Einstein-Kähler V-Metrics on Open Satake V-Surfaces with Isolated Quotient Singularities

Ryoichi Kobayashi Mathematical Institute, Tohoku University, Sendai 980, Japan

Dedicated to the memory of the late Professor Takehiko Miyata

0. Introduction

In [A] and [Y1], Aubin and Yau proved the existence of a Ricci-negative Einstein-Kähler metric on compact complex manifolds with ample canonical bundles. The purpose of this paper is to generalize the Aubin-Yau theorem to the category of open Satake V-surfaces with isolated quotient singularities. We note that this category includes as a special case the logarithmic canonical models of minimal surfaces of logarithmic general type which are treated in [S, K1, K2, K2 Added in Proof]. In this paper, we use the terminology "Satake V-manifolds" in the following sense. A complex space X is called a (Satake) V-manifold if it has at worst isolated quotient singularities. Let X be a V-manifold and ds^2 a Riemannian metric defined in the regular part of X. ds^2 is called a V-metric if we obtain it by pushing down a smooth metric defined in local uniformizations. Therefore a V-metric looks like a smooth metric in terms of local uniformizing coordinates. Two-dimensional V-manifolds are called V-surfaces. Our main result is:

Theorem 1. Let X be a compact complex surface with at worst isolated quotient singularities and C a divisor which lies in the regular part of X with at worst normal crossings. Let $\overline{X} \rightarrow X$ be the minimal resolution of X and $D = \sum D_i$ its exceptional

divisor. We can determine the nonnegative rational numbers μ_i by requiring $K_{\bar{X}} + \sum \mu_i D_i$ to be trivial near D. Assume the following conditions are satisfied:

(1) $(K_{\bar{x}}+C) \cdot C_j \ge 0$ for every irreducible component C_j of C;

(2) the divisor consisting of C_j 's with $(K_{\bar{X}}+C) \cdot C_j > 0$ has at worst simple normal crossings;

(3) there is a no (-1)-curve (exceptional curve of the first kind) which meets Supp(C) at most one point;

(4) for every (-2)-curve $E \notin \text{Supp}(D)$ which meets D, there exists a component D_i of D meeting E with $\mu_i > 0$.

If $\kappa(K_{\bar{X}} + D + C) = 2$, then there exists a complete Ricci-negative Einstein-Kähler V-metric on X - C with finite volume, which is unique up to multiplication by positive numbers. Let B^2 be the open unit ball in \mathbb{C}^2 and Γ a discrete subgroup of PSU(2, 1)acting on B^2 properly discontinuously with at worst isolated fixed points. The ballmetric is Einstein-Kähler whose holomorphic sectional curvature is negative and constant, which is invariant under the action of PSU(2, 1). Assume the volume of $X' = \Gamma \setminus B^2$ is finite. Then we can compactify X' by adding a finite number of cusp points. Let X be the partial minimal resolution of X' over the cusp points and C the exceptional divisor. C consists of disjoint elliptic curves. (X, C) with the ball-metric yields an example of Theorem 1. Hirzebruch-Mumford's proportionality theorem tells us that the following equality

$$\left(K_{\bar{X}} + \sum_{i} \mu_{i} D_{i} + C\right)^{2} = 3 \left\{ e(\bar{X}) - e(C) - e(D) + \sum_{p} (1/|G_{p}|) \right\}$$

holds, where $\{p\}$ runs over the quotient singularities of X. We obtain the following uniformization theorem by integrating the pointwise deviation of the canonical Einstein-Kähler V-metric in Theorem 1 from the ball-metric (cf. the proof of Theorem 2 in [K2]). It is a converse of the proportionality theorem.

Theorem 2. Let X, C, \overline{X} , D be as in Theorem 1. If we assume $\kappa(K_{\overline{X}} + D + C) = 2$ and conditions (1) (2) (3) (4) in Theorem 1, then we have the following inequality

$$\left(K_{\overline{X}} + \sum_{i} \mu_{i} D_{i} + C\right)^{2} \leq 3 \left\{ e(\overline{X}) - e(C) - e(D) + \sum_{p} \left(\frac{1}{|G_{p}|}\right) \right\}$$

where $\{p\}$ runs over the quotient singularities of X and G_p is the finite subgroup of U(2) corresponding to p. The equality holds if and only if the universal covering of the regular part of X - C is biholomorphic to the open unit ball B^2 in \mathbb{C}^2 minus a discrete set of points. In other words, the equality occurs if and only if there exists a discrete subgroup Γ of PSU(2, 1) which acts on B^2 properly discontinuously with at worst isolated fixed points such that $\overline{X} - C$ is biholomorphic to the minimal resolution of $\Gamma \setminus B^2$.

The inequality part of Theorem 2 was first proved in [M] using algebraic geometry. The advantage of our differential geometric proof of Theorem 2, whose original is Yau's method in the proof of Calabi's conjecture [Y1], gives us a point of view to regard the inequality as the precise deviation of the canonical Einstein-Kähler V-metric from the ball-metric.

1. Remarks and Examples

1. If $C = \emptyset$ and D contains only (-2)-curves, Theorem 1 implies the existence of the canonical Einstein-Kähler V-metric on the canonical model X of \overline{X} , where \overline{X} is a minimal surface of general type (cf. [K1]). The first Chern class $c_1(\overline{X})$ of \overline{X} is represented by the Kähler form of the canonical Einstein-Kähler V-metric in the current sense. In this case, the inequality in Theorem 2 becomes

$$0 \leq 3 \left\{ \sum_{p} e(D_{p}) - (1/|G_{p}|) \right\} \leq 3c_{2}(\bar{X}) - c_{1}^{2}(\bar{X}),$$

where p runs over the rational double points on X and D_p is the corresponding exceptional set. The values of the invariant $k(p) = e(D_p) - (1/|G_p|)$ is n(n+2)/(n+1), $(4m^2 - 4m - 9)/4(m-2)$, 167/24, 383/48, 1079/120, according as p (or D_p) is of type

 A_n, D_m, E_6, E_7, E_8 , respectively. Therefore the first inequality becomes equality if and only if $K_{\bar{X}}$ is ample and the second inequality becomes equality if and only if there exists a discrete group $\Gamma \in PSU(2, 1)$ which acts on B^2 properly discontinuously with at worst isolated fixed points such that \bar{X} is biholomorphic to the minimal resolution of $\Gamma \setminus B^2$. The following example is due to Hirzebruch: Let X' be a surface in $P_4(\mathbb{C})$ defined by $\sum_{i=0}^{4} Z_i^5 = 0$ and $\sum_{i=0}^{4} Z_i^{15} = 0$. X' has 50 singularities each of which is resolved in a smooth curve of genus 6 with self-intersection number -5 and 1875 rational double points of type A_4 . Let X be the partial minimal resolution over the former 50 singularities and \bar{X} the full minimal resolution. Then \bar{X} is of general type and X is its canonical model. It is shown that $3c_2(\bar{X}) - c_1^2(\bar{X}) = 27,000$ and $k(A_4) = 24/5$. The middle term of the above inequality is $3 \times 1875 \times (24/5) = 27,000$. Hence we obtain X by taking the quotient variety of B^2 with respect to some discrete subgroup Γ of PSU(2, 1) with isolated fixed points of type A_4 .

2. In [H2], Hirzebruch constructed the following example. There is a sequence $X_n (n=2, 3, ...)$ of minimal surfaces of general type with the following properties: $c_2(X_n) = n^7$, $3c_2(X_n) - c_1^2(X_n) = 4n^5$. X_n carries $4n^4$ smooth disjoint elliptic curves C_n . The pair $(X, C) = (X_n, C_n)$ satisfies the assumptions in Theorem 2 and the equality

$$(K_{X_n} + C_n)^2 = 3e(X_n - C_n) = 3n^7$$

holds. Therefore the universal covering of $X_n - C_n$ is biholomorphic to B^2 .

3. Hirzebruch presented the following example in his lecture at Osaka University, 1984. Let $L = \bigcup_{j=1}^{21} L_j$ be a line configuration on $P_2(\mathbb{C})$ such that L has 28 triple points and 21 quadruple points. Write $l_j = 0$ for the defining equation of L_j . Let X' be a surface obtained by blowing up all r-ple points ($r \ge 3$) in the line configuration. Let $\overline{X} \to X$ be the Abelian covering of order 2^{20} obtained from the Abelian extension

$$\mathbb{C}(P_2(\mathbb{C}))(\sqrt{l_2/l_1},\ldots,\sqrt{l_{21}/l_1})/\mathbb{C}(P_2(\mathbb{C})).$$

It is shown that \overline{X} contains $28 \cdot 2^{17}$ disjoint (-2)-curves D_i and $21 \cdot 2^{16}$ disjoint elliptic curves C_i with $C_i \cdot C_i = -4$. Let X be obtained by contracting these $28 \cdot 2^{17}$ (-2)-curves. Then ((X, C_i), \overline{X} , D_i) satisfies the assumptions in Theorem 2. The numerical invariants of \overline{X} are

$$3c_{2}(\bar{X}) - c_{1}^{2}(\bar{X}) = 21 \cdot 2^{20} \quad \text{(using Höfer's formula [Hö])}$$

$$\sum_{i} C_{i} \cdot C_{i} = (-4) \cdot 21 \cdot 2^{16},$$

$$\sum_{i} e(D_{i}) - (1/|G_{i}|) = (2 - 1/2) \cdot 28 \cdot 2^{17} = 21 \cdot 2^{18}.$$

Therefore

$$\left(K_{\bar{X}} + \sum_{i} C_{i} \right)^{2} - 3 \left\{ c_{2}(\bar{X}) - \sum_{i} e(C_{i}) - \sum_{i} e(D_{i}) + (1/|G_{i}|) \right\}$$

= -21 \cdot 2^{20} + 4 \cdot 21 \cdot 2^{16} + 3 \cdot 21 \cdot 2^{18} = 0.

It follows from Theorem 2 that $\overline{X} - C_i$ is biholomorphic to the minimal resolution of $\Gamma \setminus B^2$ for some discrete subgroup $\Gamma \subset PSU(2, 1)$ which acts on B^2 properly discontinuously with isolated fixed points of type A_1 .

2. Zariski Decomposition

Let D be a rational divisor $\in Div(X) \otimes \mathbb{Q}$ on a smooth surface X. D is a formal sum

 $\sum_{i=1}^{\infty} d_i D_i$, where $d_i \in \mathbb{Q}$ and $\{D_i\}_{i \in \mathbb{Z}}$ a locally finite sequence of irreducible curves on X. We call D effective if all d_i 's are non-negative and not all zero. Assume $D \in \text{Div}(X) \otimes \mathbb{Q}$ is effective. Then the Zariski Decomposition Theorem is:

Theorem A (Theorem 7.7 in [Z]). There exists one and only one effective rational divisor N having the following properties:

(1) Either N=0 or the intersection matrix of the curve in Supp(N) is negative definite;

(2) D-N is numerically effective, i.e., the intersection number with every irreducible curve is non-negative;

(3) $(D-N) \cdot N = 0;$

Furthermore we have necessarily P := D - N is an effective rational divisor.

The decomposition D = P + N is called the Zariski decomposition. We call P and N the positive and negative part, respectively. We shall use the following result due to Zariski (cf. p. 612 of [Z]):

Theorem B [Z]. Let D be an effective divisor with the Zariski decomposition D = P + N. If B_n denotes the fixed component of |nD|, then under the assumption that $\dim |hD| > 0$ for some h, the divisor $\overline{B}_n = B_n - nN$ is effective and is bounded from above in n, i.e., the number of irreducible curves which appears in \overline{B}_n is bounded in n and the coefficients of these curves are bounded in n. If in addition D is numerically effective, then B_n is bounded above in n.

We collect some Lemmas on effective divisors on a compact smooth surface.

Lemma 1. Let L be an effective divisor and L=P+N the Zariski decomposition. Then if $\kappa(L) \ge 1$, we have $\kappa(L) = \kappa(P)$.

Proof. Let B_m be the fixed component of |mL|. It follows from Theorem B that $B_m = mN + \overline{B}$, where \overline{B} is an effective divisor. Thus we get a natural isomorphism $H^0(X, \mathcal{O}(mL)) \cong H^0(X, \mathcal{O}(mP))$ if mP is an integral divisor. Q.E.D.

Lemma 2. If L is an effective divisor and B the fixed component of |L|. Then $(L-B) \cdot B \ge 0$.

Proof. Let $B = \sum_{i=1}^{r} B_i$ be the decomposition into irreducible components. For every *i*, there is a holomorphic section s_i of [L-B] such that B_i is not a component of (s_i) . Pick a point p_i from $B_i \setminus (\bigcup_{j \neq i} B_j)$ so that $s_i(p_i) \neq 0$. Clearly we can choose complex numbers a_i for $i=1, \ldots, r$ such that $\sum_{i=1}^{r} a_i s_i(p_j) \neq 0$ for every *j*. Let $E = \left(\sum_{i=1}^{r} a_i s_i\right) \in |L-B|$. Then no B_i is a component of *E*. Thus $(L-B) \cdot B$ $= E \cdot B \geq 0$. Q.E.D. For an effective divisor L we define a rational map $\Phi_{|L|}$ of X into $P_N(\mathbb{C})$ by $\Phi_{|L|}(x) = (\sigma_0(x):...:\sigma_N(x)) \in P_N(\mathbb{C})$, where $\{\sigma_0,...,\sigma_N\}$ is a \mathbb{C} -basis for $H^0(X, \mathcal{O}(L))$ and $N = \dim |L| + 1$.

Lemma 3. Let L be a divisor which is effective and numerically effective. Then $\kappa(L) = 2$ if and only if $L^2 > 0$.

Proof. If part follows from the Riemann-Roch formula. To prove only-if part, let B_m be the fixed component of mL. It follows from Theorems A and B that B_m is bounded above in m. Since $h^0(X, \mathcal{O}(mL-B_m)) = h^0(X, \mathcal{O}(mL)) \to \infty$ as $m \to \infty$, we must have $(mL-B_m)^2 \ge 0$. Since L is numerically effective, we have $L \cdot B_m \ge 0$. It follows from Lemma 2 that $(mL-B_m) \cdot B_m \ge 0$. Now suppose $L^2 = 0$. Then $0 = (mL)^2 = (mL) \cdot B_m + (mL-B_m)^2 + (mL-B_m) \cdot B_m \ge 0$. Hence we must have $(mL-B_m)^2 = 0$. This implies that $|mL-B_m|$ has no base points. Therefore $\Phi_{|mL-B_m|}$ is a holomorphic mapping into some $P_N(\mathbb{C})$. Since $\kappa(mL-B_m) = \kappa(mL) = 2$, we see that $(mL-B_m)^2 =$ "the volume of $\Phi_{|mL-B_m|}(X)$ with respect to the Fubini-Study metric" > 0. Contradiction. Hence we get $L^2 > 0$. Q.E.D.

Now let X, C, \overline{X} , D be as in Theorem 1. We assume the conditions (1) to (4) in Theorem 1. Furthermore we assume $\kappa(K_{\overline{X}} + D + C) = 2$, i.e., $h^0(\overline{X}, \mathcal{O}(K_{\overline{X}} + D + C))$ grows like m^2 . Let $K_{\bar{x}} + D + C = P + N$ be the Zariski decomposition. We decompose D into irreducible components D_i ($1 \le i \le s$). It is well known that each D_i is $P_1(\mathbb{C})$ (cf. [B]). Let $\mu_i \in \mathbb{Q}$ be defined by requiring $K_{\overline{X}} + \sum_{i=1}^{n} \mu_i D_i$ should be trivial near D. μ_i 's are uniquely determined and $0 \leq \mu_i < 1$. It is justified in the following argument: Let $\pi: (Y, D) \rightarrow (X, p)$ be the minimal resolution of a quotient singularity $(X, p) = (G \setminus B, G \cdot 0)$ where B is a ball and G is a finite subgroup of U(2)with only one fixed point 0. Set h = |G|. Then $(dx \wedge dy)^h$ is a G-invariant h-ple holomorphic 2-form on B. Thus there exists a h-ple holomorphic 2-form ω on Y-D. On the other hand, since $h^1(Y, \emptyset) = \dim R^1 \pi_* \emptyset = 0$ and $H^2(Y, \emptyset) = 0$, we have $H^1(Y, \mathcal{O}^*) = H^2(Y, \mathbb{Z}) = \mathbb{Z}^s$. Thus every element of $H^1(Y, \mathcal{O}^*)$ can be written as $\sum_{i=1}^{\infty} \lambda_i D_i$ for some rational numbers λ_i . Hence ω must be a *h*-ple meromorphic 2-form on Y. Since ω is locally $L^{2/h}$ integrable at D, the order of the pole along D is at most h-1. Hence, if $(\omega) = \sum_{i=1}^{s} \lambda_i D_i$, we have $-h < \lambda_i$. μ_i 's corresponding to $K_{\overline{X}}$ are determined in the following way: Set $a_i = K_{\overline{X}} \cdot D_i$, $a_{ij} = D_i \cdot D_j$. Then $a_i = \sum_{i=1}^{s} a_{ij} \lambda_j$. It is easily shown that if every $a_i \ge 0$, then every $\lambda_i \le 0$. Here, we have used the fact that (a_{ij}) is symmetric and negative definite with $a_{ij} > 0$ for $i \neq j$ and $a_{ii} < 0$. Since every D_i is a rational curve with self-intersection number -2, we have $a_i \geq 0$. Thus $-1 < \lambda_i / h = \mu_i \leq 0$.

Lemma 4. Let $K_{\overline{X}} + D + C = P + N$ be the Zariski decomposition. Then

$$P = K_{\bar{X}} + \sum_{i=1}^{s} \mu_i D_i + C$$

and

$$N=\sum_{i=1}^{s}(1-\mu_i)D_i$$

where every μ_i is a non-negative rational number less than one and is determined uniquely by requiring that $K_{\bar{X}} + \sum \mu_i D_i$ should be trivial near D.

Proof. Set $N = \sum_{i=1}^{s} (1 - \alpha_i)D_i + \sum_{j=1}^{r} \beta_j B_j$, where α_i, β_j are rational numbers with $\alpha_i \leq 1, \beta_j \geq 0$ and B_j are irreducible curves on \overline{X} . We rewrite this as $N = \sum_{i=1}^{s} (1 - \mu_i)D_i + E - F + G$. Then $P = K_{\overline{X}} + \sum_{i=1}^{s} \mu_i D_i + C - E + F - G$, where E, F, G are defined by $\sum_{\mu_k > \alpha_k} (\mu_k - \alpha_k)D_k$, $\sum_{\mu_l < \alpha_l} (\alpha_l - \mu_l)D_l$, $\sum_{j=1}^{r} \beta_j B_j$, respectively. Since P is numerically effective, we have $P \cdot \left(\sum_i (1 - \mu_i)D_i + E + G\right) \geq 0$. Since $K_{\overline{X}} + \sum_i \mu_i D_i \sim 0$ near D, $C \cap D = \emptyset$ and the intersection matrix of Supp(D) is negative definite, we get $P \cdot F \leq F^2 \leq 0$. But $P \cdot \left(\sum_i (1 - \mu_i)D_i + E - F + G\right) = P \cdot N = 0$. Thus we get $\mu_i \geq \alpha_i$ for all *i*. Hence P can be written as $P = K_{\overline{X}} + \sum_i \mu_i D_i$, $+ C - \sum_i (\mu_i - \alpha_i)D_i - \sum_j \beta_j B_j$ with $\alpha_i \leq \mu_i$ and $\beta_j \geq 0$. We claim that $P' = K_{\overline{X}} + \sum_i \mu_i D_i + C$ is numerically effective. Note that P' is effective. If E is a curve which is not a component of Supp(C + D), then $P' \cdot E$ must be non-negative. Indeed, if otherwise, we have $K_{\overline{X}} \cdot E < 0$ and $E^2 < 0$. Thus E is a (-1)-curve with $C \cdot E = 0$ which has been excluded by our assumption. Therefore P' is numerically effective. From the uniqueness of the Zariski decomposition, P = P'.

Proposition 1. Under the assumption of Theorem 1, P has the following properties:

(1) $P^2 > 0;$

(2) P is numerically effective;

(3) For every irreducible curve E on \overline{X} , $P \cdot E = 0$ holds only if E is a component of Supp(D + C).

Proof. From Lemmas 1, 3, and 4, we have $P^2 > 0$. (2) is clear. If E is an irreducible curve which is not a component of Supp(D+C) and $P \cdot E = 0$, then $K_{\overline{X}} \cdot E \leq 0$ and $E^2 < 0$. Thus E is a (-1)-curve with $C \cdot E \leq 1$ or a (-2)-curve which is not contained in Supp(D). But both have been excluded by our assumption. Q.E.D.

Let *m* be a positive integer such that *mP* is an integral divisor. We write \mathscr{E} for the union of all irreducible curves *E* with $P \cdot E = 0$, and $\mathscr{E} = \sum \mathscr{E}_v$ the decomposition into connected components in the usual topology.

Proposition 2 (cf. Theorem (5.8) in [S]). Under the assumption of Theorem 1, there exists a positive number $n_0 = n_0(\bar{X}, D, C)$ with the following properties: for any integer $n > n_0$, (i) |nmP| has no base points; (ii) If $N + 1 = h^0(\bar{X}, \mathcal{O}(nmP))$ and $\{\sigma_0, \ldots, \sigma_N\}$ is a **C**-basis for $H^0(\bar{X}, \mathcal{O}(nmP))$, then the map $\Phi = \Phi_{|nmP|} : \bar{X} \to P_N(\mathbb{C})$ is a holomorphic map whose restriction to $\bar{X} - \mathscr{E}$ is a biholomorphic map onto its image and $\Phi^{-1}\Phi(z)$ is equal to either z or \mathscr{E}_v according to $z \in \bar{X} - \mathscr{E}$ or $z \in \mathscr{E}_v$, respectively.

Proof. The proof is almost the same as that of Theorem (5.8) in [S]. In 105–110 of [S], Sakai proved a sequence of Lemmas concerning $m\Gamma$ where Γ is the adjoint divisor of a semi-stable curve C. It is easy to modify these Lemmas into suitable forms to our purposes. Roughly speaking, these Lemmas remain valid if we replace Γ by our mP, where $P = K_{\bar{X}} + \sum_{r} \mu_r D_r + C$. Q.E.D.

3. Proof of Theorem 1

From Proposition 2, we get the following:

Lemma 5. Under the assumption of Theorem 1, there exists a real closed (1, 1) form γ representing $c_1(mP)$ in the de Rham cohomology having the following properties: (i) γ is positive definite outside of \mathscr{E} ; (ii) For any irreducible component E of \mathscr{E} , $i_E^*\gamma$ vanishes where i_E is the inclusion of E into \overline{X} .

Proof. Set $n\gamma = \Phi^*$ [the Fubini-Study metric form on $P_N(\mathbb{C})$] for large *m*. Then γ has the required properties. Q.E.D.

From here on, we regard X as a Satake V-surface.

Definition. Let p be a singular point of X, and G the finite subgroup of U(2) corresponding p. There is a strictly pseudo-convex neighborhood U of p such that $(U, p) \cong (G \setminus B, G \cdot 0)$, where B is a ball with center 0. We call the quotient map $B \rightarrow U$ with respect to G a local uniformization around p. Let T be a smooth tensor field on the regular part of X. We call T a $V - C^{\infty}$ tensor field if we obtain T by pushing down a C^{∞} tensor field in terms of local uniformizations.

Let $D = \sum_{\mu} D_{\mu}$, $C = \sum_{\beta} C_{\beta}$ be the decomposition into connected components, and $D = \sum_{i} D_{i}, C = \sum_{m} C_{m}$ the decomposition into irreducible components. For each *i*, *m*, let s_i and t_m be the holomorphic sections of $[D_i]$ and $[C_m]$ such that $(s_i) = D_i$ and $(t_m) = C_m$. There exist a smooth volume form Ω on \overline{X} , Hermitian metrics for $[D_i]$ and $[C_m]$ such that the singular volume form $\Omega' = \Omega / \prod_{i,m} |s_i|^{2\mu_i} |t_m|^2$ satisfies $\gamma = -\operatorname{Ric} \Omega'$, where γ is as in Lemma 5 and $\operatorname{Ric} V = -\sqrt{-1} \partial \overline{\partial} \log v$ for a volume form $V = v \prod (\sqrt{-1} dz^i \wedge d\overline{z}^i)$. Now let $(U, p) \cong (G \setminus B, G \cdot 0)$ be a neighborhood of a singular point of X and (\tilde{U}, D_{μ}) its minimal resolution. Since the usual flat volume element is U(2) invariant, we can push this down to $U - \{p\} = \tilde{U} - D_{\mu}$. We write v_{μ} for the resulting volume form on $U - \{p\}$. From the arguments just before Lemma 4, we see that there is a C^{∞} function \tilde{h}_{μ} defined in \tilde{U} such that $\Omega' = \tilde{h}_{\mu}v_{\mu}$ on \tilde{U} . We define a C^{∞} function h_{μ} on $B - \{0\}$ by $\pi^*(\tilde{h}_{\mu}|U - \{p\})$, where $\pi: B \to U$ is the quotient map. On the other hand, let \hat{h}_{μ} be a local Kähler potential for the Fubini-Study form on $P_N(\mathbb{C})$. Thus we get a C^{∞} function $h'_{\mu} = \pi^* \Phi^* \hat{h}_{\mu}$ on B. Since $\partial \bar{\partial} h_{\mu}$ $=\partial \overline{\partial} h'_{\mu}$ on $B-\{0\}$, $h'_{\mu} \in C^{\infty}(B)$, and $h_{\mu} \in C^{\infty}(B-\{0\})$, we must have $h_{\mu} \in C^{\infty}(B)$. Summing up, we get the following:

Lemma 6.
$$\Omega' = \Omega / \prod_{i,m} |s_i|^{2\mu_i} |t_m|^2$$
 is a $V - C^{\infty}$ volume form on $X - C$

The connected components \mathscr{E}_{ν} of \mathscr{E} are classified in the following:

Lemma 7 (cf. Lemma 1 of [K2]). Each \mathscr{E}_{v} is one of the following five types: (1) $\mathscr{E}_{v} = D_{\mu}$ for some μ ;

If \mathscr{E}_{v} is contained in C, \mathscr{E}_{v} is one of the followings:

(2) a smooth elliptic curve with negative self-intersection number;

(3) a cycle of smooth rational curves with self-intersection numbers ≤ -2 and some of them ≤ -3 ;

(4) a rational curve with a node with negative self-intersection number;

(5) a chain of smooth rational curves with self-intersection numbers ≤ -2 .

Proof. See the proof of Lemma 1 in [K2]. Q.E.D

Lemma 8. Let $(Y, A) \rightarrow (X, p)$ be the minimal resolution of an isolated 2-dimensional singularity where A is a smooth elliptic curve with self-intersection number -b < 0. Then by replacing X by an appropriate neighborhood of p if necessary, we can express $X - \{p\}$ as an orbit space in the following way: There exist a positive number a, real numbers α , β and a lattice \mathcal{L} in \mathbb{C} defined by $\{m + n\omega; m, n \in \mathbb{Z}, \operatorname{Im}(\omega) = a\}$ such that

$$Y - A = X - \{p\} \cong \Gamma \setminus W,$$

where $W = \{(u, v) \in \mathbb{C}^2; \operatorname{Im}(u) - |v|^2 > L\}$ for some positive number L,

$$\Gamma = \begin{cases} \begin{pmatrix} 1 & 2i\overline{\gamma} & i|\gamma|^2 - 2h(\gamma) \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}; & \gamma \text{ runs over } \mathcal{L}, \text{ and for each } \gamma = m + n\omega, \\ h(\gamma) \text{ runs over the class of } m\alpha + n\beta - mna \\ modulo \ (2a/b)\mathbb{Z}. \end{cases}.$$

The action of the above matrix is to send (u, v) into $(u + 2i\overline{\gamma}v + i|\gamma|^2 - 2h(\gamma), v + \gamma)$.

Proof. See the proof of Lemmas 4 and 5 in [K2]. Q.E.D.

Since $\mathscr{G} = \{(u, v) \in \mathbb{C}^2; \operatorname{Im}(u) - |v|^2 > 0\}$ is biholomorphic to B^2 , \mathscr{G} admits a complete Kähler metric form with constant holomorphic curvature. The Kähler potential of this metric form is given by $\log F$, where $F(u, v) = (\operatorname{Im}(u) - |v|^2)^{-1}$. Since $F(u, v)^{-1}$ is invariant under the action of Γ , this projects down to a function f_A on $X - \{p\}$. Thus we obtain in a canonical way the function f_A having the property that $-\sqrt{-1}\partial\overline{\partial}\log f_A$ is the ball metric near A. Let $\{\mathscr{E}_{v(1)}\}$ be the union of connected components of \mathscr{E} of type (2) in Lemma 7. For each v(1), we have got in a canonical way the function $f_{v(1)}$ minus $\mathscr{E}_{v(1)}$, whose $-\sqrt{-1}\partial\overline{\partial}\log f_A$ is the ball-metric near $\mathscr{E}_{v(1)}$.

Lemma 9. Let $(Y, B) \rightarrow (X, p)$ be the minimal resolution of an isolated 2-dimensional singularity where B is a cycle $\sum_{i=1}^{r-1} B_i$ of \mathbb{P}^1 's with $-B_i \cdot B_i = b_i \ge 2$, some $b_i \ge 3$ and $r \ge 2$ or a rational curve B_0 with a node with $-B_0 \cdot B_0 = b_0 \ge 1$. Let w_k be an irrational quadratic number defined by $\lim_{s \to \infty} \{q_k - (q_{k-1} - (\dots - (q_{s-1} - q_s^{-1})^{-1}))^{-1}\}$, where $\{q_k\}$ is a periodic sequence with period r defined by $q_k = b_k$ for $0 \le k \le r-1$ when $r \ge 2$ or $q_0 = b_0 + 2$ when r = 1. Let $\{R_k\}_{k \in \mathbb{Z}}$ be a sequence defined by $R_{-1} = w_0$, $R_0 = 1, q_k R_k = R_{k-1} + R_{k+1}$ for $k \in \mathbb{Z}$. Let M be a free \mathbb{Z} -module of rank2 generated

by 1 and w_0 , V the infinite cyclic multiplicative group generated by R_r . Then by replacing X by an appropriate neighborhood of p if necessary, we obtain

$$Y-B=X-\{p\}\cong\Gamma\backslash W,$$

where $W = \{(z_1, z_2) \in \mathbb{C}^2; y_1 > 0, y_2 > 0, y_1 y_2 > L, where z_i = x_i + \sqrt{-1} y_i\}$, for some positive number L, and

$$\Gamma = \left\{ \begin{pmatrix} \varepsilon & \mu \\ 0 & 1 \end{pmatrix}; \varepsilon \in V, \mu \in M \right\}.$$

The action of the above matrix is to send (z_1, z_2) into $(\varepsilon z_1 + \mu, \varepsilon' z_2 + \mu')$, where ' means to take the conjugate over \mathbb{Q} .

Proof. See [H1]. Q.E.D.

The product metric of the Poincaré metric on $H^2 = \{(z_1, z_2) \in \mathbb{C}^2; \operatorname{Im}(z_1) > 0, \operatorname{Im}(z_2) > 0\}$ is given by $\underline{i} \partial \overline{\partial} \log F$, with $F(z_1, z_2) = (\operatorname{Im}(z_1) \operatorname{Im}(z_2))^{-1}$ which is invariant under the action of Γ , we obtain in a canonical way the function f_B defined on $X - \{p\}$ whose $\underline{i} \partial \overline{\partial} \log i$ s the H^2 -metric near B. Let $\{\mathscr{E}_{v(2)}\}$ be the union of \mathscr{E}_v of type (3) or (4) in Lemma 7. For each v(2), we have got in a canonical way the function $f_{v(2)}$ defined in a neighborhood of $\mathscr{E}_{v(2)}$ minus $\mathscr{E}_{v(2)}$ whose $-\underline{i} \partial \overline{\partial} \log i$ s the H^2 -metric near $\mathscr{E}_{v(2)}$.

Lemma 10. Let $(Y, E) \rightarrow (X, p)$ be the minimal resolution of an isolated 2-dimensional singularity where $E = \sum_{k=1}^{r} E_k$ is a chain of \mathbb{P}^{1*s} with $b_k = -E_k \cdot E_k \ge 2$. Let n/q be the irreducible representation of $b_1 - (b_2 - (\dots(b_{r-1} - b_r^{-1})^{-1} \dots)^{-1})^{-1}$ and Γ the cyclic group generated by $\begin{pmatrix} \xi & 0 \\ 0 & \xi^q \end{pmatrix}$, where $\xi = \exp(2\pi i/n)$. Then have $(X, p) \cong (\Gamma \setminus B, \Gamma \cdot 0)$ by replacing X by an appropriate neighborhood of x if necessary. Proof. See for example [B]. Q.E.D.

The product metric of the Poincaré metrics on the unit punctured disk on D^{*2} has a Kähler potential $F(z_1, z_2) = (\log |z_1|^{-2})^{-1} (\log |z_2|^{-2})^{-1}$, which is invariant under the action of Γ . Thus we get in a canonical way the function f'_E whose $-i\partial\overline{\partial}\log$ is the D^{*2} -metric near E. Let E_0 and E_{r+1} be the irreducible components of $C - \mathscr{E}_{v(3)}$ intersecting E_1 and E_r , respectively, where $E = \mathscr{E}_{v(3)}$, one of the \mathscr{E}_v of type (5) in Lemma 7. We can extend f'_E to the function f_E defined in a deleted neighborhood of $E_0 \cup E \cup E_{1+r}$ which is written as $\log |\sigma_0|^2$ and $\log |\sigma_{r+1}|^2$ in the newly added domain of definition of f_E near E_0 and E_{r+1} , respectively.

Definition. Let V be a domain in \mathbb{C}^m . Let X be an m-dimensional complex manifold and ϕ a holomorphic map of V into X. ϕ is called a *quasi-coordinate map* if ϕ is of maximal rank everywhere. In this case, (V, ϕ) is called a *local quasi-coordinate* of X.

Definition. Let X be a complex V-manifold with at worst isolated quotient singularities and ω a complete Kähler V-metric on X. We say that (X, ω) has bounded geometry if the following conditions hold: There exist a system of quasicoordinates $\mathscr{V} = \{(V_a, v_a^{\dagger})\}$ and a neighborhood U(p) of each quotient singularity p such that $(U(p), p) \cong (G_p \setminus B, G_p \cdot 0)$ and $U(p) \cap U(q) = \emptyset$ having the following properties:

(i) \bigcup (Image of V_{α}) \cup \bigcup U(p) = X;

(ii) there are positive numbers ε and δ independent of α such that $B(\varepsilon) \in V_{\alpha} \subset B(\delta)$;

(iii) there are positive constants c and \mathscr{A}_k (k=0, 1, ...) such that $c^{-1}(\delta_{ij}) < c(\delta_{ij}) < c(\delta_{ij})$ and

$$\left|\partial^{|\mathbf{p}|+|\mathbf{q}|}g_{\alpha i j}/\partial v_{\alpha}^{\mathbf{p}}\partial \bar{v}_{\alpha}^{\mathbf{q}}\right| < \mathscr{A}_{|\mathbf{p}|+|\mathbf{q}|}$$

for all multi-indices p, q where $\omega = \underline{i}g_{ai\bar{j}}dv_{\alpha}^{i}dv_{\alpha}^{\bar{j}}$ in terms of (v_{α}^{i}) for all α , and the same inequalities hold for all lifted metrics from U(p)'s.

Definition. Let u be a function of class $V - C^{\infty}$. For a nonnegative integer k and $\alpha \in (0, 1)$ the $V - C^{k, \alpha}(X)$ norm of u is defined by

$$|u|_{V,k,a} = \max(A, B)$$

with

$$A = \sup \left\{ \sup_{\substack{\zeta \in B \ |p| + |q| \le k}} \sum_{\substack{|\partial|^{a|+|b|} \pi_{p}^{*}u(\zeta)/\partial\zeta^{a} \ \partial\overline{\zeta}^{b}|} + \sup_{\substack{\zeta,\zeta' \in B \ \zeta \neq \zeta'}} \sum_{\substack{|\alpha|+|b|=k}} |\zeta - \zeta'|^{-\alpha} \cdot |(\partial^{k}\pi_{p}^{*}u(\zeta)/\partial\zeta^{a} \ \partial\overline{\zeta}^{b}) - (\partial^{k}\pi_{p}^{*}u(\zeta)/\partial\zeta^{a} \ \partial\overline{\zeta}^{b})| \right\},$$

$$B = \sup_{\alpha} \left\{ \sup_{\substack{z \in V_{\alpha}}} \sum_{\substack{|a| + |B| \leq k}} |\partial^{|a| + |b|} u(z) / \partial v_{\alpha}^{a} \partial \overline{v}_{\alpha}^{b} | + \sup_{\substack{z, z' \in V_{\alpha} \\ x \neq z'}} \sum_{\substack{|a| + |b| = k}} |z - z'|^{-\alpha} | + |u|^{-\alpha} |\partial^{k} u(z) / \partial v_{\alpha}^{a} \partial \overline{v}_{\alpha}^{b} - (\partial^{k} u(z') / \partial v_{\alpha}^{a} \partial \overline{v}_{\alpha}^{b}) | \right\},$$

where $\pi_p: B \to U(p)$ is the quotient map around p.

Definition. For a nonnegative integer k and $\alpha \in (0, 1)$, the function space $V - C^{k,\alpha}(\overline{X} - C)$ is the Banach space obtained as the completion of $\{u \in V - C^{\infty}(X); |u|_{V,k,\alpha} < \infty\}$ with respect to the norm $|\cdot|_{V,k,\alpha}$.

Let \mathscr{E}'_{y} be defined by:

(1) If \mathscr{E}_{v} is of type (1), then $\mathscr{E}'_{v} = \emptyset$;

(2) If \mathscr{E}_{v} is of type (2) or (3) or (4), then $\mathscr{E}'_{v} = \mathscr{E}_{v}$;

(3) If \mathscr{E}_v is of type (5), then \mathscr{E}'_v is the union of \mathscr{E}_v and the irreducible curves of \mathcal{C} intersecting \mathscr{E}_v .

Lemma 11. There exist a smooth volume form Ω on \overline{X} , Hermitian metrics for $[D_i]$ and $[C_m]$, a $V - C^{\infty}$ function h on \overline{X} and $V - C^{\infty}$ functions q_v on $\overline{X} - \mathscr{E}'_v$ such that

$$\Psi = h\Omega / \prod_{i,m} |s_i|^{2\mu_i} |t_m|^2 \prod' g_v \prod'' (\log |s_m|^{-2})^2$$

(where \prod' means to take the product over v such that \mathscr{E}_v is contained in C and \prod'' means to take the product over m such that C_m is disjoint from \mathscr{E}). Is a $V - C^{\infty}$ volume form on $\overline{X} - C$ with the following properties:

(i) $\omega = -\text{Ric}\Psi$ is a complete Kähler V-metric on $\overline{X} - C$ with finite total volume;

(ii) $(\overline{X} - C, \omega)$ has a quasi-coordinate system with bounded geometry;

(iii) The function $\log(\Psi/\omega^2)$ is of class $V - C^{k,\alpha}(\overline{X} - C)$ for any k, α with finite $V - C^{k,\alpha}$ norm.

Sketch of the Proof (detailed discussion is given in Lemma 5 of [K2]). If p is a singular point of X with (X, p) (G\B, $G \cdot 0$), then h should be the push down of $1-|Z|^2$ defined in B. Hence $\omega = -\operatorname{Ric} \Psi$ is essentially the push down of the restriction of the Bergman metric of B^2 to B. Let \mathscr{E}_v be a connected component of \mathscr{E} contained in C. We have shown the existence of the canonical function f_v whose $-\partial \overline{\partial} \log$ gives an Einstein-Kähler metric coming from the ball-metric or the H^2 -metric in a deleted neighborhood of \mathscr{E}_v . Let g_v be a $V - C^{\infty}$ function on $\overline{X} - \mathscr{E}'_v$ which is equal to f_v^3 or f_v^2 according as \mathscr{E}_v is of type (2) or of types (3) and (4) near \mathscr{E}_v . Then ω is essentially the canonical metric coming from the ball-metric or the H^2 -metric. Thus to consider $-\operatorname{Ric} \Psi$ is to make $-\operatorname{Ric} \Omega'$ more positive by adding the ball-metric or the H^2 -metric of the transversal punctured disk to C_m disjoint from \mathscr{E} . It is a straightforward computation to verify that $\log(\Psi/\omega^2)$ belongs to $V - C^{k,\alpha}(\overline{X} - C)$ for any k, α . Q.E.D.

We expect that ω is a good approximation of the desired Einstein-Kähler metric. Hence we deform ω into $\omega + \underline{i} \partial \overline{\partial} u = \overline{\omega}$ such that $\overline{\omega}$ is Einstein-Kähler.

Proof of Theorem 1. Theorem 1 is a direct consequence of Lemma 11 and the following general result:

Theorem C. Let X be a complex n-dimensional V-manifold with a $V - C^{\infty}$ volume form Ψ such that $\omega = -\operatorname{Ric} \Psi$ is a complete Kähler V-metric with bounded geometry and the function $f = \log(\Psi/\omega^n)$ belongs to $V - C^{k,\alpha}(X)$ for any k, α . Then there is a unique solution u of

 $(\omega + \sqrt{-1} \partial \overline{\partial} u)^n = \exp(u + f) \omega^n$

belonging to $\mathcal{U} = \{u \in V - C^{\infty}; c^{-1}\omega < \omega + \sqrt{-1} \partial \overline{\partial} u < c\omega \text{ for some positive constant } c\}$. The resulting $\tilde{\omega} = \omega + \underline{i} \partial \overline{\partial} u$ is a Ricci-negative complete Einstein-Kähler V-metric on X.

Proof. This is a direct consequence of the following:

Theorem D. Let M be a V-manifold endowed with a complete Kähler V-metric of class $V - C^{k,\alpha}$ with $k \ge 5$. If (M, ω) has bounded geometry, then for any f $V - C^{k-2,\alpha}(M)$, there is a unique solution u to

$$(\omega + \sqrt{-1} \partial \overline{\partial u})^n = \exp(u + f)\omega^n$$

belonging to $\{u \in V - C^{k,\alpha}(M); c^{-1}\omega < \omega + \underline{i} \partial \overline{\partial} u < c\omega \text{ for some positive number } c\}$. Proof. See [K1, K2] and [C, Y]. Q.E.D.

4. Inequality for Chern Numbers

Let M be a V-surface with at worst isolated quotient singularities. Let g be a Riemannian V-metric. Let \overline{M} be the minimal resolution of M and g_0 a smooth Riemannian metric on \overline{M} . Then we have

$$\int_{M} \mathbf{e}(g) = \mathbf{e}(\bar{M}) - \sum_{p} \left(\mathbf{e}(E_{p}) - 1/|G_{p}|\right),$$

where e(g) is the Euler form of g and p runs over the singularities of M. To prove this, we recall the Gauss-Bonnet Theorem for manifolds with boundary:

Gauss-Bonnet Theorem. Let (M, g) be a 2k-dimensional compact oriented Riemannian manifold with boundary N and assume that, near N, it is isometric to a product of N and an interval. Then

$$\int_{M} \mathbf{e}(g) = \mathbf{e}(M) \, .$$

Let U be $G \setminus B$ where G is a finite subgroup of U(2) and g a Riemannian metric on U which is isometric to a product near the boundary and is a flat V-metric near the singularity $G \cdot 0$. Let U be the minimal resolution of U and g_0 a Riemannian metric which is isometric to a product near the boundary and is smooth near E, where E is the exceptional set. Then we apply the Gauss-Bonnet to get

$$|G|^{-1} = \int_{U} e(g) = \int_{U} e(g_0) + \lim_{r \to 0} \int_{\partial W(r)} Q,$$

$$\int_{U} e(g_0) = e(U) = e(U - E) + e(E) = e(E),$$

where $W(r) = U - \pi(B(r))$ and π is the projection. Q is the universal polynomial of the difference of the connection forms and the respective curvature forms. Thus we have

$$\lim_{r\to 0} \int_{\partial W(r)} Q = -(\mathbf{e}(E) - |G|^{-1}).$$

To prove the desired formula, let g be a V-metric on M which is flat near the singularities and g_0 a smooth Riemannian metric on \overline{M} . Then we have

$$\int_{M} e(g) - \int_{M} e(g_{0}) = \lim_{r \to 0} \int_{\partial W(r)} Q = -\sum_{p} (e(E_{p}) - |G_{p}|^{-1}).$$

Let X, C, \overline{X} , D be as in Theorem 1. Then there exists a unique complete Einstein-Kähler V-metric $\tilde{\omega}$ on X - C such that $\operatorname{Ric}(\tilde{\omega}) = -\tilde{\omega}$. Let \tilde{c}_i be the *i*-th Chern form of the Hermitian connection of $\tilde{\omega}$. Set $\omega = -\operatorname{Ric} \Psi$, where Ψ is as in Lemma 11.

Lemma 12. Under the above situation, the following equalities hold:

$$\int_{X} \tilde{c}_1^2 = \left(K_{\overline{X}} + \sum_i \mu_i D_i + C \right)^2,$$

$$\int_{X} \tilde{c}_2 = \mathbf{e}(\overline{X}) - \mathbf{e}(D) - \mathbf{e}(C) + \sum_p |G_p|^{-1}.$$

Proof. The proof is the same as that of Lemma 9 in [K2] except determining the contribution of the singularities of X. Since the proof of the first equality is exactly the same as the corresponding part of the proof of Lemma 9 in [K2], we prove the second equality. Let g_1, g_2 , and g_3 be three Riemannian metrics on the regular part of X. They are distinguished from each other according to their behavior at the singularities and C. g_1 is equal to the canonical cusp metric near C and is a flat V-metric near each singular point. g_2 is a smooth Hermitian metric for $\Omega_X^1(\log C)^*$ and is a smooth flat V-metric near the singularities. g_3 is a smooth Hermitian metric for $\Omega_X^1(\log C)^*$. Let $W(r) = X - \left(\bigcup_p \pi_p(B(r))\right)$, where π_p is the projection

from B onto a neighborhood of a singular point p. Then we have

$$\int_{X} \tilde{c}_{2} = \int_{X} c_{2}(g_{1}) = \int_{X} c_{2}(g_{2}) \quad \text{(by the proof of Lemma 9 in [K 2])}$$
$$= \lim_{r \to 0} \int_{W(r)} c_{2}(g_{3}) + dQ$$
$$= c_{2}(\Omega_{\overline{X}}^{1}(\log C)) + \lim_{r \to 0} \int_{\partial W(r)} Q$$
$$= e(\overline{X}) - e(C) - e(D) + \sum_{p} |G_{p}|^{-1}. \quad \text{Q.E.D.}$$

Proof of Theorem 2. Since $\tilde{\omega}$ is Einstein-Kähler, we have a point-wise inequality $0 \leq 3\tilde{c}_2 - \tilde{c}_1^2$. Integrating this inequality over X and applying Lemma 11 yields the desired inequality. Since $3\tilde{c}_2 - \tilde{c}_1^2$ measures the point-wise deviation of $\tilde{\omega}$ from the ball-metric, the equality in Theorem 2 occurs if and only if $\tilde{\omega}$ is the ball-metric. The rest is the same as the corresponding part of Theorem 2 in [K2]. Q.E.D.

As an application of Theorem 2, we prove a rigidity theorem. Let $\Gamma \subset PSU(2, 1)$ be a discrete group of automorphisms of B^2 acting freely. Assume the volume of $X'' = \Gamma \setminus B^2$ is finite. Then X'' is compactified to X' if we add a finite number of cusp points. Let X be the minimal resolution of X' over the cusp points and C the exceptional curve. C consists of mutually disjoint elliptic curves C_i with $C_i^2 < 0$.

Theorem 3. Let (X, C) be as above and let (Y, D) be a pair of a compact smooth surface Y and a reduced curve D with normal crossings. If there is an oriented homotopy equivalence between (X, C) and (Y, D), then Y - D is biholomorphic to X - C.

Proof. It follows from the assumption that the tubular neighborhood of D is diffeomorphic to that of C. We can identify the connected component D_i of D, which is a torus, with the corresponding component C_i . We have also $K_Y \cdot D_i$ $= D_i^2 = C_i^2 = K_X \cdot C_i$. Since e(Y) = e(X) and Sign(Y) = Sign(X), we have K_Y^2 $= 2e(Y) + 3Sign(Y) = 2e(X) + 3Sign(X) = K_X^2$. Therefore $(K_Y + D)^2 = (K_X + C)^2$ = 3(e(Y) - e(D)). We want to show that the logarithmic Kodaira dimension $\bar{\kappa}$ of (Y, D) is 2. To prove this, we need to recall the notion of the minimal model of (Y, D)(see pp. 89–90 of [S] for precise definitions). If C is a (-1)-curve on Y which intersects D at most one point, C is called a D-exceptional curve. Since X - C is a $K(\Gamma, 1)$ -space, so is Y - D. Since $(K_Y + D)^2 > 0$, Y is projective algebraic. Therefore, there are no rational curves on Y - D. If E is a D-exceptional curve with $D \cdot E = 1$ and $p: (Y, D) \to (Y', D')$ is the blowing down of E, then $p^*(L) = L$, where $L = K_Y + D$ and $L' = K_{Y'} + D'$. By a finite number of blowing downs of *D*-exceptional curves, we arrive at the minimal model (Y_0, D_0) of (Y, D), which has no D_0 -exceptional curves. If $\bar{\kappa} = -\infty$, it follows from Sakai [S] that (Y_0, D_0) must be (elliptic ruled surface, a section). Thus $\Gamma = \pi_1(X - C) = \pi_1(Y - D) = \mathbb{Z} \oplus \mathbb{Z}$. This is a contradiction, since Γ is not abelian. If $\bar{\kappa} = 0$ or 1, then L_0 must be numerically effective. Therefore, since $L_0^2 = (K_X + C)^2 > 0$, we have $h^2(Y_0, \mathcal{O}(-mL_0 - D_0)) = 0$ for m > 0. By the Riemann-Roch formula, $h^0(Y_0, \mathcal{O}(mL_0)) = \mathcal{O}(m^2)$ when $m \to \infty$. But this contradicts the assumption. Therefore we deduce $\bar{\kappa} = 2$. Since (Y_0, D_0) satisfies the condition of Theorem 1, we get the following inequality:

$$L^{2} = L_{0}^{2} \leq 3(e(Y_{0}) - e(D_{0})) = 3(e(Y) - b - e(D)),$$

where b is the number of the blow downs in $Y \rightarrow Y_0$. Hence we have b = 0, i.e., $(Y, D) = (Y_0, D_0)$. It follows from Theorem 2 that the universal cover of Y - D is biholomorphic to B^2 . By the rigidity theorem of Gerland-Raghunathan-Prasad [P], Y - D is in fact biholomorphic to X - D. Q.E.D.

Note. In [Y2], Yau proved the rigidity theorem for compact quotients of B^2 : Let X be a compact smooth surface that is covered by B^2 . Then any compact smooth surface that is oriented homotopic to X is biholomorphic to X.

Acknowledgement. The author heartily thanks Professor Dr. F. Hirzebruch for his interest in this work.

References

- [A] Aubin, T.: Équations du type Monge-Ampère sur les variétés kählériennes compactes. C.
 R. Acad. Paris 283, 119-121 (1976)
- [B] Brieskorn, E.: Rationale Singularitäten komplexer Flächen. Invent. Math. 4, 336-358 (1968)
- [C, Y] Cheng, S.Y., Yau, S.T.: On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman's equation. Comm. Pure Appl. Math. 26, 507-544 (1978)
- [H1] Hirzebruch, F.: Hilbert modular surfaces. Ens. Math. 71, 183-281 (1973)
- [H2] Hirzebruch, F.: Chern numbers of algebraic surfaces an example –. Preprint series 030–83, M.S.R.I., Berkeley
- [Hö] Höfer, T.: Dissertation, Bonn 1984
- [K1] Kobayashi, R.: A remark on the Ricci curvature of algebraic surfaces of general type. Tohoku Math. J. 36, 385-399 (1984)
- [K2] Kobayashi, R.: Einstein-Kähler metrics on open algebraic surfaces of general type. Tohoku Math. J. (to appear)
- [M] Miyaoka, Y.: The maximal number of quotient singularities on surfaces with given numerical invariants. Math. Ann. 268, 159–171 (1984)
- [P] Parsad, G.: Strong rigidity of Q-rank 1 lattices. Invent. Math. 21, 255–286 (1973)
- [S] Sakai, F.: Semi-stable curves on algebraicc surfaces and logarithmic pluricanonical maps. Math. Ann. 254, 89-120 (1980)
- [Y1] Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equations. I. Comm. Pure Appl. Math. 31, 339-411 (1978)
- [Y2] Yau, S.T.: Calabi's conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA 74, 1789-1799 (1977)
- [Z] Zariski, O.: The theorem of Riemann-Roch for high multiple of an effective divisor on surfaces. Ann. Math. 76, 506-615 (1962)

Received Ooctober 30, 1984; in revised form March 8, 1985