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Abstract.  This review is intended to provide an introduction for the nonspecialist to concepts and 
techniques which are useful for analysing palaeomagnetic time series. Emphasis is placed on analysis in 
the frequency domain, particularly the perlodogram and maximum entropy methods. The review 
consists of two parts dealing with techniques and applications respectively. 

1. Techniques 

1.1. INTRODUCTION 

The complexi t ies  of  both source mechanisms and the recording process through 
which we see the geomagnetic  field are such that no two secular variation records 
s temming  f rom the same source would be identical. At every time, t, we can 
associa te  a set of  probabilities with the occurrence of each of the possible values 
X(t) of  the t ime dependent  variable. This set of  random variables and associated 

probabi l i ty  distributions is called a stochastic process.  The time series we observe 
is t rea ted  as a sample of  one of  the infinite set of  realisations of  the process (Figure 

;  jQi 

Fig. 1. A stochastic process in operation. 
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1). The object of time series analysis is to estimate the properties and parameters 
governing the stochastic process from the limited information contained in the 
observed finite record. The consequences of the inherent assumptions in doing this 
become particularly acute for records which are short compared with the periods of 
interest. Fourier transform based spectral estimates (periodogram and auto- 
variance) require strong assumptions about the data outside the observed record. 
This is less true of recent non-linear parametric modelling techniques (e.g. the 
maximum entropy method, MEM) which are gaining rapid acceptance due to their 
potentially superior resolution and ability to cope with short series. 

Introductions to the concept of the power spectrum of a process, and the spectral 
density function are to be found in any reference texts on time series analysis. 
Chatfield (1980) gives a particularly straight-forward account. The power spectrum 
is a line spectrum which expresses the variance (power) of the time series in terms 
of the variances of a set of components at discrete frequencies into which the series 
can be decomposed. In practice the decomposition can only be performed approxi- 
mately and requires assumptions about the nature of the series outside the observed 
range. The variance assigned to each of the discrete frequencies will be a function of 
how many frequencies are used within a given band. The limiting case of a contin- 
uous frequency distribution is best described by the power spectral density func- 
tion, S(f) ,  which is a continuous function of frequency, The variance of the process 
accounted for by frequencies in the rangefl to f2 is given by: 

A 
t "  

Variance = /  S(f) df  
d 

fl 
i.e. by the area beneath the curve (Figure 2). The power spectrum and the spectral 
density functions are fundamentally different even though an estimate of the latter 
can easily be obtained from the former (see below). For example, S(f) is undefined 
for a pure harmonic at frequency f, since this would require a finite area beneath the 
curve for an infinitessimal bandwidth. 

The ensuing discussion assumes that the statistical properties of the times series 
do not vary with time, i.e. that the stochastic process is stationary, and also that 

sIf) -- H _------~~.jf_~ 

f f+df frequency 
Fig. 2. Spectral power density, S 00, as a continuous function of frequency. Variance accounted for by 
frequencies in the small intervalftof+!bfis S (J)bf, i.e. the shaded area beneath the curve. The concept 

may be extended to finite intervals by simple integration. 
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points are spaced at equal time intervals (At). This limits the highest detectable 
frequency in the data to 1/2At which is called the Nyquist cutoff frequency (fc). 

1.2. PERIODOGRAM (DET) METHOD 

The discrete Fourier transform (DFT) approach to finding hidden periodicities was 
suggested by Schuster (1978). The squared amplitude of the transform was used as 
the spectral estimate. In practical terms the method is equivalent to using a least 
squares technique to fit a sequence of sinusoids to the data, whose periods are 
integer divisors of  the length of the record. The series is thus decomposed into a set 
of  harmonics. 

To simplify the notation, consider a time series xt, t = 0, 1 . . . .  N-1 with an odd 
number  of  terms (N) equally spaced at interval At, and with zero mean. A discrete 
Fourier  transform of  the series gives the cosine and sine transforms, As. and Bj, at 
each of  the Fourier angular frequencies wj. = 2njINA t, j = 1, 2 . . .  (N-l) /2 where 

xt = ~.[Aj  cos (wjt) + Bj sin (wit)] 
J 

and (1) 
2 2 

Aj = ~ t ~  s COS (14~./); nj = ~[ ~ t  xt sin (%.t) 

Aj and Bj are least-squares estimates of the amplitudes of the best fitting cosine and 
sine waves at each frequency wj. The amplitude and phase of the jth harmonic are 
thus given by Rj = (A} + B2) 112 and q~j = tan -I [-Bj/Aj], and the power (variance) 
accounted for by each harmonic is: 

P J -  2 

The term power, rather than variance, derives from the electrical analogue: Power 
dissipated = rms current 2 x resistance = �89 x peak current 2 x resistance. The total 
variance is the sum of  the variances accounted for by each harmonic (Parseval's 
theorem). The amplitude and power spectrum are plots of Rj and Pj against fre- 
quency respectively. The case o f j  = 0 may be ignored since the mean of the series 
Ao/2 is zero. The Nyquist  frequencyf~ = l/2At, or w~ = MAt, hence the upper limit 
f o r j i n  (1) is (N-l)/2. 

It is notationally and compuationally convenient to express (1) in complex 
number  form using the Euler relation, 

cos wt + i sin wt = exp(-iwt) 
namely,  N-I 

x , =  ~. Jjexp(iwj/) 
J = l (2) 

tN_l 
1 Jj = ~ ~ xt exp(-iwjt) 

whence N-1 
Js = ( a j -  rag. (3) 
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The set of N complex numbers J0, J~ .. �9 J N - 1  is the Fourier transform ofxv J0 is zero 
since the mean ofxt  is zero. The squared modulus of the transform 

I/Jl 2 = JjJ * = 4'- (A2 + nJ )  =  ejl 2 = :ej,1 2 

where * denotes the complex conjugate. 
The periodogram function, I(w), is a power spectral density estimate. If we treat 

the power at ~. as distributed over a frequency interval equal to the spacing of the 
Fourier angular frequencies, Aw = 27rlNAt, then power within wj _+ SAw = area 
beneath the spectral density curve i.e. R212 = I(wj)Aw, hence, I(wj) = NAtl4~r • R 2. 
In terms of frequency, the spacing is A f =  l INAt ,  and 

N A t  
I(fj) = - - ~ - R  2. (4) 

We have only considered positive frequencies, so (4) is an estimate of the 'one- 
sided' spectral density. A more systematic approach, which allows for complex as 
well as real data, is to equate the total variance to the area beneath the spectral 
density curve within the frequency range -fc <-f<fc .  The periodogram estimate for 
the 'two-sided' spectral density function becomes (NAt[4)R 2. 

The significance and interpretation of negative frequencies is discussed in Sec- 
tion 1.5. 

The periodogram method initially fell out of favour due to (i) problems in inter- 
preting the periodogram which can behave erratically and look remarkably dif- 
ferent for time series with similar characteristics (Jenkins and Watts, 1968, Chapter 
6, Bloomfield, 1976), and (ii) the large number of computations involved in calculat- 
ing the Fourier transform of long time series. The advent of the fast Fourier 
transform routine (Cooley and Tukey, 1975) which reduces the number of multi- 
plications and additions from - N  2 to - N  In N, combined with the knowledge that 
smoothing of the periodogram, using suitably weighted averages of adjacent ordi- 
nates, leads to a stable spectral estimate, have combined to re-establish the pop- 
ularity of the method (Jones, 1965). 

The spectrum obtained is actually that of the infinite time series composed of 
periodic repetitions of the observed data, i.e. a periodic extension of the data is 
assumed. Poor resolution at the low frequency end of the spectrum is unavoidable 
since the periodogram is only computed for periods equal to ~ times the record 
length. Repeated analysis of different sections of the full record provides a means of 
identifying those features of the periodogram which are statistically invariant with 
time and therefore represent the 'spectrum' of the stochastic process. By extending 
the length of the record with zeros the frequency spacing can be artificially reduced. 
The usefulness of both these approaches is limited by the underlying periodic 
assumption which means that periodograms based on altered versions of the 
observed record apply to different infinite time series. The object of smoothing 
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periodograms in the frequency domain is to obtain a stable spectral estimate 
without resorting to the above techniques. Kane (1977) has compared unsmoothed 
periodograms for real and synthetic harmonic data with composites derived from 
analyses of a range of truncations of the original series. His results demonstrate that 
this superposition method can give improved resolution and better frequency 
fidelity in the high frequency region of the spectrum (j I> 6), where the results are 
'comparable to, and in some respects superior to, Burg's method of maximum 
entropy'.  Smoothing of the periodogram does not change this conclusion substant- 
ially. Recent experiments with truncated real sinusoids (Swingler, 1980) have 
shown that even for short record lengths the discrete Fourier transform may be 
superior to the maximum entropy method as a frequency estimator, depending on 
the initial phase and the number of cycles within the record length at a given 
frequency. This is discussed further in Section 1.4. 

1.3. THE AUTOCOVARIANCE METHOD 

This method (Blackman and Tukey, 1959) was the most widely used spectral 
estimation scheme until the revival of the periodogram approach after 1965. The 
latter is now generally preferred for finite length records (Jones, 1965, Jenkins and 
Watts, 1968, p. 7), though recently evidence has been accumulating which favours 
the use of weighted covariance estimates (Koopmans, 1974, p. 325+). 

The autocovariance of an N point series x(t) at lag r is defined as 

1 T-r 
C r = ~  ~ x(t+r) x(t), 

t=0  

where T (=NAt) is the length of the series. Cr can be thought of as the mean of the 
product of adjacent terms when the series is compared with itself displaced in time 
by lag, r. Provided certain basic conditions are met, the autocovariance function at 
lag r of the stationary stochastic process Y(t) is given by 

C ~ =  l im  1 T 
~r__,~ T+I ~ y(t+r)y(t)* 

t=0 

and the spectral density function can be shown to be the Fourier transform of the 
autovariance: 

1 
S(w) - 2 ~t ~ Cr exp(-irwt). (5) 

In the above, y(t) is an infinite set representing one realisation of the process Y(t). If 
y(t) is equated to the observed time series over the length of the record, and made 
zero elsewhere, then an estimate of the autocovariance function is 

1 :r-r 

C'r= T+I ~ y(t+r) y(t)*, 
t=0 
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where t=0, T is the range of the finite data. This is used to compute the spectrum 
from Equation (5). The null extension of the data is a strong assumption and can 
lead to large errors unless the length of the series is many times the longest period of 
interest. The method is computationally economical. 

In practice, a stable estimate of S(w) is obtained by truncating the summation, at 
lag r = M say, and by weighting the autocovariances: 

1 M 
S(w) = "~ ~ hrC r exp(-iwr). 

r = l  

The set of coefficients, h r (the lag window), is chosen to reduce the effect of 
autocovariances at large lags. There is an extensive literature covering the merits of 
various lag windows and truncation points. Two of the most commonly used are the 
Tukey (or Blackman-Tukey) window: 

i ( 1  arr) hr=-  } +COS~ r = 0 , 1 ,  . . . , M  

and the Parzen window: 

1 - 6  + 6  O<-r<-MI2 

hr= 91 
2 0 -]1~/) 3 --~<~r<~M. 

An efficient procedure for computing the Tukey window, named after Julius Von 
Hann, is called 'Hanning'. 'Hamming' is a minor variant of this using slightly 
different weights, named after R. W. Hamming. 

In fact, the periodogram and autocovariance approaches are essentially equiva- 
lent, apart from differences in windowing and smoothing, since it follows that: 

1 [  C N-1 r) 1 I(Wj) = ~ 0 "[- 2 ~ C r exp(-iN. . 

r = 1 

The factor liar is replaced by 112~ in the equivalent expression for the two-sided 
estimate. 

1.4. T H E  M A X I U M  E N T R O P Y  M E T H O D  

The above two methods see the data through a pre-selected, fixed window and 
require the unrealistic assumption of a periodic or a null extension outside the 
observed record. Hence the possibility of poor resolution and shifts in the spectral 
peaks when the methods are applied to 'short' data sequences (Toman, 1965). It is 
intrinsic in some of the newer parametric modelling approached that the data 
window is generated from the data itself, hence Lacoss's (1971) term 'data adaptive 
methods'.  A fundamental parametric model is the discrete autoregressive (AR) 
process, proposed by Yule (1927). The value of the variable at time t, X(t), is 
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derived linearly from a purely random Gaussian process according to the previous 
m values of the variable: 

X(t) = alX(t-1) + a2X(t-2) + . . . +  AmX(t-m) + B(t), (6) 

where m is known as the order of the autoregressive process, al, a2 . . . . .  am are 
constants, B(t) is called the innovation of the process, and the mean of both the AR 
process and B(t) are zero. The AR process may be viewed as a prediction of X(t) 
from the previous m values of X, and B(t) as the prediction error. It has been shown 
by many authors (e.g. Ulrych and Bishop, 1975) that the spectrum of the m th order 
autoregressive process is 

m 

S(f)  = 2fl 2 l -  ~ ajexp(-i27rfj) -2, (7) 
j = l  

where tim is the variance ofB(t). S(f) can be evaluated at all frequencies between 
+L. 

The maximum entropy method of spectral analysis has become increasingly 
popular since its introduction by Burg (1967, 1968) and has been applied success- 
fully to a variety of geomagnetic and geophysical problems. Of the many discus- 
sions of the method which have published, McGee (1969), Smylie et al. (1973, 
Andersen (1974), Ulrych and Bishop (1975) and Kanasewich (1975) are particularly 
useful as an introduction. Andersen gives a logic flow diagram for the Burg algo- 
rithm and Ulrych and Bishop give Fortran subroutines for computing the filter 
coefficients, estimates of the autocovariances and Akaike's final prediction error 
criterion (below). Essentially the method involves fitting an autoregressive model 
to the data based on the principle that the resultant spectral estimate should be 
based on all the information in the actual record and assume the least possible 
amount of information (hence the name maximum entropy) about the series outside 
the observed record. The condition for this happens to be satisfied by the m th order 
autoregressive process (6). The set of coefficients (1, --al, -a  2 . . . . .  --am) , or more 

commonly (1, Yl, Y2, --. ~'m)where ~'1 = --al etc., is called the prediction error filter 
since the prediction error, B(t), is the convolution of this filter with the vector X(t). 
The spectrum of the process is thus estimated by Equation (7) which in frequency 
terms is 

Pm+l j~=O yj exp(-iZztfjAt) -2, s(f)= 

where y0 = l, and Pm+l is a constant representing the power (variance) of the (m + 1) 
term prediction error series B(t), i.e. the prediction error power. The evaluation of 
Pm+l and then S (f) requires estimation of the (m + 1) prediction error coefficients. 

Ulrych and Bishop (1975) give a description of the commonly used Yule-Walker 
estimates of these coefficients, together with a recursive equation and a Fortran 
subroutine for performing the computations. The estimates are based in turn on 
estimates of the autocovariances: 
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1 N-It1 
Cr - N ~ [x(t + r ) -  ~] [x(t)- ~], 

t = l  

where s is the mean of x(t). The use of these estimates in place of the true 
autocovariances of the process implies that x(t) = 0 for It] > tN, which is inconsist- 
ent with the maximum entropy concept. 

Burg's estimates of the coefficients are based on the additional condition that the 
mean of the prediction error powers, obtained by running the filter in the forward 
and reverse direction over (but not off) the data, should be a minimum. The 
estimates are thus based on the observed data and make no rigid a priori assump- 
tions about values outside this range. Prior estimation of the autocovariances of the 
process is not required, although they can easily be obtained from the prediction 
error coefficients both within the range of lags covered by the data and by extra- 
polation outside that range based on the maximum entropy principle (Ulrych and 
Bishop, 1975). 

The remaining problem is the optimum selection of the order of the process. Ifm 
is chosen too low the spectrum is over-smoothed and the high resolution potential is 
lost. If m is chosen too high, frequency shifting and spontaneous splitting of the 
spectral peaks occurs (Fougere et al., 1976), giving a false, peaky appearance to the 
spectrum. Objective methods for selecting m have been suggested by Akaike 
(1969a, b, 1970), Akaike (1974, 1976), Ulrych and Bishop (1975), Ulrych and 
Clayton (1976), Treitel et al. (1977), Berkhout and Zaanen (1976), and Berryman 
(1978) -a l so  see Haykin (1979). 

Since each is justified empirically, the current lack of a consensus is evidence that 
the best choice of criterion depends on the characteristics and length (N) of the data 
set in question. Furthermore, it appears that the value of m which leads to the most 
accurate frequency determination is itself a function of frequency (see for example 
Kane, 1977). A useful approach is that adopted by Jin and Thomas (1977) who plot 
the periods of the main spectral peaks as a function of m. Such diagrams clearly 
delineate the zones of instability, stability and line splitting, ~and also demonstrate 
how the region of stability varies with both m and frequency. 

The most commonly used criteria are (i) Akaike's final prediction error, FPE 
(Akaike, 1969, 1970), (ii) Ulrych and Clayton's (1976) criterion: muc = N[3 to N[2, 
which the authors claim gives consistent results for short realisations of harmonic 
processes, and (iii) Berryman's criterion: m R = 2N (ln 2N) -1, which he tests on 
decaying seismic signals. Akaike's final prediction error is estimated by 

[ ' N + m + l ' ]  2 
F ~ E =  ~ N _ m _ l J f l m ,  

where f12 is the sum of the squares of the prediction errors after removing the mean 
from the data. The optimum value ofm is that which minimises the above estimate. 
Ulrych and Bishop (1975) drew the following conclusions from their tests on short 
synthetic AR, autoregressive moving average (ARMA) and harmonic data sets 
(YW-FPE and BG-FPE denote FPE's based on the Yule-Walker and Burg auto- 
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covariance estimates respectively): (i) the variance of the YW-FPE is always less 
than the BG-FPE for any order, hence is generally preferred for applying the 
Akaike criterion, though far higher resolution spectrum is obtained by the Burg 
estimates, (ii) a cut off at approximately m = NI2 must be imposed when locating 
the minimum FPE based on the Burg scheme, (iii) the YW-FPE criterion under- 
estimates the order of high order AR processes and harmonic processes, particular- 
ly the latter, (iv) the BG-FPE criterion gives generally correct results for AR series 
but tends to overestimate the order of ARMA processes, (v) in such cases, the first 
minimum of the BG-FPE gives more consistent results, but will severely under- 
estimate the order of more nearly periodic data. Other authors who have tested the 
method are listed by Ulrych and Clayton (1976). For many data sets the criterion 
has been found inconclusive as the FPE fails to show a clearly defined minimum. 

The problem of frequency shifts in the spectral peaks for short data sets is not 
eliminated by use of the MEM as shown by Chen and Stegen (1974) for sinusoidal 
data. They show that, depending on its initial phase, a sinusoid sampled at 1/20 
cycle intervals can have its spectral peak shifted by up to about 100% for record 
length L ___ ) cycle, 30% forL _~ 3 cycle, 12% forL --- 1~ cycles, 9% forL = 13 cycles, 
and 5% for L _~ 23 cycle. Frequency shifting does not occur for L = k/2 cycles for 
integer values of k for all initial phases. They conclude that provided the record 
spans more than a full cycle, a substantial range in length of the filter will yield a 
reeasonably good spectrum. Particularly for noisy data it is better to over-estimate 
rather than underestimate the order, and by increasing the density of data points a 
higher noise level can be tolerated before the spectrum becomes implausible. In his 
comparison of errors in estimating frequencies by the MEM and DFT method, 
Swingler (1980) points out that the latter exhibits zero error irrespective of initial 
phase ffL = (2k+ 1)/4 cycles, and also that the DFT error drops offas N -2, whereas 
the MEM error drops off more slowly, as (N-I) -1. He concludes that 'even for 
modest data lengths (which depend on the frequency of interest but are typically 
perhaps 20 or so) the DFT may be regarded as superior as a frequency estimator for 
a truncated real sinusoid'. 

It has been pointed out by Lacoss (1971) and others that the function S(f)  in 
Equation (7) corresponds to a power spectral density estimate. The integrated 
spectrum (area beneath the curve S(f)  vs fwi l l  be somewhat smoother and is the 
MEM analog of the power spectrum of the periodogram method. Only a few authors 
(e.g. Radoski et al., 1975) actually perform the integration. The resulting power 
estimates will depend on the selected order of the AR model, which affects the 
width and amplitude of spectral peaks. 

In view of the lack of objectivity in choosing m, the problem of frequency 
shifting, and the difficulty of obtaining quantitative power estimates it is obviously 
unwise to employ Burg's MEM without first performing a DFT analysis. 

More sophisticated parametric models of particular relevance to the analysis of 
short harmonic series are Pizarenko's (1972) covariance matrix method, Ulrych 
and Clayton's (1976) least squares estimator, and Swingler's (1979) bi-directional 
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non-recursive method. The authors show that for truncated harmonic processes 
these methods give more accurate frequency determination than Burg's MEM (see 
also Swingler, 1980). The attraction ofBurg's MEM is its computational simplicity 
and the large variety of data sets on which it has been tested. 

A concise statement of Burg's algorithm for applying the MEM to complex data is 
given by Denham (1975) and a derivation of the equations used is in Smylie et al. 
(1973). A Fortran subroutine SMYLIE which implements Smylie's scheme is given 
in the Appendix. Subroutine SPECT computes the spectral density estimate, S(f),  
from the filter coefficients for real data computed from, say, the subroutines YWPR 
or MEMPR (for the Yule-Walker or Burg estimates respectively) listed by Ulrych 
and Bishop (1975). Subroutine ANDS, based on Anderson's (1974) flow diagram, 
generates the PEF coefficients. 

1.5. FREQUENCY SPECTRUM OF COMPLEX DATA AND VECTOR TIME SERIES 

The DFT Equations (2) encompass negative as well as positive frequencies provid- 
ed the _jth Fourier frequency is interpreted as 

2u (-j) 
W_j =- N A t  - - w j  

and we define J_j = J~. 
Equations (4) still apply except that the range o f j  becomes - N / 2  < j < N]2, and 

the mean square signal (average power) is 
1 <NI2 

Y lJJl 2 =  11012 + Y IJjt 2 + IJJl 2 
j > -NI2 j=  1 

i.e. the sum of the contributions from the positive and negative frequency sides of 
the spectrum (J0 = 0 since the series has zero mean). From Equations (1) and (3) it 
follows that for a real valued time series, Aj and Bj are real, so IJ_il 2 -- IJJl 2 and the 
spectrum has positive symmetry about zero frequency. 

For  a complex valued series, z(t) = x(t)  + iy(t), the power density, S(f),  in the 
positive and negative halves of the spectrum at frequency f will generally be 
unequal. It can easily be shown that the vector z(t) describes a clockwise circle in 
the complex plane at a given frequency if S(f)  = 0 and S(-f) > 0, an anticlockwise 
circle for the converse situation, and no rotation if S (f) = S (-f). The general case, 
S(f )  r S(-f)  :/: 0, corresponds to elliptical motion in the sense determined by the 
power bias. 

Two-dimensional vector time series can thus be analysed as a single complex 
number series with real and imaginary parts equal to the Cartesian co-ordinates of 
the vector. This approach has been elaborated by Gonella (1972) in his analysis of 
wind and ocean current data and has been used by Brillinger (1973) to analyse the 
Chandler wobble. Gonella defines a rotary coefficient at frequency + wj: 
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[J_:l 2 - I J . I  2 

c,r ij_:lz + ij+jl = 

which varies between + 1 for pure clockwise rotation and-  1 for pure anticlockwise 
rotation, and is zero for unidirectional motion. It is invariant under co-ordinate 
transformation or scaling of the spectrum, and provides an objective means of 
quantifying the rotation associated with the asymmetry of the spectrum. 

Denham (1975) demonstrated how the method can be applied to palaeomagnetic 
data: directions are centred about a suitable norm (e.g. axial dipole field direction or 
the vector mean of the data) and projected on to a plane surface using some 
spherical projection to generate Cartesian coordinates, which are treated as the real 
and imaginary parts of the complex number series. For widely dispersed directions, 
projection on to a plane introduces considerable distortion which will be manifested 
at the high frequency end of the spectrum. Denham gives mapping functions for the 
common projections normalized to give equal projected radii at angle 45 ~ from the 
pole. A better compromise for producing less average distortion for directions with 
low scatter, e.g. most smoothed secular variation records, is to equalize radii at 
angle = 20 ~ (Table I). 

TABLE I 

Mapping functions of the common spherical projections 
for equal projected radius at polar angle 0 = 20 ~ 

Projection Projected radius 

Equidistant 2.865 0 ( in radians) 
Gnomonic 2.747 tan 0 
Orthographic 2.924 sin 0 
Stereographic 5.671 tan (0/2) 
Lambert  equal area 5.749 sin O/2) 

Little has been done to test the maximum entropy method on complex numbei~ 
series. Barton and McElhinny (1982) examined a data set synthesized from a 
Gaussian random noise component added to a signal generated at 40~ by a virtual 
geomagnetic pole precessing at 70~ They concluded: (i) for a given order of the 
AR model, m, the spectra of vector equivalent complex series are much smoother 
than their counterparts for independent declination or inclination series, (ii) power 
is confined to the appropriate side of the spectrum for a suitable range of m, (iii) if 
the order is underestimated peaks are shifted to lower frequency, and (iv) if the 
order is over estimated, a power bias on the wrong side of the spectrum may occur 
and the spectrum becomes unstable with respect to change of order. Tests on a 
similar series with zero rotational component indicated that the MEM spectrum is 
even smoother for a given order, and (for short noise-free realisations) the spectrum 
is sensitive to the choice of m. These observations demonstrate that care must be 
taken in the choice of m, and that the objective criteria for real data underestimate m 
for complex data. 
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An alternative to the complex number approach to analysing vector time series 
for rotary components is provided by cross-spectrum analysis. Two series are 
compared in the frequency domain to determine the level of coherence (for 0 to 1) 
and the phase difference between harmonics of each series at a given frequency (see 
for example Bloomfield, 1976, Chapter 9). If this is done for declination and 
inclination series, it follows that a high level of coherence coinciding with a phase 
difference of - _+ M2 at a particular frequency implies clockwise or anticlockwise 
precession of the magnetic vector, depending on the sign of the phase difference. 
Phase differences of 0 or :~ correspond to the case of non-rotation. However, the 
method has a poor resolution compared with the complex number approach and is 
less easy to interpret. 

1.6. PRACTICAL CONSIDERATIONS 

Analytical methods discussed above assume equal time intervals (t) between data 
points. There are methods which do not require this constraint (e.g. Deeming, 
1975), but these are seldom warranted for palaeomagnetic time series. Variance 
associated with frequencies higher than the Nyquist is not lost, but appears added 
to (aliased with) powers in the range -fc to +f~, thus distorting the estimated 
spectrum. Lacustrine sedimentation rates are typically - 5 0 c m  Kyr -l, hence for 
cores subsampled at 2.5 cm intervals, the Nyquist period is - 100 yr. This figure is 
also representative of most of our best archaeomagnetic records. Since physical 
and chemical constraints intrinsically cause averaging which generally limits the 
resolution of palaeomagnetic records and radiocarbon chronologies to below this 
level, aliasing problems are seldom important in practice. For scattered data, such 
as palaeomagnetic time series, equi-spacing is generally achieved by some form of 
smoothing and interpolation. One of the simplest forms of smoothing is to take 
moving averages, and then do a linear interpolation to obtain a series ofequi-spaced 
points. A variant of this is to shift the averaging window at equal time intervals 
(hence the number of points averaged varies between steps). 

Various 'robust' methods of smoothing exist which offer great stability even 
when applied to erratic data (e.g. Claerbout and Muir, 1973; Claerbout, 1976; 
Tukey, 1977; McNeil, 1977). Such methods are designed to overcome the problem 
ofoutliers, which bias moving averages, for example by using the median instead of 
the mean. Again, one of the simplest robust smoothing/interpolating methods is to 
take the median for consecutive equal intervals of time. A useful compromise is to 
use inter-quartile means (i.e. the mean after discarding upper and lower quartiles) 
instead of medians. 

A different approach is to fit a smooth curve through the data prior to interpola- 
tion. This is particularly useful for small sets of data. Cubic spline methods (e.g. 
DeBoor, 1978) are one of the most successful. A set of points (knots) is chosen at 
intervals throughout the record length, then a cubic curve is fitted by the method of 
least squares to the data between each knot, using the additional constraints that 
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there should be no change in slope across knots. A degree of robustness can be built 
into the technique by weighting outliers. The interval between knots (which need 
not be constant) determines the level of smoothing. Clark (1975) and Clark and 
Thompson (1978) describe a data-adaptive (cross-validation) method of choosing 
the appropriate spacing and generating confidence intervals. 

To comply with the stationarity assumption, it is common practice to subtract the 
mean value from the data prior to analysis. An alternative, and equally simple, 
method of detrending is to transform the series by taking first order differences 
(Box and Jenkins, 1970). e.g. X(t) = X1, X2, X3, X4 . . .  XN becomes Y(t) = (Xz-X0, 
(X3-X2), (X4-X3) . . . . .  (XN-XN-I). Second order differencing of X(t) is the same as 
first order differencing of Y(t), and so on. Other commonly used forms of detrend 
involve fitting linear, polynomial or exponential curves to the data and then comput- 
ing residuals. Detrending is a powerful technique which supresses the zero and very 
low frequency power in the spectrum and can have a profound effect on the shape 
and scaling of spectral estimates. The effect of detrending on MEM spectra has 
received only scant attention in the literature (e.g. Jin and Thomas, 1977; Courtillot 
et al., 1977). 

The phenomenon of one frequency in the data causing the Fourier transform to be 
non-zero at other frequencies is known as side-lobe leakage (e.g. Jenkins and 
Watts, 1968, p. 282). As series are only analysed in terms of the Fourier frequencies 
(i.e. harmonics of the record length), which will not generally correspond to 
periodicities in the data, leakage is very common. Abrupt truncations of the data, 
such as occur at the start and end of the record, are the most serious sources of 
leakage. The most common method of reducing leakage is to smooth these dis- 
continuities by applying a split cosine bell window to the whole record. A preselect- 
ed fraction of the data at the beginning and end of the series is amplitude modulated 
by one quarter of a cosine wave. Resulting spectrum estimates must then be scaled 
to compensate (e.g. multiply by a factor of 1.143 for a 10% taper applied to each end, 
Bendat and Piersol, 1971, p. 323). 

The simplest and most economical fast Fourier transform algorithms require that 
the number of data points be an integer power of 2 (e.g: Sande-Tukey algorithm, 
listed in Bloomfield, 1976, p. 75). In practice records are either truncated to satisfy 
this requirement, or extended (padded) with zeros to the next higher radix-2 
number of points. IfN~ points are extended to N2, estimates of the power spectrum 
should be corrected by multiplying by (NzlNO 2. The best known algorithm for the 
case of general N is due to Singleton (1968). DeBoor (1980) gives a much more 
compact, though less efficient algorithm which is particularly useful for very small 
computers. 

Smoothing of the periodogram to get an estimate of the spectrum was first 
suggested by Daniell (1946) and has since been developed by many authors. 
Bloomfield (1976) describes a modified discrete Daniell smoothing procedure, 
together with Fortran subroutines. The filter of half width k is a simple moving 
average applied to the periodogram with weights: 
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1 
2-~(0 . . . . .  0,~, 1, 1 , . . . ,  1, -~, 0 . . . . .  0), 

where the number of non-zero weights is (2k + 1). More complex filters are built up 
by repeated applications of simple filters. Figure 3 shows the result of smoothing a 
unit impulse by various combinations of Daniell filters. The choice of spectral 
window depends on the conflicting requirements of resolution, stability, leakage 
and smoothness of the resultant spectrum. In these respects the modified Daniell 
procedure has certain optimum properties (Bloomfield, 1976, p. 172). 

flRRHONIC 

Fig. 3. Effects of  smoothing a single line spectrum of unit height by various combinations of modified 
discrete  Dan|el l  filters. Numbers  in brackets are half-widths of each successive application of the simple 
filter. All combinat ions  have an equivalent single filter, e.g. the two passes (1, l) are equivalent to a 

single pass of  a filter with weights �88 (0 . . . . .  0, ~, 1, 1~, 1, �88 0 . . . . .  0). 
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1.7. R E V E R S A L  S E Q U E N C E S  

Techniques for analysing 'analog' signals discussed so far are often inappropriate 
for binary signals such as the geomagnetic polarity sequence. Binary signals, or 
telegraphic waves, have a time dependent variable which can have one of only two 
values: normal (N or + 1) and reversed (R or-1). Such sequences may be treated 
either as a set of alternating intervals (polarity states), or as a series of single point 
events (polarity transitions). In the latter case no distinction is made between N to R 
and R to N transitions. This can be overcome by treating the set of normal polarity 
intervals and the set of reversed polarity intervals as separate point processes 
(Phillips, 1977). Three possible ways of combining aperiodic reversal signal with a 
noise component are listed by Phillips and Cox (1976). (Simple superposition of 
periodic and random binary waves, Figure 4a, results in a 3-state outpunt which is 
unacceptable): (i) Point processes can be superposed (Figure 4b) provided co- 
incident transitions are not allowed, (ii) the noise component may perturb the 
position of transitions in the periodic wave, and (iii) there could be a periodic 
modulation of interval lengths (i.e. the reversal frequency). 

(a) Binary waves (b) Point processes 

Periodic 

+ 

Random 

Resutfanf 

I I  
J-U 

A A 

UIl - -  

F i g .  4. (a) Superposi t ion o f  a random binary wave on a periodic binary wave results in a 3-state wave. 
(b) Superpos i t ion  of  two point  processes  results in another  point process which can be treated as a 

binary wave.  Redrawn after Phillips and Cox (1976). 

The most commonly used models are based on the general renewal process for 
which the probability of a transition occurring after elapsed time, t, since the 
previous transition is a function of t only. This means the process has no memory 
beyond the end of the previous transition. A useful extension of this model is the 
alternating reversal process in which probability distributions for N to R and R to N 
transitions are not the same (Phillips et al., 1975). Particular classes of renewal 
process are characterized by the form of the distribution of intervals (T) between 
transitions. For example, for a gamma renewal process, Tis a random variable from 
a gamma distribution with probability density function: 
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1 Tk_l p df(r)  = F ~  exp 

(i.e. the probability of an interval of length between T and T+dT is p df(T) dT, the 
area beneath the curvep df(T) vs T). The gamma function is defined 

/ .  

F(k) = J x k-1 e -x dx 
x = 0  

and may be evaluated from statistical tables. It follows that 

F(k) = (k-l)  r(k)--1) 

and for positive integer values of k, F(k) = (k-l)!, and F(1) = 1. The average interval 
length and the variance of T are both equal to kt, and k is called the index of the 
distribution. 
As k ~ ~,  all interval lengths tend to a constant value,/x. 
For k > >  1, the distribution is approximately Gaussain, i.e. 

1 F-(T-kt)2- 
p d f ( T ) -  a ~ e x p  k ~ 

with mean/z, and standard deviation a. 
For k > 1, the distribution peaks away from the origin. 
For k = 1 we have the special case ofa  Poisson process, 

p df(T) = ~ exp 

i.e. intervals are exponentially distributed with mean and variance,/~, The average 
number of transitions per unit time is therefore lip, and the probability of a 
transition after elapsed time, t, since the last transition is constant. Poisson distribu- 
tions arise naturally in situations involving the overall success of a large number of 
trials, each with a small probability of success. 

The justification for assuming that core processes have no memory beyond the 
previous transition comes from the contrast between typical polarity intervals (0.33 
My) and the inferred characteristic times of fluctuations in the non-dipole and 
dipole fields (< 104 yr). If, in fact, the probability of a transition p (t) depends on the 
history of the process prior to the previous transition, then a 2-state Markov 
process model is appropriate (e.g. Cox and Miller, 1975). The Poisson process may 
be thought of as a special case ofa  Markov process. 

To investigate periodic characteristics of polarity reversals it is convenient to 
turn to the frequency domain. For a random square wave from a Poisson process 
with amplitude A and average transition frequency f0, the spectral density function 
is (Lowes, personal communication): 

= + f 0 l J  
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If, say A = 45000 nT and f0 = 3 reversals per 10 6 yr, 

4A 2 
f o r f < < f  0, S(f)~_ ~ -0  = 2.7 x 1015 nT2yr. 

1 1 
forT>f0,  S(f) _~ ~2A2f 0 j~  = 6 • 10 4 j~  nT 2 yr. 

Thus as frequency increases there is an inverse square law decay in power density 
from a peak value of about 3 x 10 ~5 nT 2 yr. 

Spectral analysis techniques for binary time series are described by Lee (1960). 
Phillips and Cox (1976) applied both Fourier analysis and maximum entropy 
techniques to the reversal time scale, and derived expressions for the theoretical 
spectrum for both semi-periodic and gamma renewal processes. Laj et al. (1979) 
discuss the properties of the autocorrelation function in the context of polarity time 
sequences. 

2. Applications 

2.1. INTRODUCTION 

Palaeomagnetic time series arise from: (i) direct observation of the field elements, 
(ii) records of the geomagnetic secular variation obtained from archaeomagnetic 
measurements on baked clays, lacustrine and rapidly deposited marine sediments, 
(iii) the magnetic polarity time scale, and (iv) fluctuations in polarity bias and in the 
frequency of magnetic reversals. These classes are distinguished by very different 
time scales and recording processes (Figure 5). 

Spectral analysis of palaeomagnetic time series has been largely restricted to the 
search for periodicities in the secular variation (Yukutake, 1962). The expectation 
of such studies is that characteristic periodicities in the nondipole and dipole fields 
exist, either because of intrinsic periodicities in source mechanisms, or because of 
uniform drift of sources relative to the Earth's crust. Other applications of time 
series analysis which have received less attention are (i) delineation of the con- 
tinuous geomagnetic power spectrum, (ii) analysis of Bauer plots using complex 
number series, (iii) modelling source mechanisms by comparing declination, in- 
clination and complex equivalent vector time series, and (iv) analysis of the reversal 
polarity time scale and variations in the polarity bias and frequency of reversals 
over geologic time. Comparisons of the power spectra of different phenomena can 
be used to infer common causal relationships. 

Unfortunately, most of our information about the geomagnetic field in the past is 
directional only. There are few archaeointensity data prior to 10000 yr B.P., and 
only for the last few thousand years is there even an approximately global distribu- 
tion of data (Barton, Merrill and Barbetti 1979). Fifteen years ago, a well defined 
sinusoidal variation in dipole moment during the last 10000 years with a period of 
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about 8000 yr was reported (Bucha 1967, 1969; Cox 1968). A more complete data set 
demonstrates that this is largely a result of the dominance of European data 
(Barton, Merrill and Barbetti, 1979). 

Analytical techniques and their limitations are discussed in Section 1. The 
dangers of misusing spectrum analysis are legion (Figure 6), particularly for para- 
metric modelling methods (such as maximum entropy, MEM) for which the result- 
ing spectrum is often sensitive to the largely subjective choice of model parameters. 
In the frequency domain we are estimating the t ime-  invariant statistical properties 
of  an infinite series of which the observed record forms a part. If the properties of 
geomagnetic signals vary with time (e.g. discontinuous phase shifts, or variations in 
frequency content occur), inferences drawn from the spectrum of the signal will be 
misleading. 

~:, aP 

SPECTRUM 
A~VAL'yS t S 
"PACKA6E" 

Fig. 6. A fail-safe analytical technique. 
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2.2. THE SEARCH FOR PERIODICITIES 

Much effort has gone into trying to identify periodic components in the secular 
variation, both for describing dynamic processes in the core as well as for creating a 
basis for magnetic dating (Mackereth, 1971; Creer et al. 1972; Thompson and 
Turner, 1979; Stuiver, 1978). Records obtained from sediments particularly lake 
deposits, generally yield a continuous time sequence and are thus well suited for 
spectrum analysis. 

The discovery of westward drift of the nondipole field with a period of about 2000 
years (Bullard et al., 1950), a sinusoidal variation in virtual dipole moments (Bucha, 
1967, 1969; Cox, 1968), and regular swings in declination in lacustrine records 
(Mackereth, 197 l) initially provided strong evidence for discrete periodicities in the 
geomagnetic signal. However, the acquisition of far more data during the last 
decade has failed to lead to a clear picture of what particular periods are character- 
istic of geomagnetic sources. The quality of most time scales are deplorable, and 
few authors have taken adequate steps to place uncertainty bounds on their spectral 
estimates. Nevertheless, we must conclude that discrete periodicities are not a 
world-wide feature of the secular variation. However, analyses of results from 
around the globe show a tendency for periodicities to fall into the following bands: 
60-70, 400-600, 1000-3000, and 5000-8000 yr. The latter two bands are often, 
though not always, associated with clockwise and anticlockwise precession of the 
magnetic vector respectively, when viewed from tail to tip (see Section 2.4). The 
first three bands are generally attributed to nondipole field effects, and the last to 
the dipole field. Since many of the records are not much longer than 10000-15000 
yr, periods in the range of 5000-8000 yr are poorly defined and are strongly 
dependent on the type of detrend applied (Courtillot et al. 1977). 

We have little information about periods greater than 10 4 yr. Kent and Opdyke 
(1977) noted a 43 000 yr period in normalized intensity (NRM/ARM) in core RC 10- 
167 from the NE Pacific, and in cores from the central Pacific, KH73-4-7, and SW 
Indian Ocean, RC 14-14, Okubo and Takeuchi (1979) detected periods of 25 000 and 
18000 yr in normalized intensity (NRM/saturation IRM), but no clearly resolved 
periodicities in declination or inclination. The conflict between these two results is 
unresolved, but in neither study are the nominated spectral peaks very strong. An 
interesting feature of Okubo and Takeuchi's study is their modelling of the average 
trend in NRM spectra in terms of the output of the effective low pass filter caused by 
gradual acquisition of remanance within a finite zone of sediment. The required 
depth of partial magnetization came to the plausible figure of 10 cm. 

There is a strong need to improve the quality of chronologies, and to address the 
question of uncertainty limits. Standard confidence limits for Fourier spectra (e.g. 
Bendat and Piersol, 1971) depend only on the instrinsic properties of the time series 
analysed. A detailed study of sets of cores from three lakes in SE Australia, each 
with independent radiocarbon chronologies (Barton and McElhinny, 1982) showed 
that the dominant source of error is inter-site variability between records. Careful 
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attention should be paid to calibration of radiocarbon time scales since this can 
result in shifts in periodicity of up to 25%. 

2.3. INDENTIFICATION OF CAUSAL RELATIONSHIPS 

Common periodicities in the spectra of different phenomena may be used to infer 
some direct or indirect causal relationship between them. In the field of geo- 
magnetism the concept has been used to demonstrate a relationship between field 
fluctuations and the solar cycle (Currie, 1973; Courtillot and Le Mouel, 1976; 
Alldredge, 1976, !977), the length of day (Jin and Thomas, 1977), and variations in 
varve thickness which must be climatically controlled (Ernesto and Pacca, 1981). 
Kent and Opdyke (1977) and Okubo and Takeuchi (1979) relate their 43000 and 
25 000 yr periodicities in normalized intensity to the 41000 yr period in obliquity and 
the 25800 yr period in precession of the Earth respectively. Unfortunately, both 
NRM[ARM and NRM/SIRM ratios may still contain a climatic signal (controlling 
the quantity and character of the magnetic mineral content) as well as a palaeo- 
intensity signal. Thus a simple correspondence of periodicities is not conclusive 
evidence for a link with geomagnetism. 

2.4. ANALYSIS OF BAUER DIAGRAMS 

Bauer (1895) observed that plots of declination vs inclination at different sites 
around the globe generally display clockwise looping. The pattern is particularly 
well developed at London and Paris though there are large regions of the globe 
where clockwise looping is not observed (Thompson, 1982). Runcorn (1959) 
demonstrated that for most plausible ranges of the spherical harmonic coefficients 
of the field, clockwise looping is a natural consequence of westward drift of the 
nondipole field, or westward precession of the main dipole. Skiles (1970) extended 
the argument for westward drifting radial dipoles situated in the outer regions of the 
core. Recently Dodson (1979) has drawn attentionto the non-uniqueness of the 
clockwise looping/westward drift interpretation, but nevertheless 'Runcorn's 
Rule' is still applicable for a wide range of field configurations. 

Bauer diagrams and virtual geomagnetic pole (VGP) paths covering large time 
intervals become complicated and are difficult to interpret. Spectral analysis of the 
vector time series expressed in terms of complex numbers (Denham, 1975), enables 
the sense, amplitude and ellepticity of looping to be determined as a function of 
frequency. Gonella (1972) defines a rotary coefficient, on a scale of-1 to + 1, which 
provides a quantitative measure of the ellepticity and sense of looping (+1 = 
clockwise circular, -1 = anticlockwise circular). For the last 10000 yr or so, for 
which we have the semblance of world-wide coverage of data, no clear pattern of 
looping has yet emerged. There is, however, a noticeable tendency towards anti- 
clockwise looping in the preferred long period band 5000-8000 yr, and clockwise 
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looping in the preferred band at 1000-3 000 yr (see for example Oberg and Evans, 
1977; Barton and McElhinny, 1982). 

Should the underlying pattern of looping vary with time, results of conventional 
analysis in the frequency domain will be invalid, and time domain techniques 
should be used (e.g. Barton and McElhinny, 1981). Even if westward drift of 
nondipole sources continues uninterrupted, latitudinal drift of sources (Dodson, 
1979) or interference patterns set up between oscillating sources (Creer and 
Tucholka, 1982) can result in a change in the sense of looping. 

2.5. MODELLING SOURCE CONFIGURATION 

In geomagnetism the three orthogonal components of the field are commonly 
treated independently, whereas for most palaeomagnetic secular variation work, 
vectors are assigned unit weights and reduced to declination and inclination series 
which again have usually been treated independently (e.g. Yukutake, 1962). This 
can be justified on the grounds that firstly it is possible for vertical and horizontal 
fluctuations of  the field to be dominantly controlled by independent source 
mechanisms, and secondly our means of recovering and detecting vertical and 
horizontal signals are generally subject to different sources of uncertainty. The 
latter is particularly true of palaeomagnetic data obtained from cores of sediment: 
errors due to non-vertical corer penetration, twisting of the core tube during coring, 
inclination errors, current flow and bedding errors, and rotation of blocks of 
sediment within the core during transportation, subsampling and spinner measure- 
ment will not affect declinations and inclinations equally. 

Wobble of a single dipole source will give secular variation records with similar 
declination and inclination spectra, whereas oscillations in moment of the dipole 
will only affect the scaling of the spectra. Although some sedimentary records show 
general agreement between the main periodicities in declination and inclination, for 
example the New England varve sequence (Johnson et al., 1948, analysed by 
Yukutake, 1962), many exhibit a mismatch, e.g. Lake Windermere (Thompson, 
1972) and Bessette Creek, British Columbia (Oberg and Evans, 1977). The effect is 
particularly prominent towards the low frequency ends of spectra where inclination 
peaks are commonly less numerous than declination peaks, and often have periods 
in the ratio of approximately 2: 1 respectively (e.g. Oberg and Evans, 1977; Barton 
and McElhinny, 1982). Dating uncertainties, though affecting the overall form of 
the spectra, cannot account for these mismatches. Denham (1975) suggested that it 
might stem from the poor low frequency resolution of Fourier methods. However, 
the application of higher resolution (MEM) techniques to palaeomagnetic data 
(Oberg and Evans 1977; Turner and Thompson, 1981; Barton and McElhinny, 1982) 
indicates that the mismatch is real. Some insight into the cause for the mismatch is 
gained from the field perturbation at a point on the Earth's surface caused by a 
non-dipole source drifting beneath the site (Figure 7, Creer and Tucholka, 1982). 
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During approximately equal time intervals the magnetic vector suffers a double 
deflection horizontally and a large single deflection vertically. Short record lengths 
containing such events would have spectra with the mismatch properties similar to 
those described in the previous paragraph. In practice the situation will be com- 
plicated by the presence of multiple non-dipole sources which grow and decay as 
well as drift. If the lifetime of some sources is short compared with the drift period, 
it is still feasible to get the above - 1 : 2  relationship between inclination and 
declination peaks for longer record lengths. An advantage of the spectral analysis 
approach to identifying source mechanisms is that even a limited knowledge of the 
relative shapes of the separate declination and inclination spectra is useful, and this 
is not sensitive to defects in time scales. 

There is considerable scope for modelling source configurations (VGP paths) 
using the spectrum of complex equivalent palaeomagnetic directions (Section 4). In 
principle it should be possible to resolve the character of quite complex pole paths 
from the distribution of power in the complex number spectrum. Some examples 
are illustrated in Figure 8. The first corresponds to the quasi-hypotrochoidal dipole 
wobble hypothesized by Kawai and Hirooka (1967) which, if real, should appear as 
a common component in the spectrum of data from any site. 
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Fig. 8. Hypothetical complex number spectra of two vector paths in the complex plane. Each is the 
sum of two vectors of different lengths (R,~, Rb) rotating at different frequencies ffa, fb)" Case (a) is 

analogous to Kawai and Hirooka's (1967) quasi-hypotrochoid. 

The above applications are largely based on speculation. Analysis of synthetic 
secular variation records generated for a variety of physically plausible sources 
(and combinations thereof) is required to evaluate the technique. 

2.6. GEOMAGNETIC POWER SPECTRUM 

A satisfactory theory of the internal origin of the field must correctly predict the 
form of  the continuous geomagnetic power spectrum. Based on observatory 
records, this has been well defined for periods between 1 and 100 yr (Currie, 1968; 
Allredge, 1977), but has been left to the realm of speculation for longer periods. 
Since palaeomagnetic records of the secular variation are generally directional 
only, the choice of time dependent variable is important. 

Barton (1982) has made a preliminary synthesis of spectra for observatory, 
archaeomagnetic,  lake sediment and marine sediment records (Figure 9). The 
spectral ordinate chosen was the sum of the power spectrum estimates for the 
Cartesian components (X, Y, Z) computed from declinations and inclinations 
assuming a total field strength corresponding to an axial geocentric dipole of 
present-day moment ( 8 • 1022 Am2). The sum of spectral powers was smoothed 
and rescaled to get power spectral density estimates. 
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Interpretation of  the results must be made in the light of the following limitations: 
(i) the low frequency ends of  spectra, particularly for observatory records, will be 
strongly dependent on the detrend applied (Courtillot et al. ,  1977), (ii) the high 
frequency ends of spectra will underestimate the true spectrum due to loss of 
coherence of  short period variations over long record lengths, and to attenuation 
(smoothing) of  the geomagnetic signal by palaeomagnetic recording processes, and 
(iii) the deep-sea records are apparently dominated by noise. Bearing these in mind, 
the principle conclusions to be drawn are that no distinct boundary exists between 
the inferred frequency domains of  dipole and nondipole field effects, the spectrum 
has a broad maximum between 10 4 and 105 yr, and there is the possibility of a dip at 
about 100 yr. If the latter is indeed the case, then a peak must occur in the region of 
50 to 60 yr. A concentration of power in the geomagnetic spectrum at about 60 yr 
has been noted by many authors (e.g. Vestine and Kahle, 1968; Yukutake, 1973; 
Currie, 1973; Braginskiy and Fishman, 1977 and is attributed by Braginskiy to 
torsional oscillations in the magnetohydrodynamic dynamo (Braginskiy 1970a, b). 
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2.7. ANALYSIS OF THE MAGNETIC POLARITY TIME SCALE 

Distribution functions which are useful for statistical modelling of the lengths of 
polarity intervals are discussed in Section 1.7 above. In order to reconcile the 
contrasting time scales of reversals ( -  106 yr), dipole fluctuations ( -  104 yr) and 
nondipole fluctuations (101_ 103 yr), Cox (1968) postulated that random fluctuations 
in the nondipole field combine with oscillations in the dipole field to trigger 
reversals. The probability of a reversal occuring during one cycle of dipole oscilla- 
tion would have to be small and would be the same for all cycles. The problem 
amounts to assessing the probability of 'success' of a large number of trials, each 
with a low probability of success. A natural model to choose is therefore a Poisson 
process, which implies an exponential distribution of polarity intervals. Cox 
demonstrated that the lengths of polarity intervals are indeed plausible fits to 
exponential distributions with mean interval lengths of 0.18 My over 0-4.5 My, 0.23 
My over 0-10.6 My, 0.33 My over 19.6-45 My, and 0.96 My over 45-75 My. Prior to 
10.6 My an exponential curve only the data fits if we assume that a substantial 
number of short polarity intervals have not been detected. Nagata (1969) chose to 
interpret the physical model in terms of successive collapses of the geomagnetic 
field caused by the onset of symmetry in fluid motions in the core. The probability 
of regenerating a stable field thereafter would be the same for either polarity. 

Naidu (1971) showed that a gamma process provides a better model than a 
Poisson process for the Hiertzler et al. (1968) polarity time scale from 0-76 My. 
Subsequently he concluded that polarity intervals are governed by a Markov model 
(Naidu, 1974) which implies that the core retains a memory of previous intervals. 
This has been disputed by Phillips, Blakely and Cox (1975) and Laj et al. (1979) who 
demonstrated that successive intervals are statistically independent - i.e. the 
generation process is a renewal process. Phillips (1977) found that both the gamma 
index (k) and the mean interval length (it) for the best fitting gamma distribution 
vary over geological time. Furthermore, there are significant differences between 
gamma indices for normal and reversed intervals. He coined the name alternating 
renewal process to describe this phenomenon. McElhinny (1979) has reviewed the 
work of Phillips and co-workers, and emphasizes that only long-term changes in 
morophology and conditions within the core can account for variations in the 
distributions of polarity intervals. 

One problem with the above distribution analyses is the sensitivity of results to 
undetected short polarity intervals. Laj et  al. (1979) pointed out that an analysis 
using autocorretation functions is less subject to this limitation. They concluded 
that successive polarity intervals are statistically independent, and are distributed 
in time according to a Poisson process. (The Poisson process is the special case of a 
gamma process when k = 1. As k increases the gamma distribution peaks away from 
the origin and tends to a Gaussian distribution. The spread of the distribution 
increases as k increases). 

Spectrum analysis of the polarity time scale was first performed by Naidu (1971) 
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using ensemble averages of Fourier transforms. He reported a periodicity of 1.33 
My in the Hiertzler et  al. (1%8) time scale (0-48 My), but subsequently Phillips and 
Cox (1976) failed to detect any spectral peaks in the same series from 0 to 45 My that 
were significantly different from the theoretical spectrum of a gamma process (k = 
1.55,/~ = 0.33 My) at the 95% confidence level. This is consistent with the argument 
that polarity intervals are independent. 

What emerges clearly from the above studies is that polarity intervals are in- 
dependent and that parameters governing their distribution vary with time. In 
particular there is a sharp change in mean interval length at about 45 My. Prior to the 
Jurassic our knowledge of the polarity time scale is too incomplete to permit 
analyses of the above type. However, it is possible to estimate both the average 
polarity bias (percentage of time in normal or reversed polarity) and the average 
frequency of reversals over the whole of geologic time (Simpson, 1966; McElhinny, 
1971; Creer, 1975; Irving and Pullaiah, 1976; review by McElhinny, 1979). Both 
variables display clearly defined large amplitude, long wavelength oscillations. 

Maximum entropy analysis of polarity bias data for the Phanerozoic (Irving and 
Pullaiah), 1976) indicates periods of 300, 113, and 57 My. Most of the variance is 
accounted for by the former, and all peaks are relatively insensitive to sampling and 
averaging intervals. Earlier analyses of small data sets showed periods of 700 _+ 100 
My and 250 + 50 My (Ulrych, 1972; maximum entropy analysis of McElhinny's, 
1971 data), 350 My (McElhinny, 1971, nonquantitative assessment), and 300 + 40 
My and 80 _+ 10 My (Crain et al., 1%9). The latter suggest possible relations with the 
280 My period of rotation of the Milky Way and the 84 My period of vibration of the 
Sun normal to the galactic plane. The evidence for a period of about 300 My is 
strong. Both Irving and Pullaiah (1976) and McElhinny (1979) point out the correla- 
tion between these slow fluctuations in polarity bias and the long-term geological 
record as demonstrative of coupling between core and upper mantle processes. 

3. Conclusion 

Spectral analysis ofpalaeomagnetic data as independent declination and inclination 
series and as a series of complex equivalent directions (Denham, 1975) is valuable 
not only for detecting periodic characteristics of the geomagnetic secular variation, 
but also for describing and distinguishing between possible dipole and non-dipole 
source mechanisms. In particular, a more complicated declination spectrum with 
peaks at higher frequences than in the inclination spectrum is a consequence of a 
nondipole field caused by drifting radial dipole (or current loop) sources. Useful 
information can be obtained from the general forms of the spectra even ifa precise 
time scale is not available. 

Current evidence suggests that there are no discrete periodicities in the secular 
variation which can be traced world-wide, although there are loosely defined 
'preferred' frequency bands: 60-70, 400-600, 1000--3000 and 5000-8000 yr. Very 
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long periods (43000, 25000, and 18000 yr) have been detected in NRM/ARM and 
NRM/SIRM ratios from deep-sea cores (Kent and Opdyke, 1977; Okubo and 
Takeuchi, 1979). However, it is far from certain that such periods can be attributed 
to variations in field strength. 

There does not appear to be an abrupt change in the geomagnetic spectrum 
between the supposed frequency domains of nondipole and dipole effects. Indeed, 
since the nondipole-dipole division of the geomagnetic field is little more than a 
mathematical convenience, there is no reason why there should be. The often- 
presented argument about the contrast between characteristic times of non-dipole 
and dipole field fluctuation provides inadequate justification: since the dipole field 
is a spatial average, its fluctuations inevitably involve greater time-averaging (i.e. 
smoothing) than those in the non-dipole field. 

The case for the independence of successive polarity intervals is strong. As 
increasing numbers of short polarity intervals are discovered it will be interesting to 
see whether the gamma indices of best fitting distributions approach unity (cor- 
responding to a Poisson process). A more important issue is raised by Phillips' 
(1977) conclusion that the parameters describing the distribution of normal and 
reversed intervals are not the same. The implication that the geodynamo is not 
symmetric with respect to polarity state is profound. 
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Appendix: FORTRAN subroutines for MEM ANALYSIS 

SUBROUTINE SMYLIE (N,Z,LG,NF,FREQ,STEP,S) 

C SUBROUTINE TO COMPUTE THE MAXIMUM ENTROPY 

C SPECTRUM FOR COMPLEX DATA USING THE 

C ALGORITHM IN SMYLIE ET AL. (1973) 
C Z = COMPLEX DATA 

C F = FORWARD FILTER 

C B = BACKWARD FILTER 
C N = LENGTH OF Z 
C G = PREDICTION ERROR FILTER COEFFICIENTS 
C LG = NUMBER OF PREDICTION ERROR COEFICIENTS 

C (HENCE FILTER LENGTH = LG+I) 
C FREQ= FREQUENCY SCALE 

C NF = LENGTH OF FREQ. 

DIMENSION FREQ(NF),S(NF),P(64) 
COMPLEX Z(N),F(800),B(800),FF(8OO),G(64) 

COMPLEX CNOM, ARG,SUM 

DATA PI/3.141593/ 
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C 
C INITIALISE PARAMETERS: 
C 

DO 5 I:I,N 
F(I):Z(1) 

5 B(1):Z(I) 
KK=LG-I 
DO 10 I=I,KK 

10 G(I)=CMPLX(0.0,0.0) 
PO=O.O 
DO 15 I:I,N 

15 P0=P0+CABS(Z(I))**2 
P(1)=PO/FLOAT(N) 

C 
C START THE RECURSION, 
C UPDATE THE FORWARD PREDICTION ERROR: 
C 

DO 50 K:I,KK 
IF (K.EQ.I) GO TO 30 
DO 20 J=K,N 
FF(J)=F(J) 

20 F(J)=F(J)+G(K-I)*B(J-K+I) 
C 
C UPDATE THE BACKWARD PREDICTION ERROR 
C 

JJ=N-K+I 
DO 25 J=1,JJ 

25 B(J):B(J)+CONJG(G{K-I))mFF(J+K-I) 
C 
C UPDATE THE LAST FILTER COEFFICIENT: 
C 
30 CNOM=CMPLX(O.0,O.O) 

DEN=0.O 
JJ=N-K 
DO 35 J=1,JJ 
CNOM=CNOM+F(J+K)*CONJG(B(J)) 

35 DEN=DEN+CABS(F(J+K))H2+CABS(B(J))**2 
G(K)=-2.0/DEN*CNOM 

C 
C FIND THE REMAINING FILTER COEFFICIENTS, 
C AND UPDATE THE ERROR POWER: 
C 

IF(K.EQ.I) GO TO 47 
JJ=K-I 
DO 45 J=1,JJ 

45 G(J)=G(J)+G(K)*CONJG(G(K-J)) 
47 P(K+I):P(K)*(I.0-CABS(G(K))**2) 
50 CONTINUE 
C 
C COMPUTE THE SPECTRUM, S(I) : 
C 

ALPHA:-2.0*PI*STEP 
DO 65 I:I,NF 
SUM=O~PLX(0.0,0.O) 
DO 60 J=I,KK 
ZIM=ALPHA*FREQ(I)*FLOAT(J) 
ARG=CMPLX(0.0,ZIM) 

60 SUM:SUM+G(J)*CEXP(ARG) 
DEN=CABS(I.0+SUM)**2 

65 S(I)=P(LG)*STEP/DEN 
RETURN 
END 

C .......................................... 
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SUBROUTINE ANDS (N,X,LG,G, PMX) 
C~JgJtmlgiiiJ~lJm|lliiNm@Jmm~mmJwJwgmlmli@g@llmlmmmiwi 
C MAXIMUM ENTROPY METHOD OF FOR SPECTRAL ANALYSIS 
C SUC4~ESTED BY BURG (1967). 
C X(N) = THE TIME SERIES OF LENGTH N 
C LG = NUMEER OF PREDICTION ERROR COEFFICIENTS (MX+I) 
C P(MX)= THE UPDATED VARIANCE 
C A(MX) = THE 'ALPHA' PREDICTION ERROR COEFFICIENTS 
C G(LG) = THE 'GAMMA' PREDICTION ERROR COEFFICIENTS 
C MODIFIED ALGORITHM FROM N. ANDERSEN, (1974), 
C GEOPHYSICS, VOL. 39, NO. I,P. 69-72. 
C ORIGINAL FORM OF PROGRAM WRITTEN BY J. R. CLEMENTS 
c l i l l t l l l i l i l i l l l l l l t l i i l l t l l l t t l l l l l l l i l l l l l l i l i l i J l i  

DIMENSION X(N),BI(800),B2(800),A(128),AA(128), 
+P(128),G(LG) 
PP=O.O 
MX=LG-I 

C 
C CO~UTE THE ARRAY OF PREDICTION ERROR COEFFICIENTS 
C AND VARIANCES FOR M=I,MX 
C 

DO 5 I=I,N 
PP=PP+X(I)*X(I) 

I0 

C 
15 

20 

25 
C 
30 

35 
C 

40 
45 

C 

60 

50 

55 

PO:PP/FLOAT(N) 
M:I 
BI(1)=X(1) 
B2(N-I)=X(N) 
L:N-I 
DO 10 I:2,L 
BI(I)=X(I) 
B2(I-I)=X(I) 
IF (M.EQ.I) GO TO 30 

M=M+I 
LL=M-I 
DO 20 I=|,LL 
AA(1)=A(I) 
CONTINUE 
LL=N-M 
DO 25 I=I,LL 
BI(I)=BI(I)-AA(M-I)'B2(I) 
B2(I)=B2(I+I)-~(M-I)mBI(I+I) 

XNOM=O.O 
DEN:O.O 
LL:N-M 
DO 35 I=I,LL 
XNOM=XNOM+BI(I)mB2(I) 
DEN=DEN+BI(I)mBI(I)+B2(I)mB2(I) 

A(M) =2. OtXNOM/DEN 
IF(M. EQ. I ) POM= PO 
IF(M. NE. I ) POM=P(M-I ) 
P(M) =POM*(1.0-A(M)*A(M)) 
IF (MX.EQ.I) GO TO 45 
IF (M. EQ.I) GO TO 15 
LL=M- I 
DO 40 I=I,LL 
A(I ) =AA(I)-A(M)*AA(M-I) 
IF (M.NE.MX) GO TO 15 
IF(MX. EQ. I )PMX=PO 
IF(MX. NE. I ) PMX=P(MX) 

WRITE (6,60) PMX 
FORMAT (' UPDATED VARIANCE :',F14.4) 
G( I)=I .0 
DO 50 I=2,LG 
G(I)=-A(I-I) 
DO 55 I=I,MX 
F(LG+I-I) =P(LG-I) 
P ( I ) = PO 
RETURN 
END 
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SUBROU TINE SPECT ( LG, G, NF, FREQ, PLG, STE P, S) 
C*O*O|I|WmlII QIWllm*W *IIlli* mIlll**ll*llRIi**** 

C SUBROUTINE TO COMPUTE THE MAXIMUM ENTROPY 
O SPECTRAL DENSITY FUNCTION (S) FROM THE REAL 
C PREDICTION ERROR COEFFICIENTS G(LG). 
C THE FILTER LENGTH IS LG+I 
C l l l i l i l l l l * t * l t t l l i * !  J i * i l t l t l i i * t t * !  i l l i l l t i i t  

DIMENSION G(LG) , S( NF ) , FREQ (NF) 
COMPLEX SUM, ARG 
DATA PI/3.14159/ 

5O 
C 

55 

ALPHA=-2. O*PI*STEP 
DO 55 I=I,NF 
SUM=CMPLX(O.0,O.O) 
DO 50 K=I,LG 
XIMAO = AL PH A*FREQ ( I ) *FL OAT ( K- I ) 
ARG= CMPLX ( 0.0, XIMAG) 
SUM=SUM+G(K ) *CEXP(ARG) 

DEN:CABS(SUM) **2 
S( I):(PLG*STEP)/DEN 
CONTINUE 
RETURN 
END 
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