class el(X) of X is 
represented by the K~hler form of the canonical Einstein-K~ihler V-metric in the 
current sense. In this case, the inequality in Theorem 2 becomes 

0<-3 {~ e(D,)-(WIG, I)} _-< cl (R),  

where p runs over the rational double points on X and Dp is the corresponding 
exceptional set. The values of the invariant k(p) = e(Dp)- (1/I Gpl) is n(n + 2)/(n + 1), 
(4m 2 - 4 m -  9)/4(m- 2), 167/24, 383/48, 1079/120, according as p (or Dp) is of type 
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A,, D~, E 6, E 7, E s, respectively. Therefore the first inequality becomes equality if 
and only if Kx is ample and the second inequality becomes equality if and only if 
there exists a discrete group FCPSU(2, 1) which acts on B 2 properly discon- 
tinuously with at worst isolated fixed points such that X is biholomorphic to the 
minimal resolution of/-~B 2. The following example is due to Hirzebruch: Let X' be 

4- 4 

a surface in P4((E) defined by ~ Z/s = 0 and Y, Z] 5= 0. X' has 50 singularities 
i = 0  / = 0  

each of which is resolved in a smooth curve of genus 6 with sdf-intersection 
number - 5 and 1875 rational double points of type A,. Let X be the partial 
minimal resolution over the former 50 singularities and X the full minimal 
resolution. Then X is of general type and X is its canonical model. It is shown that 
3c2(97 ) -- c2(97) = 27,000 and k(A4) = 24/5. The middle term of the above inequality 
is 3 x 1875 x (24/5) = 27,000. Hence we obtain X by taking the quotient variety of 
B 2 with respect to some discrete subgroup F of PSU(2, 1) with isolated fixed points 
of type A,, 

2. In [H2], Hirzebruch constructed the following example. There is a sequence 
X, (n = 2, 3 . . . .  ) of minimal surfaces of general type with the following properties: 
c2(X,) = n 7, 3c2(X, ) -  c~(X,)= 4n 5. X,  carries 4n 4 smooth disjoint elliptic curves 
C,. The pair (X, C)=(X, ,  C,) satisfies the assumptions in Theorem 2 and the 
equality 

(Kx,, + C.) 2 = 3e(X,,- C.) = 3n 7 

holds. Therefore the universal covering of X . - C  n is biholomorphic to B:. 

3. Hirzebruch presented the following example in his lecture at Osaka University, 
21 

1984. Let L = U Lj be a line configuration on P2((~) such that L has 28 triple 
j = l  

points and 21 quadruple points. Write lj = 0 for the defining equation of Lj. Let X' 
be a surface obtained by blowing up all r-pie points (r > 3) in the line configuration. 
Let X--+X be the Abelian covering of order 220 obtained from the Abelian 
extension 

It is shown that 3? contains 28.217 disjoint (-2)-curves D~ and 21- 216 disjoint 
elliptic curves Ci with C~. C~ = - 4 .  Let X be obtained by contracting these 28.217 
(-2)-curves. Then ((X, C), X, D3 satisfies the assumptions in Theorem 2. The 
numerical invariants of 9? are 

3c2(X)-c2(X)=21 .22o  (using H~fer's formula [HS]) 

Ci' Ci= ( - 4 )  �9 21.216 , 
i 

E e(O,)-(1/IO, I)= ( 2 - 1 / 2 ) .  2 8 . 2 "  = 2 1 . 2  . 
i 

Therefore 

= - 2 1 - 2 2 ~  �9 21 .216+3 �9 21 .21s=0 .  
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It follows from Theorem 2 that ) ( -  C~ is biholomorphic to the minimal resolution 
o f / ~ B  2 for some discrete subgroup FCPSU(2 ,  1) which acts on B 2 properly 
discontinuously with isolated fixed points of type A~. 

2. Zariski Decomposition 

Let D be a rational divisor e Div(X)| on a smooth surface X. D is a formal sum 

diD i, where di s ~ and (Di}~ z a locally finite sequence of irreducible curves on 
i = l  

X. We call D effective if all d~'s are non-negative and not all zero. Assume 
D e Div(X) |  is effective. Then the Zariski Decomposition Theorem is: 

Theorem A (Theorem 7.7 in [Z]). There exists one and only one effective rational 
divisor N having the following properties: 

(1) Either N = 0  or the intersection matrix of the curve in Supp(N) is negative 
definite; 

(2) D - N  is numerically effective, i.e., the intersection number with every 
irreducible curve is non-negative; 

(3) ( D - N ) . N = O ;  
Furthermore we have necessarily P: = D - N  is an effective rational divisor. 

The decomposition D = P  + N is called the Zariski decomposition. We call P 
and N the positive and negative part, respectively. We shall use the following result 
due to Zariski (of. p. 612 of [Z]): 

Theorem B [Z]. Let D be an effective divisor with the Zariski decomposition 
D = P + N. I f  B, denotes the fixed component of ]nDI, then under the assumption that 
dimlhD] >0  for some h, the divisor B , = B n - n N  is effective and is bounded from 
above in n, i.e., the number of irreducible curves which appears in B n is bounded in n 
and the coefficients of  these curves are bounded in n. I f  in addition D is numericallly 
effective, then Bn is bounded above in n. 

We collect some Lemmas on effective divisors on a compact smooth surface. 

Lemma L Let L be an effective divisor and L =  P + N the Zariski decomposition, 
Then if x(L) > 1, we have to(L) = x(P). 

Proof. Let B,, be the fixed component of ImL]. It follows from Theorem B that 
Bm= mN + B, where B is an effective divisor. Thus we get a natural isomorphism 
H~ ~ ( m L ) ) ~ H ~  r if mP is an integral divisor. Q.E.D. 

Lemma 2. I f  L is an effective divisor and B the fixed component of ILl. Then ( L -  B) 
.B>O. 

Proof. Let B = ~ B~ be the decomposition into irreducible components. For 
i = l  

every i, there is a holomorphic section s~ of [ L -  B] such that B~ is not a component 
of (si). Pick a point Pi from B~\(UB,~\j~; so that s~(pi)=~0. Clearly we can chooSe 

complex numbers a~ for i=  1 . . . .  , r such that ~ a~s~(p:)~e 0 for every j. Let 

E =  a~s i e I L - B  I. Then no B~ is a component of E. Thus ( L - B ) ' B  
f 

=E.B>=O. Q.E.D. 
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For an effective divisor L we define a rational map ~ILI of X into PN(C) by 
Lr(x) = (ao(X) :... : aN(x)) ~ P~(C), where {ao . . . . .  ~N} is a C-basis for n~  O(L)) 

and N = dim L + 1. 

1,emma 3. Let L be a divisor which is effective and numerically effective. Then 
~(L) = 2 if and only if L 2 > O. 

Proof. If part follows from the Riemann-Roch formula. To prove only-if part, let 
Bm be the fixed component of mL. It follows from Theorems A and B that Bm is 
bounded above in m. Since h~ (9(mL-Bm)) = h~ (9(mL))~oo as m ~ ,  we 
must have (mL-Bm)2>=O. Since L is numerically effective, we have L. Bin>0. It 
follows from Lemma 2 that (mL-B~) 'BI>O. Now suppose L:=0.  Then 
O=(mL)2=(mL).B,+(mL-Br,)E+(mL-Bm).Bm>O. Hence we must have 
(rnL- B,) z = 0. This implies that ImL- BmI has no base points. Therefore ~l,~L- n,,l 
is a holomorphic mapping into some PN(C). Since x(mL-  Bin) = x(mL) = 2, we see 
that (mL-Bm) 2= "the volume of ~I~L_n~I(X) with respect to the Fubini-Study 
metric >0. Contradiction. Hence we get L2>0. Q.E.D. 

Now let X, C, X ~, D be as in Theorem 1. We assume the conditions (1) to (4) in 
Theorem 1. Furthermore we assume x(Kg + D + C) = 2, i.e., h~ O(Ke + D + C)) 
grows like m z. Let K i + D + C = P + N  be the Zariski decomposition. We 
decompose D into irreducible components D i (1 < i < s). It is well known that each 

D~ is PI(C) (cf. [B]). Let #i e ~ be defined by requiring K~ + ~ #iDi should be 
i = 1  

trivial near D. #~'s are uniquely determined and 0 </~ < 1. It is justified in the 
following argument: Let ~ : (Y, D)~(X,  p) be the minimal resolution of a quotient 
singularity (X, p) = (G\B, G. 0) where B is a ball and G is a finite subgroup of U(2) 
with only one fixed point 0. Set h =IG[. Then (dx ^ dy) h is a G-invariant h-pie 
holomorphic 2-form on B. Thus there exists a h-pie holomorphic 2-form e) on 
Y-D. On the other hand, since hi(Y, (9)=dimRtn ,O=0 and H2(y, 0)=0,  we 
have n 1 ( y, d~*) = H2( Y, ~ = 7, ~. Thus every element of H 1 ( y, 6 *) can be written as 

~, ),~D~ for some rational numbers 2i. Hence co must be a h-pie meromorphic 
i=1 

2-form Qn Y. Since o9 is locally L 2/h integrable at D, the order of the pole along D is 

at most h -  1. Hence, if (co) = ~ 2~D~, we have - h < 2~. #~'s corresponding to K~ 
i = l  

are determined in the following way: Set a~=Kg.D~, ao=D~.D J. Then 

a~ = ~. a~2j. It is easily shown that if every a~ > 0, then every 2~ < 0. Here, we have 
j = l  

used the fact that (a~i) is symmetric and negative definite with a o > 0 for i~:j and 
a, < 0. Since every D~ is a rational curve with self-intersection number - 2, we have 
ai->0. Thus - 1  <2 jh= /~ i<0 .  

Lerama 4. Let K g + D + C = P + N be the Zariski decomposition. Then 

P = K g +  ~ #~D~+C 
i = l  

and 

N =  ~ (1-~q)D~, 
i = l  
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where every kh is a non-negative rational number less than one and is determined 
uniquely by requiring that K~ + ~, #iDi should be trivial near D. 

i 

Proof. Set N =  ~ (1-~i)D~+ ~. fljBj, where 0t i, fl~ are rational numbers with 
i = 1  j = l  

~i<1, fl~>0 and Bj are irreducible curves on X ~. We rewrite this as 

N= ~ (1 -1h )D ,+E-F+G.  Then P = K ~ +  ~ t ~ , D , + C - E + F - G ,  where E, 
i = 1  i = l  

F, G are defined by ~ ~k--~k)Dk, ~ (~l--#z)Dl, ~ fl~Bi, respectively. Since 
ltk>~tk Itt<oq j =  1 

P is numerically effective, we have P . ( ~  (1 -#i)D~+ E + G) __> 0. Since 
k - -  / 

K ~ +  ~ # i D i ~ 0  near D, Cc~D=0 and the intersection matrix of Supp(D) is 
i 

negative definite, we get P.F<F2<O. But P . ( ~ ( 1 - # , ) D i + E - F + G )  
X ~ 

= P- N = 0. Thus we get #i > ~i for all i. Hence P can be written as P = K~ + 5~ #~O~ 
i 

+C-~,( la~-ch)Di-~. f l jBj  with ct~<#i and fl~>0. We claim that P'=K~ 
i j 

+ ~ #~D i + C is numerically effective. Note that P'  is effective. If E is a curve 
i 

contained in Supp(C + D), we have P' .  E > 0 by our assumption. If E is a curve 
which is not a component of Supp(C+D), then P' .E  must be non-negative. 
Indeed, if otherwise, we have K,~. E < 0 and E 2 < 0. Thus E is a ( -  1)-curve with 
C- E = 0 which has been excluded by our assumption. Therefore P' is numerically 
effective. From the uniqueness of the Zariski decomposition, P=P'. Q.E.D. 

Proposition 1. Under the assumption of Theorem 1, P has the following properties: 
(1) p 2 > 0 ;  
(2) P is numerically effective; 
(3) For every irreducible curve E on X, P . E = 0 holds only if E is a component of 

Supp (D + C). 

Proof. From Lemmas 1, 3, and 4, we have p2 >0.  (2) is clear. I fE is an irreducible 
curve which is not a component of Supp (D + C) and P.  E = 0, then K~. E < 0 and 
E2<0. Thus E is a (-1)-curve with C . E < l  or a (-2)-curve which is not 
contained in Supp(D). But both have been excluded by our assumption. Q.E.D. 

Let m be a positive integer such that mP is an integraldivisor. We write d for the 
union of all irreducible curves E with P .  E = 0, and 8 = Y. 8v the decomposition 
into connected components in the usual topology. 

Proposition 2 (cf. Theorem (5.8) in [S]). Under the assumption of Theorem 1, there 
exists a positive number n o = no(X, D, C) with the following properties: for any 
integer n>no, O) [nmPI has no base points; (ii) I f  N + l=h~ and 
{no . . . . .  aN} is a C-basis for H~ (9(nmP)), then the map �9 = ~l,,,el : )(~PN(~) is 
a holomorphic map whose restriction to ~ - 8 is a biholomorphic map onto its image 
and ~ -  l~(z) is equal to either z or 8, according to z ~ X -  8 or z ~ 8,, respectively. 
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Proof. The proof is almost the same as that of Theorem (5.8) in [S]. In 105-110 of 
IS], Sakai proved a sequence of Lemmas concerning mF where F is the adjoint 
divisor of a semi-stable curve C. It is easy to modify these Lemmas into suitable 
forms to our purposes. Roughly speaking, these Lemmas remain valid if we replace 
F by our raP, where P = K~ + Y'. piD~ + C. Q.E.D. 

i 

3. Proof of Theorem 1 

From Proposition 2, we get the following: 

Lemma 5. Under the assumption of Theorem 1, there exists a real closed (1, 1) form 
? representing cx(mP) in the de Rham cohomology having the following properties: 

(i) y is positive definite outside of g ; (ii ) For any irreducible component E of ,~, i*? 
vanishes where iE is the inclusion of E into X. 

Proof. Set n? = q~* [the Fubini-Study metric form on P~(~)] for large m. Then 
has the required properties. Q.E.D. 

From here on, we regard X as a Satake V-surface. 

Definition. Let p be a singular point of X, and G the finite subgroup of U(2) 
corresponding p. There is a strictly pseudo-convex neighborhood U of p such that 
(U, p) ~ (G\B, G. 0), where B is a ball with center 0. We call the quotient map B ~  U 
with respect to G a local uniformization around p. Let T be a smooth tensor field on 
the regular part of X. We call T a V -  Coo tensor field if we obtain T by pushing 
down a Coo tensor field in terms of local uniformizations. 

Let D =  ~Du,  C =  ~ C a  be the decomposition into connected components, 
tt 

and D = ~ Di, C = Y~ Cm the decomposition into irreducible components. For each 
i m 

i, m, let s~ and t,. be the holomorphic sections of [Di] and [-Cm] such that (si) = D,. 
and (t,) = Cm. There exist a smooth volume form O on X, Hermitian metrics for 
[Di] and [Cm] such that the singular volume form f2'= O / ~  Isil 2~' It,,I 2 satisfies 

~= -RicO' ,  where ? is as in Lemma 5 and Ric V= - V-Z-1 0~-logv for a volume 
form v = v 1--I (]/-L-~ dz i ̂  d~i). Now let (U, p) ~ ( G\B, G. 0) be a neighborhood of a 

i 
singular point of X and (1_7, D~) its minimal resolution. Since the usual fiat volume 
element is U(2) invariant, we can push this down to U - {p) = [7 - D~. We write vu 
for the resulting volume form on U-{p}.  From the arguments just before 
Lernrna 4, we see that there is a C oO function h'u defined in U such that O = h~v, on 
U. We define a Coo function h~ on B -  {0) by n*(h~l U -  {p}), where n : B ~  U is the 
quotient man On the other hand, let/~ be a local K/ihler potential for the Fubini- 

1 " "  / t  t " 

Study form on PN(IE). Thus we get a Coo function h~=z*b*/~, on B. Since 80-h~ 
~dgh~ on B-{0},  h '~  C~176 and h,~ Coo(B-{0}), we must have h,~ Coo(B). 
Summing up, we get the following: 

~rnrna 6. t2' = O /Vl  ls,lZ~, lt,,I z is a V -  C ~ volume form on X - C. 
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The connected components g~ of g are classified in the following: 

Leauna 7 (cf. Lemma 1 of [K2]). Each g~ is one of the following five types: 
(1) gv=D~ for some #; 

I f  g~ is contained in C, g,  is one of the followings: 
(2) a smooth elliptic curve with negative self-intersection number; 
(3) a cycle of smooth rational curves with self-intersection numbers < - 2  and 

some of them < - 3; 
(4) a rational curve with a node with negative self-intersection number; 
(5) a chain of smooth rational curves with self-intersection numbers < -2. 

Proof. See the proof of Lemma 1 in [K2]. Q.E.D 

Lenuna 8. Let (Y, A ) ~ ( X ,  p) be the minimal resolution of an isolated 2-dimensional 
singularity where A is a smooth elliptic curve with self-intersection number - b  <0. 
Then by replacing X by an appropriate neighborhood of p if necessary, we can 
express X -  {p} as an orbit space in the following way: There exist a positive number 
a, real numbers e, fl and a lattice .~ in �9 defined by {m+nco; m, n e Z ,  Im(co)=a} 
such that 

Y -  A = X -  r\w, 

where W =  {(u, v) ~ C2; Im(u)-Iv] 2 > L} for some positive number L, 

I" = 1 ; h(~) runs over the class of me + n i l -  tuna ~. 
0 modulo (2a/b)7Z. J 

The action of the above matrix is to send (u, v) into (u + 2i~v + i]7] 2 -  2h(7), v +~). 

Proof. See the proof of Lemmas 4 and 5 in [K2]. Q.E.D. 

Since 5r Im(u)-]v]2>0} is biholomorphic to B 2, 5: admits a 
complete K/ihler metric form with constant holomorphic curvature. The K/ihler 
potential of this metric form is given by logF, where F(u, v)= (Im(u)-Iv]2) - L 
Since F(u, v)- 1 is invariant under the action of F, this projects down to a function 
fA on X-{p}.  Thus we obtain in a canonical way the function fA having the 
property that - ~ O0"log fA is the ball metric near A. Let (8v~1)} be the union of 
connected components o fg  of type (2) in Lemma 7. For each v(1), we have got in a 
canonical way the function fv~) defined in a neighborhood of g,ca) minus g~), 
whose _]/-L-~ 0~log is the ball-metric near gym. 

Lemma 9. Let ( Y, B)--*(X, p) be the minimal resolution of an isolated 2_dimensional 
r - - |  

singularity where B is a cycle ~, Bi of F l '  s with - B  i �9 Bi=bi> 2, some bi~ 3 and 
i = 1  

r ~ 2 or a rational curve Bo with a node with - Bo" Bo = bo > 1. Let Wk be an irrational 
quadratic number defined by lim {qk--(qk_l--( . . . --(q,_ l - -q ; - l ) - l . . . ) - l )  -1}' 

where (qk} is a periodic sequence with period r defined by qk = bk for 0 <= k < r-1 
when r > 2 or qo = bo + 2 when r = 1. Let {Rk}k~ z be a sequence defined by R_ 1 ~ w~ 
Ro = 1, qkRk = Rk- 1 + Rk + 1 for k ~ Z. Let M be a free Z-module of rank2 9en crate 
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by 1 and w 0, V the infinite cyclic muttipIicative group 9enerated by R r. Then by 
replacing X by an appropriate neighborhood of p if necessary, we obtain 

Y-B=x-{p}~r\w,  

where W = {(zl, z2) 6 IE2; Yl > O, Y2 > O, YlY2 > L, where zi = xi + ] /-~Yi},  for some 
positive number L, and 

The action of the above matrix is to send (zl, z2) into (SZl +1~, e'zz + ff), where ' 
means to take the conjugate over ~ .  

Proof. SeeEH1].  Q.E.D. 

The product metric of the Poincar6 metric on H2=  {(zl, z2)e ~2; Ira(z0 > 0, 
Im(z2)>0 } is given by _/0~logF, with F(zl ,z2)=(Im(zOIm(z2))  -1 which is 
invariant under the action of F, we obtain in a canonical way the function fn 
defined on X - {p} whosei  0b-log is the HZ-metric near B. Let {g~2)} be the union 
ofg~ of type (3) or (4) in Lemma 7. For each v(2), we have got in a canonical way the 
function f~r defined in a neighborhood of g~2~ minus g~t2) whose - i  0~-log is the 
H2-metric n e a r  gv(2)" 

Leinma 10. Let (Y, E ) ~ ( X , p )  be the minimal resolution of an isolated 2-dimen- 

sional singularity where E = ~ E k is a chain of F a' s with b k = - E k �9 E k ~ 2. Let n/q 
k = l  

be the irreducible representation of b l - ( b : - (. . .(br _ 1 - b71)- 1...)- 1)- 1 and F the o) 
cyclic group generated by ~q , where ~=exp(2~i/n). Then have (X,p)  

~(F\B, F .  0) by replacing X by an appropriate neighborhood of x if necessary. 

Proof. See for example [B]. Q.E.D. 

The product metric of the Poincar~ metrics on the unit punctured disk on D .2 
has a K/ihler potential F(z ~, zz) = (log Iz ~1- 2)- 1 (log [z21 - 2) - ~, which is invariant 
under the action of F. Thus we get in a canonical way the function f~ whose 
~i 0~-log is the D*2-metric near E. Let Eo and Er + 1 be the irreducible components 
of C-~f~ca) intersecting E1 and E,, respectively, where E = ~,(3~, one of the g,  of 
type (5) in Lemma 7. We can extend f~ to the function fE defined in a deleted 
neighborhood of EowEuE1 +, which is written as loglaol z and logla,+ al 2 in the 
newly added domain of definition of fE near Eo and E,+ 1, respectively. 

Definition. Let V be a domain in IE". Let X be an m-dimensional complex manifold 
and ff a hotomorphic map of V into X. ~ is called a quasi-coordinate map if ~ is of 
maximal rank everywhere. In this case, (V, ~b) is called a local quasi-coordinate of X. 

Definition. Let X be a complex V-manifold with at worst isolated quotient 
singularities and to a complete K/ihler V-metric on X. We say that (X, to) has 
bounded geometry if the following conditions hold: There exist a system of quasi- 
Coordinates q/" = {(V~, v~)} and a neighborhood U(p) of each quotient singularity p 
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such that (U(p),p)~(Gp\B, Gp.O) and U(p)c~U(q)=O having the following 
properties: 

(i) U (Image of V~)u U U(p)=X;  
~t p 

(ii) there are positive numbers e and t5 independent of ~ such that B(e)C V~ 
c/~(~); 

(iii) there are positive constants _c and ~r (k=0,  1 .. . .  ) such that c-~(~j) 
< (O~i:) < c(8ij) and 

Ic~Ipt + I ~ : / c ~ v ~  c ~ l  < d l~ I + I~ 

for all multi-indices p, q where o~ =i_g~dv~ dv~ in terms of (v/~) for all ~t, and the same 
inequalities hold for all lifted metrics from U(p)'s. 

Definition. Let u be a function of class V - C  ~. For a nonnegative integer k and 
e (0, 1) the V -  C k' ~(X) norm of u is defined by 

with 

lulv,k,~ =max(A, B) 

A =  sup J'sup 32 Ic~l~I+I~I~u(O/O~. ~1 
~ B IPl+lql<k 

+ sup E Ir 
;,;'~/J lal+tbl=k 

�9 I(O%*u(0/~ ~ e~.)-  ( ~ u ( ~ 3 / a ~  ~ ~(~)1}, 

B =  sup f sup  32 [8l~l+lblu(z)/avaS~} 
)zeV. lal+lBl=<k 

+ sup E Iz-z'l-" 
z,z" ~v~ lal+lbl=tr 

Z ~ Z "  

where nv:B~U(p ) is the quotient map around p. 

Definition. For a nonnegative integer k and a~(0,1), the function space 
V - C k ' ~ ( X - C )  is the Banach space obtained as the completion of 
{ue V-C~176 [ulr, k.~< o~} with respect to the norm l" IV,k,~. 

Let 8~ be defined by: 
(1) If 8 ,  is of type (1), then 8 ; = 0 ;  
(2) If 8 ,  is of type (2) or (3) or (4), then 8;  = By; 
(3) I fS ,  is of type (5), then 8;  is the union of By and the irreducible curves oft  

intersecting 8,. 

Lemma 11. There exist a smooth volume form fl on Y,, Hermitian metrics for EDi] 
and [Cm], a V-Coo function h on �9 and V - C  ~~ functions q~ on X-8 '~  such that 

= hK2/~ Isil 2~' Itml z I-['g, I-l" (log Jsml- 2)2 
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(where I T  means to take the product over v such that 8v is contained in C and ]-I" 
means to take the product over m such that Cm is disjoint from 8) .  Is a V -  C ~ volume 
farm on X - C with the following properties: 

(i) 0 9 = - R i c ~  is a complete Kdhler V-metric on X - C  with finite total 
valume ; 

(ii) ( X - C ,  09) has a quasi-coordinate system with bounded geometry; 
(iii) The function log(T/09 2) is of class V -  CR'~(R-- C) for any k, a with finite 

V -  C k'~ norm. 

Sketch of the Proof (detailed discussion is given in Lemma 5 of [K2]). If p is a 
singular point of X with (X, p) (G\B, G. 0), then h should be the push down of 
[-[Z[ 2 defined in B. Hence ~ o = - R i c T  is essentially the push down of the 
restriction of the Bergman metric of B z to B. Let ~v be a connected component of 8 
contained in C. We have shown the existence of the canonical function fv whose 
-~ - log  gives an Einstein-K/ihler metric coming from the ball-metric or the 
H2-metric in a deleted neighborhood of r Let g~ be a V -  C ~ function on ~" - 8'~ 
which is equal to f~  or f2  according as ~ is of type (2) or of types (3) and (4) near 
8~. Then 09 is essentially the canonical metric coming from the ball-metric or the 
//a-metric. Thus to consider - Ric ~' is to make - Ric~' more positive by adding 
the ball-metric or the HE-metric of cusps near ~ and by adding the Poincar6 
metric of the transversal punctured disk to Cm disjoint from g. It is a 
straightforward computation to verify that log(~/09 2) belongs to V - c k ' ~ ( X  - C) 
for any k, ~. Q.E.D. 

We expect that co is a good approximation of the desired Einstein-K/ihler 
metric. Hence we deform co into o9 +_/~-u = o5 such that o5 is Einstein-K/ihler. 

Proof of Theorem 1. Theorem I is a direct consequence of Lemma 11 and the 
following general result: 

Theorem C. Let X be a complex n-dimensional V-manifold with a V -  C ~~ volume 
form T such that 09 = - Ric ~ is a complete Kdhler V-metric with bounded geometry 
and the function f =log(~P/~') belongs to V -  Ck'~(X) for any k, a. Then there is a 
unique solution u of 

(09 + ~ / ~  d~u)" = exp(u + f)09" 

belongin a to q / = { u e  V - C ~ ;  c-109< 09+ ~ - S l  OJu <cco for some positive con- 
stant c}. The resulting 89 = 09 + i dJu is a Ricci-negative complete Einstein-K~ihler 
V-metric on X.  

Proof. This is a direct consequence of the following: 

Theorem D. Let M be a V-manifold endowed with a complete K~ihler V-metric of 
class V_C~.~ with k ~ 5 .  I f  (M,09) has bounded geometry, then for any f 
V-Ck-2.~(M), there is a unique solution u to 

(09 + ~ t)~u)" = exp (u + f )  09" 

belonging to { u ~ V -  C k' ~( M) ; c- 1 09 < o9 + i_ d ~u < c09 for some positive number c }. 

Proof. See [K1, K2] and [C, Y]. Q.E.D. 
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4. Inequafity for Chern Numbers 

Let M be a V-surface with at worst isolated quotient singularities. Let g be a 
Riemannian V-metric. Let ~r be the minimal resolution of M and go a smooth 
Riemannian metric on _~. Then we have 

e(g) = e (h4) -  E (e(Ep)-  1/Ia~l), 
M p 

where e(g) is the Euler form of g and p runs over the singularities of M. To prove 
this, we recall the Gauss-Bonnet Theorem for manifolds with boundary: 

Gau~s-Bonnet Theorem. Let (M, g) be a 2k-dimensiona! compact oriented Rieman- 
nian manifold with boundary N and assume that, near N, it is isometric to a product 
of N and an interval. Then 

S e(g) = e(M). 
M 

Let U be G\B where G is a finite subgroup of U(2) and g a Riemannian metric 
on U which is isometric to a product near the boundary and is a flat V-metric near 
the singularity G. 0. Let U be the minimal resolution of U and g0 a Riemannian 
metric which is isometric to a product near the boundary and is smooth near E, 
where E is the exceptional set. Then we apply the Gauss-Bonnet to get 

IGI-I = S e(g) = $ e(g0) + lim J" Q, 
U U r-~O 0W(r) 

S e(go) = e(U) = e(U '-- E) + e(E) = e(E), 
U 

where W(r) = U - z(B(r)) and rr is the projection. Q is the universal polynomial of 
the difference ofthe connection forms and the respective curvature forms. Thus we 
have 

lim S Q = - (e (E)- IGI-  ~). 
r'-*O OW(r) 

To prove the desired formula, let g be a V-metric on M which is fiat near the 
singularities and go a smooth Riemannian metric on M. Then we have 

j e (g) -~_e(go)=l im ~ Q = - Z ( e ( E p ) - [ G / - ~ ) .  
M M r--,O OW(r) p 

Let X,  C, X,  D be as in Theorem 1. Then there exists a unique complete 
Einstein-K/ihler V-metric o5 on X - C  such that Ric(o3) = -e3.  Let 5i be the i-th 
Chern form of the Hermitian connection of o3. Set co = - Ric ~, where ~ is as in 
Lemma 11. 

Lemma 12. Under the above situation, the following equalities hold: 

C2 = e ( • )  - -  e(O) - e(C) + Z I Gpl- 1 
X p 
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Proof. The proof is the same as that of Lemma 9 in [K2] except determining the 
contribution of the singularities of X. Since the proof of the first equality is exactly 
the same as the corresponding part of the proof of Lemma 9 in [K2], we prove the 
second equality. Let 91,92, and 9a be three Riemannian metrics on the regular part 
of X. They are distinguished from each other according to their behavior at the 
singularities and C. 91 is equal to the canonical cusp metric near C and is a flat 
V-metric near each singular point. 92 is a smooth Hermitian metric for t2~(log 6")* 
and is a smooth flat V-metric near the singularities, g3 is a smooth Hermitian 
metric for I2~(logC)*. Let W ( r ) = X - ( ~  7zp(B(r))), where rrp is the projection 

/ 

from B onto a neighborhood of a singular point p. Then we have 

c2 = ~ c2(gl)= ~ c2(g2) (by the proof of Lemma 9 in [K2]) 
X X X 

= lim S c2(#3) + dO 
r ~ O  W(r) 

=c (  (logC)).lim Q 
r-,O ~W(r) 

=e(X)-e(C)-e(D)+Y, IG, 1-1. Q.E.D. 
p 

Proof of Theorem 2. Since 03 is Einstein-K~ihler, we have a point-wise inequality 
0 < 3~ z - ~2. Integrating this inequality over X and applying Lemma 11 yields the 
desired inequality. Since 392 - ~2 measures the point-wise deviation of 03 from the 
ball-metric, the equality in Theorem 2 occurs if and only if03 is the ball-metric. The 
rest is the same as the corresponding part of Theorem 2 in [K2]. Q.E.D. 

As an application of Theorem 2, we prove a rigidity theorem. Let F C PSU(2, 1) 
be a discrete group of automorphisms of B 2 acting freely. Assume the volume of 
X"= F\B 2 is finite. Then X" is compactified to X' if we add a finite number of cusp 
points. Let X be the minimal resolution of X' over the cusp points and C the 
exceptional curve. C consists of mutually disjoint elliptic curves Ci with C 2 <0. 

Theorem 3. Let (X, C) be as above and let (Y,D) be a pair of a compact smooth 
surface Y and a reduced curve D with normal crossinos. I f  there is an oriented 
homotopy equivalence between (X, C) and (Y, D), then Y - D  is biholomorphic to 
X -C .  

Proof. It follows from the assumption that the tubular neighborhood of D is 
diffeomorphic to that of C. We can identify the connected component Di of D, 
which is a torus, with the corresponding component Ci. We have also Kr" Di 
~D~=C~=Kx.C . Since e(Y)=e(X) and Sign(Y)=Sign(X), we have K 2 

2e(Y) + 3 Sign (Y) = 2e(X) + 3 Sign(X) = K 2. Therefore (Kr + 9) 2 = (Kx + C) 2 
~-3(e(Y)-e(D)). We want to show that the logarithmic Kodaira dimension ~ of 
(Y, D) is 2. To prove this, we need to recall the notion of the minimal model of (Y, D) 
(see pp. 89-90 of IS] for precise definitions). If C is a (-1)-curve on Y which 
intersects D at most one point, C is called a D-exceptional curve. Since X -  C is a 
l((l', 1)-space, so is Y -  D. Since (Ky + D) 2 > 0, Y is projective algebraic. Therefore, 
there are no rational curves on Y -  D. If E is a D-exceptional curve with D- E = 1 
and p: (y, D) ~ ( Y', D') is the blowing down of E, then p*(L') = L, where L = Kr  + D 
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and L ' =  Kr, + D'. By a finite number  of  blowing downs of D-exceptional curves, we 
arrive at the minimal model  (Yo, Do) of  (Y, D), which has no Do-exceptional curves. 
If  g = -- ~ ,  it follows f rom Sakai IS]  tha t  (Yo, Do) must  be (elliptic ruled surface, a 
section). Thus F = n~(X - C) = 7r I ( Y -  D) = Z @ Z .  This is a contradiction,  since F is 
not  abelian. If  g = 0 or  i, then Lo must  be numerically effective. Therefore, since 
/_~ = (Kx + C) 2 > 0 ,  we have h2(Yo, O ( - m L  o - D o ) ) = 0  for m > 0 .  By the Riemann- 
Roch  formula, h~ 2) when m--*~.  But this contradicts the 
assumption.  Therefore we deduce g = 2 .  Since (Yo, Do) satisfies the condit ion of 
Theorem 1, we get the following inequality: 

L 2 = ~ < 3(e(Yo) - e(Do)) = 3(e(Y) - b - e(D)), 

where b is the number  of  the blow downs in Y--, Yo. Hence we have b = 0, i.e., (Y, D) 
=(Yo, Do). It  follows from T h e o r e m 2  that  the universal cover of  Y - D  is 
biholomorphic  to B 2. By the rigidity theorem of  Ger land-Raghunathan-Prasad  
I'P], Y - D  is in fact b iho lomorphic  to X - D .  Q.E.D. 

Note. In  [Y2],  Yau proved the rigidity theorem for compact  quotients of B2: Let 
X be a compact smooth surface that is covered by B 2. Then any compact smooth 
surface that is oriented homotopic to X is biholomorphic to X. 
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