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Abstract. We give a complete proof of the equivalence between constraint 
equations and field equations for the d = 10, N = 1 supersymmetric Yang-Milts 
theory, a result proposed and partially proved recently by Witten [1]. Our 
approach explicitly reconstructs the superconnection satisfying the constraints 
from the on shell component fields. A key ingredient of the method is the choice 
of a suitable family of gauges, effectively eliminating all gauge dependence on 
anti-commuting co-ordinates. As a corollary, obtained by dimensional reduc- 
tion, we also deduce the equivalence of constraints and field equations for the 
d = 4, N = 4 theory, as well as for d = 6, N = 2. 

1. Introduction 

The purpose of the present work is to supplement some recent results of Witten's [1] 
concerning the relationship between the superconnection constraint equations and 
the supersymmetric Yang-Mills equations in ten dimensions. As pointed out in 
I1, 2], a natural set of constraint equations involves the vanishing of the super- 
curvature along super null lines. This gives rise to the super twistor correspondence, 
in which bundles E ~ A~ over super Minkowski space ~ ,  with a superconnection 
which is integrable along super null lines, correspond to certain bundles over the 
super ambitwistor space 4, whose points are the super null lines in 3//. These bundles 
are characterized by the fact that they are trivial over certain quadrics Q c 
corresponding to the set of super null lines through the same point of A¢. The 
importance of such a construction lies in the fact that for a suitable choice of the 
superspace extension ~ of the underlying Minkowski space M, the constraint 
equations, together with the Bianchi identities for the supercurvature, imply the 
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superfield Yang-Mills equations, as was shown for the maximally extended (N = 4) 
super Yang-Mills theory in four dimensions in the work of Sohnius [3] and Witten 
[2]. It was moreover generally presumed, following ideas formulated by Witten [2], 
that the passage from the constrained superconnection to the on shell Yang-Mitls 
fields is one to one; that is, given any set of fields satisfying the supersymmetric Yang- 
Mills equations, it is possible to construct a unique superconnection, satisfying the 
constraint equations, to which these fields correspond. Only in such a case is the 
supertwistor construction a full characterization of the supersymmetric Yang-Mills 
equations. A complete proof of this one to one equivalence for the d = 4, N = 3 case 
was actually only constructed recently [4]. The equivalence of the N = 3 and N = 4 
field theory suggests that the corresponding result must also hold for N = 4, 
although for this case an additional linear constraint on the curvature needs to be 
added [2, 3]. 

For the d = 10, N = 1 case, Witten has proved that for a suitably chosen (10116) 
dimensional superspace extension M, the null-line integrability conditions imply the 
full set of field equations [1]. (Partial results of this nature were earlier demonstrated 
by Wess [5].) Since a suitable dimensional reduction procedure leads to both the 
field equations [6] and the constraints [7] for the d = 4, N = 4 theory, it is 
reasonable to conclude that the correspondence between these data for the d = t0, 
N = 1 theory is again one to one. 

Developing methods used previously for the d = 4, N = 3 case [4], we shall 
provide here a complete proof of this one to one equivalence. As a corollary 
obtained through dimensional reduction, we shall have proved the d = 4, N = 4 
equivalence as well as the corresponding result for the d = 6, N = 2 theory [7-10]. 
The logic of the demonstration is exactly the same as in [4]. It turns out, however, 
that the detailed computations are actually much simpler for the ten dimensional 
case than for the four dimensional one. 

In principal, there are three separate sets of data which must be proved pairwise 
equivalent: 

(i) The superconnection on/~ ~ ?~, satisfying the constraint equations. 
(ii) The superfietds satisfying the superfield equations. 
(iii) The component fields satisfying the 10-dimensional supersymmetric Yang- 

Mills equations. 
In Sect. 2, we give a summary of the part of the result already proved by Witten; 
namely, the derivation of the superfield equations from the constraint equations. 
This is relatively straightforward once the content of the constraint equations 
together with the Bianchi identities has been analyzed. In order next to establish an 
invertible correspondence between (ii) and (iii), it is necessary to eliminate all gauge 
degrees of freedom depending on the anti-commuting superspace co-ordinates. To 
accomplish this, we introduce in Sect. 3 a special gauge condition particularly 
adapted to the embedding M ~  M of ordinary (10-dimensional) Minkowski space in 
its superspace extension. We call this the "@-gauge" condition, defined by setting 
equal to zero the component of the connection along the Euler vector field 
transverse to the embedding M ~ M under the standard linear splitting of even and 
odd co-ordinates. We deduce the action of the ~ operator on all superfields and 
thereby show how to reconstruct the superfields from their leading components and 
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the superconnection from the superfields. This also allows us to deduce the action of 
the supersymmetry transformations upon the component fields. It remains to 
verify that, given any set of on-shell component fields, the superfields so constructed 
satisfy the appropriate field equations and the resulting superconnection satisfies 
the constraint equations. These statements are proved in Sect. 4 by induction on 
the degree of homogeneity in a componentwise expansion; i.e. the eigenvalues of 
9 .  In fact, the inductive proof of the implication (iii) ~ (ii) involves a computation 
equivalent to the verification that the supers)nnmetry transformations really leave 
the field equations invariant. Similarly, the inductive proof of the implication 
(ii)~(i) involves a computation equivalent to the verification that the super- 
symmetry transformations close on shell to define a representation of the super- 
algebra. The fact that we actually have exhausted all possible consequences of the 
constraint equations follows from the invertibility of the maps (i)~(ii)~(iii) within 
the ~-gauge. 

Finally, in Sect. 5 we show how a suitable splitting of M into the sum of a four 
dimensional and a six dimensional space, together with the corresponding reduction 
of the isometry groups leads, through dimensional reduction, either to the standard 
d = 4, N = 4 superconnection constraints and field equations, or those for d = 6, 
N = 2 case. The equivalence of these data for each case follows as a corollary from 
the d = 10, N = 1 result. 

2. Superconnection Constraint Equations =~Super Field Equations 

In most of what follows, we shall be considering the complex version of the theory, 
although reality conditions are easily imposed at the end. The complexified super 
Minkowski space considered is of dimension (10] 16), with standard co-ordinates 
{x", 0a}, = 0,..9,a = 1,.. 16 consisting of commuting Cartesian co-ordinates {x ~} and 
anti-commuting spinorial co-ordinates {oA}. An upper A index refers to a basis for 
the fundamental 16-dimensional representation of the Spin(10, C)group, which is 
an irreducible component of the standard 32 = 16 + 16" dimensional representation 
associated to the Clifford algebra, the other component 16* being the contragredient 
representation. A lower A index refers to the dual basis. No invariant quadratic (or 
symplectic) form exists since the 16 and 16" are inequivalent, and hence one cannot 
raise and lower indices. However, each representation is virtually real (i.e, invariant 
under an antilinear involution), which is what allows one to impose Majorana-type 
reality conditions [-6]. The F matrices in this representation map the 16 and 16* into 
each other, and thus have the off diagonal block decomposition: 

[ 0 i F  ~cD-] 
=LF~ul i 0 7 (2.1) 

Similarly, the quadratic elements of the Clifford algebra have the decomposition: 

_ V~u~A 0 
Z ~ v = [  0 B _Z,~vc], (2.2a) 

where 
Zu  vA = ~[ F~*AC F~8 -- F~AC F~,] .  (2.2b) 
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We may define a frame using either the infinitesimal left translations {Ou, q]} or 
the right translations {O~, q]}. 

O~ = Ox"' (2.3a) 

q] = 00 a 

Each set generates a representation 
brackets: 

{qLa, q~} = 2r .o., (2.4a) 

or {qA R, qg} = -- 2F ] .~ . ,  (2.4b) 

and the two sets commute with each other. We shall adopt the convention of 
expressing the null line integrability conditions and superfield equations in terms of 

0 L the set { . ,  qA}, while regarding the set {0., q]} as the supersymmetry generators. 
Now, given a connection on a bundle 1/~ ~ ~r defined in some gauge by a 1- 

form co on )~ with values in the gauge algebra, the covariant derivative operator 
along any vector X is: 

In particular, we denote: 

and 

where co. - co(O.), coa -= co(q~). 

(2.3b) 

- -  - F]BOnt?x . (2.3c) 

of the superalgebra, with non-vanishing 

~ r  - X + co(X). (2.5) 

N0. - N.  - 0. + co. (2.6a) 

(2.6b) ~ q ]  = QA -= q~ + ('OA' 

The constraint equations are: 

{Qa, QB} = 2 / ' ] n ~ , .  (2.7) 

According to Witten's twistor-type formulation [1] of d =  10, N =  1 super- 
symmetric Yang-Mills theory, their interpretation is the vanishing of curvature on 
super null lines. As such, they are the compatibility conditions for the integrability of 
the equations for a covariant constant section: 

2u~, V = 0, (2.8a) 

2"FAnQ~V= O, (2.8b) 

i A bundle over superspace can be thought of as a locally free sheaf of modules of type (nlm) over the 
sheaf of superfunctions. A choice of gauge is a choice of local basis for the module. There are n even 
sections and m odd sections 
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where V:)~ ~ C "t~ represents a section of the bundle /~ on which our super 
connection is operating, and 2~2~ = 0. Defining the spinor superfield: 

@B = I_~FuAB[~@., QA] (2.9a) 

and bosonic curvature: 

it follows from 

Fu~ = [N, ,  N~], (2.9b) 

(2.7), together with the Bianchi identities, that the covariant 
derivative operator QA acts as follows on N~,, the bosonic part of the connection, OB 
and F,~ respectively: 

[QA, 2 = 

1 ~ / t v B  [7 
Q A ~  IB  = + 2 - -  A--l~v, 

QAF~v = F g A B ~ v ¢  B - -  F v A B ~ $  B. 

These relations were all derived in [1] 
definitions in an elementary way with the help 
the F-matrices which we list here: 

(2.10a) 

(2.10b) 

(2.10c) 

by Witten. They follow from the 
of a number of identities satisfied by 

Equation (2.10b) can be derived using the fact that QA~/B= ,~,U~'BAZU, , for some Xu,, 
which follows from the Bianchi identity involving QA, Qs, D,. 

Actually, only identities (2.tla, b, d, f, h, i, j) are needed in deriving (2.10a, b, c), 
but they are all useful in the computations to follow. Now, expressing: 

F~4BN~, = ~(QAQB + QBQA) (2. t 2) 

and applying it to On, using (2.10a, b, c) for each derivation by QA or QR, and the 
identity (2.1 lg), we find the superfield Dirac equation: 

F ~ N . 0  B = 0. (2.13) 

F "aB = F uBA, F~t B = F~A, (2.11a) 

FuASF~c + FvABF~c = 2gUVgAc, (2.11 b) 

F~BF,  c o + F ~ c F ~  v + F ~ F ~ B  c = 0, (2.11 c) 

Fu r-Ac 106c. (2.11d) A B e l ,  = 

F~, r-a~ _ 165~, (2.11e) A B l y  - -  

zu~AF~Ac = -- 9F~c, (2.1 lf) 

Zu"~r,,  "c = + 9 F  "Ac, (2.1 lg) 

F~ r , ~ s  + F~cZ"V~ = - 2 g ~ F ~ c  + 2g~"F~c, (2.11 h) AB ~ C 

Zu'~AF aBc + ZgvcF  aBA =- 2g~'~F uAc -- 2g"~F vAc, (2.1 li) 

r.c%Aor  °rv . = _ 4F"CEF.F A + 126c6  
+ 86CA6E F. (2.1 lj) 
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Finally, applying FACQc to (2.13), using (2.10a, b) and the identities (2.11 a, c, e, i), we 
find the superfield Yang-Mills equations: 

@~'Fuv + ½F~AB{O A, ~k/~} = 0. (2.14) 

This completes our summary of Witten's derivation of the superfield equations 
from the constraints. In the following two sections, we shall be concerned with the 
inverse implication. 

3. The Y-Gauge: Reconstruction of Superfields and Superconnection 

To reconstruct the superfields and superconnection from any given set of leading 
component fields, it is necessary to eliminate the gauge freedom associated with the 
{0 A} co-ordinates. Proceeding exactly as in [4], we do this by requiring that the 
superconnection vanish along the transverse Euler vector field defined by the 
operator: 

= 0 A (3.1) 
~0 A' 

i.e. m(~) = oACOA = 0. (3.2) 

(Geometrically this means that the horizontal lift of ~ is tangential to the local 
section defining the gauge, z) Any two gauges satisfying such a condition can be 
related by a transformation 9 independent of the {0 A} variables, since (3.2) for each 
choice of gauge implies: 9 9  = 0, and hence 9 is a homogeneous polynomial of degree 
zero in the {0a}. It also follows that in such a gauge the covariant Euler operator 
equals the ordinary one: 

0 
~'J = OAQA ....= 0 A -  (3.3) 

~ o A "  

Using this fact, we deduce from the constraint equation (2.7) and from (2.,lOa-c), that 
acts as follows upon the superconnection, spinor superfield ~8 and curvature 

superfield F,~: 

(1 + ~)o9 e = 20AF~o3~, (3.4) 

~09 u = -- OA FuAI~ B, (3.5) 

~ f f j B  '.2- !tTIA '~,uvB l~" (3.6) 
~--- ~ 2 v .:.,., Aat,uv~ 

~F.~ = oAF~AB~vO B -- oAI~vAB~I~  B. (3.7) 

(Note that (3.7) is not an independent relation, but follows from (3.5).) 

2 Given a superconnection in an arbitrary gauge, the N-gauge is obtained by applying the 
transformation g defined by the ODE: 

0g 
0 A- = oAO)Ag. 

O0 a 

The existence of a unique solution with glo ~ = 1 is immediate from a component-wise expansion in 0 a 
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These relations are non-dynamic, but serve to determine the superfields 
(ou, COA, ~,B) uniquely from the leading components (oh,, ~B) in a {0 A} expansion, 
since N is positive semidefinite with integer eigenvalues equal to the degree of 
homogeneity in {oa}. (We have &a = 0 by the gauge condition 3.2.) Specifically, one 
can recover (o2,, On) recursively from (&,, ~bB) by repeated application of (3.5) and 
(3.6), and then deduce cob from (3.4) by dividing each term in the expansion of the 
right-hand side by the suitable integer eigenvalue of (1 + N). The leading terms are: 

~B = ~n + ±aAr~B~ (3.8a) 2 ~" '¢"' A~t /tv -~- " ' " ,  

e), = 05, -oAF,  An~ n +.. . ,  (3.8b) 

2 A C . °C con=OaF~nd),-~O 0 FABFucn¢ + "". (3.8C) 

The higher terms are easily computed, but will not be needed in what follows. 
The relations (3.5) and (3.6) resemble the supersymmetry transformations, but 

should not be confused with them. They are to be regarded as the non-dynamical 
part of the constraint equations, which allow us to reconstruct the superfields and 
superconnection uniquely in terms of the leading components (oSu, On). The 
supersymmetry transformations are: 

6(f-) . =~ O~A O A(~ # = --O~AI~,AB~I B, (3.9a) 

2 ~, z.~ A.~ ,v  

and are thus obtained formally from (3.5), (3.6) by replacing the superfields {cot, O n} 
by their leading components {cb,, Sn} and the super-space co-ordinates {0 A} by the 
parameters {~a} defining the transformation. 

In fact, Eqs. (3.9a, b) may be deduced from (3.5), (3.6) by correct interpretation of 
their geometrical meaning. Recalling the definition (2.9a) of O n as a part of the 
supercurvature tensor, the supersymmetry transformation (3.9b) should be regarded 
as the leading term of the corresponding Lie derivative of the curvature with respect 
to the supersymmetry generator X-o~Aq ]. Since left and right translations 
commute, we have: 

(Yx~)(Y, Z) = X(,Q(Y,Z)), (3.10) 

where £2 is the curvature 2-form and Y, Z are any pair of left translations. Thus, by 
definition: 

6¢ In = 1A6F"AB[~'~ X£2(~,, @A)] by (2.9a) 

= (o~AqR~¢ B) by (3.t0) 

_ _1 ~ , A r # v n #  by (3.8b). 
- -  2 ~ ~ A - - # v  

A similar computation for 6d), yields (3.9a). 
Although this provides an interpretation of the relations (3.9a, b), it does not yet 

justify regarding these as infinitesimal variations of the leading components of a 
superfield constructed from (3.5)-(3.7), since the relations (3.4)-(3.7) are not 
invariant under supersymmetry transformations for arbitrary superfields. This is 
what underlies the usual observation that such transformations do not define a 
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representation of the superalgebra off shell [11]. We shall see however in the next 
section that the recursive relations (3.4)-(3.7) together with the field equations for the 
leading components {eSu, ~O B} are in fact fully equivalent to the constraint equations, 
and hence are supersymmetric on shell (up to a gauge transformation which does not 
affect the leading terms). This is what will justify regarding (3.9a, b) as transform- 
ations of leading components of a superfield on shell. 

4. Inductive Proof: Field Equations =~ Constraint Equations 

Having constructed superfields {~o~,,coa,~k B} from the leading component fields 
{o5~, ~8} through the procedure of the preceding section, we must now verify that the 
resulting connection does indeed satisfy the constraints, provided {@,, Cn} satisfy 
the field equations: 

F]B~u~ B = 0, (4.1 a) 

~uff,v = - ½F~an{~a, ~B}. (4.1b) 

We do this in three stages. First, we prove by induction on the homogeneity in {0 A} 
that (4.1a, b), together with (3.5)-(3.7) imply the superfield equations (2.13), (2.14). 
The usual argument for this sort of result [11] is that the supersymmetry of(4.1a, b), 
together with the closure of the algebra generated by transformations (3.9a, b) on 
shell imply that the superfields defined by applying the operator exp {Oata} formally 
to the leading components will necessarily satisfy the superfield equations. Our 
inductive proof will in effect justify this formal manipulation. Secondly, we shall 
prove, again inductively, that if o~, and Cn satisfy the superfield equations, the 
relations (2.10a, b, c) will be satisfied. The computation involved in the inductive step 
will be seen for this case to be formally equivalent to the closure of the superalgebra 
on shell. Finally, we show explicitly that relations (2.10a-c) imply the constraint 
equation (2.7) in the Y-gauge. 

I. Inductive Proof (iii) ~ (ii). The first step of the induction, corresponding to 0 a 
homogeneity zero is verified because of the leading component field equations 
(4.1a, b). Now, assuming validity of the superfield equations up to order n in 0 a, we 
have, by application of the operator ~ to (2.13) and use of the recursions (3.5), (3.6), 
(3.7): 

~(F~4B~b B) (to order n + 1) = - OCFUABF~cD{~ D, ~B} j_ ±~cr'~ r ~ B ~  " 2 L, - - A B Z . , . ,  C~/~aa~  

OC[ F~c@~F~u 1 u ~,B 
to order n, using 

(2,14) by inductive 
hypothesis and (2.1 lc). 

= 0,  

where the last step follows from the F-matrix identity (2.11h) and the Bianchi 
identity: 

~uF,~ + ~,Fu, + ~,F,u = 0. (4.2) 

Thus, Eq. (2.13) holds to order n + 1 in 0 A, since ~ is positive on this term. Similarly, 
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applying 9 to the difference between the two sides of(2.14), and using the recursions 
(3.5)-(3.7), 

+ ~FvaB{~ , ~B} ] (to order n + t) 919"F.~ t A 

= -- F~BOc[~p n, F . . ]  + Ocgu[F#cBg. fn  _ F .cog .~B]  + 301 CF.a~ Z,,Ac [F.~, ~pn] 

= -- r~sOC[F~k B, e . . ]  + rcBEV.. ~'"] 
1 ct~A B 1 a~A +-~F~caX n [ F , , , ~  ] + ~ F ~ a n l  cl'F,,,~kn]] 

.,¢ 
to order n by inductive hypothesis as explained below 

= 0 (by identity (2,11h)). 

In the inductive step, we have used both the super-Dirac equation (2.13) (to order n) 
and its consequence: 

9 ,9 ,~B = ±r.~,Bru ,1,ca (4.3) 
- - 2 ~ . .  " CLZ #v~W A- 

This completes the inductive proof of the superfield equations. Note that if we 
replaced all superfields by their leading components and 9 --* &, 0 a ~ ~A, the above 
computation would be identical to the verification that Eqs. (4,1a, b) are invariant 
under the supersymmetry transformations (3.8a, b). 

II .  Inductive Proof: Superfield Equations ~ Equations (2.1Oa-c). The  first step of the 
induction follows by substituting the leading terms of the expansions (3.8a, b, c) into 
the relations (2.10a, b) and verifying that the 0A-independent terms are equal. 

o a o°r .ocC+ .) -r. cCf, [Q A, 9~,3 = ~ff~( . . . .  

o 0 1 C vB ° __ & ~ " . v B l ~  [QA, ~B] = ~ ( - ~ 0  .S ~' c f  ..) - 2 ~ a- ; , , .  

(Since (2.10c) is not independent of (2.10a, b), but follows from (2.10a) by taking even 
covariant derivatives, it need not be considered separately.) 

Next, we apply the operator (1 + 9)  to the difference between the two sides of 
(2.10a, b), assuming these relations to be valid to order n in 0 a, and using the 
superfield equations, and the recursions (3.5)-(3.7), 

(1 + 9) [  [QA, 9~,] + F.AB~P B] (to order n + 1) 

-- E 2OC F ~c[ 9 . 9 .] + OC Q A( F.cB~ B) m~ ± r2~ .A~ ~'nc v'' .~n ,Wc. ~ 

= OC[2F~anF~. 1 ~,B l r r~ ,Bu  q + 7 F ,  cB,S, AF,,~ + . 2 *  g A B  z-~ C. ta .~d 

to order n, by inductive 
hypothesis 

= 0. (by identity (2.11h)) 

Note that this computation is formally identical to the verification that the 
transformations (3.9a, b) close under anti-commutation when applied to &~, 
defining a representation of the superalgebra. The inductive hypothesis was used 
here, but not the superfield equations. However, the corresponding computation for 
(2.10b) requires the super-Dirac equation (2.13). Once again, applying (1 + 9) to the 
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difference between the two sides of (2.10b) and using (3.5)-(3.7), 

( I+~)[Q£pB ±ruvnF 1 (to o r d e r n + l )  2 ~ A ~ # v A  

= 2 0 C F ~ c ~ u ~  ±aCr ,vR t l  ~ _ ruvBt~c~ v~ ,/,~ 
- -  2 t., ~ C ~ A ~ l z v  1 - ,  A t ,  • a # C D o . ~ v , C  

_ _  C ,u B I t v B  O - 20 EGcG  cG4. vO - "] 
to order n by inductive 

hypothesis 

= 20CFUacNu~bD - O c { F ~ F ~ e F u A C } N , O "  (by 2.11c) 

= 0. (by identity (2.1 lb) and the super-Dirac equation (2.13)). 

Note again that this computation is formally identical to the verification that the 
transformations (3.9a, b) close under anti-commutation when applied to ~n This 
completes the inductive proof of Eqs. (2.10a, b) (and also, by consequence (2.10c)). 

It now remains to verify that the superconnection constructed from (3.4)--(3.6) 
actually satisfies the constraint equation (2.7). To do this, we apply the positive 
operator (2 + 9) to the difference between the two sides, giving: 

(2 + N)[{QA, Q.} - 2 rUn.u]  = 2{QA, Q.} + {2oCr~c~., Q~,} + {Qa, 2 0 C F ~ c ~ u }  

- 2{Q a, Q,} - 4r~,~.  + 2r.a.oCr.cDO ~ 

= + 2 0 C F ~ c r . . . O  c + 20CFf~cFuaoO" 

+ 20CFU4nF~,c~O D (by 2.10a) 

= 0. (by identity (2.1 lc)). 

Therefore Eq. (2.7) holds, completing the demonstration. 

5. D i m e n s i o n a l  R e d u c t i o n  to d = 4,  N = 4 a n d  d = 6,  N = 2 

We now consider an orthogonal splitting M = M 4 @ M  6 of complexified ten 
dimensional Minkowski space into the sum of a four dimensional subspace and a six 
dimensional one. The complex isometry group is O(10, C), and it is convenient to 
express its representations, as well as those of the complex spin group Spin (10, C) in 
a basis adapted to this decomposition, with the corresponding reductions: 

O(10, C) = O(4, C) x O(6,C) (5.1a) 
and 

Spin (10, C) D (S1(2, C) × ~(2, C)) × S1(4, C). (5.1b) 

Although we shall remain mainly in the complex setting, it is worth noting that the 
reality conditions which lead to the usual 4 and 6 dimensional structures involve the 
decompositions: 

O(1,9) = O(1, 3) x 0(6, R) (5.2a) 

and 

Spin(I,9) = S1(2, C) x SU(4) (5.2b) 
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for the case where M4 R = M4 is Minkowskian and M6 ~ c M6 is Euclidean [6], or 

0(9, 1) D 0(4, R) x O(5,1) (5.3a) 

and 

Spin(9, 1)= (SU(2) x S~U(2)) x SU*(4) (5.3b) 

when M4 ~ is Euclidean and M6 ~ Minkowskian [7-10]. 
The 16-dimensional spinor representation under which_the {0 A} transform has the 

following decomposition relative to these reductions: 

1 6 = 4  x 2 + 4 *  x 2, (5.4) 

where 4 and 4* are the fundamental representation of S1(4, C) (or SU(4) or SU*(4)) 
and its dual, respectively, while 2 and 2 represent the fundamental (undotted) 
representations of S1(2, C) andSl(2, C), respectively. Under the first type of reality 
condition, we must identify S1(2, C) with the complex conjugate of S1(2, C), and 
hence 2 with the dotted S1(2, C) spinor representation. Under the second type, the 2 
and 2 are identified as representations of the two different SU(2)'s. Denoting 
components relative to the standard basis in the 4 and 4* respectively by an upper or 
lower Roman index (i = 1, 2, 3, 4) and those for the standard basis in 2 and 2 by 
{a = 0, 1}, {~ = 0, I}, (regardless of whether or not these are really complex conju- 

gate representations), we may identify {A} = {(/c~), ( ~ ) }  and write the odd co- 

ordinates as 

{OA}A = 1, . . .  16 = { 0  , 0~ }i,j= 1. . .4 .  (5.5a) 
~ , ~ = 0 , 1  

Similarly, the 10-dimensional vector representation splits into the sum of an 0(4, C) 
vector, equivalent to 2 x ~, for which we use the tensor product basis, with 
components labelled by a pair {eD}, and an 0(6, C) fundamental representation, 
equivalent to the bivector representation 4/x 4 -~ 4*/x 4* (this latter equivalence 
given by the volume form), with components labelled by an antisymmetric pair (ij) = 
- ( j i ) .  Thus, we identify {#} = {(e/~), (ij)} and write the even co-ordinates 

{Xg}# . . . .  9 = { x~¢, yij = __ yji}, (5.5b) 

in terms of which the underlying complex metric is: 

ds z = det(dx ~) - ½eiiktdy~Jdy kz. (5.6) 

The reality condition corresponding to (5.2a) is given by 

x + = x 37 = *y, (5.7) 

where (*y)~J-= ½dJkly kz. That corresponding to (5.3a) is given by: 

= exe ~ ~ = + T y T  t, (5.8) 

where 
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Relative to these bases, we identify the nonvanishing components of the F-matrices 
as follows: 

F~,~, ~ ~ F ~  , (5.10a) 

kl k k l k l  
F tia)(jfl) = 2 I~o~flC (~ i (~ j - -  ~) j(~i'], (5.10b) 

z . ~ o U k , .  (5.10C) 

for F~B and: 

F~¢@(i ) = 4~}~'e ~f = Fa¢(i )l'), (5.10d) 

F k'(i~u~ = 2e~e ijkl, (5.10e) 

2e [6i6~- ~jJi] (5.10f) 

for F "aB. The left translation generators on ~ may then be identified as: 

(q~) = (qi~, q~), (5.11 a) 

(O~) = (~¢, ~j), (5.1 lb) 

where 

qi~ = ~ + 0 i ~  + e~p0 O~yij, (5.12a) 

q~ = ~ + ~e e~Oj Oyk~, (5.12b) 

a~ - ~x~ (5.12c) 

satisfy the superalgebra relations 

{qi~, qja} = 2e~t~0ij, (5.13a) 

{ q~, q~ } = ~,d:]~ei jkl Oki, (5.13b) 

{qi~, q~} = 2~}~. (5.13c) 

Note that when acting upon functions independent of the {yU} co-ordinates, the 
generators {q~, q~, a~} reproduce the d = 4, N = 4 superatgebra relations. Similarly, 
on functions independent of the {x~}, they reproduce the d = 6, N = 2 relations 3. 

The covariant derivatives may similarly be decomposed as: 

(QA) = (Qi~, Q~), (5.14a) 

( ~ # )  = ( ~ @ ,  ~ i j ) ,  (5.14b) 

a This is not really a precise characterization, since in this complex version the algebra has an internal 
symmetry S1(2,C)x S1(2,C) covariance rather than just S1(2,C). It may be regarded as a second 
complexification of the N = 2, algebra, involving complex left and right spinors 
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where 

- q~ + 09~, 

"@ ~t~ = 0 ~ + A ~ ,  

~ij = c~j + Wu, 
and 

(OJ A) = (OOia , O J / ) ,  

(%) = (A~, W O. 

In this notation, the constraint equation (2.7) may be expressed: 

{Q,~, Qjp} = 2g~pN u, 

{Q,,, Q~} = 26i9,:. 

Similarly, the spinor superfield ~k n may be decomposed as: 

where, defining 

i _ _  " 

Eq. (2.10a) may be re-expressed 

- 6 j Z k ~  - 6 j Z j ~ .  

Decomposing the curvature tensor 

(Fur) = (f~a, f ~, F,~,o, F~j,kt), 

where 

[@~, ~ ]  = e~ef ea + ae~f~e, 

[ ~ o~, ~ ij] =- F ~,ij, 

[ ~ i j , ~ k l ]  ~- Fij,k h 

we have, from Eq. (2.t0b), 

Qi,Zj~ = 2F~a,ij, 

195 

(5.15a) 

(5.15b) 

(5.15c) 
(5.15d) 

(5.16a) 

(5.t6b) 

(5.17a) 

(5.17b) 

(5.17c) 

(5.18) 

(5.19a) 

(5.19b) 

(5.20a) 

(5.20b) 

(5.20c) 

(5.20d) 

(5.21) 

(5.22a) 

(5.22b) 

(5.22c) 

(5.23a) 

(5.23b) 
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±o ojklm re (5.23C) Qis~(~ = 2'51i f =p "{-2 c'oa~¢' " lm,ik,  

Equation (2.10c) may be similarly decomposed, giving the action of(Qis, Q~) on each 
component of the curvature, but since this follows as a consequence of (2.10a, b) 
through application of even derivations only, it need not be listed separately. 

Decomposing the field equations (2.13), (2.14) in the basis, we obtain, 

esP@~eZ} + ½e'Jk'@u)~ej = 0, (5.24a) 

e ~e:)~,~ + ~,jZ~ = 0, (5.24b) 

for the fermionic part, and 

l g i j k l ~  F i e~@~j[# + ~ s p ~ f p ~  + 4 kt ~,~j + {Z~, k~} = 0, (5.25a) 
l~°lflc.~Ot~ 12. 1--emnklo~ Ig -1- I s,8 k l 

o ~ a d - - f l / ~ , / j  - -  2 ° "Z~mnakl,ij ~ ~g e~jkL{)~,, Ze} + ee¢{Z,~, Zj~} = 0, (5.25b) 

for the bosonic part. 
The N-gauge condition (3.2) in our reduced basis takes the form 

oi~to)ia d~ i + Oie) ~ = O, (5.26) 

and the ~ recursion relations (3.4)-(3.6) allowing us to reconstruct the superfields 
and superconnection from leading components become: 

(1 + ~)m~ = 20JPes¢W~ + 20~A~,  (5.27a) 

(1 + ~)co / = 20iaA~a . ~ o~,..'" °ijklafll/f/'..,j ,, kt, (5.27b) 

~ A ~  = -e~/~0~){~ + ~0~Z~, (5.28a) 

ks ~ ~ ~ (5.28b) ~ V i j  = ~ijkl 0 Xc~ or O i z #  - -  Ojx i~ ,  

~ ) ~  = 20JSF~,~ + 20i f e ¢ +  -¢ae40j e Ftm,ik, (5.28c) 

c/))~i s = .~i~ c !o  aj~oig~,,~ ~o~ik~s, (5.28d) .¢.,w da f t  - -  2 ° s f l  TM o - - lm , j k  "~ ~ j o  * ~8.,k," 

The reality conditions corresponding to (5.2a, b), (5.7) may be extended to the 
superspace M so as to preserve the super-algebra relations (5.13a, b, c) if we require: 

0 TM = 0~, ~ = 0 '~, (5.30a) 

qis = q~, q~ - q,=, (5.30b) 

where the bar indicates an extension to M of the anti-linear involution (generalized 
complex conjugation) on M underlying the reality condition (5.7). Correspondingly, 
the constraints and field equations will be preserved if the superconnection 
components and spinor superfield satisfy: 

a( A~)  = A ~a , 

0 = 

= - L ,  = 

(5.31a) 

(5.31b) 

(5.31c) 

(5.31d) 
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where a is the anti-linear involutive automorphism of the gauge algebra defining the 
particular real form considered, (e,g., ~r(~)= - ~ +  if the gauge group is U(n)). 
Similarly, the reality conditions corresponding to (5.3a, b), (5.8) may be extended to 

by requiring: 

0 ~ = ~PT}O j~, ~ = e~T~O], (5.32a) 

gli, = e,~qj~Tl, Ct~ = e~t~T}q ~, (5.32b) 

where (T}) is the matrix defined in (5.9). The corresponding conditions on the 
superfields are: 

i j: (5.33a) a(~i~) = e~,po)jp T{, a)~, = e~Tjc%, 

a( A~)  = e,,~t~A ~i,, (5.33b) 

a(W,j) = T~VV~,T}, (5.33c) 

Now, assuming the superconnection to be invariant under the six dimensional 
translation group generated by {Ou}, we obtain the dimensional reduction to a (4116) 
dimensional supermanifold M4 defined as the quotient of ~ by this action. All 
superfields derived above retain the same form, but become independent of the {y~J} 
co-ordinates. The covariant derivative operators ~ j  reduce to Lie multiplication by 
the gauge algebra valued Lorentz scalar superfields W~j which, in view of the 
constraint equations (5.17a, b) may be identified as the antisymmetric part of the 
curvature term {Qi,, Qjp} under the transposition {c~,-+fl}: 

Wij = - e~a { Qi~, Qja}. (5.34) 

The constraint equations then reduce to the usual form for the d = 4, N = 4 theory, 

{Q~, Qjp} + {Q~a, Q j,} = 0, (5.35a) 
i j {Q~, Q~} + {Qt~, Q~} = 0, (5.35b) 

{Q~=, Q~} = 2fi,s~¢, (5.35c) 

g=~{Q,=, QJt~} = ±°2°iju ~'°ee~ nk (5.35d) 

The relations (5.35a-e) represent the usual integrability conditions on super null 
lines in M4, while (5.35d) is an additional linear vanishing condition on the 
curvature required by the dimensional reduction. 

Since the dimensional reduction does not affect the anti-commuting co- 
ordinates {0A}, all the relations (5.20a-d), (5.23a-c) remain valid in the reduced 
space, provided we make the appropriate substitutions: 

~j- -+[W~j ,  ], (5.36a) 

F ~,~ ~ @~ W~j, (5.36b) 

Fij.kl ~ [Wi~, l/Vkl]. (5.36C) 

The ~-recursion relations (5.27), (5.28), (5.29) also remain valid with these 
substitutions, allowing us again to uniquely reconstruct the reduced (4116) 



198 J. Harnad and S. Shnider 

dimensional superconnection from the leading component fields {A~¢,I?¢~, )(ia, )(~}. 
The reduced form of the field equations implied by the constraints (5.35a-d) may be 
read off from Eqs. (5.24a, b) and (5.25a, b) again by making the substitutions (5.36a- 
c). Equations (5.24a, b) reproduce the usual Dirac equations, with coupling to the 
scalar fields { W~j}, while Eq. (5.25a) becomes the four dimensional super Yang-Mills 
equation and (5.25b) the superfield form of the scalar field equations. By restriction 
of our inductive argument to this case, we see that the full equivalence of field 
equations and constraints for the d = 4, N = 4 case follows as a corollary to the 
d = 10, N = 1 result. 

Similarly, to obtain the d = 6, N = 2 reduction, we assume the superconnection 
to be invariant under the four dimensional translation group generated by {0~}. 
Quotienting ~t by this action gives rise to the (6116) dimensional supermanifold M 6 
extending M 6. All superfields obtained by the previous construction become 
independent of the {x ~} co-ordinates, and the covariant derivative operators N=~ 
reduce to Lie multiplication by the gauge algebra valued scalar superfields A,¢. The 
latter, in view of the reduced form of the constraint equation (5.17c) may be defined 
as the trace part of the supercurvature term {Q~,, Q~}: 

A~ ---g{Q~,, ~ (5.37) 

The constraint equations (5.17a-c) then reduce to the correct form of the complex 
d = 6,N = 2 theory [7-10]: 

{Qi=, Q3a} = 2e=aN,/, (5.38a) 

i 3, { O~, Q?} = e~¢gJk'Nkt, (5.38b) 

{Q,:, Q~} - ¼~{Q~,, Q~} = 0, (5.38c) 

which again are interpretable as integrability conditions along super null lines [9] 
in/~6- 

The relations (5.20), (5.23) and the N-recursions (5.27), (5.23) remain valid in the 
reduced space, as a consequence of (5.38a-c), provided we make the substitutions: 

~,¢-+ EAse, 3, (5.39a) 

f , a  --, - ½e~¢[A~, Ape], (5.39b) 

f~¢--+ -- ½gq~[A~a, Aa~], (5.39c) 

F ~ , k  t " *  - -  ~kiA~ 4. (5.39d) 

The same substitutions reduce the field equations (5.24a, b), (5.25a, b) to those for the 
d = 6, N = 2 theory, with (5.25b) becoming the Yang-Mills equation with spinor and 
scalar sources, and (5.25a) the superfield form of the scalar field equations for {A~}. 
Once again, the implications: constraints=~fleld equations are preserved by the 
reductions, since these do not affect the {0 a} variables, and so are the inductive proofs 
of the implications: component field equations =,, superfield equations =:, constraint 
equations. Thus, the d = 6, N = 2 equivalence is also established as a corollary to the 
d = 10, N = 1 result. 

Finally, the reality conditions discussed above may all be equally applied to the 
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reduced spaces, the set (5.2a, b), (5.7), (5.20a, b) and (5.31a-d) reproducing the usual 
four dimensional real Minkowski superspace results and the set (5.3a, b), (5.8), 
(5.32a, b) and (5.33a-d) those for the real six dimensional case. 
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