The Minimum Value of Quadratic Forms, and the Closest Paeking of Spheres.

Von

H. F. Blichfeldt in Stanford University (Cal., U.S.A.).

1. The minimum value of a positive definite quadratic form of given determinant *D,* under the condition that the variables assume only positive or negative integral values or zero (not *all* zero), has been the subject of several papers from the time of Gauss¹). If the form has n variables, the minimum value is $\leq \gamma_n D^{1/n}$, where γ_n is a function of n only. The author obtained the following superior limit to $\gamma_n: \frac{2}{\pi}\left[\Gamma\left(1+\frac{n+2}{2}\right)\right]^{2/n}$.

The determination of the quadratic forms in n variables for which γ_n has the least permissible value, will also solve the problem of the closest packing, in regular layers, of equal spheres in a large cube in space of n dimensions R_n . (By packing in "regular layers" we mean that we place the centers of the spheres in the points obtained by subjecting to a linear transformation the lattice points (points whose coordinates are positive or negative integers or zero) in R_n .) In fact, in a regular packing the ratio ρ of the volume occupied by the spheres to the whole volume of the large cube containing them, is

(1)
$$
\varrho \leq \frac{\left(\frac{\pi \gamma_n}{4}\right)^{\frac{n}{2}}}{\Gamma\left(1+\frac{n}{2}\right)} = \varrho_0, \text{ say.}
$$

The ratio for the *closest* regular packing is the number ϱ_0 .

 1) See "Bulletin of the American Mathematical Society" 25 (1919), pp. 449-453, for references; as well as L. E. Dickson, "History of the Theory of Numbers" 3, pp. $234-252.$ -- See also article by Remak, "Mathematische Zeitschrift" 26 (1927), pp. 694- 699.

It is the object of this article to find by elementary geometrical processes a number q_1 , such that if equal spheres be packed in a large cube, whether in regular layers or not, then the ratio ρ_{α} of the total volume occupied by the spheres to the volume of the cube is

 $\varrho_{\scriptscriptstyle{0}} < \varrho_{\scriptscriptstyle{1}}$.

Since evidently $\varrho_0 < \varrho_1$, we derive from (1) that

(2)
$$
\gamma_n < \frac{4}{\pi} \Big[\varrho_1 \Gamma \Big(1 + \frac{n}{2} \Big) \Big]^{2/n}
$$

2. Using rectangular coordinates in R_n , let the spheres S_1, \ldots have their centers at $(a_1, b_1, ..., k_i), ...,$ and radii all equal to unity. The conditions of the problem require that the distance between every pair of centers is at least 2:

$$
(a_i-a_j)^2+(b_i-b_j)^2+\ldots+(k_i-k_j)^2\geq 4.
$$

Adding these inequalities for $i, j = 1, 2, ..., m$, we obtain

(3)
$$
m \sum (a_i^2 + b_i^2 + \ldots + b_i^2) - (\sum a_i)^2 - (\sum b_i)^2 \ldots \ge 2m(m-1),
$$

the summation extending from 1 to m . Hence, representing by r_i the distance from the point $T=(0, 0, \ldots, 0)$ to the center of the sphere S_i , we have

3. Leaving the centers fixed, we now replace the given geometrical spheres by physical spheres of superposable matter, all of radius $\sqrt{2}$. Furthermore, we assume the density of the matter in each sphere to be $2 - r^2$ at the distance r from its center. These new spheres will to a certain extent overlap; but the total density of the matter from the spheres will at no point in the otherwise empty R_n be greater than 2. For, if just m spheres overlap at the point T , we have from (4) :

$$
\sum (2-r_i^2) \leq 2m-2(m-1)=2\,.
$$

4. Now consider a large cube of edge E , containing say k of the original spheres. The new spheres will be wholly contained in the cube whose edges are longer than the edges E by $2(\sqrt{2}-1)$. Now the total matter in the extended cube is less than twice its volume. Hence, if $K = \frac{\pi^{1/2}}{\sqrt{n}}$ is the volume of a sphere of radius 1, then $n > k K \int_{0}^{k^2} (2 - r^2) dr^n = \frac{4 k K 2^{n/2}}{n+2}$

from which we derive

$$
\varrho_{2}=\frac{k K}{E^{n}}<\frac{n+2}{2}\Big(1+\frac{2\sqrt{2}-2}{E}\Big)^{n}=\varrho_{1}.
$$

Taking E sufficiently large, the value of ρ_1 is as close to $\frac{n+2}{n+3}$ as we $2^{\overline{-2}}$ wish. This limiting value, substituted in (2) , gives the superior limit to γ_n already found by the author (§ 1).

5. Elaborating the method of $\S 2$ under the condition that the radii of the spheres are $\leq \sqrt{2}$, we may obtain the following inequality, stronger **than (4) :**

$$
\sum_{i=1}^{m} r_i \geq \sqrt{2m(m-1)}.
$$

Namely, we start by passing the $X₁$ -axis through the center of the sphere S_1 , so that $a_1^2 = r_1^2$, $b_1 = \ldots = k_1 = 0$. It is now easily proved that if r_1, \ldots, r_m are all $\leq \sqrt{2}$, then a_2, \ldots, a_m all have the same sign, say $+$, opposite to that of a_i . For, from the condition that the distance between the centers of S_i , and S_i is at least 2, we get

(6)
$$
2 r_1 a_i \geq 4 - r_1^2 - r_i^2 \geq 0.
$$

From the condition (3), applied to the subscripts $i = 2, ..., m$, follows

$$
(m-1)\,\Sigma r_i^2 \geq (\Sigma a_i)^2 + 2(m-1)(m-2).
$$

Hence, by (6) ,

$$
(m-1)\sum r_i^2 \geq \frac{1}{4r_i^2}[(m-1)(4-r_i^2)-\sum r_i^2]^2+2(m-1)(m-2),
$$

which transforms into

$$
8 m (m-1) r_1^2 \geq [(m-1) (4+r_1^2) - \sum r_i^2]^2.
$$

Since $(m-1)(4+r_1^2) > \sum r_i^2$, we therefore deduce

$$
\sum r_i^2 \geq (m-1) (4-r_1^2) - 2r_1 \sqrt{2m(m-1)}.
$$

Adding all the inequahties corresponding to this by replacing in. turn r_1 by r_2, \ldots, r_m , we finally get (5).

6. Reverting to the physical spheres of $\S 3$, we shall now assume their density to be $2-r^2$ if $1 \le r \le \sqrt{2}$, $(2-r)^2$ if $2-\sqrt{2} \le r \le 1$, and 2 if $0 \le r \le 2 - \sqrt{2}$. The arguments of § 4 will be unchanged, except that the integral will now become

$$
\frac{4 k K}{n+2} \left\{ 2^{n/2} + \frac{1}{n+1} - (2 - \sqrt{2})^{n+1} \left(\frac{\sqrt{2}}{2} + \frac{1}{n+1} \right) \right\} = \frac{4 k K 2^{n/2}}{n+2} (1+g),
$$

say, giving $\varrho_1 = \frac{n+2}{2^{\frac{n+2}{2}} (1+g)}$.

Making the corresponding changes in (2) we then have

$$
\gamma_n < \frac{2}{\pi} \left[\frac{\Gamma\left(1 + \frac{n+2}{2}\right)}{(1+g)} \right]^{2/n}.
$$

The exact (least) values of γ_n for $n=2, 3, 4, 5$ are respectively $\frac{2}{\sqrt{3}}$, $\sqrt[3]{2}$, $\sqrt[5]{8}$. The author has recently proved that for $n = 6, 7, 8$ the values are respectively $\sqrt[3]{(\frac{64}{3})}$, $\sqrt[7]{64}$, and 2, which he hopes to publish soon. By the above formula, $\gamma_s < 2.104$.

7. The closest packing of equal circles in the plane is regular ("shotpile" arrangement). But in $R₃$ the closest packing of equal spheres may not be regular. The shot-pile packing gives $\rho = .74...$, while the formula above makes $\rho_1 = .843...$ But a more elaborate use of the relations (5) and (6) should give better results. Thus the author has obtained $q_1 = .835...$ Hence, in no case can equal spheres be packed in a large cube in space of three dimensions such that the space occupied' by the spheres is as much as $\frac{835}{1000}$ of the volume of the cube.

(Emgegangen am 10, 8, 1928.)

Ernst Abbe-Gedächtnispreis fiir Mathematik und Physik.

Der yon der Carl Zei\$-Stiftung zu Jena begriindete *Ernst Abbe-Geddchtnispreis* und die damit verbundene *Abbe-Medaille,* die im Jahre 1928 zum ersten Male flit Anwendungsgebiete der Mathematik and Physik zur Vergebung kommen sollten, sind nach dem Urteil des Preisgerichts (Prof. Hecker-Jena, Prof. Prandtl-Göttingen, Prof. Zenneck-München) dem Professor Dr. Dr.-Ing. h. c. Alexander Meißner-Berlin, dem "Erfinder des *RShrengenerators",* zuerkannt worden.