Math. Ann.272, 385-398 (1985) Am
© Springer-Verlag 1985

Einstein-Kiihler V-Metrics on Open Satake
V-Surfaces with Isolated Quotient Singularities

Ryoichi Kobayashi
Mathematical Institute, Tohoku University, Sendai 980, Japan

Dedicated to the memory of the late Professor Takehiko Miyata

0. Introduction

In[A]and [Y 1], Aubin and Yau proved the existence of a Ricci-negative Einstein-
Kahler metric on compact complex manifolds with ample canonical bundles. The
purpose of this paper is to generalize the Aubin-Yau theorem to the category of
open Satake V-surfaces with isolated quotient singularities. We note that this
category includes as a special case the logarithmic canonical models of minimal
surfaces of logarithmic general type which are treated in [S, K1, K2, K2 Added in
Proof]. In this paper, we use the terminology “Satake V-manifolds” in the following
sense. A complex space X is called a (Satake) V-manifold if it has at worst isolated
quotient singularities. Let X be a V-manifold and ds” a Riemannian metric defined
in the regular part of X. ds? is called a V-metric if we obtain it by pushing down a
smooth metric defined in local uniformizations. Therefore a ¥-metric looks like a
smooth metric in terms of local uniformizing coordinates. Two-dimensional
V-manifolds are called V-surfaces. Our main result is:

Theorem 1. Let X be a compact complex surface with at worst isolated quotient
singularities and C a divisor which lies in the regular part of X with at worst normal
crossings. Let X —X be the minimal resolution of X and D= 3D, its exceptional

T
divisor. We can determine the nonnegative rational numbers p; by requiring
K3+ Y wD, to be trivial near D. Assume the following conditions are satisfied:

(1) (Kg+C)-C;20 for every irreducible component C; of C;

(2) the divisor consisting of C;'s with (Kz+C)-C;>0 has at worst simple
hormal crossings;

(3) there is a no (— 1)-curve (exceptional curve of the first kind) which meets
Supp(C) at most one point;

(4) for every (—2)-curve E ¢ Supp(D) which meets D, there exists a component
D; of D meeting E with p,>0.

If ¥(Kg+D+C)=2, then there exists a complete Ricci-negative Einstein-
Kéhler Vemetric on X — C with finite volume, which is unique up to multiplication by
Positive numbers.
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Let B? be the open unit ball in €? and I a discrete subgroup of PSU(2, 1)
acting on B? properly discontinuously with at worst isolated fixed points. The ball-
metric is Einstein-Kahler whose holomorphic sectional curvature is negative and
constant, which is invariant under the action of PSU (2, 1). Assume the volume of
X’=TI\B?is finite. Then we can compactify X’ by adding a finite number of cusp
points. Let X be the partial minimal resolution of X’ over the cusp points and C the
exceptional divisor. C consists of disjoint elliptic curves. (X, C) with the ball-metric
yields an example of Theorem 1. Hirzebruch-Mumford’s proportionality theorem
tells us that the following equality

(K)?+ Zi:”iDi+C)2 =3{e()7)—e(c)—e(l))+ %(VIGpI)}

holds, where {p} runs over the quotient singularities of X. We obtain the following
uniformization theorem by integrating the pointwise deviation of the canonical
Einstein-Kédhler V-metric in Theorem 1 from the ball-metric {cf. the proof of
Theorem 2 in [K2]). It is a converse of the proportionality theorem.

Theorem 2. Let X, C, X, D be asin Theorem 1. If we assume k(K g+ D+ C)=2and
conditions (1) (2) (3) (4) in Theorem 1, then we have the following inequality

(K)?+ LD+ C)" =3 {E(X_’ )—e(C)—e(D) + %(1/ IGpI)} :

where {p} runs over the quotient singularities of X and G, is the finite subgroup of
U(2) corresponding to p. The equality holds if and only if the universal covering of
the regular part of X —C is biholomorphic to the open unit ball B* in €* minus a
discrete set of points. In other words, the equality occurs if and only if there exists a
discrete subgroup I of PSU (2, 1) which acts on B? properly discontinuously with at
worst isolated fixed points such that X —C is biholomorphic to the minimal
resolution of I'\B2.

The inequality part of Theorem 2 was first proved in [M] using algebraic
geometry. The advantage of our differential geometric proof of Theorem 2, whose
original is Yau’s method in the proof of Calabi’s conjecture [Y 1], gives us a point
of view to regard the inequality as the precise deviation of the canonical Einstein-
Kihler V-metric from the ball-metric.

1. Remarks and Examples

1. If C=@and D contains only (—2)-curves, Theorem 1 implies the existence of _the
canonical Einstein-Kahler V-metric on the canonical model X of X, where X is2
minimal surface of general type (cf. [K1]). The first Chern class c,(X) of X 18
represented by the Kihler form of the canonical Einstein-Kihler V-metric in the
current sense. In this case, the inequality in Theorem 2 becomes

0=3 {%I e(Dp)—(I/IG,.I)} £ 3c,(X) —ci(X),

where p runs over the rational douBlc points on X and D, is the corresponding
exceptional set. The values of the invariant k(p) = e(D,)—(1/|G,|) is n(n + 2_)/ (n+1)
(4m* — 4m—9)/4(m—2), 167/24, 383/48, 1079/120, according as p (or D,) s of type
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A, Dms Eg» E4, Eg, respectively. Therefore the first inequality becomes equality if
and only if K 5 is ample and the second inequality becomes equality if and only if
there exists a discrete group I'CPSU(2,1) which acts on B? properly discon-
tinuously with at worst isolated fixed points such that X is biholomorphic to the
minimal resolution of I'\B2. The following example is due to Hirzebruch: Let X’ be
4 4
a surface in P,(C) defined by .ZO Z?=0 and .20 Z!°=0. X’ has 50 singularities
cach of which is resolved in a smooth curve of genus 6 with self-intersection
number —5 and 1875 rational double points of type 4,. Let X be the partial
minimal resolution over the former 50 singularities and X the full minimal
resolution. Then X is of general type and X is its canonical model. It is shown that
3¢(X)—c3(X)=27,000 and k(4,) = 24/5. The middle term of the above inequality
is 3 x 1875 % (24/5)=27,000. Hence we obtain X by taking the quotient variety of
B? with respect to some discrete subgroup I' of PSU (2, 1) with isolated fixed points
of type A,.

2. In [H2], Hirzebruch constructed the following example. There is a sequence
X,(n=2,3,...) of minimal surfaces of general type with the following properties:
o(X,)=n", 3c,(X,)—c}(X,)=4n>. X, carries 4n* smooth disjoint elliptic curves
C,. The pair (X, C)=(X,, C,) satisfies the assumptions in Theorem 2 and the
equality

Ky, +Cp)?*=3e(X,—C,)=3n"

holds. Therefore the universal covering of X, — C, is biholomorphic to B*.

3. Hirzebruch presented the following example in his lecture at Osaka University,
21

1984. Let L= {J L; be a line configuration on P,(C) such that L has 28 triple

=1
points and 21 ciuadruple points. Write ;=0 for the defining equation of L;. Let X’
be a surface obtained by blowing up all r-ple points (r 2 3) in the line configuration.
let X—X be the Abelian covering of order 22° obtained from the Abelian
extension

CPLC) /1Ly, ., [ Laa1)/T(P(T)).

It is shown that X contains 28 - 27 disjoint (—2)-curves D; and 21 -2'® disjoint
elliptic curves C, with C,- C;= —4. Let X be obtained by contracting these 28 - 2"
(=2)-curves. Then (X, C,), X, D,) satisfies the assumptions in Theorem 2. The
lumerical invariants of X are

3c,(X)—c}(X)=21-2° (using Hofer’s formula [H3])
PO C;=(—4)-21-2'6,
S (D) —(1/IG)=(2—1/2) 28217 =21 -2'%.
Therefore |
(K,;+ ) ci)z -3 {cz()?)— Ze(C)- }i:e(D,-)+(l/|G,-|)}
= _21.22044.21.21543.2]-218=0.
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It follows from Theorem 2 that X — C; is biholomorphic to the minimal resolution
of I'\B? for some discrete subgroup I'C PSU(2,1) which acts on B* properly
discontinuously with isolated fixed points of type 4,.

2. Zariski Decomposition
Let D be a rational divisor € Div(X)®@Q on a smooth surface X. D is a formal sum

Z d.D;, where d, e Q and {D,};_, a locally finite sequence of irreducible curves on

X We call D effective if all d;’s are non-negative and not all zero. Assume
DeDiv(X)®Q is effective. Then the Zariski Decomposition Theorem is:

Theorem A (Theorem 7.7 in [Z]). There exists one and only one effective rational
divisor N having the following properties:

(1) Either N =0 or the intersection matrix of the curve in Supp(N) is negative
definite;

(2) D—N is numerically effective, i.e., the intersection number with every
irreducible curve is non-negative;

(3) (D—N)-N=0;
Furthermore we have necessarily P:= D — N is an effective rational divisor.

The decomposition D=P+ N is called the Zariski decomposition. We call P
and N the positive and negative part, respectively. We shall use the following result
due to Zariski (cf. p. 612 of [Z]):

Theorem B [Z]. Let D be an effective divisor with the Zariski decomposition
D =P+ N.If B,denotes the fixed componént of |nD|, then under the assumption that
dim|hD|>0 for some h, the divisor B,=B,—nN is effective and is bounded from
above in n, i.e., the number of irreducible curves which appears in B, is bounded inn
and the coefficients of these curves are bounded in n. If in addition D is numericallly
effective, then B, is bounded above in n.

We collect some Lemmas on effective divisors on a compact smooth surface.

Lemma 1. Let L be an effective divisor and L=P + N the Zariski decomposition.
Then if k(L)21, we have k(L) =x(P).

Proof. Let B, be the fixed component of |mL]. 1t follows from Theorem B that
B,,=mN + B, where B is an effective divisor. Thus we get a natural isomorphism
H°(X, O(mL))= H°(X, ®(mP)) if mP is an integral divisor. Q.E.D.

Lemma 2. If Lis an effective divisor and B the fixed component of |L|. Then (L— B)
-B=0.

Proof. Let B= }: B; be the decomposition into irreducible components. For

every i, there is aholomorphlc section s; of [L— B] such that B,isnot a comporent
of (s;). Pick a point p; from B, \(U B) so that [(p,)=t=0 Clearly we can choost

complex numbers q; for i=1,...,r such that Z a;s{(p;))+0 for every j. Lt
(Z as)elL —B|. Then no B, is a component of E. Thus (L—B)'8
=E-B=0. Q.ED.
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For an effective divisor L we define a rational map @) of X into Py(C) by
O (x)=(0o(x):...:05(x)) € P((C), where {o, ..., 6y} is a C-basis for HY(X, 6(L))
and N=dim|L|+1.

Lemma 3. Let L be a divisor which is effective and numerically effective. Then
x(L)=2 if and only if I*>0.

Proof. If part follows from the Riemann-Roch formula. To prove only-if part, let
B,, be the fixed component of mL. It follows from Theorems A and B that B,, is
bounded above in m. Since h®(X, O(mL— B,))=h%(X, O(mL))— o0 as m— oo, we
must have (mL— B,,)>=0. Since L is numerically effective, we have L- B,,20. It
follows from Lemma 2 that (mL—B,)-B,=0. Now suppose [*=0. Then
0=(mL)?=(mL)- B,,+(mL—B,)*+(mL—B,)-B,,=0. Hence we must have
(mL— B,,)*=0. This implies that [mL— B,,| has no base points. Therefore @, 5,
is a holomorphic mapping into some Py(C). Since x(mL~ B,) =x(mL)=2, we see
that (mL— B,,)* = “‘the volume of @, (X) with respect to the Fubini-Study
metric” > 0. Contradiction. Hence we get [7>0. Q.E.D.

Now let X, C, X, D be as in Theorem 1. We assume the conditions (1) to (4) in
Theorem 1. Furthermore we assume k(K g+D+C)=2, i.e, h°(X, O(Kz+ D +C))
grows like m?. Let Kx+D+C=P+N be the Zariski decomposition. We
decompose D into irreducible components D; (1 £i<s). Itis well known that each

D;is P,(€) (cf. [B]). Let p, €@ be defined by requiring Kz+ 3 u;D; should be
i=1

trivial near D. y;’s are uniquely determined and 0= y;<1. It is justified in the
following argument: Let z : (Y, D)—(X, p) be the minimal resolution of a quotient
singularity (X, p) =(G\B, G - 0) where B is a ball and G is a finite subgroup of U(2)
with only one fixed point 0. Set h=|G|. Then (dx Ady)* is a G-invariant h-ple
holomorphic 2-form on B. Thus there exists a h-ple holomorphic 2-form » on
Y—D. On the other hand, since h'(Y,®)=dimR'n,0=0 and H*(Y,0)=0, we
have HY(Y, 0*) = H*(Y, Z)=Z°. Thus every element of H'(Y, 0*) can be written as

2 4D, for some rational numbers 4;. Hence w must be a h-ple meromorphic
12—-f10rm on Y. Since w is locally L2 integrable at D, the order of the pole along D is
at most h— 1. Hence, if (w)= i‘, A.D,, we have —h < A,. u;’s corresponding to K
are determined in the folllgvlving way: Set a,=Kjz-D; a;=D; D; Then
4= jil a;;A;. It is easily shown that if every a; 2 0, then every 4; <0. Here, we have

used the fact that (a;;) is symmetric and negative definite with a;;>0 for i4j and
4,;<0. Since every D, is a rational curve with self-intersection number —2, we have
420. Thus —1<2A/h=u,<0.

Lemma 4. Let Kg+D+C=P+N be the Zariski decomposition. Then
i=1
and

(1—u)D;,

Mo

N=

L

1
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where every u,; is a non-negative rational number less than one and is determined
uniquely by requiring that Kg+ 3 i,D; should be trivial near D.

Proof. Set N= Y (1—a)D;+ X B;B;, where o, B; are rational numbers with
i=1 ji=1 _
@;<1, ;20 and B; are irreducible curves on X. We rewrite this as
N=Y (1—p)D;+E—F+G. Then P=K3+ Y y;D;+C—E+F—G, whereE,
i=1 i=1

F,Garedefinedby Y (—a)D,, X (0,—u)D,, 3 B;B;, respectively. Since
pr<ay j=1

B> ok

P is numerically effective, we have P (Z (1—p)D;+E+ G) =0. Since
Kz+ 3 uD;~0 near D, CnD= @ and the intérsection matrix of Supp(D) is
negati\'/e definite, we get P-F<F?<0. But P- (2 (1—p)D;+E—-F+ G\
=P-N=0. Thus we get ;= o, for all i. Hence P can be wr;tten asP=Kz+2X u,-D/i
+C— 2 (w—a)D;— 3 B;B; with o;<y; and B;20. We claim that P’l=K;(
+ ; ,u,-b,- +Cis nume;ically effective. Note that P’ is effective. If E is a curve

contained in Supp(C + D), we have P’- E>0 by our assumption. If E is a curve
which is not a component of Supp(C+ D), then P’-E must be non-negative.
Indeed, if otherwise, we have K¢+ E <0 and E*<0. Thus E is a (— 1)-curve with
C - E=0 which has been excluded by our assumption. Therefore P’ is numerically
effective. From the uniqueness of the Zariski decomposition, P=P". Q.E.D.

Proposition 1. Under the assumption of Theorem 1, P has the following properties:
(1) P2>0;
(2) P is numerically effective;
(3) Foreveryirreducible curve Eon X, P- E=0 holds only if E is a component of
Supp(D + C).

Proof. From Lemmas 1, 3, and 4, we have P2 >0. (2) is clear. If E is an irreducible
curve which is not a component of Supp(D+C) and P- E=0, then K- E<0 and
E*<0. Thus E is a (—1)-curve with C-E<1 or a (—2)-curve which is not
contained in Supp(D). But both have been excluded by our assumption. QED.

Let m be a positive integer such that mP is an integral divisor. We write & for the
union of all irreducible curves E with P- E=0, and & = Y &, the decomposition
into connected components in the usual topology.

Proposition 2 (cf. Theorem (5.8) in [S]). Under the assumption of Theorem I, ther¢
exists a positive number ny=ny(X,D, C) with the following properties: for any
integer n>ng, (i) |nmP| has no base points; (i) If N+ 1=h"X,O@mmP)) a”,d
{00, ..., 05} is a C-basis for HY(X, O(nmP)), then the map ® = D|p: X —PyO) 5
a holomorphic map whose restriction to X — & is a biholomorphic map onto its imog¢
and ® ~'®(z) is equal to either z or &, accordingtoze X —& orz€8,, respectively-
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Proof. The proof is almost the same as that of Theorem (5.8) in [S]. In 105-110 of
[S], Sakai proved a sequence of Lemmas concerning mI” where I' is the adjoint
divisor of a semi-stable curve C. It is easy to modify these Lemmas into suitable
forms to our purposes. Roughly speaking, these Lemmas remain valid if we replace
I by our mP, where P=Kxz+ 3> u;,D;+C. QE.D.

3. Proof of Theorem 1
From Proposition 2, we get the following:

Lemma 5. Under the assumption of Theorem 1, there exists areal closed (1, 1) form
y representing c(mP) in the de Rham cohomology having the following properties:

(i) yis positive definite outside of & ; (ii) For any irreducible component E of &,i%y
vanishes where iy is the inclusion of E into X.

Proof. Set ny= &* [the Fubini-Study metric form on P,(C)] for large m. Then y
has the required properties. Q.E.D.

From here on, we regard X as a Satake V-surface.

Definition. Let p be a singular point of X, and G the finite subgroup of U(2)
corresponding p. There is a strictly pseudo-convex neighborhood U of p such that
(U, p)=(G\B, G - 0), where B is a ball with center 0. We call the quotient map B—»U
with respect to G a local uniformization around p. Let T be a smooth tensor field on
the regular part of X. We call T a ¥ — C® tensor field if we obtain T by pushing
down a C* tensor field in terms of local uniformizations.

Let D=3D,, C= %“Cﬂ be the decomposition into connected components,

n

and D= ¥ D,, C= ¥ C,, the decomposition into irreducible components. For each

i, m, let s,-!and t,, be the holomorphic sections of [D;] and [C,,] such that (s.i) =D;
and (¢,,) = C,,. There exist a smooth volume form Q on X, Hermitian metrics for
(D] and [C,,] such that the singular volume form Q'=Q / [T lsi®|tnf* satisfies

7= —Ric(, where y is as in Lemma 5 and RicV'=—]/—10ddlogv for a volume
form v =y Iy -1 dz A d7'). Now let (U, p) =(G\B, G - 0) be a neighborhood of a

singular poilnt of X and (U, D ) its minimal resolution. Since the usual flat vo!ume
clement is U(2) invariant, we can push this down to U —{p}=U—D,. We write v,
for the resulting volume form on U—{p}. From the arguments just before
Lf'mma 4, we see that there is a C* function ﬁu defined in U such that @'= h"”'v” on
U. We define a C* function h, on B— {0} by n*(h,|U —{p}), where n.: B—U is the
quotient map. On the other hand, let ﬁu be a local Kihler potential for th; Fubini-
Study form on P,(C). Thus we get a C* function K, =n*®*h, on B. Since ddh,
=03k, on B— {0}, ke C*(B), and h,e C*(B—{0}), we must have h,& C*(B).
Summing up, we get the following:

Lemma 6. Q’=Q/1_[ Is,|2# 1,12 is @ V —C* volume form on X —C.
im
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The connected components &, of & are classified in the following:

Lemma 7 (cf. Lemma 1 of [K2]). Each &, is one of the following five types:
(1) &,=D, for some u;
If &, is contained in C, &, is one of the followings:
(2) a smooth elliptic curve with negative self-intersection number;
(3) a cycle of smooth rational curves with self-intersection numbers < —2 and
some of them £ —3;
(4) a rational curve with a node with negative self-intersection number;
(5) a chain of smooth rational curves with self-intersection numbers < —2.

Proof. See the proof of Lemma 1 in [K2]. Q.E.D

Lemma 8. Let (Y, A)— (X, p) be the minimal resolution of an isolated 2-dimensional
singularity where A is a smooth elliptic curve with self-intersection number —b<0.
Then by replacing X by an appropriate neighborhood of p if necessary, we can
express X —{p} as an orbit space in the following way: There exist a positive number
a, real numbers o, B and a lattice & in C defined by {m+nw; m,neZ, Im(w)=a}
such that

Y-—A=X-{p}=I"\W,

where W = {(u, v) e C*; Im(u)— |[v|>> L} for some positive number L,

127 iyl*~2h() y runs over &, and for each y=m+nw,
F=40 1 y i h(y) runs over the class of ma+nf—mna ;.
0 0 1 modulo (2a/b)Z.

The action of the above matrix is to send (u,v) into (u+ 2ijv+ily|> — 2h(y), v+7)-
Proof. See the proof of Lemmas 4 and 5 in [K2]. Q.E.D.

Since & ={(u,v) e C?; Im(u)—[v|*>>0} is biholomorphic to B2, & admits
complete Kihler metric form with constant holomorphic curvature. The Kahler
potential of th1s metric form is given by logF, where F(u,v)=(Im(u)— v/’ )~
Since F(u,v) ™! is invariant under the action of I', this projects down to a functlon
£+ on X —{p}. Thus we obtain in a canonical way the function f, having the
property that V:T d0log f,is the ball metric near 4. Let {,,,,} be the union of
connected components of & of type (2) in Lemma 7. For each v(1), we have gotin2
canonical way the function f,, defined in a neighborhood of &,;, minus &\a»

whose —]/ —14d01og is the ball-metric near &,,,.
Lemma 9. Let (Y, B)—(X,p) be the minimal resolution of an isolated 2- dimensional

singularity where B is a cycle Z B, of PV’s with —B,- B,=b,>2, some b;23 and

r22orarational curve B, w1th a node with ~ By By=by=1. Let w, be an irrational

quadratic number defined by ]nn (G— ey = (o= (e —a7 D)7 )
where {q,} is a periodic sequence wzth period r defined by q,=b, for O<k“”1

whenr22 or qy=by+2 whenr=1. Let {R}. be a sequence defined by R 1 ’W‘Z
Ro=1,qR,=R,_,+R; ., forkeZ. Let M be a free Z-module of rank2 generate
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by 1 and wy, V the infinite cyclic multiplicative group generated by R,. Then by
replacing X by an appropriate neighborhood of p if necessary, we obtain

Y-B=X~{p}=\W,
where W=1{(z,,2,)€C%;y,>0,y,>0, y,y,> L, where z;=x;+ |/ =1y}, for some

positive number L, and
H
r= {( “);gev,yeM}.
01

The action of the above matrix is to send (z,,z,) into (ez,+ U, €z, + '), where '
means to take the conjugate over Q).

Proof. See [H1]. Q.ED.

The product metric of the Poincaré metric on H? = {(zy, z,) € C?; Im(z,) >0,
Im(z,)>0} is given by iddlogF, with F(zy,z,)=(m(z,)Im(z,))"" which is
invariant under the action of I', we obtain in a canonical way the function f
defined on X — {p} whose i 87 log is the H*-metric near B. Let {&,,)} be the union
of &, of type (3) or (4)in Lemma 7. For each v(2), we have got in a canonical way the
function f,,, defined in a neighborhood of &) minus &,,) whose —i 00 log is the
H?-metric near &3

Lemma 10. Let (Y, E)—(X, p) be the minimal resolution of an isolated 2-dimen-
sional singularity where E = i E, is a chain of PVs withb,= —E, - E, 2 2. Let nfq
be the irreducible representat’;;rt of by—(by—(...(b,_ . ~b; 1)) ) L and T the
f) 2" , where ¢=exp(2nifn). Then have (X,p)
2(I'\B,I"-0) by replacing X by an appropriate neighborhood of x if necessary.
Proof. See for example [B]. Q.E.D.

The product metric of the Poincaré metrics on the unit punctured disk on D*?
has a Kahler potential F(z,,z,)=(log|z,| %) ~* (log|z,|~%)~', which is invariant
under the action of I'. Thus we get in a canonical way the function fg whose
~iddlog is the D**-metric near E. Let E, and E, ., be the irreducible components
of C—& w3y intersecting E; and E,, respectively, where E =&, one of the &, of
type (5) in Lemma 7. We can extend f} to the function f; defined in a deleted
neighborhood of E,UEUE, ,, which is written as log|o,f? and loglo, . | in the
newly added domain of definition of f; near E, and E, ., respectively.

Definition. Let V be a domain in €™ Let X be an m-dimensional complex n}ani.f'old
and 4 a holomorphic map of V into X. ¢ is called a quasi-coordinate map if ¢ is of
Maximal rank everywhere. In this case, (¥, ¢) s called a local quasi-coordinate of X..

I?eﬁnition. Let X be a complex V-manifold with at worst isolated quotient
Singularities and w a complete Kahler V-metric on X. We say that (X, w) hqs
ounded geometry if the following conditions hold: There exist a system of quasi-
Coordinates ¥ = {(V,, v})} and a neighborhood U(p) of each quotient singularity p

eyclic group generated by
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such that (U(p),p)=(G,\B.G,-0) and U(p)nU(g)=9 having the following
properties:
() U (Image of V)u U U(p)=X;
B

(ii) there are positive numbers ¢ and § independent of o such that B(e)CV,
CB(9);

(iii) there are positive constants ¢ and o, (k=0,1,...) such that ¢7'(5,)
<(g,j) <c(d;;) and

[P+ Halg /008 0T < A 1y 4 1g1

for all multi-indices p, g where w =ig,;;dv} dv! in terms of (v}) for all &, and the same
inequalities hold for ali lifted metrics from U(p)’s.

Definition. Let u be a function of class ¥V — C®. For a nonnegative integer k and
ae(0,1) the V—C¥*(X) norm of u is defined by

|tly &, =max(4, B)
with
A= sup {sup > jalr Plmruy/oc ol’)

{eB |pl+lal <k
+sup X [-017°
{,l'eB |al + {b| =k
L+

(@ rEu(0)/0C° 6T — (B mru(l /oL 05”)!} ,

z )zeValal+|B| sk

B=sup {sup S [ttt Bly(z) /00 o)

+ sup > jz—z|7*
z,z°eV,y [of + || =k
z¥z’

P 008 302) — (9 0z 321

where 7,: B—U(p) is the quotient map around p.

3

Definition. For a nonnegative integer k and a€(0,1), the function spac
V—C*4X—C) is the Banach space obtained as the completion of
{ue V—C®(X); |uly . <o} with respect to the norm |- |y ; ..

Let &, be defined by:

(1) If &, is of type (1), then &,=90;

(2) If &, is of type (2) or (3) or (4), then &,=8,;

(3) If &, is of type (5), then &, is the union of &, and the irreducible curves of C
intersecting &,.

Lemma 11. There exist a smooth volume form Q on X, Hermitian metrics for [0
and [C,], a V—C> function h on X and V—C® functions q, on X — &, such that

¥ =0 [Tl ol TT 9, T Golsol
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(where [ T" means to take the product over v such that &, is contained in C and [T
means to take the product over m such that C,, is disjoint from & ).Isa V — C*® volume
form on X — C with the following properties:
(i) w=—Ric¥ is a complete Kihler V-metric on X —C with finite total

volume;

(ii) (X —C, w) has a quasi-coordinate system with bounded geometry;

(iii) The functionlog(¥/w?)is of class V—C**(X —C) for any k, « with finite
V—C** norm.

Sketch of the Proof (detailed discussion is given in Lemma 5 of [K2]). If pis a
singular point of X with (X, p) (G\B, G-0), then h should be the push down of
| —|Z|?* defined in B. Hence w= —Ric? is essentially the push down of the
restriction of the Bergman metric of B? to B. Let &, be a connected component of &
contained in C. We have shown the existence of the canonical function f, whose
—0d0log gives an Einstein-Kéhler metric coming from the ball-metric or the
H*-metric in a deleted neighborhood of &,. Let g, be a V — C* function on X — &,
which is equal to £ or f2 according as &, is of type (2) or of types (3) and (4) near
é,. Then w is essentially the canonical metric coming from the ball-metric or the
H2-metric. Thus to consider —Ric ¥ is to make — Ric€?’ more positive by adding
the ball-metric or the H2-metric of cusps near &, and by adding the Poincaré
metric of the transversal punctured disk to C,, disjoint from &. It is a
straightforward computation to verify that log(¥/w?) belongs to ¥ — C*%X —C)
for any k,. Q.E.D.

We expect that w is a good approximation of the desired Einstein-Kihler
metric. Hence we deform w into w+i00u=dd such that & is Einstein-Kéhler.

Proof of Theorem I. Theorem 1 is a direct consequence of Lemma 11 and the
following general result:

Theorem C. Let X be a complex n-dimensional V-manifold with a V —C* volume
form ¥ such that w = —Ric ¥ is a complete Kdhler V-metric with bounded geometry
and the function f=1log(¥/w") belongs to V—C**(X) for any k,a. Then there is a
unique solution u of

(0+ l/——l d0u)"=exp(u+ f)o"

belonging to U ={ueV—-C®;c 'w<w+ V-1 d0u<cw for some positive con-
stant c}. The resulting &= +100u is a Ricci-negative complete Einstein-Kdhler
V-metric on X.

Proof. This is a direct consequence of the following:

Theorem D. Let M be a V-manifold endowed with a complete Kdhler V-metric of
dass V—Cbe with k5. If (M,w) has bounded geometry, then for any f
V~C"*2'“(M), there is a unique solution u to

(w+)/ —1080u)"=exp(u+f)o"
belonging to {ue V—C*M);c ‘o <wo+iddu<co for some positive number c}.

Proof. See [K 1, K2] and [C,Y]. QED.
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4. Inequality for Chern Numbers

Let M be a V-surface with at worst isolated quotient singularities. Let g be a
Riemannian V-metric. Let M be the minimal resolution of M and g, a smooth
Riemannian metric on M. Then we have

1{{ elg)=e(M)— % (e(E,)—1/1G,D,

where e(g) is the Euler form of g and p runs over the singularities of M. To prove
this, we recall the Gauss-Bonnet Theorem for manifolds with boundary:

Gauss-Bonnet Theorem. Let (M, g) be a 2k-dimensional compact oriented Rieman-
nian manifold with boundary N and assume that, near N, it is isometric to a product
of N and an interval. Then

[ elg)=e(M).
M

Let U be G\B where G is a finite subgroup of U(2) and g a Riemannian metric
on U which is isometric to a product near the boundary and is a flat V-metric near
the singularity G- 0. Let U be the minimal resolution of U and g, a Riemannian
metric which is isometric to a product near the boundary and is smooth near E,
where E is the exceptional set. Then we apply the Gauss-Bonnet to get

G~ = fe(g) Iego)+ hm I 0,

W)
{I e(go) =e(U)=e(U—E)+e(E)=¢(E),
where W(r)= U —n(B(r)) and = is the projection. Q is the universal polynomial of

the difference of the connection forms and the respective curvature forms. Thus we
have

lim [ Q=—(e(E)—IGI™").

r—+0 oW

To prove the desired formula, let g be a V-metric on M which is flat near the
singularities and g, a smooth Riemannian metric on M. Then we have

fe(g)— ie(go)= lim f Q= —Z(G(E,,)—IGFI“)-

Let X, C, X, D be as in Theoreml Then there exists a unique complete
Einstein-Kihler V-metric @ on X — C such that Ric(é)= —&. Let &, be the i-th
Chern form of the Hermitian connection of @. Set w= —Ric?, where P is as in
Lemma 11.

Lemma 12. Under the above situation, the following equalities hold:
[&= (Ki"' ZﬂiDi+C)2,
X i

!{5= e(X)—e(D) - e(C)+ZIGpl‘
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Proof. The proof is the same as that of Lemma 9 in [K 2] except determining the
contribution of the singularities of X. Since the proof of the first equality is exactly
the same as the corresponding part of the proof of Lemma 9 in [K 2], we prove the
second equality. Let g,, g,, and g, be three Riemannian metrics on the regular part
of X. They are distinguished from each other according to their behavior at the
singularities and C. g, is equal to the canonical cusp metric near C and is a flat
V-metric near each singular point. g, is a smooth Hermitian metric for Q(log C)*
and is a smooth flat V-metric near the singularities. g, is a smooth Hermitian
metric for Q¥(logC)*. Let W(r)=X — (U np(B(r))), where n, is the projection

14
from B onto a neighborhood of a singular point p. Then we have

£52= Jealg) =T cs(g,) (by the proof of Lemma 9 in [K2])
X X

=1lim | c,(g;)+dQ

r—+0 W)

=c,(R%(logC)+1lim | Q

r—0 oW (r)

=e(X)—e(C)—e(D)+ %‘, IG,I”'. QE.D.

Proof of Theorem 2. Since @ is Einstein-Kahler, we have a point-wise inequality
0<3¢, —¢%. Integrating this inequality over X and applying Lemma 11 yields the
desired inequality. Since 3¢, — ¢} measures the point-wise deviation of & from the
ball-metric, the equality in Theorem 2 occurs if and only if @ is the ball-metric. The
rest is the same as the corresponding part of Theorem 2 in [K2]. Q.E.D.

As an application of Theorem 2, we prove a rigidity theorem. Let I'CPSU(2, 1)
be a discrete group of automorphisms of B> acting freely. Assume the volume of
X”=TI\B? is finite. Then X" is compactified to X’ if we add a finite number of cusp
points. Let X be the minimal resolution of X’ over the cusp points and C the
exceptional curve. C consists of mutually disjoint elliptic curves C; with C? <0.

Theorem 3. Let (X, C) be as above and let (Y, D) be a pair of a compact smooth
surface Y and a reduced curve D with normal crossings. If there is an oriented
homotopy equivalence between (X, C) and (Y, D), then Y—D is biholomorphic to
X-cC.

Proof. It follows from the assumption that the tubular neighborhood of D is
difftomorphic to that of C. We can identify the connected component D; of D,
which is a torus, with the corresponding component C;. We have also Ky - D;
=D}=C?=Ky-C, Since ¢(Y)=e(X) and Sign(Y)=Sign(X), we have K2
=2¢(Y)+ 3 Sign(Y)=2e(X)+3Sign(X)=K2. Therefore (Ky+D)>=(Kx+C)?
=3(e(Y)—e(D)). We want to show that the logarithmic Kodaira dimension « of
(Y,D)is 2. To prove this, we need to recall the notion of the minimal model of (Y, D)
(see pp. 89-90 of [S] for precise definitions). If C is a (—1)-curve on Y wh.ich
Intersects D at most one point, C is called a D-exceptional curve. Since X —Cis a
K(r, 1)-space, sois Y — D. Since (Ky + D)*>0, Y is projective algebraic. Therefore,
there are no rational curves on Y —D. If E is a D-exceptional curve with D- E=1
and p: (Y, D)—~(Y’, D) is the blowing down of E, then p*(L) =L, where L=Ky+D
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and I’ =K. + D’. By a finite number of blowing downs of D-exceptional curves, we
arrive at the minimal model ( ¥y, D) of (Y, D), which has no Dj-exceptional curves,
If £ = — 0, it follows from Sakai [S] that (Y, D,) must be (elliptic ruled surface, a
section). Thus I' =7,(X — C) = #,(Y — D) =Z@®Z. This s a contradiction, since I is
not abelian. If £=0 or 1, then L, must be numerically effective. Therefore, since
L3=(Ky+ C)* >0, we have h*(Y,, O(—mLy— Dg))=0 for m>0. By the Riemann-
Roch formula, h°(Y,, O(mL,))=0(m?) when m—oo. But this contradicts the
assumption. Therefore we deduce ©=2. Since (Y, D) satisfies the condition of
Theorem 1, we get the following inequality:

I? = I3 <3(e(Yo) —e(Do)) =3(e(Y) —b—e(D)) ,

where b is the number of the blow downs in Y— Y. Hence we have b=0, i.e., (Y, D)
=(Y,, Dy). It follows from Theorem 2 that the universal cover of Y~—D is
biholomorphic to B2. By the rigidity theorem of Gerland-Raghunathan-Prasad
[P], Y—D is in fact biholomorphic to X —D. Q.E.D.

Note. In[Y2], Yau proved the rigidity theorem for compact quotients of B*: Let
X be a compact smooth surface that is covered by B*. Then any compact smooth
surface that is oriented homotopic to X is biholomorphic to X.

Acknowledgement. The author heartily thanks Professor Dr. F. Hirzebruch for his interest in this
work.
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