Einstein-Kiihler V-Metrics on Open Satake V-Surfaces with Isolated Quotient Singularities

Ryoichi Kobayashi Mathematical Institute, Tohoku University, Sendai 980, Japan

Dedicated to the memory of the late Professor Takehiko Miyata

O. Introduction

In [A] and [Y 1], Aubin and Yau proved the existence ofa Ricci-negative Einstein-Kähler metric on compact complex manifolds with ample canonical bundles. The purpose of this paper is to generalize the Aubin-Yau theorem to the category of open Satake F-surfaces with isolated quotient singularities. We note that **this** category includes as a special case the logarithmic canonical models of minimal surfaces of logarithmic general type which are treated in $[**S**, **K1**, **K2**, **K2**$ Added in Proof. In this paper, we use the terminology "Satake V-manifolds" in the following sense. A complex space X is called a *(Satake) F-manifold* if it has at worst isolated quotient singularities. Let X be a V-manifold and *ds 2* a Riemannian metric defined in the regular part of X . ds^2 is called a *V-metric* if we obtain it by pushing down a smooth metric defined in local uniformizations. Therefore a V -metric looks like a smooth metric in terms of local uniformizing coordinates. Two-dimensional V-manifolds are called F-surfaces. Our main result **is:**

Theorem 1. *Let X be a compact complex surface with at worst isolated quotient singularities and C a divisor which lies in the regular part of X with at worst normal crossings. Let* $\overline{X} \rightarrow X$ be the minimal resolution of X and $D = \sum_i D_i$ its exceptional

divisor. We can determine the nonnegative rational numbers μ_i *by requiring* $K_{\bar{x}} + \sum \mu_i D_i$ to be trivial near D. Assume the following conditions are satisfied:

 (i) ^{*i*} $(K_{\bar{X}}+C)\cdot C_i\ge 0$ for every irreducible component C_j of C_i ;

(2) the divisor consisting of C_j 's with $(K_{\bar{x}}+C) \cdot C_j>0$ has at worst simple *normal crossings;*

(3) there is a no (-1) -curve (exceptional curve of the first kind) which meets Supp(C) *at most one point;*

(4) *for every* (-2) -curve $E \notin \text{Supp}(D)$ which meets D, there exists a component D_i *of D meeting E with* $\mu_i > 0$.

If $\kappa(K_{\bar{X}}+D+C)=2$, then there exists a complete Ricci-negative Einstein-*Kähler V-metric on* $\hat{X}-\hat{C}$ with finite volume, which is unique up to multiplication by *positive numbers.*

Let B^2 be the open unit ball in \mathbb{C}^2 and Γ a discrete subgroup of $PSU(2, 1)$ acting on $B²$ properly discontinuously with at worst isolated fixed points. The ballmetric is Einstein-K/ihler whose holomorphic sectional curvature is negative and constant, which is invariant under the action of *PS U* (2, 1). Assume the volume of $X' = \Gamma \backslash B^2$ is finite. Then we can compactify X' by adding a finite number of cusp points. Let X be the partial minimal resolution of X' over the cusp points and C the exceptional divisor. C consists of disjoint elliptic curves. (X, C) with the ball-metric yields an example of Theorem 1. Hirzebruch-Mumford's proportionality theorem tells us that the following equality

$$
\left(K_{\bar{X}}+\sum_{i}\mu_{i}D_{i}+C\right)^{2}=3\left\{e(\bar{X})-e(C)-e(D)+\sum_{p}(1/|G_{p}|)\right\}
$$

holds, where $\{p\}$ runs over the quotient singularities of X. We obtain the following uniformization theorem by integrating the pointwise deviation of the canonical Einstein-K/ihler V-metric in Theorem 1 from the ball-metric (cf. the proof of Theorem 2 in [K2]). It is a converse of the proportionality theorem.

Theorem 2. Let X, C, \overline{X} , D be as in Theorem 1. If we assume $\kappa(K_{\overline{X}} + D + C) = 2$ and *conditions* (1) (2) (3) (4) *in Theorem 1, then we have the following inequality*

$$
\left(K_{\bar{X}}+\sum_{i}\mu_{i}D_{i}+C\right)^{2}\leq 3\left\{e(\bar{X})-e(C)-e(D)+\sum_{p}(1/|G_{p}|)\right\},\right
$$

where $\{p\}$ *runs over the quotient singularities of* X and G_p is the finite subgroup of U(2) *corresponding to p. The equality holds if and only if the universal covering of the regular part of X-C is biholomorphic to the open unit ball B² in* \mathbb{C}^2 *minus a discrete set of points. In other words, the equality occurs if and only if there exists a* discrete subgroup Γ of PSU(2, 1) which acts on B^2 properly discontinuously with at worst isolated fixed points such that $\bar{X}-C$ is biholomorphic to the minimal *resolution of* $\Gamma \backslash B^2$ *.*

The inequality part of Theorem 2 was first proved in [M] using algebraic geometry. The advantage of our differential geometric proof of Theorem 2, whose original is Yau's method in the proof of Calabi's conjecture $[Y 1]$, gives us a point of view to regard the inequality as the precise deviation of the canonical Einstein-Kähler *V*-metric from the ball-metric.

1. Remarks and Examples

1. If $C = \emptyset$ and D contains only (-2)-curves, Theorem 1 implies the existence of the canonical Einstein-Kähler V-metric on the canonical model X of \overline{X} , where \overline{X} is a minimal surface of general type (cf. [K1]). The first Chern class $c_1(\bar{X})$ of \bar{X} is represented by the Kähler form of the canonical Einstein-Kähler V-metric in the current sense. In this case, the inequality in Theorem 2 becomes

$$
0 \leq 3 \left\{ \sum_{\mathbf{p}} e(D_{\mathbf{p}}) - (1/|G_{\mathbf{p}}|) \right\} \leq 3c_2(\bar{X}) - c_1^2(\bar{X}),
$$

where p runs over the rational double points on X and D_p is the corresponding exceptional set. The values of the invariant $k(p) = e(D_p) - (1/|G_p|)$ is $n(n+2)/(n+1)$, $(4m^2 - 4m - 9)/4(m - 2), 167/24, 383/48, 1079/120, according a so for D_p is of type$ A_n , D_m , E_6 , E_7 , E_8 , respectively. Therefore the first inequality becomes equality if and only if $K_{\overline{X}}$ is ample and the second inequality becomes equality if and only if there exists a discrete group $\Gamma \subset PSU(2, 1)$ which acts on B^2 properly discontinuously with at worst isolated fixed points such that \bar{X} is biholomorphic to the minimal resolution of $\Gamma\backslash B^2$. The following example is due to Hirzebruch: Let X' be a surface in $P_4(\mathbb{C})$ defined by $\sum_{i=0}^{4} Z_i^5 = 0$ and $\sum_{i=0}^{4} Z_i^{1.5} = 0$. X' has 50 singularities each of which is resolved in a smooth curve of genus 6 with sdf-intersection number -5 and 1875 rational double points of type A_4 . Let X be the partial minimal resolution over the former 50 singularities and \bar{X} the full minimal resolution. Then \overline{X} is of general type and X is its canonical model. It is shown that $3c_2(\bar{X}) - c_1^2(\bar{X}) = 27,000$ and $k(A_4) = 24/5$. The middle term of the above inequality is $3 \times 1875 \times (24/5) = 27,000$. Hence we obtain X by taking the quotient variety of $B²$ with respect to some discrete subgroup *F* of *PSU*(2, 1) with isolated fixed points of type A_{λ} .

2. In [H2], Hirzebruch constructed the following example. There is a sequence X_n (n = 2, 3, ...) of minimal surfaces of general type with the following properties: $c_2(X_n) = n^7$, $3c_2(X_n) - c_1^2(X_n) = 4n^5$. X_n carries $4n^4$ smooth disjoint elliptic curves C_n . The pair $(X, C) = (X_n, C_n)$ satisfies the assumptions in Theorem 2 and the equality

$$
(K_{X_n} + C_n)^2 = 3e(X_n - C_n) = 3n^7
$$

holds. Therefore the universal covering of $X_n - C_n$ is biholomorphic to B^2 .

3. Hirzebruch presented the following example in his lecture at Osaka University, 1984. Let $L = \bigcup_{j=1}^{21} L_j$ be a line configuration on $P_2(\mathbb{C})$ such that L has 28 triple points and 21 quadruple points. Write $l_i = 0$ for the defining equation of L_i . Let X' be a surface obtained by blowing up all r-ple points ($r \ge 3$) in the line configuration. Let $\bar{X} \rightarrow X$ be the Abelian covering of order 2^{20} obtained from the Abelian extension

$$
\mathbb{C}(P_2(\mathbb{C}))\left(\sqrt{l_2/l_1},\ldots,\sqrt{l_{21}/l_1}\right)/\mathbb{C}(P_2(\mathbb{C}))\right).
$$

It is shown that \bar{X} contains 28.2¹⁷ disjoint (-2)-curves D_i and 21.2¹⁶ disjoint elliptic curves C_i with C_i . $C_i = -4$. Let X be obtained by contracting these 28.217 (-2) -curves. Then $((X, C_i), \overline{X}, D_i)$ satisfies the assumptions in Theorem 2. The numerical invariants of \bar{X} are

$$
3c_2(\bar{X}) - c_1^2(\bar{X}) = 21 \cdot 2^{20} \quad \text{(using Höfer's formula [Hö])}
$$

$$
\sum_i C_i \cdot C_i = (-4) \cdot 21 \cdot 2^{16},
$$

$$
\sum_i e(D_i) - (1/|G_i|) = (2 - 1/2) \cdot 28 \cdot 2^{17} = 21 \cdot 2^{18}.
$$

Therefore

$$
\left(K_{\bar{X}} + \sum_{i} C_{i}\right)^{2} - 3\left\{c_{2}(\bar{X}) - \sum_{i} e(C_{i}) - \sum_{i} e(D_{i}) + (1/|G_{i}|)\right\}
$$

= -21 \cdot 2^{20} + 4 \cdot 21 \cdot 2^{16} + 3 \cdot 21 \cdot 2^{18} = 0.

It follows from Theorem 2 that $\bar{X} - C_i$ is biholomorphic to the minimal resolution of $\Gamma\backslash B^2$ for some discrete subgroup $\Gamma\subset PSU(2, 1)$ which acts on B^2 properly discontinuously with isolated fixed points of type A_1 .

2. Zariski Decomposition

Let D be a rational divisor \in Div(X) \otimes **Q** on a smooth surface X. D is a formal sum

 $\sum_{i=1} d_i D_i$, where $d_i \in \mathbb{Q}$ and $\{D_i\}_{i \in \mathbb{Z}}$ a locally finite sequence of irreducible curves on X . We call *D effective* if all d_i 's are non-negative and not all zero. Assume $D \in Div(X)\otimes\mathbb{Q}$ is effective. Then the Zariski Decomposition Theorem is:

Theorem A (Theorem 7.7 in [Z]). *There exists one and only one effective rational divisor N having the following properties:*

(1) *Either N* = 0 *or the intersection matrix of the curve in* $\text{Supp}(N)$ *is negative definite;*

 (2) $D-N$ is numerically effective, i.e., the intersection number with every *irreducible curve is non-negative;*

 (3) $(D-N) \cdot N=0$;

Furthermore we have necessarily $P := D - N$ *is an effective rational divisor.*

The decomposition $D = P + N$ is called the *Zariski decomposition*. We call P and N the *positive* and *negative* part, respectively. We shall use the following result due to Zariski (cf. p. 612 of $[Z]$):

Theorem B [Z]. *Let D be an effective divisor with the Zariski decomposition* $D = P + N$. If B_n denotes the fixed component of $|nD|$, then under the assumption that $\dim|hD| > 0$ *for some h, the divisor* $\overline{B}_n = B_n - nN$ *is effective and is bounded from above in n, i.e., the number of irreducible curves which appears in* \bar{B}_n *is bounded in n and the coefficients of these curves are bounded in n. If in addition D is numericallly effective, then* B_n *is bounded above in n.*

We collect some Lemmas on effective divisors on a compact smooth surface.

Lemma 1. Let L be an effective divisor and $L = P + N$ the Zariski decomposition. *Then if* $\kappa(L) \geq 1$, we have $\kappa(L) = \kappa(P)$.

Proof. Let B_m be the fixed component of $|mL|$. It follows from Theorem B that $B_m = mN + \overline{B}$, where \overline{B} is an effective divisor. Thus we get a natural isomorphism $H^0(X, \mathcal{O}(mL)) \cong H^0(X, \mathcal{O}(mP))$ if mP is an integral divisor. Q.E.D.

Lemma 2. If L is an effective divisor and B the fixed component of $|L|$. Then $(L - B)$ $B\geq 0$.

Proof. Let $B = \sum_{i=1}^{r} B_i$ be the decomposition into irreducible components. For every *i*, there is a holomorphic section s_i of $[L - B]$ such that B_i is not a component of (s_i). Pick a point p_i from $B_i \setminus (\bigcup B_i \setminus \{s_i\})$ so that $s_i(p_i)=0$. Clearly we can choose complex numbers a_i for $i=1,\ldots,r$ such that $\sum a_i s_i(p_i) \neq 0$ for every j. Let $E = \left(\sum_{i=1} a_i s_i\right) \in |L-B|$. Then no B_i is a component of E. Thus $(L-B)^{D}$ $=E \cdot B \ge 0$. Q.E.D.

For an effective divisor L we define a rational map $\Phi_{|L|}$ of X into $P_N(\mathbb{C})$ by $\Phi_{|L|}(x) = (\sigma_0(x) : \dots : \sigma_N(x)) \in P_N(\mathbb{C})$, where $\{\sigma_0, \dots, \sigma_N\}$ is a \mathbb{C} -basis for $H^0(X, \mathcal{O}(L))$ and $N = \dim |L| + 1$.

Lemma 3. Let L be a divisor which is effective and numerically effective. Then $_K(L) = 2$ if and only if $L^2 > 0$.

Proof. If part follows from the Riemann-Roch formula. To prove only-if part, let B_m be the fixed component of *mL*. It follows from Theorems A and B that B_m is bounded above in m. Since $h^0(X, \mathcal{O}(mL-B_m)) = h^0(X, \mathcal{O}(mL)) \to \infty$ as $m \to \infty$, we must have $(mL-B_m)^2 \ge 0$. Since L is numerically effective, we have L $B_m \ge 0$. It follows from Lemma 2 that $(mL-B_m)\cdot B_m \ge 0$. Now suppose $L^2=0$. Then $0=(mL)^2=(mL)\cdot B_m+(mL-B_m)^2+(mL-B_m)\cdot B_m\geq 0$. Hence we must have $(mL - B_m)^2 = 0$. This implies that $|mL - B_m|$ has no base points. Therefore $\Phi_{|mL - B_m|}$ is a holomorphic mapping into some $P_N(\mathbb{C})$. Since $\kappa(mL - B_m) = \kappa(mL) = 2$, we see that $(mL-B_m)^2$ = "the volume of $\Phi_{|mL-B_m|}(X)$ with respect to the Fubini-Study metric" > 0. Contradiction. Hence we get $L^2 > 0$. Q.E.D.

Now let X, C, \overline{X} , D be as in Theorem 1. We assume the conditions (1) to (4) in Theorem 1. Furthermore we assume $\kappa(K_{\bar{X}}+D+C)=2$, i.e., $h^0(\bar{X}, \mathcal{O}(K_{\bar{X}}+D+C))$ grows like m^2 . Let $K_{\overline{X}}+D+C=P+N$ be the Zariski decomposition. We decompose D into irreducible components D_i ($1 \le i \le s$). It is well known that each D_i is $P_1(\mathbb{C})$ (cf. [B]). Let $\mu_i \in \mathbb{Q}$ be defined by requiring $K_{\bar{X}} + \sum_{i=1}^{\infty} \mu_i D_i$ should be trivial near D. μ_i 's are uniquely determined and $0 \leq \mu_i < 1$. It is justified in the following argument: Let π : $(Y, D) \rightarrow (X, p)$ be the minimal resolution of a quotient singularity $(X, p) = (G \setminus B, G \cdot 0)$ where B is a ball and G is a finite subgroup of $U(2)$ with only one fixed point 0. Set $h = |G|$. Then $(dx \wedge dy)^h$ is a G-invariant h-ple holomorphic 2-form on B. Thus there exists a h-ple holomorphic 2-form ω on *Y-D.* On the other hand, since $h^1(Y, \mathcal{O}) = \dim R^{\bar{1}} \pi_* \mathcal{O} = 0$ and $H^2(Y, \mathcal{O}) = 0$, we have $H^1(Y, \mathcal{O}^*) = H^2(Y, \mathbb{Z}) = \mathbb{Z}^s$. Thus every element of $H^1(Y, \mathcal{O}^*)$ can be written as $\sum_{i=1} \lambda_i D_i$ for some rational numbers λ_i . Hence ω must be a *h*-pie meromorphic 2-form on Y. Since ω is locally $L^{2/h}$ integrable at D, the order of the pole along D is at most h-1. Hence, if $(\omega) = \sum_{i=1}^{s} \lambda_i D_i$, we have $-h < \lambda_i$. μ_i 's corresponding to $K_{\overline{X}}$ are determined in the following way: Set $a_i = K_{\bar{X}} \cdot D_i$, $a_{ij} = D_i \cdot D_j$. Then $a_i = \sum_{i=1}^{s} a_{ij} \lambda_j$. It is easily shown that if every $a_i \ge 0$, then every $\lambda_i \le 0$. Here, we have used the fact that (a_{ij}) is symmetric and negative definite with $a_{ij} > 0$ for $i+j$ and $a_{ii} < 0$. Since every D_i is a rational curve with self-intersection number -2 , we have $a_i \geq 0$. Thus $-1 < \lambda_i/h = \mu_i \leq 0$.

Lemma 4. Let $K_{\bar{X}} + D + C = P + N$ be the Zariski decomposition. Then

$$
P=K_{\bar{X}}+\sum_{i=1}^s\mu_iD_i+C
$$

and

$$
N=\sum_{i=1}^s(1-\mu_i)D_i,
$$

where every μ_i is a non-negative rational number less than one and is determined uniquely by requiring that $K_{\bar{X}} + \sum_{i} \mu_i D_i$ should be trivial near D.

Proof. Set $N = \sum_{i=1} (1 - \alpha_i)D_i + \sum_{j=1} \beta_j B_j$, where α_i , β_j are rational numbers with $\alpha_i \leq 1$, $\beta_i \geq 0$ and β_i are irreducible curves on X. We rewrite this as $N = \sum_{i=1} (1-\mu_i)D_i + E - F + G$. Then $P = K_{\bar{X}} + \sum_{i=1} \mu_i D_i + C - E + F - G$, where E, *F*, *G* are defined by $\sum_{\mu_k > \alpha_k} (\mu_k - \alpha_k)D_k$, $\sum_{\mu_l < \alpha_l} (\alpha_l - \mu_l)D_l$, $\sum_{j=1}^{\infty} \beta_j B_j$, respectively. Since *P* is numerically effective, we have $P \cdot (\sum_{i=1}^{\infty} (1 - \mu_i)D_i + E + G) \ge 0$. Since $K_{\bar{X}} + \sum \mu_i D_i \sim 0$ near D, $C \cap D = \emptyset$ and the intersection matrix of Supp(D) is negative definite, we get $P \cdot F \leq F^2 \leq 0$. But $P \cdot (\sum_{i=1}^{\infty} (1 - \mu_i)D_i + E - F + G)$ $X = \{x_1, x_2, \ldots, x_n\}$ $= P \cdot N = 0$. Thus we get $\mu_i \ge \alpha_i$ for all *i*. Hence P can be written as $P = K_{\bar{X}} + \sum_i \mu_i D_i$ $+C-\sum_{i}(\mu_i-\alpha_i)D_i-\sum_{j}\beta_jB_j$ with $\alpha_i\leq\mu_i$ and $\beta_j\geq0$. We claim that $P'=K_{\bar{X}}$ + $\sum \mu_i D_i + C$ is numerically effective. Note that P' is effective. If E is a curve i contained in Supp(C + D), we have P'. E > 0 by our assumption. If E is a curve which is not a component of Supp $(C+D)$, then $P' \cdot E$ must be non-negative. Indeed, if otherwise, we have $K_{\overline{X}} \cdot E < 0$ and $E^2 < 0$. Thus E is a (-1)-curve with $C \cdot E = 0$ which has been excluded by our assumption. Therefore P' is numerically effective. From the uniqueness of the Zariski decomposition, $P = P'$. Q.E.D.

Proposition 1. *Under the assumption of Theorem 1, P has the following properties:*

(1) $P^2>0$;

(2) *P is numerically effective;*

(3) *For every irreducible curve E on* \overline{X} , $P \cdot E = 0$ holds only if E is a component of $Supp(D+C)$.

Proof. From Lemmas 1, 3, and 4, we have $P^2 > 0$. (2) is clear. If E is an irreducible curve which is not a component of Supp $(D+C)$ and $P \cdot E = 0$, then $K_{\bar{X}} \cdot E \leq 0$ and E^2 < 0. Thus *E* is a (-1)-curve with *C* \cdot *E* \leq 1 or a (-2)-curve which is not contained in Supp(*D*). But both have been excluded by our assumption. O.E.D. contained in $\text{Supp}(D)$. But both have been excluded by our assumption.

Let m be a positive integer such that mP is an integral divisor. We write $\mathscr E$ for the union of all irreducible curves E with $P \cdot E = 0$, and $\mathscr{E} = \sum \mathscr{E}_v$ the decomposition into connected components in the usual topology.

Proposition 2 (cf. Theorem (5.8) in [S]). *Under the assumption of Theorem 1, there exists a positive number* $n_0 = n_0(\bar{X}, D, C)$ with the following properties: for any *integer* $n > n_0$, (i) $|nmP|$ has no base points; (ii) If $N + 1 = h^0(\overline{X}, \mathcal{O}(nmP))$ and $\{\sigma_0, \ldots, \sigma_N\}$ is a \mathbb{C} -basis for $H^0(\bar{X}, \mathcal{O}(nmP))$, then the map $\Phi = \Phi_{|nmP|} : \bar{X} \to P_N(\mathbb{C})$ is *a holomorphic map whose restriction to* $\bar{X} - \mathscr{E}$ is a biholomorphic map onto its image *and* $\Phi^{-1}\Phi(z)$ is equal to either z or \mathscr{E}_y according to $z \in \overline{X} - \overline{\mathscr{E}}$ or $z \in \mathscr{E}_y$, respectively. *Proof.* The proof is almost the same as that of Theorem (5.8) in [S]. In 105-110 of ISI, Sakai proved a sequence of Lemmas concerning $m\Gamma$ where Γ is the adjoint divisor of a semi-stable curve C. It is easy to modify these Lemmas into suitable forms to our purposes. Roughly speaking, these Lemmas remain valid if we replace *F* by our *mP*, where $P = K_{\bar{X}} + \sum \mu_i D_i + C$. Q.E.D.

i

3. Proof of Theorem 1

From Proposition 2, we get the following:

Lemma 5. *Under the assumption of Theorem 1, there exists a real closed* (1, 1) *form* γ representing $c_1(mP)$ in the de Rham cohomology having the following properties: (i) *y* is positive definite outside of \mathscr{E} ; (ii) For any irreducible component E of \mathscr{E} , i $\sharp y$ *vanishes where i_F is the inclusion of E into* \bar{X} *.*

Proof. Set $ny = \Phi^*$ [the Fubini-Study metric form on $P_N(\mathbb{C})$] for large m. Then y has the required properties. Q.E.D.

From here on, we regard X as a Satake V-surface.

Definition. Let p be a singular point of X, and G the finite subgroup of $U(2)$ corresponding p. There is a strictly pseudo-convex neighborhood U of p such that $(U, p) \cong (G \backslash B, G \cdot 0)$, where B is a ball with center 0. We call the quotient map $B \rightarrow U$ with respect to G a *local uniformization* around p. Let T be a smooth tensor field on the regular part of X. We call T a $V - C^{\infty}$ tensor field if we obtain T by pushing down a C^{∞} tensor field in terms of local uniformizations.

Let $D = \sum D_u$, $C = \sum C_a$ be the decomposition into connected components, $\overline{\mu}$ and $D = \sum_i D_i$, $C = \sum_i C_m$ the decomposition into irreducible components. For each i, m, let s_i and t_m be the holomorphic sections of [D_i] and [C_m] such that $(s_i) = D_i$. and $(t_m) = C_m$. There exist a smooth volume form Ω on \overline{X} , Hermitian metrics for [D_i] and $[C_m^{\prime\prime}]$ such that the singular volume form $\Omega' = \Omega \prod_{i,m} |s_i|^{2\mu_i} |t_m|^2$ satisfies $\gamma = -Ric\Omega'$, where γ is as in Lemma 5 and Ric $V = -\sqrt{-1} \partial \overline{\partial} \log v$ for a volume form $V = v \prod (\sqrt{-1} dz^i \wedge d\bar{z}^i)$. Now let $(U, p) \cong (G \setminus B, G \cdot 0)$ be a neighborhood of a i singular point of X and (\vec{U}, D_{ν}) its minimal resolution. Since the usual flat volume element is $U(2)$ invariant, we can push this down to $U - \{p\} = \tilde{U} - D_{\mu}$. We write v_{μ} for the resulting volume form on $U-\{p\}$. From the arguments just before Lemma 4, we see that there is a C^{∞} function \tilde{h}_{μ} defined in \tilde{U} such that $\Omega' = \tilde{h}_{\mu}v_{\mu}$ on U. We define a C^{∞} function h_{μ} on $B-\{0\}$ by $\pi^*(\tilde{h}_{\mu} | U-\{p\})$, where $\pi : B\to U$ is the quotient map. On the other hand, let h_{μ} be a local Kähler potential for the Fubini-Study form on P_M(C). Thus we get a C^{∞} function $h'_{\mu} = \pi^* \Phi^* \hat{h}_{\mu}$ on B. Since $\partial \overline{\partial} h_{\mu}$ $\lambda = \partial \overline{\partial} h'_{\mu}$ on $B - \{0\}$, $h'_{\mu} \in C^{\infty}(B)$, and $h_{\mu} \in C^{\infty}(B - \{0\})$, we must have $h_{\mu} \in C^{\infty}(B)$. Summing up, we get the following:

Lemma 6.
$$
\Omega' = \Omega / \prod_{i,m} |s_i|^{2\mu_i} |t_m|^2
$$
 is a $V - C^{\infty}$ volume form on $X - C$.

The connected components \mathscr{E}_y of \mathscr{E}_z are classified in the following:

Lemma 7 (cf. Lemma 1 of $[K2]$). *Each* \mathscr{E}_y *is one of the following five types:* (1) $\mathscr{E}_v = D_u$ *for some* μ ;

If \mathscr{E}_y *is contained in C,* \mathscr{E}_y *is one of the followings:*

(2) *a smooth elliptic curve with negative self-intersection number;*

(3) *a cycle of smooth rational curves with self-intersection numbers* ≤ -2 *and some of them* ≤ -3 ;

(4) *a rational curve with a node with negative self-intersection number;*

(5) *a chain of smooth rational curves with self-intersection numbers* ≤ -2 .

Proof. See the proof of Lemma 1 in [K2]. Q.E.D

Lemma 8. Let $(Y, A) \rightarrow (X, p)$ be the minimal resolution of an isolated 2-dimensional *singularity where A is a smooth elliptic curve with self-intersection number* $-b < 0$ *. Then by replacing X by an appropriate neighborhood of p if necessary, we can express* $X - \{p\}$ *as an orbit space in the following way: There exist a positive number a*, real numbers α , β and a lattice $\mathscr L$ in $\mathbb C$ defined by $\{m+n\omega; m, n\in\mathbb Z, \text{Im}(\omega)=a\}$ *such that*

$$
Y - A = X - \{p\} \cong \Gamma \backslash W,
$$

where $W = \{(u, v) \in \mathbb{C}^2$; $\text{Im}(u) - |v|^2 > L\}$ *for some positive number L,*

$$
\Gamma = \begin{cases}\n\begin{pmatrix}\n1 & 2i\overline{\gamma} & i|\gamma|^2 - 2h(\gamma) \\
0 & 1 & \gamma \\
0 & 0 & 1\n\end{pmatrix}; & \begin{cases}\n\gamma \text{ runs over } \mathscr{L}, \text{ and for each } \gamma = m + n\omega, \\
h(\gamma) \text{ runs over the class of } m\alpha + n\beta - mna \\
\text{modulo } (2a/b)\mathbb{Z}.\n\end{cases}.
$$

The action of the above matrix is to send (u, v) *into* $(u + 2i\bar{v}v + i|y|^2 - 2h(y), v + \bar{y})$ *.*

Proof. See the proof of Lemmas 4 and 5 in [K2]. Q.E.D.

Since $\mathcal{S} = \{(u, v) \in \mathbb{C}^2$; Im(u)-|v|²>0} is biholomorphic to B^2 , \mathcal{S} admits a complete Kähler metric form with constant holomorphic curvature. The Kähler potential of this metric form is given by $\log F$, where $F(u, v) = (\text{Im}(u) - |v|^2)^{-1}$. Since $F(u, v)^{-1}$ is invariant under the action of Γ , this projects down to a function f_A on $X-\{p\}$. Thus we obtain in a canonical way the function f_A having the property that $-\sqrt{-1} \partial \overline{\partial} \log f_A$ is the ball metric near A. Let $\{\mathscr{E}_{\nu(1)}\}$ be the union of connected components of $\mathscr E$ of type (2) in Lemma 7. For each $v(1)$, we have got in a canonical way the function $f_{\nu(1)}$ defined in a neighborhood of $\mathscr{E}_{\nu(1)}$ minus $\mathscr{E}_{\nu(1)}$ whose $-1/-1 \partial \overline{\partial} \log$ is the ball-metric near $\mathscr{E}_{\nu(1)}$.

Lemma 9. Let $(Y, B) \rightarrow (X, p)$ be the minimal resolution of an isolated 2-dimensional singularity where B is a cycle $\sum_{i=1}^{r-1} B_i$ of \mathbb{P}^1 's with $-B_i \cdot B_i = b_i \geq 2$, some $b_i \geq 3$ and $r \ge 2$ or a rational curve B_0 with a node with $-B_0 \cdot B_0 = b_0 \ge 1$. Let w_k be an irrational quadratic number defined by $\lim_{s\to\infty} \{q_k-(q_{k-1}-(-1)-q_{s-1}^{-(1)}-q_s^{-(1)})^{-1}...)^{-1}\}$ *where* $\{q_k\}$ *is a periodic sequence with period r defined by* $q_k = b_k$ *for* $0 \leq k \leq r-1$ when $r \ge 2$ or $q_0 = b_0 + 2$ when $r = 1$. Let $\{R_k\}_{k \in \mathbb{Z}}$ *be a sequence defined by* $R_{-1} = w_0$. $R_0 = 1$, $q_k R_k = R_{k-1} + R_{k+1}$ for $k \in \mathbb{Z}$. Let M be a free \mathbb{Z} -module of rank 2 generated

 $by 1$ and w_0 , *V* the infinite cyclic multiplicative group generated by R_r. Then by *replacing X by an appropriate neighborhood of p if necessary, we obtain*

$$
Y-B=X-\{p\}\cong \Gamma\backslash W,
$$

where $W = \{(z_1, z_2) \in \mathbb{C}^2$; $y_1 > 0$, $y_2 > 0$, $y_1y_2 > L$, where $z_i = x_i + \sqrt{-1}y_i\}$, for some *positive number L, and*

$$
\Gamma = \left\{ \begin{pmatrix} \varepsilon & \mu \\ 0 & 1 \end{pmatrix}; \, \varepsilon \in V, \, \mu \in M \right\}.
$$

The action of the above matrix is to send (z_1, z_2) *into* $(zz_1 + \mu, \varepsilon' z_2 + \mu')$ *, where ' means to take the conjugate over* \mathbb{Q} .

Proof. See [H1]. Q.E.D.

The product metric of the Poincaré metric on $H^2 = \{(z_1, z_2) \in \mathbb{C}^2; \text{Im}(z_1) > 0,$ $Im(z_2)>0$ } is given by $i\partial \overline{\partial} \log F$, with $F(z_1,z_2)=(Im(z_1)Im(z_2))^{-1}$ which is invariant under the action of $\overline{\Gamma}$, we obtain in a canonical way the function f_R defined on $X - \{p\}$ whose $\hat{i} \partial \overline{\partial} \log i$ is the H^2 -metric near B. Let $\{ \mathscr{E}_{\nu(2)} \}$ be the union of \mathscr{E}_y of type (3) or (4) in Lemma 7. For each v(2), we have got in a canonical way the function $f_{\nu(2)}$ defined in a neighborhood of $\mathscr{E}_{\nu(2)}$ minus $\mathscr{E}_{\nu(2)}$ whose $-i \partial \overline{\partial} \log$ is the H^2 -metric near $\mathscr{E}_{\nu(2)}$.

Lemma 10. Let $(Y, E) \rightarrow (X, p)$ be the minimal resolution of an isolated 2-dimensional singularity where $E = \sum_{k=1} E_k$ is a chain of $\mathbb{P}^{1,2}$ with $b_k = -E_k \cdot E_k \ge 2$. Let n/q
be the irreducible representation of $b_1 - (b_2 - (\ldots (b_{r-1} - b_r^{-1})^{-1} \ldots)^{-1})^{-1}$ and Γ the
cyclic group generated by $\begin{pm$ \cong ($\Gamma\backslash B$, $\Gamma\cdot 0$) *by replacing X by an appropriate neighborhood of x if necessary. Proof.* See for example [B]. Q.E.D.

The product metric of the Poincaré metrics on the unit punctured disk on D^{*2} has a Kähler potential $F(z_1, z_2) = (\log|z_1|^{-2})^{-1} (\log|z_2|^{-2})^{-1}$, which is invariant under the action of Γ . Thus we get in a canonical way the function f'_E whose $-i\partial \overline{\partial} \log$ is the D^{*2}-metric near E. Let E_0 and E_{r+1} be the irreducible components of $C-\mathscr{E}_{\nu(3)}$ intersecting E_1 and E_r , respectively, where $E = \mathscr{E}_{\nu(3)}$, one of the \mathscr{E}_{ν} of type (5) in Lemma 7. We can extend f_{κ} to the function f_{E} defined in a deleted neighborhood of $E_0 \cup E \cup E_{1+r}$, which is written as $log|\sigma_0|^2$ and $log|\sigma_{r+1}|^2$ in the newly added domain of definition of f_E near E_0 and E_{r+1} , respectively.

Definition. Let V be a domain in \mathbb{C}^m . Let X be an *m*-dimensional complex manifold and ϕ a holomorphic map of V into X. ϕ is called a *quasi-coordinate map* if ϕ is of maximal rank everywhere. In this case, (V, ϕ) is called a *local quasi-coordinate* of X.

Definition. Let X be a complex V-manifold with at worst isolated quotient singularities and ω a complete Kähler V-metric on X. We say that (X, ω) has *bounded geometry* if the following conditions hold: There exist a system of quasi-^{coordinates} $\mathcal{V} = \{ (V_a, v_a^i) \}$ and a neighborhood $U(p)$ of each quotient singularity p such that $(U(p), p) \cong (G_p \backslash B, G_p \cdot 0)$ and $U(p) \cap U(q) = \emptyset$ having the following properties:

(i) \bigcup (Image of V_a) \bigcup \bigcup $U(p) = X$;

(ii) there are positive numbers ε and δ independent of α such that $B(\varepsilon) \subset V_{\alpha}$ $\subset B(\delta);$

(iii) there are positive constants c and \mathscr{A}_{k} ($k=0, 1, ...$) such that $c^{-1}(\delta_{ij})$ $\langle (q_{\alpha i\overline{i}}) \langle c(\delta_{i\overline{i}}) \rangle$ and

$$
|\partial^{|\mathbf{p}|+|\mathbf{q}|}g_{ai\bar{j}}/\partial v^p_{\alpha}\,\partial\bar{v}^q_{\alpha}|<\mathcal{A}_{|\mathbf{p}|+|\mathbf{q}|}
$$

for all multi-indices p, q where $\omega = ig_{\alpha i\bar{i}} dv^i_{\alpha} dv^{\bar{j}}_{\alpha}$ in terms of (v^i_{α}) for all α , and the same inequalities hold for all lifted metrics from $U(p)$'s.

Definition. Let u be a function of class $V - C^{\infty}$. For a nonnegative integer k and $\alpha \in (0, 1)$ the $V - C^{k, \alpha}(X)$ norm of u is defined by

$$
|u|_{V,k,\alpha} = \max(A,B)
$$

with

$$
A = \sup \left\{ \sup_{\zeta \in B} \sum_{|p|+|q| \leq k} |\partial^{|a|+|b|} \pi_p^* u(\zeta) / \partial \zeta^a \partial \overline{\zeta}^b \right\}
$$

+
$$
\sup_{\zeta, \zeta' \in B \atop \zeta \neq \zeta'} \sum_{|a|+|b| = k} |\zeta - \zeta'|^{-\alpha}
$$

-
$$
|(\partial^k \pi_p^* u(\zeta) / \partial \zeta^a \partial \overline{\zeta}^b) - (\partial^k \pi_p^* u(\zeta) / \partial \zeta^a \partial \overline{\zeta}^b)| \right\},
$$

$$
B = \sup_{\alpha} \left\{ \sup_{z \in V_{\alpha}} \sum_{|a|+|B| \le k} |\partial^{|a|+|b|} u(z)/\partial v_{\alpha}^a \partial \overline{v}_{\alpha}^b| + \sup_{z, z' \in V_{\alpha}} \sum_{|a|+|b| = k} |z - z'|^{-\alpha} \right.
$$

$$
\cdot \left| \left(\partial^k u(z)/\partial v_{\alpha}^a \partial \overline{v}_{\alpha}^b \right) - \left(\partial^k u(z)/\partial v_{\alpha}^a \partial \overline{v}_{\alpha}^b \right) \right| \right\},
$$

where $\pi_p: B \to U(p)$ is the quotient map around p.

Definition. For a nonnegative integer k and $\alpha \in (0,1)$, the function space $V-C^{k,\alpha}(\bar{X}-C)$ is the Banach space obtained as the completion of ${u \in V - C^{\infty}(X)}$; $|u|_{V, k, \alpha} < \infty}$ with respect to the norm $|\cdot|_{V, k, \alpha}$.

Let \mathscr{E}' , be defined by:

(1) If \mathscr{E}_y is of type (1), then $\mathscr{E}'_y = \emptyset$;

(2) If \mathscr{E}_v is of type (2) or (3) or (4), then $\mathscr{E}'_v = \mathscr{E}_v$;

(3) If \mathscr{E}_v is of type (5), then \mathscr{E}_v is the union of \mathscr{E}_v and the irreducible curves of C intersecting \mathscr{E}_y .

Lemma 11. *There exist a smooth volume form* Ω on \overline{X} , *Hermitian metrics for* $[D_1]$ and $[C_m]$, a $V - C^{\infty}$ function h on \overline{X} and $V - C^{\infty}$ functions q_v on $\overline{X} - \mathscr{E}'_v$ such that

$$
\Psi = h\Omega \Big/ \prod_{i,m} |s_i|^{2\mu_i} |t_m|^2 \prod' g_v \prod'' (\log |s_m|^{-2})^2
$$

(where \prod' *means to take the product over v such that* \mathscr{E}_{ν} *is contained in C and* \prod'' *means to take the product over m such that* C_m *is disjoint from 8). Is a* $V - C^{\infty}$ *volume form on* \bar{X} – C with the following properties:

(i) $\omega = -Ric\Psi$ is a complete Kähler V-metric on $\bar{X}-C$ with finite total *valume ;*

(ii) $(\bar{X}-C, \omega)$ has a quasi-coordinate system with bounded geometry;

(iii) The function $\log(\Psi/\omega^2)$ is of class $V - C^{k, \alpha}(\bar{X}-C)$ for any k, α with finite $V - C^{k, \alpha}$ norm.

Sketch of the Proof (detailed discussion is given in Lemma 5 of [K2]). If p is a singular point of X with (X, p) $(G \ B, G \cdot 0)$, then h should be the push down of $[-|Z|^2]$ defined in B. Hence $\omega = -Ric\Psi$ is essentially the push down of the restriction of the Bergman metric of B^2 to B. Let $\mathscr E_\nu$ be a connected component of $\mathscr E$ contained in C. We have shown the existence of the canonical function f_v whose $-\partial\overline{\partial}\log$ gives an Einstein-Kähler metric coming from the ball-metric or the H^2 -metric in a deleted neighborhood of \mathscr{E}_r . Let q_x be a $V-C^{\infty}$ function on $\bar{X}-\mathscr{E}'_r$. which is equal to f_v^3 or f_v^2 according as \mathscr{E}_v is of type (2) or of types (3) and (4) near δ_{ν} . Then ω is essentially the canonical metric coming from the ball-metric or the H^2 -metric. Thus to consider $-\text{Ric }\Psi$ is to make $-\text{Ric }\Omega'$ more positive by adding the ball-metric or the H^2 -metric of cusps near \mathscr{E}_v and by adding the Poincaré metric of the transversal punctured disk to C_m disjoint from $\mathscr E$. It is a straightforward computation to verify that $\log(\Psi/\omega^2)$ belongs to $V-C^{k,\alpha}(\bar{X}-C)$ for any k, α . O.E.D.

We expect that ω is a good approximation of the desired Einstein-Kähler metric. Hence we deform ω into $\omega + i\partial \overline{\partial} u = \tilde{\omega}$ such that $\tilde{\omega}$ is Einstein-Kähler.

Proof of Theorem 1. Theorem I is a direct consequence of Lemma 11 and the following general result:

Theorem C. Let X be a complex n-dimensional V-manifold with a $V - C^{\infty}$ volume *form* Ψ *such that* $\omega = -Ric \Psi$ *is a complete Kähler V-metric with bounded geometry* and the function $f = \log(\Psi/\omega^n)$ belongs to $V - C^{k, \alpha}(X)$ for any k, α . Then there is a *unique solution u of*

 $(\omega + \sqrt{-1} \partial \overline{\partial} u)^n = \exp(u + f)\omega^n$

belonging to $\mathcal{U} = \{u \in V - C^{\infty}; c^{-1}\omega < \omega + \sqrt{-1} \partial \overline{\partial} u < c\omega \}$ for some positive con*stant c*}. The resulting $\tilde{\omega} = \omega + i \partial \tilde{\partial}u$ is a Ricci-negative complete Einstein-Kähler *V-metric on X.*

Proof. This is a direct consequence of the following:

Theorem D. Let M be a V-manifold endowed with a complete Kähler V-metric of *class* $V - C^{k,a}$ *with* $k \ge 5$ *. If* (M, ω) *has bounded geometry, then for any f* $V - C^{k-2, \alpha}(M)$, *there is a unique solution u to*

$$
(\omega + \sqrt{-1} \partial \overline{\partial} u)^n = \exp(u+f) \omega^n
$$

belonging to $\{u \in V - C^{k, \alpha}(M) : c^{-1} \omega < \omega + i \partial \overline{\partial} u < c\omega \}$ for some positive number c... *Proof.* See [K1, K2] and [C, Y]. Q.E.D.

4. Inequafity for Chern Numbers

Let M be a V-surface with at worst isolated quotient singularities. Let g be a Riemannian V-metric. Let \bar{M} be the minimal resolution of M and q_0 a smooth Riemannian metric on \bar{M} . Then we have

$$
\int_{M} e(g) = e(\bar{M}) - \sum_{p} \left(e(E_p) - 1/|G_p| \right),
$$

where $e(q)$ is the Euler form of q and p runs over the singularities of M. To prove this, we recall the Gauss-Bonnet Theorem for manifolds with boundary:

Gauss-Bonnet Theorem. Let (M, g) be a 2k-dimensional compact oriented Rieman*nian manifold with boundary N and assume that, near N, it is isometric to a product of N and an interval. Then*

$$
\int_{M} e(g) = e(M).
$$

Let U be $G\backslash B$ where G is a finite subgroup of $U(2)$ and g a Riemannian metric on U which is isometric to a product near the boundary and is a flat V -metric near the singularity G.0. Let U be the minimal resolution of U and g_0 a Riemannian metric which is isometric to a product near the boundary and is smooth near *E,* where E is the exceptional set. Then we apply the Gauss-Bonnet to get

$$
|G|^{-1} = \int_{U} e(g) = \int_{U} e(g_0) + \lim_{r \to 0} \int_{\partial W(r)} Q,
$$

$$
\int_{U} e(g_0) = e(U) = e(U - E) + e(E) = e(E),
$$

where $W(r) = U - \pi(B(r))$ and π is the projection. *Q* is the universal polynomial of the difference ofthe connection forms and the respective curvature forms. Thus we have

$$
\lim_{r\to 0}\int\limits_{\partial W(r)}Q=-\left(\mathsf e(E)-|G|^{-1}\right).
$$

To prove the desired formula, let g be a V-metric on M which is flat near the singularities and g_0 a smooth Riemannian metric on \overline{M} . Then we have

$$
\int_{M} e(g) - \int_{M} e(g_0) = \lim_{r \to 0} \int_{\partial W(r)} Q = - \sum_{p} (e(E_p) - |G_p|^{-1}).
$$

Let X , C , \overline{X} , D be as in Theorem 1. Then there exists a unique complete Einstein-Kähler V-metric $\tilde{\omega}$ on $X-C$ such that $Ric(\tilde{\omega}) = -\tilde{\omega}$. Let \tilde{c}_i be the *i*-th Chern form of the Hermitian connection of $\tilde{\omega}$. Set $\omega = -Ric \Psi$, where Ψ is as in Lemma 11.

Lemma 12. *Under the above situation, the following equalities hold:*

$$
\int_{X} \tilde{c}_{1}^{2} = \left(K_{\overline{X}} + \sum_{i} \mu_{i} D_{i} + C \right)^{2},
$$
\n
$$
\int_{X} \tilde{c}_{2} = e(\overline{X}) - e(D) - e(C) + \sum_{p} |G_{p}|^{-1}.
$$

Proof. The proof is the same as that of Lemma 9 in [K2] except determining the contribution of the singularities of X . Since the proof of the first equality is exactly the same as the corresponding part of the proof of Lemma 9 in [K2], we prove the second equality. Let g_1, g_2 , and g_3 be three Riemannian metrics on the regular part of X . They are distinguished from each other according to their behavior at the singularities and C. g_1 is equal to the canonical cusp metric near C and is a flat V-metric near each singular point. q_2 is a smooth Hermitian metric for $\Omega^1_v(\log C)^*$ and is a smooth flat V-metric near the singularities, g_3 is a smooth Hermitian metric for $\Omega_{\overline{X}}^1(\log C)^*$. Let $W(r) = X - \left(\bigcup_{p} \pi_p(B(r))\right)$, where π_p is the projection

from *B* onto a neighborhood of a singular point p . Then we have

$$
\int_{X} \tilde{c}_{2} = \int_{X} c_{2}(g_{1}) = \int_{X} c_{2}(g_{2}) \text{ (by the proof of Lemma 9 in [K2])}
$$
\n
$$
= \lim_{r \to 0} \int_{W(r)} c_{2}(g_{3}) + dQ
$$
\n
$$
= c_{2}(\Omega_{X}^{1}(\log C)) + \lim_{r \to 0} \int_{\partial W(r)} Q
$$
\n
$$
= e(\bar{X}) - e(C) - e(D) + \sum_{p} |G_{p}|^{-1}. \text{ Q.E.D.}
$$

Proof of Theorem 2. Since $\tilde{\omega}$ is Einstein-Kähler, we have a point-wise inequality $0 \leq 3\tilde{c}_2 - \tilde{c}_1^2$. Integrating this inequality over X and applying Lemma 11 yields the desired inequality. Since $3\tilde{c}_2 - \tilde{c}_1^2$ measures the point-wise deviation of $\tilde{\omega}$ from the ball-metric, the equality in Theorem 2 occurs if and only if $\tilde{\omega}$ is the ball-metric. The rest is the same as the corresponding part of Theorem 2 in [K2]. Q.E.D.

As an application of Theorem 2, we prove a rigidity theorem. Let $\Gamma \subset PSU(2, 1)$ be a discrete group of automorphisms of $B²$ acting freely. Assume the volume of $X'' = \Gamma \backslash B^2$ is finite. Then X" is compactified to X' if we add a finite number of cusp points. Let X be the minimal resolution of X' over the cusp points and C the exceptional curve. C consists of mutually disjoint elliptic curves C_i with $C_i^2 < 0$.

Theorem 3. Let (X, C) be as above and let (Y, D) be a pair of a compact smooth *surface Y and a reduced curve D with normal crossinos. If there is an oriented homotopy equivalence between* (X, C) and (Y, D) , then $Y-D$ is biholomorphic to *X-C.*

Proof. It follows from the assumption that the tubular neighborhood of D is diffeomorphic to that of C. We can identify the connected component D_i of D, which is a torus, with the corresponding component C_i . We have also $K_Y \cdot D_i$ $P_i^2 = C_i^2 = K_x \cdot C_i$. Since $e(Y) = e(X)$ and $Sign(Y) = Sign(X)$, we have K_Y^2 $2e(Y) + 3 \text{Sign}(Y) = 2e(X) + 3 \text{Sign}(X) = K_X^2$. Therefore $(K_Y + D)^2 = (K_X + C)^2$ $=3(e(Y)-e(D))$. We want to show that the logarithmic Kodaira dimension $\bar{\kappa}$ of (Y, D) is 2. To prove this, we need to recall the notion of the minimal model of (Y, D) (see pp. 89-90 of [S] for precise definitions). If C is a (-1) -curve on Y which intersects D at most one point, C is called a *D-exceptional curve*. Since $X - C$ is a $K(\Gamma, 1)$ -space, so is $Y - D$. Since $(K_Y + D)^2 > 0$, Y is projective algebraic. Therefore, there are no rational curves on $\hat{Y}-D$. If E is a D-exceptional curve with $D \cdot E = 1$ and $p:(Y, D) \rightarrow (Y', D')$ is the blowing down of E, then $p^*(L) = L$, where $L = K_Y + D$

and $L' = K_{Y'} + D'$. By a finite number of blowing downs of D-exceptional curves, we arrive at the minimal model (Y_0, D_0) of (Y, D) , which has no D_0 -exceptional curves. If $\bar{\kappa} = -\infty$, it follows from Sakai [S] that (Y_0, D_0) must be (elliptic ruled surface, a section). Thus $\Gamma = \pi_1(X - C) = \pi_1(Y - D) = \mathbb{Z} \oplus \mathbb{Z}$. This is a contradiction, since Γ is not abelian. If $\bar{\kappa} = 0$ or 1, then L_0 must be numerically effective. Therefore, since $L_0^2 = (K_x + C)^2 > 0$, we have $h^2(Y_0, \mathcal{O}(-mL_0 - D_0)) = 0$ for $m > 0$. By the Riemann-Roch formula, $h^0(Y_0, \mathcal{O}(mL_0)) = \mathcal{O}(m^2)$ when $m \to \infty$. But this contradicts the assumption. Therefore we deduce $\bar{\kappa} = 2$. Since (Y_0, D_0) satisfies the condition of Theorem 1, we get the following inequality:

$$
L^2 = L_0^2 \le 3(e(Y_0) - e(D_0)) = 3(e(Y) - b - e(D)),
$$

where b is the number of the blow downs in $Y \rightarrow Y_0$. Hence we have $b = 0$, i.e., (Y, D) $=(Y_0, D_0)$. It follows from Theorem 2 that the universal cover of $Y-D$ is biholomorphic to B^2 . By the rigidity theorem of Gerland-Raghunathan-Prasad I'P], $Y - D$ is in fact biholomorphic to $X - D$. O.E.D.

Note. In [Y2], Yau proved the rigidity theorem for compact quotients of B^2 : Let X be a compact smooth surface that is covered by $B²$. Then any compact smooth *surface that is oriented homotopic to X is biholomorphic to X.*

Acknowledgement. The author heartily thanks Professor Dr. F. Hirzebruch for his interest in this work.

References

- [A] Aubin, T.: Équations du type Monge-Ampère sur les variétés kählériennes compactes. C. R. Acad. Paris 283, 119-121 (1976)
- [B] Brieskorn, E.: Rationale Singularitäten komplexer Flächen. Invent. Math. 4, 336-358 (1968)
- [C, Y] Cheng, S.Y., Yau, S.T.: On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferrnan's equation. Comm. Pure App]. Math. 26, 507-544 (1978)
- [HI] Hirzebruch, F.: Hilbert modular surfaces. Ens. Math. 71, 183-281 (1973)
- [H2] Hirzebruch, F.: Chern numbers of algebraic surfaces an example -. Preprint series 030-83, M.S.R.I., Berkeley
- [Hö] Höfer, T.: Dissertation, Bonn 1984
- [K 1] Kobayashi, R.: A remark on the Ricci curvature of algebraic surfaces of general type. Tohoku Math. J. 36, 385-399 (1984)
- [K2] Kobayashi, R.: Einstein-Kähler metrics on open algebraic surfaces of general type. Tohoku Math. J. (to appear)
- [M] Miyaoka, Y.: The maximal number of quotient singularities on surfaces with given numerical invariants. Math. Ann. 268, 159-171 (1984)
- [P] Parsad, G.: Strong rigidity of Q-rank 1 lattices. Invent. Math. 21, 255-286 (1973)
- IS] Sakai, F.: Semi-stable curves on algebraicc surfaces and logarithmic pluricanonical maps. Math. Ann. 254, 89-120 (1980)
- [Y1] Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equations. I. Comm. Pure Appl. Math. 31, 339-411 (1978)
- [Y2] Yau, S.T.: Calabi's conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA 74, 1789-1799 (1977)
- [Z] Zariski, O.: The theorem of Riemann-Roch for high multiple of an effective divisor on surfaces. Ann. Math. 76, 506-615 (1962)

Received Ooctober 30, 1984; in revised form March 8, 1985